1 /*
2 * Copyright (C) 2013 Imagination Technologies
3 * Author: Paul Burton <paul.burton@mips.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 */
10
11 #include <linux/cpu.h>
12 #include <linux/delay.h>
13 #include <linux/io.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/slab.h>
17 #include <linux/smp.h>
18 #include <linux/types.h>
19
20 #include <asm/bcache.h>
21 #include <asm/mips-cps.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32
33 struct core_boot_config *mips_cps_core_bootcfg;
34
setup_nothreads(char * s)35 static int __init setup_nothreads(char *s)
36 {
37 threads_disabled = true;
38 return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41
core_vpe_count(unsigned int cluster,unsigned core)42 static unsigned core_vpe_count(unsigned int cluster, unsigned core)
43 {
44 if (threads_disabled)
45 return 1;
46
47 return mips_cps_numvps(cluster, core);
48 }
49
cps_smp_setup(void)50 static void __init cps_smp_setup(void)
51 {
52 unsigned int nclusters, ncores, nvpes, core_vpes;
53 unsigned long core_entry;
54 int cl, c, v;
55
56 /* Detect & record VPE topology */
57 nvpes = 0;
58 nclusters = mips_cps_numclusters();
59 pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
60 for (cl = 0; cl < nclusters; cl++) {
61 if (cl > 0)
62 pr_cont(",");
63 pr_cont("{");
64
65 ncores = mips_cps_numcores(cl);
66 for (c = 0; c < ncores; c++) {
67 core_vpes = core_vpe_count(cl, c);
68
69 if (c > 0)
70 pr_cont(",");
71 pr_cont("%u", core_vpes);
72
73 /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
74 if (!cl && !c)
75 smp_num_siblings = core_vpes;
76
77 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
78 cpu_set_cluster(&cpu_data[nvpes + v], cl);
79 cpu_set_core(&cpu_data[nvpes + v], c);
80 cpu_set_vpe_id(&cpu_data[nvpes + v], v);
81 }
82
83 nvpes += core_vpes;
84 }
85
86 pr_cont("}");
87 }
88 pr_cont(" total %u\n", nvpes);
89
90 /* Indicate present CPUs (CPU being synonymous with VPE) */
91 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
92 set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
93 set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
94 __cpu_number_map[v] = v;
95 __cpu_logical_map[v] = v;
96 }
97
98 /* Set a coherent default CCA (CWB) */
99 change_c0_config(CONF_CM_CMASK, 0x5);
100
101 /* Core 0 is powered up (we're running on it) */
102 bitmap_set(core_power, 0, 1);
103
104 /* Initialise core 0 */
105 mips_cps_core_init();
106
107 /* Make core 0 coherent with everything */
108 write_gcr_cl_coherence(0xff);
109
110 if (mips_cm_revision() >= CM_REV_CM3) {
111 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
112 write_gcr_bev_base(core_entry);
113 }
114
115 #ifdef CONFIG_MIPS_MT_FPAFF
116 /* If we have an FPU, enroll ourselves in the FPU-full mask */
117 if (cpu_has_fpu)
118 cpumask_set_cpu(0, &mt_fpu_cpumask);
119 #endif /* CONFIG_MIPS_MT_FPAFF */
120 }
121
cps_prepare_cpus(unsigned int max_cpus)122 static void __init cps_prepare_cpus(unsigned int max_cpus)
123 {
124 unsigned ncores, core_vpes, c, cca;
125 bool cca_unsuitable, cores_limited;
126 u32 *entry_code;
127
128 mips_mt_set_cpuoptions();
129
130 /* Detect whether the CCA is unsuited to multi-core SMP */
131 cca = read_c0_config() & CONF_CM_CMASK;
132 switch (cca) {
133 case 0x4: /* CWBE */
134 case 0x5: /* CWB */
135 /* The CCA is coherent, multi-core is fine */
136 cca_unsuitable = false;
137 break;
138
139 default:
140 /* CCA is not coherent, multi-core is not usable */
141 cca_unsuitable = true;
142 }
143
144 /* Warn the user if the CCA prevents multi-core */
145 cores_limited = false;
146 if (cca_unsuitable || cpu_has_dc_aliases) {
147 for_each_present_cpu(c) {
148 if (cpus_are_siblings(smp_processor_id(), c))
149 continue;
150
151 set_cpu_present(c, false);
152 cores_limited = true;
153 }
154 }
155 if (cores_limited)
156 pr_warn("Using only one core due to %s%s%s\n",
157 cca_unsuitable ? "unsuitable CCA" : "",
158 (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
159 cpu_has_dc_aliases ? "dcache aliasing" : "");
160
161 /*
162 * Patch the start of mips_cps_core_entry to provide:
163 *
164 * s0 = kseg0 CCA
165 */
166 entry_code = (u32 *)&mips_cps_core_entry;
167 uasm_i_addiu(&entry_code, 16, 0, cca);
168 blast_dcache_range((unsigned long)&mips_cps_core_entry,
169 (unsigned long)entry_code);
170 bc_wback_inv((unsigned long)&mips_cps_core_entry,
171 (void *)entry_code - (void *)&mips_cps_core_entry);
172 __sync();
173
174 /* Allocate core boot configuration structs */
175 ncores = mips_cps_numcores(0);
176 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
177 GFP_KERNEL);
178 if (!mips_cps_core_bootcfg) {
179 pr_err("Failed to allocate boot config for %u cores\n", ncores);
180 goto err_out;
181 }
182
183 /* Allocate VPE boot configuration structs */
184 for (c = 0; c < ncores; c++) {
185 core_vpes = core_vpe_count(0, c);
186 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
187 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
188 GFP_KERNEL);
189 if (!mips_cps_core_bootcfg[c].vpe_config) {
190 pr_err("Failed to allocate %u VPE boot configs\n",
191 core_vpes);
192 goto err_out;
193 }
194 }
195
196 /* Mark this CPU as booted */
197 atomic_set(&mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)].vpe_mask,
198 1 << cpu_vpe_id(¤t_cpu_data));
199
200 return;
201 err_out:
202 /* Clean up allocations */
203 if (mips_cps_core_bootcfg) {
204 for (c = 0; c < ncores; c++)
205 kfree(mips_cps_core_bootcfg[c].vpe_config);
206 kfree(mips_cps_core_bootcfg);
207 mips_cps_core_bootcfg = NULL;
208 }
209
210 /* Effectively disable SMP by declaring CPUs not present */
211 for_each_possible_cpu(c) {
212 if (c == 0)
213 continue;
214 set_cpu_present(c, false);
215 }
216 }
217
boot_core(unsigned int core,unsigned int vpe_id)218 static void boot_core(unsigned int core, unsigned int vpe_id)
219 {
220 u32 stat, seq_state;
221 unsigned timeout;
222
223 /* Select the appropriate core */
224 mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
225
226 /* Set its reset vector */
227 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
228
229 /* Ensure its coherency is disabled */
230 write_gcr_co_coherence(0);
231
232 /* Start it with the legacy memory map and exception base */
233 write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
234
235 /* Ensure the core can access the GCRs */
236 set_gcr_access(1 << core);
237
238 if (mips_cpc_present()) {
239 /* Reset the core */
240 mips_cpc_lock_other(core);
241
242 if (mips_cm_revision() >= CM_REV_CM3) {
243 /* Run only the requested VP following the reset */
244 write_cpc_co_vp_stop(0xf);
245 write_cpc_co_vp_run(1 << vpe_id);
246
247 /*
248 * Ensure that the VP_RUN register is written before the
249 * core leaves reset.
250 */
251 wmb();
252 }
253
254 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
255
256 timeout = 100;
257 while (true) {
258 stat = read_cpc_co_stat_conf();
259 seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
260 seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
261
262 /* U6 == coherent execution, ie. the core is up */
263 if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
264 break;
265
266 /* Delay a little while before we start warning */
267 if (timeout) {
268 timeout--;
269 mdelay(10);
270 continue;
271 }
272
273 pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
274 core, stat);
275 mdelay(1000);
276 }
277
278 mips_cpc_unlock_other();
279 } else {
280 /* Take the core out of reset */
281 write_gcr_co_reset_release(0);
282 }
283
284 mips_cm_unlock_other();
285
286 /* The core is now powered up */
287 bitmap_set(core_power, core, 1);
288 }
289
remote_vpe_boot(void * dummy)290 static void remote_vpe_boot(void *dummy)
291 {
292 unsigned core = cpu_core(¤t_cpu_data);
293 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
294
295 mips_cps_boot_vpes(core_cfg, cpu_vpe_id(¤t_cpu_data));
296 }
297
cps_boot_secondary(int cpu,struct task_struct * idle)298 static int cps_boot_secondary(int cpu, struct task_struct *idle)
299 {
300 unsigned core = cpu_core(&cpu_data[cpu]);
301 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
302 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
303 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
304 unsigned long core_entry;
305 unsigned int remote;
306 int err;
307
308 /* We don't yet support booting CPUs in other clusters */
309 if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
310 return -ENOSYS;
311
312 vpe_cfg->pc = (unsigned long)&smp_bootstrap;
313 vpe_cfg->sp = __KSTK_TOS(idle);
314 vpe_cfg->gp = (unsigned long)task_thread_info(idle);
315
316 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
317
318 preempt_disable();
319
320 if (!test_bit(core, core_power)) {
321 /* Boot a VPE on a powered down core */
322 boot_core(core, vpe_id);
323 goto out;
324 }
325
326 if (cpu_has_vp) {
327 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
328 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
329 write_gcr_co_reset_base(core_entry);
330 mips_cm_unlock_other();
331 }
332
333 if (!cpus_are_siblings(cpu, smp_processor_id())) {
334 /* Boot a VPE on another powered up core */
335 for (remote = 0; remote < NR_CPUS; remote++) {
336 if (!cpus_are_siblings(cpu, remote))
337 continue;
338 if (cpu_online(remote))
339 break;
340 }
341 if (remote >= NR_CPUS) {
342 pr_crit("No online CPU in core %u to start CPU%d\n",
343 core, cpu);
344 goto out;
345 }
346
347 err = smp_call_function_single(remote, remote_vpe_boot,
348 NULL, 1);
349 if (err)
350 panic("Failed to call remote CPU\n");
351 goto out;
352 }
353
354 BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
355
356 /* Boot a VPE on this core */
357 mips_cps_boot_vpes(core_cfg, vpe_id);
358 out:
359 preempt_enable();
360 return 0;
361 }
362
cps_init_secondary(void)363 static void cps_init_secondary(void)
364 {
365 /* Disable MT - we only want to run 1 TC per VPE */
366 if (cpu_has_mipsmt)
367 dmt();
368
369 if (mips_cm_revision() >= CM_REV_CM3) {
370 unsigned int ident = read_gic_vl_ident();
371
372 /*
373 * Ensure that our calculation of the VP ID matches up with
374 * what the GIC reports, otherwise we'll have configured
375 * interrupts incorrectly.
376 */
377 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
378 }
379
380 if (cpu_has_veic)
381 clear_c0_status(ST0_IM);
382 else
383 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
384 STATUSF_IP4 | STATUSF_IP5 |
385 STATUSF_IP6 | STATUSF_IP7);
386 }
387
cps_smp_finish(void)388 static void cps_smp_finish(void)
389 {
390 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
391
392 #ifdef CONFIG_MIPS_MT_FPAFF
393 /* If we have an FPU, enroll ourselves in the FPU-full mask */
394 if (cpu_has_fpu)
395 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
396 #endif /* CONFIG_MIPS_MT_FPAFF */
397
398 local_irq_enable();
399 }
400
401 #ifdef CONFIG_HOTPLUG_CPU
402
cps_cpu_disable(void)403 static int cps_cpu_disable(void)
404 {
405 unsigned cpu = smp_processor_id();
406 struct core_boot_config *core_cfg;
407
408 if (!cpu)
409 return -EBUSY;
410
411 if (!cps_pm_support_state(CPS_PM_POWER_GATED))
412 return -EINVAL;
413
414 core_cfg = &mips_cps_core_bootcfg[cpu_core(¤t_cpu_data)];
415 atomic_sub(1 << cpu_vpe_id(¤t_cpu_data), &core_cfg->vpe_mask);
416 smp_mb__after_atomic();
417 set_cpu_online(cpu, false);
418 calculate_cpu_foreign_map();
419
420 return 0;
421 }
422
423 static unsigned cpu_death_sibling;
424 static enum {
425 CPU_DEATH_HALT,
426 CPU_DEATH_POWER,
427 } cpu_death;
428
play_dead(void)429 void play_dead(void)
430 {
431 unsigned int cpu, core, vpe_id;
432
433 local_irq_disable();
434 idle_task_exit();
435 cpu = smp_processor_id();
436 core = cpu_core(&cpu_data[cpu]);
437 cpu_death = CPU_DEATH_POWER;
438
439 pr_debug("CPU%d going offline\n", cpu);
440
441 if (cpu_has_mipsmt || cpu_has_vp) {
442 core = cpu_core(&cpu_data[cpu]);
443
444 /* Look for another online VPE within the core */
445 for_each_online_cpu(cpu_death_sibling) {
446 if (!cpus_are_siblings(cpu, cpu_death_sibling))
447 continue;
448
449 /*
450 * There is an online VPE within the core. Just halt
451 * this TC and leave the core alone.
452 */
453 cpu_death = CPU_DEATH_HALT;
454 break;
455 }
456 }
457
458 /* This CPU has chosen its way out */
459 (void)cpu_report_death();
460
461 if (cpu_death == CPU_DEATH_HALT) {
462 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
463
464 pr_debug("Halting core %d VP%d\n", core, vpe_id);
465 if (cpu_has_mipsmt) {
466 /* Halt this TC */
467 write_c0_tchalt(TCHALT_H);
468 instruction_hazard();
469 } else if (cpu_has_vp) {
470 write_cpc_cl_vp_stop(1 << vpe_id);
471
472 /* Ensure that the VP_STOP register is written */
473 wmb();
474 }
475 } else {
476 pr_debug("Gating power to core %d\n", core);
477 /* Power down the core */
478 cps_pm_enter_state(CPS_PM_POWER_GATED);
479 }
480
481 /* This should never be reached */
482 panic("Failed to offline CPU %u", cpu);
483 }
484
wait_for_sibling_halt(void * ptr_cpu)485 static void wait_for_sibling_halt(void *ptr_cpu)
486 {
487 unsigned cpu = (unsigned long)ptr_cpu;
488 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
489 unsigned halted;
490 unsigned long flags;
491
492 do {
493 local_irq_save(flags);
494 settc(vpe_id);
495 halted = read_tc_c0_tchalt();
496 local_irq_restore(flags);
497 } while (!(halted & TCHALT_H));
498 }
499
cps_cpu_die(unsigned int cpu)500 static void cps_cpu_die(unsigned int cpu)
501 {
502 unsigned core = cpu_core(&cpu_data[cpu]);
503 unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
504 ktime_t fail_time;
505 unsigned stat;
506 int err;
507
508 /* Wait for the cpu to choose its way out */
509 if (!cpu_wait_death(cpu, 5)) {
510 pr_err("CPU%u: didn't offline\n", cpu);
511 return;
512 }
513
514 /*
515 * Now wait for the CPU to actually offline. Without doing this that
516 * offlining may race with one or more of:
517 *
518 * - Onlining the CPU again.
519 * - Powering down the core if another VPE within it is offlined.
520 * - A sibling VPE entering a non-coherent state.
521 *
522 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
523 * with which we could race, so do nothing.
524 */
525 if (cpu_death == CPU_DEATH_POWER) {
526 /*
527 * Wait for the core to enter a powered down or clock gated
528 * state, the latter happening when a JTAG probe is connected
529 * in which case the CPC will refuse to power down the core.
530 */
531 fail_time = ktime_add_ms(ktime_get(), 2000);
532 do {
533 mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
534 mips_cpc_lock_other(core);
535 stat = read_cpc_co_stat_conf();
536 stat &= CPC_Cx_STAT_CONF_SEQSTATE;
537 stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
538 mips_cpc_unlock_other();
539 mips_cm_unlock_other();
540
541 if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
542 stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
543 stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
544 break;
545
546 /*
547 * The core ought to have powered down, but didn't &
548 * now we don't really know what state it's in. It's
549 * likely that its _pwr_up pin has been wired to logic
550 * 1 & it powered back up as soon as we powered it
551 * down...
552 *
553 * The best we can do is warn the user & continue in
554 * the hope that the core is doing nothing harmful &
555 * might behave properly if we online it later.
556 */
557 if (WARN(ktime_after(ktime_get(), fail_time),
558 "CPU%u hasn't powered down, seq. state %u\n",
559 cpu, stat))
560 break;
561 } while (1);
562
563 /* Indicate the core is powered off */
564 bitmap_clear(core_power, core, 1);
565 } else if (cpu_has_mipsmt) {
566 /*
567 * Have a CPU with access to the offlined CPUs registers wait
568 * for its TC to halt.
569 */
570 err = smp_call_function_single(cpu_death_sibling,
571 wait_for_sibling_halt,
572 (void *)(unsigned long)cpu, 1);
573 if (err)
574 panic("Failed to call remote sibling CPU\n");
575 } else if (cpu_has_vp) {
576 do {
577 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
578 stat = read_cpc_co_vp_running();
579 mips_cm_unlock_other();
580 } while (stat & (1 << vpe_id));
581 }
582 }
583
584 #endif /* CONFIG_HOTPLUG_CPU */
585
586 static const struct plat_smp_ops cps_smp_ops = {
587 .smp_setup = cps_smp_setup,
588 .prepare_cpus = cps_prepare_cpus,
589 .boot_secondary = cps_boot_secondary,
590 .init_secondary = cps_init_secondary,
591 .smp_finish = cps_smp_finish,
592 .send_ipi_single = mips_smp_send_ipi_single,
593 .send_ipi_mask = mips_smp_send_ipi_mask,
594 #ifdef CONFIG_HOTPLUG_CPU
595 .cpu_disable = cps_cpu_disable,
596 .cpu_die = cps_cpu_die,
597 #endif
598 };
599
mips_cps_smp_in_use(void)600 bool mips_cps_smp_in_use(void)
601 {
602 extern const struct plat_smp_ops *mp_ops;
603 return mp_ops == &cps_smp_ops;
604 }
605
register_cps_smp_ops(void)606 int register_cps_smp_ops(void)
607 {
608 if (!mips_cm_present()) {
609 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
610 return -ENODEV;
611 }
612
613 /* check we have a GIC - we need one for IPIs */
614 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
615 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
616 return -ENODEV;
617 }
618
619 register_smp_ops(&cps_smp_ops);
620 return 0;
621 }
622