• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 Imagination Technologies
3  * Author: Paul Burton <paul.burton@mips.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10 
11 #include <linux/cpuhotplug.h>
12 #include <linux/init.h>
13 #include <linux/percpu.h>
14 #include <linux/slab.h>
15 
16 #include <asm/asm-offsets.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/idle.h>
20 #include <asm/mips-cps.h>
21 #include <asm/mipsmtregs.h>
22 #include <asm/pm.h>
23 #include <asm/pm-cps.h>
24 #include <asm/smp-cps.h>
25 #include <asm/uasm.h>
26 
27 /*
28  * cps_nc_entry_fn - type of a generated non-coherent state entry function
29  * @online: the count of online coupled VPEs
30  * @nc_ready_count: pointer to a non-coherent mapping of the core ready_count
31  *
32  * The code entering & exiting non-coherent states is generated at runtime
33  * using uasm, in order to ensure that the compiler cannot insert a stray
34  * memory access at an unfortunate time and to allow the generation of optimal
35  * core-specific code particularly for cache routines. If coupled_coherence
36  * is non-zero and this is the entry function for the CPS_PM_NC_WAIT state,
37  * returns the number of VPEs that were in the wait state at the point this
38  * VPE left it. Returns garbage if coupled_coherence is zero or this is not
39  * the entry function for CPS_PM_NC_WAIT.
40  */
41 typedef unsigned (*cps_nc_entry_fn)(unsigned online, u32 *nc_ready_count);
42 
43 /*
44  * The entry point of the generated non-coherent idle state entry/exit
45  * functions. Actually per-core rather than per-CPU.
46  */
47 static DEFINE_PER_CPU_READ_MOSTLY(cps_nc_entry_fn[CPS_PM_STATE_COUNT],
48 				  nc_asm_enter);
49 
50 /* Bitmap indicating which states are supported by the system */
51 static DECLARE_BITMAP(state_support, CPS_PM_STATE_COUNT);
52 
53 /*
54  * Indicates the number of coupled VPEs ready to operate in a non-coherent
55  * state. Actually per-core rather than per-CPU.
56  */
57 static DEFINE_PER_CPU_ALIGNED(u32*, ready_count);
58 
59 /* Indicates online CPUs coupled with the current CPU */
60 static DEFINE_PER_CPU_ALIGNED(cpumask_t, online_coupled);
61 
62 /*
63  * Used to synchronize entry to deep idle states. Actually per-core rather
64  * than per-CPU.
65  */
66 static DEFINE_PER_CPU_ALIGNED(atomic_t, pm_barrier);
67 
68 /* Saved CPU state across the CPS_PM_POWER_GATED state */
69 DEFINE_PER_CPU_ALIGNED(struct mips_static_suspend_state, cps_cpu_state);
70 
71 /* A somewhat arbitrary number of labels & relocs for uasm */
72 static struct uasm_label labels[32];
73 static struct uasm_reloc relocs[32];
74 
75 enum mips_reg {
76 	zero, at, v0, v1, a0, a1, a2, a3,
77 	t0, t1, t2, t3, t4, t5, t6, t7,
78 	s0, s1, s2, s3, s4, s5, s6, s7,
79 	t8, t9, k0, k1, gp, sp, fp, ra,
80 };
81 
cps_pm_support_state(enum cps_pm_state state)82 bool cps_pm_support_state(enum cps_pm_state state)
83 {
84 	return test_bit(state, state_support);
85 }
86 
coupled_barrier(atomic_t * a,unsigned online)87 static void coupled_barrier(atomic_t *a, unsigned online)
88 {
89 	/*
90 	 * This function is effectively the same as
91 	 * cpuidle_coupled_parallel_barrier, which can't be used here since
92 	 * there's no cpuidle device.
93 	 */
94 
95 	if (!coupled_coherence)
96 		return;
97 
98 	smp_mb__before_atomic();
99 	atomic_inc(a);
100 
101 	while (atomic_read(a) < online)
102 		cpu_relax();
103 
104 	if (atomic_inc_return(a) == online * 2) {
105 		atomic_set(a, 0);
106 		return;
107 	}
108 
109 	while (atomic_read(a) > online)
110 		cpu_relax();
111 }
112 
cps_pm_enter_state(enum cps_pm_state state)113 int cps_pm_enter_state(enum cps_pm_state state)
114 {
115 	unsigned cpu = smp_processor_id();
116 	unsigned core = cpu_core(&current_cpu_data);
117 	unsigned online, left;
118 	cpumask_t *coupled_mask = this_cpu_ptr(&online_coupled);
119 	u32 *core_ready_count, *nc_core_ready_count;
120 	void *nc_addr;
121 	cps_nc_entry_fn entry;
122 	struct core_boot_config *core_cfg;
123 	struct vpe_boot_config *vpe_cfg;
124 
125 	/* Check that there is an entry function for this state */
126 	entry = per_cpu(nc_asm_enter, core)[state];
127 	if (!entry)
128 		return -EINVAL;
129 
130 	/* Calculate which coupled CPUs (VPEs) are online */
131 #if defined(CONFIG_MIPS_MT) || defined(CONFIG_CPU_MIPSR6)
132 	if (cpu_online(cpu)) {
133 		cpumask_and(coupled_mask, cpu_online_mask,
134 			    &cpu_sibling_map[cpu]);
135 		online = cpumask_weight(coupled_mask);
136 		cpumask_clear_cpu(cpu, coupled_mask);
137 	} else
138 #endif
139 	{
140 		cpumask_clear(coupled_mask);
141 		online = 1;
142 	}
143 
144 	/* Setup the VPE to run mips_cps_pm_restore when started again */
145 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
146 		/* Power gating relies upon CPS SMP */
147 		if (!mips_cps_smp_in_use())
148 			return -EINVAL;
149 
150 		core_cfg = &mips_cps_core_bootcfg[core];
151 		vpe_cfg = &core_cfg->vpe_config[cpu_vpe_id(&current_cpu_data)];
152 		vpe_cfg->pc = (unsigned long)mips_cps_pm_restore;
153 		vpe_cfg->gp = (unsigned long)current_thread_info();
154 		vpe_cfg->sp = 0;
155 	}
156 
157 	/* Indicate that this CPU might not be coherent */
158 	cpumask_clear_cpu(cpu, &cpu_coherent_mask);
159 	smp_mb__after_atomic();
160 
161 	/* Create a non-coherent mapping of the core ready_count */
162 	core_ready_count = per_cpu(ready_count, core);
163 	nc_addr = kmap_noncoherent(virt_to_page(core_ready_count),
164 				   (unsigned long)core_ready_count);
165 	nc_addr += ((unsigned long)core_ready_count & ~PAGE_MASK);
166 	nc_core_ready_count = nc_addr;
167 
168 	/* Ensure ready_count is zero-initialised before the assembly runs */
169 	ACCESS_ONCE(*nc_core_ready_count) = 0;
170 	coupled_barrier(&per_cpu(pm_barrier, core), online);
171 
172 	/* Run the generated entry code */
173 	left = entry(online, nc_core_ready_count);
174 
175 	/* Remove the non-coherent mapping of ready_count */
176 	kunmap_noncoherent();
177 
178 	/* Indicate that this CPU is definitely coherent */
179 	cpumask_set_cpu(cpu, &cpu_coherent_mask);
180 
181 	/*
182 	 * If this VPE is the first to leave the non-coherent wait state then
183 	 * it needs to wake up any coupled VPEs still running their wait
184 	 * instruction so that they return to cpuidle, which can then complete
185 	 * coordination between the coupled VPEs & provide the governor with
186 	 * a chance to reflect on the length of time the VPEs were in the
187 	 * idle state.
188 	 */
189 	if (coupled_coherence && (state == CPS_PM_NC_WAIT) && (left == online))
190 		arch_send_call_function_ipi_mask(coupled_mask);
191 
192 	return 0;
193 }
194 
cps_gen_cache_routine(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cache_desc * cache,unsigned op,int lbl)195 static void cps_gen_cache_routine(u32 **pp, struct uasm_label **pl,
196 				  struct uasm_reloc **pr,
197 				  const struct cache_desc *cache,
198 				  unsigned op, int lbl)
199 {
200 	unsigned cache_size = cache->ways << cache->waybit;
201 	unsigned i;
202 	const unsigned unroll_lines = 32;
203 
204 	/* If the cache isn't present this function has it easy */
205 	if (cache->flags & MIPS_CACHE_NOT_PRESENT)
206 		return;
207 
208 	/* Load base address */
209 	UASM_i_LA(pp, t0, (long)CKSEG0);
210 
211 	/* Calculate end address */
212 	if (cache_size < 0x8000)
213 		uasm_i_addiu(pp, t1, t0, cache_size);
214 	else
215 		UASM_i_LA(pp, t1, (long)(CKSEG0 + cache_size));
216 
217 	/* Start of cache op loop */
218 	uasm_build_label(pl, *pp, lbl);
219 
220 	/* Generate the cache ops */
221 	for (i = 0; i < unroll_lines; i++) {
222 		if (cpu_has_mips_r6) {
223 			uasm_i_cache(pp, op, 0, t0);
224 			uasm_i_addiu(pp, t0, t0, cache->linesz);
225 		} else {
226 			uasm_i_cache(pp, op, i * cache->linesz, t0);
227 		}
228 	}
229 
230 	if (!cpu_has_mips_r6)
231 		/* Update the base address */
232 		uasm_i_addiu(pp, t0, t0, unroll_lines * cache->linesz);
233 
234 	/* Loop if we haven't reached the end address yet */
235 	uasm_il_bne(pp, pr, t0, t1, lbl);
236 	uasm_i_nop(pp);
237 }
238 
cps_gen_flush_fsb(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,const struct cpuinfo_mips * cpu_info,int lbl)239 static int cps_gen_flush_fsb(u32 **pp, struct uasm_label **pl,
240 			     struct uasm_reloc **pr,
241 			     const struct cpuinfo_mips *cpu_info,
242 			     int lbl)
243 {
244 	unsigned i, fsb_size = 8;
245 	unsigned num_loads = (fsb_size * 3) / 2;
246 	unsigned line_stride = 2;
247 	unsigned line_size = cpu_info->dcache.linesz;
248 	unsigned perf_counter, perf_event;
249 	unsigned revision = cpu_info->processor_id & PRID_REV_MASK;
250 
251 	/*
252 	 * Determine whether this CPU requires an FSB flush, and if so which
253 	 * performance counter/event reflect stalls due to a full FSB.
254 	 */
255 	switch (__get_cpu_type(cpu_info->cputype)) {
256 	case CPU_INTERAPTIV:
257 		perf_counter = 1;
258 		perf_event = 51;
259 		break;
260 
261 	case CPU_PROAPTIV:
262 		/* Newer proAptiv cores don't require this workaround */
263 		if (revision >= PRID_REV_ENCODE_332(1, 1, 0))
264 			return 0;
265 
266 		/* On older ones it's unavailable */
267 		return -1;
268 
269 	default:
270 		/* Assume that the CPU does not need this workaround */
271 		return 0;
272 	}
273 
274 	/*
275 	 * Ensure that the fill/store buffer (FSB) is not holding the results
276 	 * of a prefetch, since if it is then the CPC sequencer may become
277 	 * stuck in the D3 (ClrBus) state whilst entering a low power state.
278 	 */
279 
280 	/* Preserve perf counter setup */
281 	uasm_i_mfc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
282 	uasm_i_mfc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
283 
284 	/* Setup perf counter to count FSB full pipeline stalls */
285 	uasm_i_addiu(pp, t0, zero, (perf_event << 5) | 0xf);
286 	uasm_i_mtc0(pp, t0, 25, (perf_counter * 2) + 0); /* PerfCtlN */
287 	uasm_i_ehb(pp);
288 	uasm_i_mtc0(pp, zero, 25, (perf_counter * 2) + 1); /* PerfCntN */
289 	uasm_i_ehb(pp);
290 
291 	/* Base address for loads */
292 	UASM_i_LA(pp, t0, (long)CKSEG0);
293 
294 	/* Start of clear loop */
295 	uasm_build_label(pl, *pp, lbl);
296 
297 	/* Perform some loads to fill the FSB */
298 	for (i = 0; i < num_loads; i++)
299 		uasm_i_lw(pp, zero, i * line_size * line_stride, t0);
300 
301 	/*
302 	 * Invalidate the new D-cache entries so that the cache will need
303 	 * refilling (via the FSB) if the loop is executed again.
304 	 */
305 	for (i = 0; i < num_loads; i++) {
306 		uasm_i_cache(pp, Hit_Invalidate_D,
307 			     i * line_size * line_stride, t0);
308 		uasm_i_cache(pp, Hit_Writeback_Inv_SD,
309 			     i * line_size * line_stride, t0);
310 	}
311 
312 	/* Barrier ensuring previous cache invalidates are complete */
313 	uasm_i_sync(pp, STYPE_SYNC);
314 	uasm_i_ehb(pp);
315 
316 	/* Check whether the pipeline stalled due to the FSB being full */
317 	uasm_i_mfc0(pp, t1, 25, (perf_counter * 2) + 1); /* PerfCntN */
318 
319 	/* Loop if it didn't */
320 	uasm_il_beqz(pp, pr, t1, lbl);
321 	uasm_i_nop(pp);
322 
323 	/* Restore perf counter 1. The count may well now be wrong... */
324 	uasm_i_mtc0(pp, t2, 25, (perf_counter * 2) + 0); /* PerfCtlN */
325 	uasm_i_ehb(pp);
326 	uasm_i_mtc0(pp, t3, 25, (perf_counter * 2) + 1); /* PerfCntN */
327 	uasm_i_ehb(pp);
328 
329 	return 0;
330 }
331 
cps_gen_set_top_bit(u32 ** pp,struct uasm_label ** pl,struct uasm_reloc ** pr,unsigned r_addr,int lbl)332 static void cps_gen_set_top_bit(u32 **pp, struct uasm_label **pl,
333 				struct uasm_reloc **pr,
334 				unsigned r_addr, int lbl)
335 {
336 	uasm_i_lui(pp, t0, uasm_rel_hi(0x80000000));
337 	uasm_build_label(pl, *pp, lbl);
338 	uasm_i_ll(pp, t1, 0, r_addr);
339 	uasm_i_or(pp, t1, t1, t0);
340 	uasm_i_sc(pp, t1, 0, r_addr);
341 	uasm_il_beqz(pp, pr, t1, lbl);
342 	uasm_i_nop(pp);
343 }
344 
cps_gen_entry_code(unsigned cpu,enum cps_pm_state state)345 static void *cps_gen_entry_code(unsigned cpu, enum cps_pm_state state)
346 {
347 	struct uasm_label *l = labels;
348 	struct uasm_reloc *r = relocs;
349 	u32 *buf, *p;
350 	const unsigned r_online = a0;
351 	const unsigned r_nc_count = a1;
352 	const unsigned r_pcohctl = t7;
353 	const unsigned max_instrs = 256;
354 	unsigned cpc_cmd;
355 	int err;
356 	enum {
357 		lbl_incready = 1,
358 		lbl_poll_cont,
359 		lbl_secondary_hang,
360 		lbl_disable_coherence,
361 		lbl_flush_fsb,
362 		lbl_invicache,
363 		lbl_flushdcache,
364 		lbl_hang,
365 		lbl_set_cont,
366 		lbl_secondary_cont,
367 		lbl_decready,
368 	};
369 
370 	/* Allocate a buffer to hold the generated code */
371 	p = buf = kcalloc(max_instrs, sizeof(u32), GFP_KERNEL);
372 	if (!buf)
373 		return NULL;
374 
375 	/* Clear labels & relocs ready for (re)use */
376 	memset(labels, 0, sizeof(labels));
377 	memset(relocs, 0, sizeof(relocs));
378 
379 	if (IS_ENABLED(CONFIG_CPU_PM) && state == CPS_PM_POWER_GATED) {
380 		/* Power gating relies upon CPS SMP */
381 		if (!mips_cps_smp_in_use())
382 			goto out_err;
383 
384 		/*
385 		 * Save CPU state. Note the non-standard calling convention
386 		 * with the return address placed in v0 to avoid clobbering
387 		 * the ra register before it is saved.
388 		 */
389 		UASM_i_LA(&p, t0, (long)mips_cps_pm_save);
390 		uasm_i_jalr(&p, v0, t0);
391 		uasm_i_nop(&p);
392 	}
393 
394 	/*
395 	 * Load addresses of required CM & CPC registers. This is done early
396 	 * because they're needed in both the enable & disable coherence steps
397 	 * but in the coupled case the enable step will only run on one VPE.
398 	 */
399 	UASM_i_LA(&p, r_pcohctl, (long)addr_gcr_cl_coherence());
400 
401 	if (coupled_coherence) {
402 		/* Increment ready_count */
403 		uasm_i_sync(&p, STYPE_SYNC_MB);
404 		uasm_build_label(&l, p, lbl_incready);
405 		uasm_i_ll(&p, t1, 0, r_nc_count);
406 		uasm_i_addiu(&p, t2, t1, 1);
407 		uasm_i_sc(&p, t2, 0, r_nc_count);
408 		uasm_il_beqz(&p, &r, t2, lbl_incready);
409 		uasm_i_addiu(&p, t1, t1, 1);
410 
411 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
412 		uasm_i_sync(&p, STYPE_SYNC_MB);
413 
414 		/*
415 		 * If this is the last VPE to become ready for non-coherence
416 		 * then it should branch below.
417 		 */
418 		uasm_il_beq(&p, &r, t1, r_online, lbl_disable_coherence);
419 		uasm_i_nop(&p);
420 
421 		if (state < CPS_PM_POWER_GATED) {
422 			/*
423 			 * Otherwise this is not the last VPE to become ready
424 			 * for non-coherence. It needs to wait until coherence
425 			 * has been disabled before proceeding, which it will do
426 			 * by polling for the top bit of ready_count being set.
427 			 */
428 			uasm_i_addiu(&p, t1, zero, -1);
429 			uasm_build_label(&l, p, lbl_poll_cont);
430 			uasm_i_lw(&p, t0, 0, r_nc_count);
431 			uasm_il_bltz(&p, &r, t0, lbl_secondary_cont);
432 			uasm_i_ehb(&p);
433 			if (cpu_has_mipsmt)
434 				uasm_i_yield(&p, zero, t1);
435 			uasm_il_b(&p, &r, lbl_poll_cont);
436 			uasm_i_nop(&p);
437 		} else {
438 			/*
439 			 * The core will lose power & this VPE will not continue
440 			 * so it can simply halt here.
441 			 */
442 			if (cpu_has_mipsmt) {
443 				/* Halt the VPE via C0 tchalt register */
444 				uasm_i_addiu(&p, t0, zero, TCHALT_H);
445 				uasm_i_mtc0(&p, t0, 2, 4);
446 			} else if (cpu_has_vp) {
447 				/* Halt the VP via the CPC VP_STOP register */
448 				unsigned int vpe_id;
449 
450 				vpe_id = cpu_vpe_id(&cpu_data[cpu]);
451 				uasm_i_addiu(&p, t0, zero, 1 << vpe_id);
452 				UASM_i_LA(&p, t1, (long)addr_cpc_cl_vp_stop());
453 				uasm_i_sw(&p, t0, 0, t1);
454 			} else {
455 				BUG();
456 			}
457 			uasm_build_label(&l, p, lbl_secondary_hang);
458 			uasm_il_b(&p, &r, lbl_secondary_hang);
459 			uasm_i_nop(&p);
460 		}
461 	}
462 
463 	/*
464 	 * This is the point of no return - this VPE will now proceed to
465 	 * disable coherence. At this point we *must* be sure that no other
466 	 * VPE within the core will interfere with the L1 dcache.
467 	 */
468 	uasm_build_label(&l, p, lbl_disable_coherence);
469 
470 	/* Invalidate the L1 icache */
471 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].icache,
472 			      Index_Invalidate_I, lbl_invicache);
473 
474 	/* Writeback & invalidate the L1 dcache */
475 	cps_gen_cache_routine(&p, &l, &r, &cpu_data[cpu].dcache,
476 			      Index_Writeback_Inv_D, lbl_flushdcache);
477 
478 	/* Barrier ensuring previous cache invalidates are complete */
479 	uasm_i_sync(&p, STYPE_SYNC);
480 	uasm_i_ehb(&p);
481 
482 	if (mips_cm_revision() < CM_REV_CM3) {
483 		/*
484 		* Disable all but self interventions. The load from COHCTL is
485 		* defined by the interAptiv & proAptiv SUMs as ensuring that the
486 		*  operation resulting from the preceding store is complete.
487 		*/
488 		uasm_i_addiu(&p, t0, zero, 1 << cpu_core(&cpu_data[cpu]));
489 		uasm_i_sw(&p, t0, 0, r_pcohctl);
490 		uasm_i_lw(&p, t0, 0, r_pcohctl);
491 
492 		/* Barrier to ensure write to coherence control is complete */
493 		uasm_i_sync(&p, STYPE_SYNC);
494 		uasm_i_ehb(&p);
495 	}
496 
497 	/* Disable coherence */
498 	uasm_i_sw(&p, zero, 0, r_pcohctl);
499 	uasm_i_lw(&p, t0, 0, r_pcohctl);
500 
501 	if (state >= CPS_PM_CLOCK_GATED) {
502 		err = cps_gen_flush_fsb(&p, &l, &r, &cpu_data[cpu],
503 					lbl_flush_fsb);
504 		if (err)
505 			goto out_err;
506 
507 		/* Determine the CPC command to issue */
508 		switch (state) {
509 		case CPS_PM_CLOCK_GATED:
510 			cpc_cmd = CPC_Cx_CMD_CLOCKOFF;
511 			break;
512 		case CPS_PM_POWER_GATED:
513 			cpc_cmd = CPC_Cx_CMD_PWRDOWN;
514 			break;
515 		default:
516 			BUG();
517 			goto out_err;
518 		}
519 
520 		/* Issue the CPC command */
521 		UASM_i_LA(&p, t0, (long)addr_cpc_cl_cmd());
522 		uasm_i_addiu(&p, t1, zero, cpc_cmd);
523 		uasm_i_sw(&p, t1, 0, t0);
524 
525 		if (state == CPS_PM_POWER_GATED) {
526 			/* If anything goes wrong just hang */
527 			uasm_build_label(&l, p, lbl_hang);
528 			uasm_il_b(&p, &r, lbl_hang);
529 			uasm_i_nop(&p);
530 
531 			/*
532 			 * There's no point generating more code, the core is
533 			 * powered down & if powered back up will run from the
534 			 * reset vector not from here.
535 			 */
536 			goto gen_done;
537 		}
538 
539 		/* Barrier to ensure write to CPC command is complete */
540 		uasm_i_sync(&p, STYPE_SYNC);
541 		uasm_i_ehb(&p);
542 	}
543 
544 	if (state == CPS_PM_NC_WAIT) {
545 		/*
546 		 * At this point it is safe for all VPEs to proceed with
547 		 * execution. This VPE will set the top bit of ready_count
548 		 * to indicate to the other VPEs that they may continue.
549 		 */
550 		if (coupled_coherence)
551 			cps_gen_set_top_bit(&p, &l, &r, r_nc_count,
552 					    lbl_set_cont);
553 
554 		/*
555 		 * VPEs which did not disable coherence will continue
556 		 * executing, after coherence has been disabled, from this
557 		 * point.
558 		 */
559 		uasm_build_label(&l, p, lbl_secondary_cont);
560 
561 		/* Now perform our wait */
562 		uasm_i_wait(&p, 0);
563 	}
564 
565 	/*
566 	 * Re-enable coherence. Note that for CPS_PM_NC_WAIT all coupled VPEs
567 	 * will run this. The first will actually re-enable coherence & the
568 	 * rest will just be performing a rather unusual nop.
569 	 */
570 	uasm_i_addiu(&p, t0, zero, mips_cm_revision() < CM_REV_CM3
571 				? CM_GCR_Cx_COHERENCE_COHDOMAINEN
572 				: CM3_GCR_Cx_COHERENCE_COHEN);
573 
574 	uasm_i_sw(&p, t0, 0, r_pcohctl);
575 	uasm_i_lw(&p, t0, 0, r_pcohctl);
576 
577 	/* Barrier to ensure write to coherence control is complete */
578 	uasm_i_sync(&p, STYPE_SYNC);
579 	uasm_i_ehb(&p);
580 
581 	if (coupled_coherence && (state == CPS_PM_NC_WAIT)) {
582 		/* Decrement ready_count */
583 		uasm_build_label(&l, p, lbl_decready);
584 		uasm_i_sync(&p, STYPE_SYNC_MB);
585 		uasm_i_ll(&p, t1, 0, r_nc_count);
586 		uasm_i_addiu(&p, t2, t1, -1);
587 		uasm_i_sc(&p, t2, 0, r_nc_count);
588 		uasm_il_beqz(&p, &r, t2, lbl_decready);
589 		uasm_i_andi(&p, v0, t1, (1 << fls(smp_num_siblings)) - 1);
590 
591 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
592 		uasm_i_sync(&p, STYPE_SYNC_MB);
593 	}
594 
595 	if (coupled_coherence && (state == CPS_PM_CLOCK_GATED)) {
596 		/*
597 		 * At this point it is safe for all VPEs to proceed with
598 		 * execution. This VPE will set the top bit of ready_count
599 		 * to indicate to the other VPEs that they may continue.
600 		 */
601 		cps_gen_set_top_bit(&p, &l, &r, r_nc_count, lbl_set_cont);
602 
603 		/*
604 		 * This core will be reliant upon another core sending a
605 		 * power-up command to the CPC in order to resume operation.
606 		 * Thus an arbitrary VPE can't trigger the core leaving the
607 		 * idle state and the one that disables coherence might as well
608 		 * be the one to re-enable it. The rest will continue from here
609 		 * after that has been done.
610 		 */
611 		uasm_build_label(&l, p, lbl_secondary_cont);
612 
613 		/* Barrier ensuring all CPUs see the updated r_nc_count value */
614 		uasm_i_sync(&p, STYPE_SYNC_MB);
615 	}
616 
617 	/* The core is coherent, time to return to C code */
618 	uasm_i_jr(&p, ra);
619 	uasm_i_nop(&p);
620 
621 gen_done:
622 	/* Ensure the code didn't exceed the resources allocated for it */
623 	BUG_ON((p - buf) > max_instrs);
624 	BUG_ON((l - labels) > ARRAY_SIZE(labels));
625 	BUG_ON((r - relocs) > ARRAY_SIZE(relocs));
626 
627 	/* Patch branch offsets */
628 	uasm_resolve_relocs(relocs, labels);
629 
630 	/* Flush the icache */
631 	local_flush_icache_range((unsigned long)buf, (unsigned long)p);
632 
633 	return buf;
634 out_err:
635 	kfree(buf);
636 	return NULL;
637 }
638 
cps_pm_online_cpu(unsigned int cpu)639 static int cps_pm_online_cpu(unsigned int cpu)
640 {
641 	enum cps_pm_state state;
642 	unsigned core = cpu_core(&cpu_data[cpu]);
643 	void *entry_fn, *core_rc;
644 
645 	for (state = CPS_PM_NC_WAIT; state < CPS_PM_STATE_COUNT; state++) {
646 		if (per_cpu(nc_asm_enter, core)[state])
647 			continue;
648 		if (!test_bit(state, state_support))
649 			continue;
650 
651 		entry_fn = cps_gen_entry_code(cpu, state);
652 		if (!entry_fn) {
653 			pr_err("Failed to generate core %u state %u entry\n",
654 			       core, state);
655 			clear_bit(state, state_support);
656 		}
657 
658 		per_cpu(nc_asm_enter, core)[state] = entry_fn;
659 	}
660 
661 	if (!per_cpu(ready_count, core)) {
662 		core_rc = kmalloc(sizeof(u32), GFP_KERNEL);
663 		if (!core_rc) {
664 			pr_err("Failed allocate core %u ready_count\n", core);
665 			return -ENOMEM;
666 		}
667 		per_cpu(ready_count, core) = core_rc;
668 	}
669 
670 	return 0;
671 }
672 
cps_pm_init(void)673 static int __init cps_pm_init(void)
674 {
675 	/* A CM is required for all non-coherent states */
676 	if (!mips_cm_present()) {
677 		pr_warn("pm-cps: no CM, non-coherent states unavailable\n");
678 		return 0;
679 	}
680 
681 	/*
682 	 * If interrupts were enabled whilst running a wait instruction on a
683 	 * non-coherent core then the VPE may end up processing interrupts
684 	 * whilst non-coherent. That would be bad.
685 	 */
686 	if (cpu_wait == r4k_wait_irqoff)
687 		set_bit(CPS_PM_NC_WAIT, state_support);
688 	else
689 		pr_warn("pm-cps: non-coherent wait unavailable\n");
690 
691 	/* Detect whether a CPC is present */
692 	if (mips_cpc_present()) {
693 		/* Detect whether clock gating is implemented */
694 		if (read_cpc_cl_stat_conf() & CPC_Cx_STAT_CONF_CLKGAT_IMPL)
695 			set_bit(CPS_PM_CLOCK_GATED, state_support);
696 		else
697 			pr_warn("pm-cps: CPC does not support clock gating\n");
698 
699 		/* Power gating is available with CPS SMP & any CPC */
700 		if (mips_cps_smp_in_use())
701 			set_bit(CPS_PM_POWER_GATED, state_support);
702 		else
703 			pr_warn("pm-cps: CPS SMP not in use, power gating unavailable\n");
704 	} else {
705 		pr_warn("pm-cps: no CPC, clock & power gating unavailable\n");
706 	}
707 
708 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mips/cps_pm:online",
709 				 cps_pm_online_cpu, NULL);
710 }
711 arch_initcall(cps_pm_init);
712