1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Support for hardware virtualization extensions
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Yann Le Du <ledu@kymasys.com>
10 */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/preempt.h>
16 #include <linux/vmalloc.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/cmpxchg.h>
20 #include <asm/fpu.h>
21 #include <asm/hazards.h>
22 #include <asm/inst.h>
23 #include <asm/mmu_context.h>
24 #include <asm/r4kcache.h>
25 #include <asm/time.h>
26 #include <asm/tlb.h>
27 #include <asm/tlbex.h>
28
29 #include <linux/kvm_host.h>
30
31 #include "interrupt.h"
32
33 #include "trace.h"
34
35 /* Pointers to last VCPU loaded on each physical CPU */
36 static struct kvm_vcpu *last_vcpu[NR_CPUS];
37 /* Pointers to last VCPU executed on each physical CPU */
38 static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
39
40 /*
41 * Number of guest VTLB entries to use, so we can catch inconsistency between
42 * CPUs.
43 */
44 static unsigned int kvm_vz_guest_vtlb_size;
45
kvm_vz_read_gc0_ebase(void)46 static inline long kvm_vz_read_gc0_ebase(void)
47 {
48 if (sizeof(long) == 8 && cpu_has_ebase_wg)
49 return read_gc0_ebase_64();
50 else
51 return read_gc0_ebase();
52 }
53
kvm_vz_write_gc0_ebase(long v)54 static inline void kvm_vz_write_gc0_ebase(long v)
55 {
56 /*
57 * First write with WG=1 to write upper bits, then write again in case
58 * WG should be left at 0.
59 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
60 */
61 if (sizeof(long) == 8 &&
62 (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
63 write_gc0_ebase_64(v | MIPS_EBASE_WG);
64 write_gc0_ebase_64(v);
65 } else {
66 write_gc0_ebase(v | MIPS_EBASE_WG);
67 write_gc0_ebase(v);
68 }
69 }
70
71 /*
72 * These Config bits may be writable by the guest:
73 * Config: [K23, KU] (!TLB), K0
74 * Config1: (none)
75 * Config2: [TU, SU] (impl)
76 * Config3: ISAOnExc
77 * Config4: FTLBPageSize
78 * Config5: K, CV, MSAEn, UFE, FRE, SBRI, UFR
79 */
80
kvm_vz_config_guest_wrmask(struct kvm_vcpu * vcpu)81 static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
82 {
83 return CONF_CM_CMASK;
84 }
85
kvm_vz_config1_guest_wrmask(struct kvm_vcpu * vcpu)86 static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
87 {
88 return 0;
89 }
90
kvm_vz_config2_guest_wrmask(struct kvm_vcpu * vcpu)91 static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
92 {
93 return 0;
94 }
95
kvm_vz_config3_guest_wrmask(struct kvm_vcpu * vcpu)96 static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
97 {
98 return MIPS_CONF3_ISA_OE;
99 }
100
kvm_vz_config4_guest_wrmask(struct kvm_vcpu * vcpu)101 static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
102 {
103 /* no need to be exact */
104 return MIPS_CONF4_VFTLBPAGESIZE;
105 }
106
kvm_vz_config5_guest_wrmask(struct kvm_vcpu * vcpu)107 static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
108 {
109 unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
110
111 /* Permit MSAEn changes if MSA supported and enabled */
112 if (kvm_mips_guest_has_msa(&vcpu->arch))
113 mask |= MIPS_CONF5_MSAEN;
114
115 /*
116 * Permit guest FPU mode changes if FPU is enabled and the relevant
117 * feature exists according to FIR register.
118 */
119 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
120 if (cpu_has_ufr)
121 mask |= MIPS_CONF5_UFR;
122 if (cpu_has_fre)
123 mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
124 }
125
126 return mask;
127 }
128
129 /*
130 * VZ optionally allows these additional Config bits to be written by root:
131 * Config: M, [MT]
132 * Config1: M, [MMUSize-1, C2, MD, PC, WR, CA], FP
133 * Config2: M
134 * Config3: M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
135 * VInt, SP, CDMM, MT, SM, TL]
136 * Config4: M, [VTLBSizeExt, MMUSizeExt]
137 * Config5: MRP
138 */
139
kvm_vz_config_user_wrmask(struct kvm_vcpu * vcpu)140 static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
141 {
142 return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
143 }
144
kvm_vz_config1_user_wrmask(struct kvm_vcpu * vcpu)145 static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
146 {
147 unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
148
149 /* Permit FPU to be present if FPU is supported */
150 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
151 mask |= MIPS_CONF1_FP;
152
153 return mask;
154 }
155
kvm_vz_config2_user_wrmask(struct kvm_vcpu * vcpu)156 static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
157 {
158 return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
159 }
160
kvm_vz_config3_user_wrmask(struct kvm_vcpu * vcpu)161 static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
162 {
163 unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
164 MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
165
166 /* Permit MSA to be present if MSA is supported */
167 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
168 mask |= MIPS_CONF3_MSA;
169
170 return mask;
171 }
172
kvm_vz_config4_user_wrmask(struct kvm_vcpu * vcpu)173 static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
174 {
175 return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
176 }
177
kvm_vz_config5_user_wrmask(struct kvm_vcpu * vcpu)178 static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
179 {
180 return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
181 }
182
kvm_vz_gva_to_gpa_cb(gva_t gva)183 static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
184 {
185 /* VZ guest has already converted gva to gpa */
186 return gva;
187 }
188
kvm_vz_queue_irq(struct kvm_vcpu * vcpu,unsigned int priority)189 static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
190 {
191 set_bit(priority, &vcpu->arch.pending_exceptions);
192 clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
193 }
194
kvm_vz_dequeue_irq(struct kvm_vcpu * vcpu,unsigned int priority)195 static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
196 {
197 clear_bit(priority, &vcpu->arch.pending_exceptions);
198 set_bit(priority, &vcpu->arch.pending_exceptions_clr);
199 }
200
kvm_vz_queue_timer_int_cb(struct kvm_vcpu * vcpu)201 static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
202 {
203 /*
204 * timer expiry is asynchronous to vcpu execution therefore defer guest
205 * cp0 accesses
206 */
207 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
208 }
209
kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu * vcpu)210 static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
211 {
212 /*
213 * timer expiry is asynchronous to vcpu execution therefore defer guest
214 * cp0 accesses
215 */
216 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
217 }
218
kvm_vz_queue_io_int_cb(struct kvm_vcpu * vcpu,struct kvm_mips_interrupt * irq)219 static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
220 struct kvm_mips_interrupt *irq)
221 {
222 int intr = (int)irq->irq;
223
224 /*
225 * interrupts are asynchronous to vcpu execution therefore defer guest
226 * cp0 accesses
227 */
228 switch (intr) {
229 case 2:
230 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IO);
231 break;
232
233 case 3:
234 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_1);
235 break;
236
237 case 4:
238 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_IPI_2);
239 break;
240
241 default:
242 break;
243 }
244
245 }
246
kvm_vz_dequeue_io_int_cb(struct kvm_vcpu * vcpu,struct kvm_mips_interrupt * irq)247 static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
248 struct kvm_mips_interrupt *irq)
249 {
250 int intr = (int)irq->irq;
251
252 /*
253 * interrupts are asynchronous to vcpu execution therefore defer guest
254 * cp0 accesses
255 */
256 switch (intr) {
257 case -2:
258 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IO);
259 break;
260
261 case -3:
262 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_1);
263 break;
264
265 case -4:
266 kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_IPI_2);
267 break;
268
269 default:
270 break;
271 }
272
273 }
274
275 static u32 kvm_vz_priority_to_irq[MIPS_EXC_MAX] = {
276 [MIPS_EXC_INT_TIMER] = C_IRQ5,
277 [MIPS_EXC_INT_IO] = C_IRQ0,
278 [MIPS_EXC_INT_IPI_1] = C_IRQ1,
279 [MIPS_EXC_INT_IPI_2] = C_IRQ2,
280 };
281
kvm_vz_irq_deliver_cb(struct kvm_vcpu * vcpu,unsigned int priority,u32 cause)282 static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
283 u32 cause)
284 {
285 u32 irq = (priority < MIPS_EXC_MAX) ?
286 kvm_vz_priority_to_irq[priority] : 0;
287
288 switch (priority) {
289 case MIPS_EXC_INT_TIMER:
290 set_gc0_cause(C_TI);
291 break;
292
293 case MIPS_EXC_INT_IO:
294 case MIPS_EXC_INT_IPI_1:
295 case MIPS_EXC_INT_IPI_2:
296 if (cpu_has_guestctl2)
297 set_c0_guestctl2(irq);
298 else
299 set_gc0_cause(irq);
300 break;
301
302 default:
303 break;
304 }
305
306 clear_bit(priority, &vcpu->arch.pending_exceptions);
307 return 1;
308 }
309
kvm_vz_irq_clear_cb(struct kvm_vcpu * vcpu,unsigned int priority,u32 cause)310 static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
311 u32 cause)
312 {
313 u32 irq = (priority < MIPS_EXC_MAX) ?
314 kvm_vz_priority_to_irq[priority] : 0;
315
316 switch (priority) {
317 case MIPS_EXC_INT_TIMER:
318 /*
319 * Call to kvm_write_c0_guest_compare() clears Cause.TI in
320 * kvm_mips_emulate_CP0(). Explicitly clear irq associated with
321 * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not
322 * supported or if not using GuestCtl2 Hardware Clear.
323 */
324 if (cpu_has_guestctl2) {
325 if (!(read_c0_guestctl2() & (irq << 14)))
326 clear_c0_guestctl2(irq);
327 } else {
328 clear_gc0_cause(irq);
329 }
330 break;
331
332 case MIPS_EXC_INT_IO:
333 case MIPS_EXC_INT_IPI_1:
334 case MIPS_EXC_INT_IPI_2:
335 /* Clear GuestCtl2.VIP irq if not using Hardware Clear */
336 if (cpu_has_guestctl2) {
337 if (!(read_c0_guestctl2() & (irq << 14)))
338 clear_c0_guestctl2(irq);
339 } else {
340 clear_gc0_cause(irq);
341 }
342 break;
343
344 default:
345 break;
346 }
347
348 clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
349 return 1;
350 }
351
352 /*
353 * VZ guest timer handling.
354 */
355
356 /**
357 * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
358 * @vcpu: Virtual CPU.
359 *
360 * Returns: true if the VZ GTOffset & real guest CP0_Count should be used
361 * instead of software emulation of guest timer.
362 * false otherwise.
363 */
kvm_vz_should_use_htimer(struct kvm_vcpu * vcpu)364 static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
365 {
366 if (kvm_mips_count_disabled(vcpu))
367 return false;
368
369 /* Chosen frequency must match real frequency */
370 if (mips_hpt_frequency != vcpu->arch.count_hz)
371 return false;
372
373 /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
374 if (current_cpu_data.gtoffset_mask != 0xffffffff)
375 return false;
376
377 return true;
378 }
379
380 /**
381 * _kvm_vz_restore_stimer() - Restore soft timer state.
382 * @vcpu: Virtual CPU.
383 * @compare: CP0_Compare register value, restored by caller.
384 * @cause: CP0_Cause register to restore.
385 *
386 * Restore VZ state relating to the soft timer. The hard timer can be enabled
387 * later.
388 */
_kvm_vz_restore_stimer(struct kvm_vcpu * vcpu,u32 compare,u32 cause)389 static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
390 u32 cause)
391 {
392 /*
393 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
394 * after Guest CP0_Compare.
395 */
396 write_c0_gtoffset(compare - read_c0_count());
397
398 back_to_back_c0_hazard();
399 write_gc0_cause(cause);
400 }
401
402 /**
403 * _kvm_vz_restore_htimer() - Restore hard timer state.
404 * @vcpu: Virtual CPU.
405 * @compare: CP0_Compare register value, restored by caller.
406 * @cause: CP0_Cause register to restore.
407 *
408 * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
409 * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
410 */
_kvm_vz_restore_htimer(struct kvm_vcpu * vcpu,u32 compare,u32 cause)411 static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
412 u32 compare, u32 cause)
413 {
414 u32 start_count, after_count;
415 ktime_t freeze_time;
416 unsigned long flags;
417
418 /*
419 * Freeze the soft-timer and sync the guest CP0_Count with it. We do
420 * this with interrupts disabled to avoid latency.
421 */
422 local_irq_save(flags);
423 freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count);
424 write_c0_gtoffset(start_count - read_c0_count());
425 local_irq_restore(flags);
426
427 /* restore guest CP0_Cause, as TI may already be set */
428 back_to_back_c0_hazard();
429 write_gc0_cause(cause);
430
431 /*
432 * The above sequence isn't atomic and would result in lost timer
433 * interrupts if we're not careful. Detect if a timer interrupt is due
434 * and assert it.
435 */
436 back_to_back_c0_hazard();
437 after_count = read_gc0_count();
438 if (after_count - start_count > compare - start_count - 1)
439 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
440 }
441
442 /**
443 * kvm_vz_restore_timer() - Restore timer state.
444 * @vcpu: Virtual CPU.
445 *
446 * Restore soft timer state from saved context.
447 */
kvm_vz_restore_timer(struct kvm_vcpu * vcpu)448 static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
449 {
450 struct mips_coproc *cop0 = vcpu->arch.cop0;
451 u32 cause, compare;
452
453 compare = kvm_read_sw_gc0_compare(cop0);
454 cause = kvm_read_sw_gc0_cause(cop0);
455
456 write_gc0_compare(compare);
457 _kvm_vz_restore_stimer(vcpu, compare, cause);
458 }
459
460 /**
461 * kvm_vz_acquire_htimer() - Switch to hard timer state.
462 * @vcpu: Virtual CPU.
463 *
464 * Restore hard timer state on top of existing soft timer state if possible.
465 *
466 * Since hard timer won't remain active over preemption, preemption should be
467 * disabled by the caller.
468 */
kvm_vz_acquire_htimer(struct kvm_vcpu * vcpu)469 void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
470 {
471 u32 gctl0;
472
473 gctl0 = read_c0_guestctl0();
474 if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
475 /* enable guest access to hard timer */
476 write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
477
478 _kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
479 read_gc0_cause());
480 }
481 }
482
483 /**
484 * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
485 * @vcpu: Virtual CPU.
486 * @compare: Pointer to write compare value to.
487 * @cause: Pointer to write cause value to.
488 *
489 * Save VZ guest timer state and switch to software emulation of guest CP0
490 * timer. The hard timer must already be in use, so preemption should be
491 * disabled.
492 */
_kvm_vz_save_htimer(struct kvm_vcpu * vcpu,u32 * out_compare,u32 * out_cause)493 static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
494 u32 *out_compare, u32 *out_cause)
495 {
496 u32 cause, compare, before_count, end_count;
497 ktime_t before_time;
498
499 compare = read_gc0_compare();
500 *out_compare = compare;
501
502 before_time = ktime_get();
503
504 /*
505 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
506 * at which no pending timer interrupt is missing.
507 */
508 before_count = read_gc0_count();
509 back_to_back_c0_hazard();
510 cause = read_gc0_cause();
511 *out_cause = cause;
512
513 /*
514 * Record a final CP0_Count which we will transfer to the soft-timer.
515 * This is recorded *after* saving CP0_Cause, so we don't get any timer
516 * interrupts from just after the final CP0_Count point.
517 */
518 back_to_back_c0_hazard();
519 end_count = read_gc0_count();
520
521 /*
522 * The above sequence isn't atomic, so we could miss a timer interrupt
523 * between reading CP0_Cause and end_count. Detect and record any timer
524 * interrupt due between before_count and end_count.
525 */
526 if (end_count - before_count > compare - before_count - 1)
527 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
528
529 /*
530 * Restore soft-timer, ignoring a small amount of negative drift due to
531 * delay between freeze_hrtimer and setting CP0_GTOffset.
532 */
533 kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
534 }
535
536 /**
537 * kvm_vz_save_timer() - Save guest timer state.
538 * @vcpu: Virtual CPU.
539 *
540 * Save VZ guest timer state and switch to soft guest timer if hard timer was in
541 * use.
542 */
kvm_vz_save_timer(struct kvm_vcpu * vcpu)543 static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
544 {
545 struct mips_coproc *cop0 = vcpu->arch.cop0;
546 u32 gctl0, compare, cause;
547
548 gctl0 = read_c0_guestctl0();
549 if (gctl0 & MIPS_GCTL0_GT) {
550 /* disable guest use of hard timer */
551 write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
552
553 /* save hard timer state */
554 _kvm_vz_save_htimer(vcpu, &compare, &cause);
555 } else {
556 compare = read_gc0_compare();
557 cause = read_gc0_cause();
558 }
559
560 /* save timer-related state to VCPU context */
561 kvm_write_sw_gc0_cause(cop0, cause);
562 kvm_write_sw_gc0_compare(cop0, compare);
563 }
564
565 /**
566 * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
567 * @vcpu: Virtual CPU.
568 *
569 * Transfers the state of the hard guest timer to the soft guest timer, leaving
570 * guest state intact so it can continue to be used with the soft timer.
571 */
kvm_vz_lose_htimer(struct kvm_vcpu * vcpu)572 void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
573 {
574 u32 gctl0, compare, cause;
575
576 preempt_disable();
577 gctl0 = read_c0_guestctl0();
578 if (gctl0 & MIPS_GCTL0_GT) {
579 /* disable guest use of timer */
580 write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
581
582 /* switch to soft timer */
583 _kvm_vz_save_htimer(vcpu, &compare, &cause);
584
585 /* leave soft timer in usable state */
586 _kvm_vz_restore_stimer(vcpu, compare, cause);
587 }
588 preempt_enable();
589 }
590
591 /**
592 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
593 * @inst: 32-bit instruction encoding.
594 *
595 * Finds whether @inst encodes an EVA memory access instruction, which would
596 * indicate that emulation of it should access the user mode address space
597 * instead of the kernel mode address space. This matters for MUSUK segments
598 * which are TLB mapped for user mode but unmapped for kernel mode.
599 *
600 * Returns: Whether @inst encodes an EVA accessor instruction.
601 */
is_eva_access(union mips_instruction inst)602 static bool is_eva_access(union mips_instruction inst)
603 {
604 if (inst.spec3_format.opcode != spec3_op)
605 return false;
606
607 switch (inst.spec3_format.func) {
608 case lwle_op:
609 case lwre_op:
610 case cachee_op:
611 case sbe_op:
612 case she_op:
613 case sce_op:
614 case swe_op:
615 case swle_op:
616 case swre_op:
617 case prefe_op:
618 case lbue_op:
619 case lhue_op:
620 case lbe_op:
621 case lhe_op:
622 case lle_op:
623 case lwe_op:
624 return true;
625 default:
626 return false;
627 }
628 }
629
630 /**
631 * is_eva_am_mapped() - Find whether an access mode is mapped.
632 * @vcpu: KVM VCPU state.
633 * @am: 3-bit encoded access mode.
634 * @eu: Segment becomes unmapped and uncached when Status.ERL=1.
635 *
636 * Decode @am to find whether it encodes a mapped segment for the current VCPU
637 * state. Where necessary @eu and the actual instruction causing the fault are
638 * taken into account to make the decision.
639 *
640 * Returns: Whether the VCPU faulted on a TLB mapped address.
641 */
is_eva_am_mapped(struct kvm_vcpu * vcpu,unsigned int am,bool eu)642 static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
643 {
644 u32 am_lookup;
645 int err;
646
647 /*
648 * Interpret access control mode. We assume address errors will already
649 * have been caught by the guest, leaving us with:
650 * AM UM SM KM 31..24 23..16
651 * UK 0 000 Unm 0 0
652 * MK 1 001 TLB 1
653 * MSK 2 010 TLB TLB 1
654 * MUSK 3 011 TLB TLB TLB 1
655 * MUSUK 4 100 TLB TLB Unm 0 1
656 * USK 5 101 Unm Unm 0 0
657 * - 6 110 0 0
658 * UUSK 7 111 Unm Unm Unm 0 0
659 *
660 * We shift a magic value by AM across the sign bit to find if always
661 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
662 */
663 am_lookup = 0x70080000 << am;
664 if ((s32)am_lookup < 0) {
665 /*
666 * MK, MSK, MUSK
667 * Always TLB mapped, unless SegCtl.EU && ERL
668 */
669 if (!eu || !(read_gc0_status() & ST0_ERL))
670 return true;
671 } else {
672 am_lookup <<= 8;
673 if ((s32)am_lookup < 0) {
674 union mips_instruction inst;
675 unsigned int status;
676 u32 *opc;
677
678 /*
679 * MUSUK
680 * TLB mapped if not in kernel mode
681 */
682 status = read_gc0_status();
683 if (!(status & (ST0_EXL | ST0_ERL)) &&
684 (status & ST0_KSU))
685 return true;
686 /*
687 * EVA access instructions in kernel
688 * mode access user address space.
689 */
690 opc = (u32 *)vcpu->arch.pc;
691 if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
692 opc += 1;
693 err = kvm_get_badinstr(opc, vcpu, &inst.word);
694 if (!err && is_eva_access(inst))
695 return true;
696 }
697 }
698
699 return false;
700 }
701
702 /**
703 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
704 * @vcpu: KVM VCPU state.
705 * @gva: Guest virtual address to convert.
706 * @gpa: Output guest physical address.
707 *
708 * Convert a guest virtual address (GVA) which is valid according to the guest
709 * context, to a guest physical address (GPA).
710 *
711 * Returns: 0 on success.
712 * -errno on failure.
713 */
kvm_vz_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,unsigned long * gpa)714 static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
715 unsigned long *gpa)
716 {
717 u32 gva32 = gva;
718 unsigned long segctl;
719
720 if ((long)gva == (s32)gva32) {
721 /* Handle canonical 32-bit virtual address */
722 if (cpu_guest_has_segments) {
723 unsigned long mask, pa;
724
725 switch (gva32 >> 29) {
726 case 0:
727 case 1: /* CFG5 (1GB) */
728 segctl = read_gc0_segctl2() >> 16;
729 mask = (unsigned long)0xfc0000000ull;
730 break;
731 case 2:
732 case 3: /* CFG4 (1GB) */
733 segctl = read_gc0_segctl2();
734 mask = (unsigned long)0xfc0000000ull;
735 break;
736 case 4: /* CFG3 (512MB) */
737 segctl = read_gc0_segctl1() >> 16;
738 mask = (unsigned long)0xfe0000000ull;
739 break;
740 case 5: /* CFG2 (512MB) */
741 segctl = read_gc0_segctl1();
742 mask = (unsigned long)0xfe0000000ull;
743 break;
744 case 6: /* CFG1 (512MB) */
745 segctl = read_gc0_segctl0() >> 16;
746 mask = (unsigned long)0xfe0000000ull;
747 break;
748 case 7: /* CFG0 (512MB) */
749 segctl = read_gc0_segctl0();
750 mask = (unsigned long)0xfe0000000ull;
751 break;
752 default:
753 /*
754 * GCC 4.9 isn't smart enough to figure out that
755 * segctl and mask are always initialised.
756 */
757 unreachable();
758 }
759
760 if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
761 segctl & 0x0008))
762 goto tlb_mapped;
763
764 /* Unmapped, find guest physical address */
765 pa = (segctl << 20) & mask;
766 pa |= gva32 & ~mask;
767 *gpa = pa;
768 return 0;
769 } else if ((s32)gva32 < (s32)0xc0000000) {
770 /* legacy unmapped KSeg0 or KSeg1 */
771 *gpa = gva32 & 0x1fffffff;
772 return 0;
773 }
774 #ifdef CONFIG_64BIT
775 } else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
776 /* XKPHYS */
777 if (cpu_guest_has_segments) {
778 /*
779 * Each of the 8 regions can be overridden by SegCtl2.XR
780 * to use SegCtl1.XAM.
781 */
782 segctl = read_gc0_segctl2();
783 if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
784 segctl = read_gc0_segctl1();
785 if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
786 0))
787 goto tlb_mapped;
788 }
789
790 }
791 /*
792 * Traditionally fully unmapped.
793 * Bits 61:59 specify the CCA, which we can just mask off here.
794 * Bits 58:PABITS should be zero, but we shouldn't have got here
795 * if it wasn't.
796 */
797 *gpa = gva & 0x07ffffffffffffff;
798 return 0;
799 #endif
800 }
801
802 tlb_mapped:
803 return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
804 }
805
806 /**
807 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
808 * @vcpu: KVM VCPU state.
809 * @badvaddr: Root BadVAddr.
810 * @gpa: Output guest physical address.
811 *
812 * VZ implementations are permitted to report guest virtual addresses (GVA) in
813 * BadVAddr on a root exception during guest execution, instead of the more
814 * convenient guest physical addresses (GPA). When we get a GVA, this function
815 * converts it to a GPA, taking into account guest segmentation and guest TLB
816 * state.
817 *
818 * Returns: 0 on success.
819 * -errno on failure.
820 */
kvm_vz_badvaddr_to_gpa(struct kvm_vcpu * vcpu,unsigned long badvaddr,unsigned long * gpa)821 static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
822 unsigned long *gpa)
823 {
824 unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
825 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
826
827 /* If BadVAddr is GPA, then all is well in the world */
828 if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
829 *gpa = badvaddr;
830 return 0;
831 }
832
833 /* Otherwise we'd expect it to be GVA ... */
834 if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
835 "Unexpected gexccode %#x\n", gexccode))
836 return -EINVAL;
837
838 /* ... and we need to perform the GVA->GPA translation in software */
839 return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
840 }
841
kvm_trap_vz_no_handler(struct kvm_vcpu * vcpu)842 static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
843 {
844 u32 *opc = (u32 *) vcpu->arch.pc;
845 u32 cause = vcpu->arch.host_cp0_cause;
846 u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
847 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
848 u32 inst = 0;
849
850 /*
851 * Fetch the instruction.
852 */
853 if (cause & CAUSEF_BD)
854 opc += 1;
855 kvm_get_badinstr(opc, vcpu, &inst);
856
857 kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
858 exccode, opc, inst, badvaddr,
859 read_gc0_status());
860 kvm_arch_vcpu_dump_regs(vcpu);
861 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
862 return RESUME_HOST;
863 }
864
mips_process_maar(unsigned int op,unsigned long val)865 static unsigned long mips_process_maar(unsigned int op, unsigned long val)
866 {
867 /* Mask off unused bits */
868 unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
869
870 if (read_gc0_pagegrain() & PG_ELPA)
871 mask |= 0x00ffffff00000000ull;
872 if (cpu_guest_has_mvh)
873 mask |= MIPS_MAAR_VH;
874
875 /* Set or clear VH */
876 if (op == mtc_op) {
877 /* clear VH */
878 val &= ~MIPS_MAAR_VH;
879 } else if (op == dmtc_op) {
880 /* set VH to match VL */
881 val &= ~MIPS_MAAR_VH;
882 if (val & MIPS_MAAR_VL)
883 val |= MIPS_MAAR_VH;
884 }
885
886 return val & mask;
887 }
888
kvm_write_maari(struct kvm_vcpu * vcpu,unsigned long val)889 static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
890 {
891 struct mips_coproc *cop0 = vcpu->arch.cop0;
892
893 val &= MIPS_MAARI_INDEX;
894 if (val == MIPS_MAARI_INDEX)
895 kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
896 else if (val < ARRAY_SIZE(vcpu->arch.maar))
897 kvm_write_sw_gc0_maari(cop0, val);
898 }
899
kvm_vz_gpsi_cop0(union mips_instruction inst,u32 * opc,u32 cause,struct kvm_run * run,struct kvm_vcpu * vcpu)900 static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
901 u32 *opc, u32 cause,
902 struct kvm_run *run,
903 struct kvm_vcpu *vcpu)
904 {
905 struct mips_coproc *cop0 = vcpu->arch.cop0;
906 enum emulation_result er = EMULATE_DONE;
907 u32 rt, rd, sel;
908 unsigned long curr_pc;
909 unsigned long val;
910
911 /*
912 * Update PC and hold onto current PC in case there is
913 * an error and we want to rollback the PC
914 */
915 curr_pc = vcpu->arch.pc;
916 er = update_pc(vcpu, cause);
917 if (er == EMULATE_FAIL)
918 return er;
919
920 if (inst.co_format.co) {
921 switch (inst.co_format.func) {
922 case wait_op:
923 er = kvm_mips_emul_wait(vcpu);
924 break;
925 default:
926 er = EMULATE_FAIL;
927 }
928 } else {
929 rt = inst.c0r_format.rt;
930 rd = inst.c0r_format.rd;
931 sel = inst.c0r_format.sel;
932
933 switch (inst.c0r_format.rs) {
934 case dmfc_op:
935 case mfc_op:
936 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
937 cop0->stat[rd][sel]++;
938 #endif
939 if (rd == MIPS_CP0_COUNT &&
940 sel == 0) { /* Count */
941 val = kvm_mips_read_count(vcpu);
942 } else if (rd == MIPS_CP0_COMPARE &&
943 sel == 0) { /* Compare */
944 val = read_gc0_compare();
945 } else if (rd == MIPS_CP0_LLADDR &&
946 sel == 0) { /* LLAddr */
947 if (cpu_guest_has_rw_llb)
948 val = read_gc0_lladdr() &
949 MIPS_LLADDR_LLB;
950 else
951 val = 0;
952 } else if (rd == MIPS_CP0_LLADDR &&
953 sel == 1 && /* MAAR */
954 cpu_guest_has_maar &&
955 !cpu_guest_has_dyn_maar) {
956 /* MAARI must be in range */
957 BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
958 ARRAY_SIZE(vcpu->arch.maar));
959 val = vcpu->arch.maar[
960 kvm_read_sw_gc0_maari(cop0)];
961 } else if ((rd == MIPS_CP0_PRID &&
962 (sel == 0 || /* PRid */
963 sel == 2 || /* CDMMBase */
964 sel == 3)) || /* CMGCRBase */
965 (rd == MIPS_CP0_STATUS &&
966 (sel == 2 || /* SRSCtl */
967 sel == 3)) || /* SRSMap */
968 (rd == MIPS_CP0_CONFIG &&
969 (sel == 7)) || /* Config7 */
970 (rd == MIPS_CP0_LLADDR &&
971 (sel == 2) && /* MAARI */
972 cpu_guest_has_maar &&
973 !cpu_guest_has_dyn_maar) ||
974 (rd == MIPS_CP0_ERRCTL &&
975 (sel == 0))) { /* ErrCtl */
976 val = cop0->reg[rd][sel];
977 } else {
978 val = 0;
979 er = EMULATE_FAIL;
980 }
981
982 if (er != EMULATE_FAIL) {
983 /* Sign extend */
984 if (inst.c0r_format.rs == mfc_op)
985 val = (int)val;
986 vcpu->arch.gprs[rt] = val;
987 }
988
989 trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
990 KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
991 KVM_TRACE_COP0(rd, sel), val);
992 break;
993
994 case dmtc_op:
995 case mtc_op:
996 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
997 cop0->stat[rd][sel]++;
998 #endif
999 val = vcpu->arch.gprs[rt];
1000 trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
1001 KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
1002 KVM_TRACE_COP0(rd, sel), val);
1003
1004 if (rd == MIPS_CP0_COUNT &&
1005 sel == 0) { /* Count */
1006 kvm_vz_lose_htimer(vcpu);
1007 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1008 } else if (rd == MIPS_CP0_COMPARE &&
1009 sel == 0) { /* Compare */
1010 kvm_mips_write_compare(vcpu,
1011 vcpu->arch.gprs[rt],
1012 true);
1013 } else if (rd == MIPS_CP0_LLADDR &&
1014 sel == 0) { /* LLAddr */
1015 /*
1016 * P5600 generates GPSI on guest MTC0 LLAddr.
1017 * Only allow the guest to clear LLB.
1018 */
1019 if (cpu_guest_has_rw_llb &&
1020 !(val & MIPS_LLADDR_LLB))
1021 write_gc0_lladdr(0);
1022 } else if (rd == MIPS_CP0_LLADDR &&
1023 sel == 1 && /* MAAR */
1024 cpu_guest_has_maar &&
1025 !cpu_guest_has_dyn_maar) {
1026 val = mips_process_maar(inst.c0r_format.rs,
1027 val);
1028
1029 /* MAARI must be in range */
1030 BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
1031 ARRAY_SIZE(vcpu->arch.maar));
1032 vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
1033 val;
1034 } else if (rd == MIPS_CP0_LLADDR &&
1035 (sel == 2) && /* MAARI */
1036 cpu_guest_has_maar &&
1037 !cpu_guest_has_dyn_maar) {
1038 kvm_write_maari(vcpu, val);
1039 } else if (rd == MIPS_CP0_ERRCTL &&
1040 (sel == 0)) { /* ErrCtl */
1041 /* ignore the written value */
1042 } else {
1043 er = EMULATE_FAIL;
1044 }
1045 break;
1046
1047 default:
1048 er = EMULATE_FAIL;
1049 break;
1050 }
1051 }
1052 /* Rollback PC only if emulation was unsuccessful */
1053 if (er == EMULATE_FAIL) {
1054 kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
1055 curr_pc, __func__, inst.word);
1056
1057 vcpu->arch.pc = curr_pc;
1058 }
1059
1060 return er;
1061 }
1062
kvm_vz_gpsi_cache(union mips_instruction inst,u32 * opc,u32 cause,struct kvm_run * run,struct kvm_vcpu * vcpu)1063 static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
1064 u32 *opc, u32 cause,
1065 struct kvm_run *run,
1066 struct kvm_vcpu *vcpu)
1067 {
1068 enum emulation_result er = EMULATE_DONE;
1069 u32 cache, op_inst, op, base;
1070 s16 offset;
1071 struct kvm_vcpu_arch *arch = &vcpu->arch;
1072 unsigned long va, curr_pc;
1073
1074 /*
1075 * Update PC and hold onto current PC in case there is
1076 * an error and we want to rollback the PC
1077 */
1078 curr_pc = vcpu->arch.pc;
1079 er = update_pc(vcpu, cause);
1080 if (er == EMULATE_FAIL)
1081 return er;
1082
1083 base = inst.i_format.rs;
1084 op_inst = inst.i_format.rt;
1085 if (cpu_has_mips_r6)
1086 offset = inst.spec3_format.simmediate;
1087 else
1088 offset = inst.i_format.simmediate;
1089 cache = op_inst & CacheOp_Cache;
1090 op = op_inst & CacheOp_Op;
1091
1092 va = arch->gprs[base] + offset;
1093
1094 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1095 cache, op, base, arch->gprs[base], offset);
1096
1097 /* Secondary or tirtiary cache ops ignored */
1098 if (cache != Cache_I && cache != Cache_D)
1099 return EMULATE_DONE;
1100
1101 switch (op_inst) {
1102 case Index_Invalidate_I:
1103 flush_icache_line_indexed(va);
1104 return EMULATE_DONE;
1105 case Index_Writeback_Inv_D:
1106 flush_dcache_line_indexed(va);
1107 return EMULATE_DONE;
1108 case Hit_Invalidate_I:
1109 case Hit_Invalidate_D:
1110 case Hit_Writeback_Inv_D:
1111 if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
1112 /* We can just flush entire icache */
1113 local_flush_icache_range(0, 0);
1114 return EMULATE_DONE;
1115 }
1116
1117 /* So far, other platforms support guest hit cache ops */
1118 break;
1119 default:
1120 break;
1121 };
1122
1123 kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1124 curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
1125 offset);
1126 /* Rollback PC */
1127 vcpu->arch.pc = curr_pc;
1128
1129 return EMULATE_FAIL;
1130 }
1131
kvm_trap_vz_handle_gpsi(u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1132 static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
1133 struct kvm_vcpu *vcpu)
1134 {
1135 enum emulation_result er = EMULATE_DONE;
1136 struct kvm_vcpu_arch *arch = &vcpu->arch;
1137 struct kvm_run *run = vcpu->run;
1138 union mips_instruction inst;
1139 int rd, rt, sel;
1140 int err;
1141
1142 /*
1143 * Fetch the instruction.
1144 */
1145 if (cause & CAUSEF_BD)
1146 opc += 1;
1147 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1148 if (err)
1149 return EMULATE_FAIL;
1150
1151 switch (inst.r_format.opcode) {
1152 case cop0_op:
1153 er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu);
1154 break;
1155 #ifndef CONFIG_CPU_MIPSR6
1156 case cache_op:
1157 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1158 er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
1159 break;
1160 #endif
1161 case spec3_op:
1162 switch (inst.spec3_format.func) {
1163 #ifdef CONFIG_CPU_MIPSR6
1164 case cache6_op:
1165 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1166 er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
1167 break;
1168 #endif
1169 case rdhwr_op:
1170 if (inst.r_format.rs || (inst.r_format.re >> 3))
1171 goto unknown;
1172
1173 rd = inst.r_format.rd;
1174 rt = inst.r_format.rt;
1175 sel = inst.r_format.re & 0x7;
1176
1177 switch (rd) {
1178 case MIPS_HWR_CC: /* Read count register */
1179 arch->gprs[rt] =
1180 (long)(int)kvm_mips_read_count(vcpu);
1181 break;
1182 default:
1183 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1184 KVM_TRACE_HWR(rd, sel), 0);
1185 goto unknown;
1186 };
1187
1188 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1189 KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
1190
1191 er = update_pc(vcpu, cause);
1192 break;
1193 default:
1194 goto unknown;
1195 };
1196 break;
1197 unknown:
1198
1199 default:
1200 kvm_err("GPSI exception not supported (%p/%#x)\n",
1201 opc, inst.word);
1202 kvm_arch_vcpu_dump_regs(vcpu);
1203 er = EMULATE_FAIL;
1204 break;
1205 }
1206
1207 return er;
1208 }
1209
kvm_trap_vz_handle_gsfc(u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1210 static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
1211 struct kvm_vcpu *vcpu)
1212 {
1213 enum emulation_result er = EMULATE_DONE;
1214 struct kvm_vcpu_arch *arch = &vcpu->arch;
1215 union mips_instruction inst;
1216 int err;
1217
1218 /*
1219 * Fetch the instruction.
1220 */
1221 if (cause & CAUSEF_BD)
1222 opc += 1;
1223 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1224 if (err)
1225 return EMULATE_FAIL;
1226
1227 /* complete MTC0 on behalf of guest and advance EPC */
1228 if (inst.c0r_format.opcode == cop0_op &&
1229 inst.c0r_format.rs == mtc_op &&
1230 inst.c0r_format.z == 0) {
1231 int rt = inst.c0r_format.rt;
1232 int rd = inst.c0r_format.rd;
1233 int sel = inst.c0r_format.sel;
1234 unsigned int val = arch->gprs[rt];
1235 unsigned int old_val, change;
1236
1237 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
1238 val);
1239
1240 if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1241 /* FR bit should read as zero if no FPU */
1242 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1243 val &= ~(ST0_CU1 | ST0_FR);
1244
1245 /*
1246 * Also don't allow FR to be set if host doesn't support
1247 * it.
1248 */
1249 if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
1250 val &= ~ST0_FR;
1251
1252 old_val = read_gc0_status();
1253 change = val ^ old_val;
1254
1255 if (change & ST0_FR) {
1256 /*
1257 * FPU and Vector register state is made
1258 * UNPREDICTABLE by a change of FR, so don't
1259 * even bother saving it.
1260 */
1261 kvm_drop_fpu(vcpu);
1262 }
1263
1264 /*
1265 * If MSA state is already live, it is undefined how it
1266 * interacts with FR=0 FPU state, and we don't want to
1267 * hit reserved instruction exceptions trying to save
1268 * the MSA state later when CU=1 && FR=1, so play it
1269 * safe and save it first.
1270 */
1271 if (change & ST0_CU1 && !(val & ST0_FR) &&
1272 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1273 kvm_lose_fpu(vcpu);
1274
1275 write_gc0_status(val);
1276 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1277 u32 old_cause = read_gc0_cause();
1278 u32 change = old_cause ^ val;
1279
1280 /* DC bit enabling/disabling timer? */
1281 if (change & CAUSEF_DC) {
1282 if (val & CAUSEF_DC) {
1283 kvm_vz_lose_htimer(vcpu);
1284 kvm_mips_count_disable_cause(vcpu);
1285 } else {
1286 kvm_mips_count_enable_cause(vcpu);
1287 }
1288 }
1289
1290 /* Only certain bits are RW to the guest */
1291 change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1292 CAUSEF_IP0 | CAUSEF_IP1);
1293
1294 /* WP can only be cleared */
1295 change &= ~CAUSEF_WP | old_cause;
1296
1297 write_gc0_cause(old_cause ^ change);
1298 } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1299 write_gc0_intctl(val);
1300 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1301 old_val = read_gc0_config5();
1302 change = val ^ old_val;
1303 /* Handle changes in FPU/MSA modes */
1304 preempt_disable();
1305
1306 /*
1307 * Propagate FRE changes immediately if the FPU
1308 * context is already loaded.
1309 */
1310 if (change & MIPS_CONF5_FRE &&
1311 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1312 change_c0_config5(MIPS_CONF5_FRE, val);
1313
1314 preempt_enable();
1315
1316 val = old_val ^
1317 (change & kvm_vz_config5_guest_wrmask(vcpu));
1318 write_gc0_config5(val);
1319 } else {
1320 kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1321 opc, inst.word);
1322 er = EMULATE_FAIL;
1323 }
1324
1325 if (er != EMULATE_FAIL)
1326 er = update_pc(vcpu, cause);
1327 } else {
1328 kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1329 opc, inst.word);
1330 er = EMULATE_FAIL;
1331 }
1332
1333 return er;
1334 }
1335
kvm_trap_vz_handle_ghfc(u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1336 static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
1337 struct kvm_vcpu *vcpu)
1338 {
1339 /*
1340 * Presumably this is due to MC (guest mode change), so lets trace some
1341 * relevant info.
1342 */
1343 trace_kvm_guest_mode_change(vcpu);
1344
1345 return EMULATE_DONE;
1346 }
1347
kvm_trap_vz_handle_hc(u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1348 static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1349 struct kvm_vcpu *vcpu)
1350 {
1351 enum emulation_result er;
1352 union mips_instruction inst;
1353 unsigned long curr_pc;
1354 int err;
1355
1356 if (cause & CAUSEF_BD)
1357 opc += 1;
1358 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1359 if (err)
1360 return EMULATE_FAIL;
1361
1362 /*
1363 * Update PC and hold onto current PC in case there is
1364 * an error and we want to rollback the PC
1365 */
1366 curr_pc = vcpu->arch.pc;
1367 er = update_pc(vcpu, cause);
1368 if (er == EMULATE_FAIL)
1369 return er;
1370
1371 er = kvm_mips_emul_hypcall(vcpu, inst);
1372 if (er == EMULATE_FAIL)
1373 vcpu->arch.pc = curr_pc;
1374
1375 return er;
1376 }
1377
kvm_trap_vz_no_handler_guest_exit(u32 gexccode,u32 cause,u32 * opc,struct kvm_vcpu * vcpu)1378 static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1379 u32 cause,
1380 u32 *opc,
1381 struct kvm_vcpu *vcpu)
1382 {
1383 u32 inst;
1384
1385 /*
1386 * Fetch the instruction.
1387 */
1388 if (cause & CAUSEF_BD)
1389 opc += 1;
1390 kvm_get_badinstr(opc, vcpu, &inst);
1391
1392 kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x Status: %#x\n",
1393 gexccode, opc, inst, read_gc0_status());
1394
1395 return EMULATE_FAIL;
1396 }
1397
kvm_trap_vz_handle_guest_exit(struct kvm_vcpu * vcpu)1398 static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1399 {
1400 u32 *opc = (u32 *) vcpu->arch.pc;
1401 u32 cause = vcpu->arch.host_cp0_cause;
1402 enum emulation_result er = EMULATE_DONE;
1403 u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1404 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1405 int ret = RESUME_GUEST;
1406
1407 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1408 switch (gexccode) {
1409 case MIPS_GCTL0_GEXC_GPSI:
1410 ++vcpu->stat.vz_gpsi_exits;
1411 er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1412 break;
1413 case MIPS_GCTL0_GEXC_GSFC:
1414 ++vcpu->stat.vz_gsfc_exits;
1415 er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1416 break;
1417 case MIPS_GCTL0_GEXC_HC:
1418 ++vcpu->stat.vz_hc_exits;
1419 er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1420 break;
1421 case MIPS_GCTL0_GEXC_GRR:
1422 ++vcpu->stat.vz_grr_exits;
1423 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1424 vcpu);
1425 break;
1426 case MIPS_GCTL0_GEXC_GVA:
1427 ++vcpu->stat.vz_gva_exits;
1428 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1429 vcpu);
1430 break;
1431 case MIPS_GCTL0_GEXC_GHFC:
1432 ++vcpu->stat.vz_ghfc_exits;
1433 er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
1434 break;
1435 case MIPS_GCTL0_GEXC_GPA:
1436 ++vcpu->stat.vz_gpa_exits;
1437 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1438 vcpu);
1439 break;
1440 default:
1441 ++vcpu->stat.vz_resvd_exits;
1442 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1443 vcpu);
1444 break;
1445
1446 }
1447
1448 if (er == EMULATE_DONE) {
1449 ret = RESUME_GUEST;
1450 } else if (er == EMULATE_HYPERCALL) {
1451 ret = kvm_mips_handle_hypcall(vcpu);
1452 } else {
1453 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1454 ret = RESUME_HOST;
1455 }
1456 return ret;
1457 }
1458
1459 /**
1460 * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
1461 * @vcpu: Virtual CPU context.
1462 *
1463 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1464 * by the root context.
1465 */
kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu * vcpu)1466 static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1467 {
1468 struct kvm_run *run = vcpu->run;
1469 u32 cause = vcpu->arch.host_cp0_cause;
1470 enum emulation_result er = EMULATE_FAIL;
1471 int ret = RESUME_GUEST;
1472
1473 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1474 /*
1475 * If guest FPU not present, the FPU operation should have been
1476 * treated as a reserved instruction!
1477 * If FPU already in use, we shouldn't get this at all.
1478 */
1479 if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1480 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1481 preempt_enable();
1482 return EMULATE_FAIL;
1483 }
1484
1485 kvm_own_fpu(vcpu);
1486 er = EMULATE_DONE;
1487 }
1488 /* other coprocessors not handled */
1489
1490 switch (er) {
1491 case EMULATE_DONE:
1492 ret = RESUME_GUEST;
1493 break;
1494
1495 case EMULATE_FAIL:
1496 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1497 ret = RESUME_HOST;
1498 break;
1499
1500 default:
1501 BUG();
1502 }
1503 return ret;
1504 }
1505
1506 /**
1507 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1508 * @vcpu: Virtual CPU context.
1509 *
1510 * Handle when the guest attempts to use MSA when it is disabled in the root
1511 * context.
1512 */
kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu * vcpu)1513 static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1514 {
1515 struct kvm_run *run = vcpu->run;
1516
1517 /*
1518 * If MSA not present or not exposed to guest or FR=0, the MSA operation
1519 * should have been treated as a reserved instruction!
1520 * Same if CU1=1, FR=0.
1521 * If MSA already in use, we shouldn't get this at all.
1522 */
1523 if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1524 (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1525 !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1526 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1527 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1528 return RESUME_HOST;
1529 }
1530
1531 kvm_own_msa(vcpu);
1532
1533 return RESUME_GUEST;
1534 }
1535
kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu * vcpu)1536 static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1537 {
1538 struct kvm_run *run = vcpu->run;
1539 u32 *opc = (u32 *) vcpu->arch.pc;
1540 u32 cause = vcpu->arch.host_cp0_cause;
1541 ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1542 union mips_instruction inst;
1543 enum emulation_result er = EMULATE_DONE;
1544 int err, ret = RESUME_GUEST;
1545
1546 if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1547 /* A code fetch fault doesn't count as an MMIO */
1548 if (kvm_is_ifetch_fault(&vcpu->arch)) {
1549 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1550 return RESUME_HOST;
1551 }
1552
1553 /* Fetch the instruction */
1554 if (cause & CAUSEF_BD)
1555 opc += 1;
1556 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1557 if (err) {
1558 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1559 return RESUME_HOST;
1560 }
1561
1562 /* Treat as MMIO */
1563 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1564 if (er == EMULATE_FAIL) {
1565 kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1566 opc, badvaddr);
1567 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1568 }
1569 }
1570
1571 if (er == EMULATE_DONE) {
1572 ret = RESUME_GUEST;
1573 } else if (er == EMULATE_DO_MMIO) {
1574 run->exit_reason = KVM_EXIT_MMIO;
1575 ret = RESUME_HOST;
1576 } else {
1577 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1578 ret = RESUME_HOST;
1579 }
1580 return ret;
1581 }
1582
kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu * vcpu)1583 static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1584 {
1585 struct kvm_run *run = vcpu->run;
1586 u32 *opc = (u32 *) vcpu->arch.pc;
1587 u32 cause = vcpu->arch.host_cp0_cause;
1588 ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1589 union mips_instruction inst;
1590 enum emulation_result er = EMULATE_DONE;
1591 int err;
1592 int ret = RESUME_GUEST;
1593
1594 /* Just try the access again if we couldn't do the translation */
1595 if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1596 return RESUME_GUEST;
1597 vcpu->arch.host_cp0_badvaddr = badvaddr;
1598
1599 if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1600 /* Fetch the instruction */
1601 if (cause & CAUSEF_BD)
1602 opc += 1;
1603 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1604 if (err) {
1605 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1606 return RESUME_HOST;
1607 }
1608
1609 /* Treat as MMIO */
1610 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1611 if (er == EMULATE_FAIL) {
1612 kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1613 opc, badvaddr);
1614 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1615 }
1616 }
1617
1618 if (er == EMULATE_DONE) {
1619 ret = RESUME_GUEST;
1620 } else if (er == EMULATE_DO_MMIO) {
1621 run->exit_reason = KVM_EXIT_MMIO;
1622 ret = RESUME_HOST;
1623 } else {
1624 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1625 ret = RESUME_HOST;
1626 }
1627 return ret;
1628 }
1629
1630 static u64 kvm_vz_get_one_regs[] = {
1631 KVM_REG_MIPS_CP0_INDEX,
1632 KVM_REG_MIPS_CP0_ENTRYLO0,
1633 KVM_REG_MIPS_CP0_ENTRYLO1,
1634 KVM_REG_MIPS_CP0_CONTEXT,
1635 KVM_REG_MIPS_CP0_PAGEMASK,
1636 KVM_REG_MIPS_CP0_PAGEGRAIN,
1637 KVM_REG_MIPS_CP0_WIRED,
1638 KVM_REG_MIPS_CP0_HWRENA,
1639 KVM_REG_MIPS_CP0_BADVADDR,
1640 KVM_REG_MIPS_CP0_COUNT,
1641 KVM_REG_MIPS_CP0_ENTRYHI,
1642 KVM_REG_MIPS_CP0_COMPARE,
1643 KVM_REG_MIPS_CP0_STATUS,
1644 KVM_REG_MIPS_CP0_INTCTL,
1645 KVM_REG_MIPS_CP0_CAUSE,
1646 KVM_REG_MIPS_CP0_EPC,
1647 KVM_REG_MIPS_CP0_PRID,
1648 KVM_REG_MIPS_CP0_EBASE,
1649 KVM_REG_MIPS_CP0_CONFIG,
1650 KVM_REG_MIPS_CP0_CONFIG1,
1651 KVM_REG_MIPS_CP0_CONFIG2,
1652 KVM_REG_MIPS_CP0_CONFIG3,
1653 KVM_REG_MIPS_CP0_CONFIG4,
1654 KVM_REG_MIPS_CP0_CONFIG5,
1655 #ifdef CONFIG_64BIT
1656 KVM_REG_MIPS_CP0_XCONTEXT,
1657 #endif
1658 KVM_REG_MIPS_CP0_ERROREPC,
1659
1660 KVM_REG_MIPS_COUNT_CTL,
1661 KVM_REG_MIPS_COUNT_RESUME,
1662 KVM_REG_MIPS_COUNT_HZ,
1663 };
1664
1665 static u64 kvm_vz_get_one_regs_contextconfig[] = {
1666 KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1667 #ifdef CONFIG_64BIT
1668 KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1669 #endif
1670 };
1671
1672 static u64 kvm_vz_get_one_regs_segments[] = {
1673 KVM_REG_MIPS_CP0_SEGCTL0,
1674 KVM_REG_MIPS_CP0_SEGCTL1,
1675 KVM_REG_MIPS_CP0_SEGCTL2,
1676 };
1677
1678 static u64 kvm_vz_get_one_regs_htw[] = {
1679 KVM_REG_MIPS_CP0_PWBASE,
1680 KVM_REG_MIPS_CP0_PWFIELD,
1681 KVM_REG_MIPS_CP0_PWSIZE,
1682 KVM_REG_MIPS_CP0_PWCTL,
1683 };
1684
1685 static u64 kvm_vz_get_one_regs_kscratch[] = {
1686 KVM_REG_MIPS_CP0_KSCRATCH1,
1687 KVM_REG_MIPS_CP0_KSCRATCH2,
1688 KVM_REG_MIPS_CP0_KSCRATCH3,
1689 KVM_REG_MIPS_CP0_KSCRATCH4,
1690 KVM_REG_MIPS_CP0_KSCRATCH5,
1691 KVM_REG_MIPS_CP0_KSCRATCH6,
1692 };
1693
kvm_vz_num_regs(struct kvm_vcpu * vcpu)1694 static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1695 {
1696 unsigned long ret;
1697
1698 ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1699 if (cpu_guest_has_userlocal)
1700 ++ret;
1701 if (cpu_guest_has_badinstr)
1702 ++ret;
1703 if (cpu_guest_has_badinstrp)
1704 ++ret;
1705 if (cpu_guest_has_contextconfig)
1706 ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1707 if (cpu_guest_has_segments)
1708 ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1709 if (cpu_guest_has_htw)
1710 ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1711 if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
1712 ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
1713 ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1714
1715 return ret;
1716 }
1717
kvm_vz_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * indices)1718 static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1719 {
1720 u64 index;
1721 unsigned int i;
1722
1723 if (copy_to_user(indices, kvm_vz_get_one_regs,
1724 sizeof(kvm_vz_get_one_regs)))
1725 return -EFAULT;
1726 indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1727
1728 if (cpu_guest_has_userlocal) {
1729 index = KVM_REG_MIPS_CP0_USERLOCAL;
1730 if (copy_to_user(indices, &index, sizeof(index)))
1731 return -EFAULT;
1732 ++indices;
1733 }
1734 if (cpu_guest_has_badinstr) {
1735 index = KVM_REG_MIPS_CP0_BADINSTR;
1736 if (copy_to_user(indices, &index, sizeof(index)))
1737 return -EFAULT;
1738 ++indices;
1739 }
1740 if (cpu_guest_has_badinstrp) {
1741 index = KVM_REG_MIPS_CP0_BADINSTRP;
1742 if (copy_to_user(indices, &index, sizeof(index)))
1743 return -EFAULT;
1744 ++indices;
1745 }
1746 if (cpu_guest_has_contextconfig) {
1747 if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1748 sizeof(kvm_vz_get_one_regs_contextconfig)))
1749 return -EFAULT;
1750 indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1751 }
1752 if (cpu_guest_has_segments) {
1753 if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1754 sizeof(kvm_vz_get_one_regs_segments)))
1755 return -EFAULT;
1756 indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1757 }
1758 if (cpu_guest_has_htw) {
1759 if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
1760 sizeof(kvm_vz_get_one_regs_htw)))
1761 return -EFAULT;
1762 indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1763 }
1764 if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
1765 for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
1766 index = KVM_REG_MIPS_CP0_MAAR(i);
1767 if (copy_to_user(indices, &index, sizeof(index)))
1768 return -EFAULT;
1769 ++indices;
1770 }
1771
1772 index = KVM_REG_MIPS_CP0_MAARI;
1773 if (copy_to_user(indices, &index, sizeof(index)))
1774 return -EFAULT;
1775 ++indices;
1776 }
1777 for (i = 0; i < 6; ++i) {
1778 if (!cpu_guest_has_kscr(i + 2))
1779 continue;
1780
1781 if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1782 sizeof(kvm_vz_get_one_regs_kscratch[i])))
1783 return -EFAULT;
1784 ++indices;
1785 }
1786
1787 return 0;
1788 }
1789
entrylo_kvm_to_user(unsigned long v)1790 static inline s64 entrylo_kvm_to_user(unsigned long v)
1791 {
1792 s64 mask, ret = v;
1793
1794 if (BITS_PER_LONG == 32) {
1795 /*
1796 * KVM API exposes 64-bit version of the register, so move the
1797 * RI/XI bits up into place.
1798 */
1799 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1800 ret &= ~mask;
1801 ret |= ((s64)v & mask) << 32;
1802 }
1803 return ret;
1804 }
1805
entrylo_user_to_kvm(s64 v)1806 static inline unsigned long entrylo_user_to_kvm(s64 v)
1807 {
1808 unsigned long mask, ret = v;
1809
1810 if (BITS_PER_LONG == 32) {
1811 /*
1812 * KVM API exposes 64-bit versiono of the register, so move the
1813 * RI/XI bits down into place.
1814 */
1815 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1816 ret &= ~mask;
1817 ret |= (v >> 32) & mask;
1818 }
1819 return ret;
1820 }
1821
kvm_vz_get_one_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,s64 * v)1822 static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1823 const struct kvm_one_reg *reg,
1824 s64 *v)
1825 {
1826 struct mips_coproc *cop0 = vcpu->arch.cop0;
1827 unsigned int idx;
1828
1829 switch (reg->id) {
1830 case KVM_REG_MIPS_CP0_INDEX:
1831 *v = (long)read_gc0_index();
1832 break;
1833 case KVM_REG_MIPS_CP0_ENTRYLO0:
1834 *v = entrylo_kvm_to_user(read_gc0_entrylo0());
1835 break;
1836 case KVM_REG_MIPS_CP0_ENTRYLO1:
1837 *v = entrylo_kvm_to_user(read_gc0_entrylo1());
1838 break;
1839 case KVM_REG_MIPS_CP0_CONTEXT:
1840 *v = (long)read_gc0_context();
1841 break;
1842 case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1843 if (!cpu_guest_has_contextconfig)
1844 return -EINVAL;
1845 *v = read_gc0_contextconfig();
1846 break;
1847 case KVM_REG_MIPS_CP0_USERLOCAL:
1848 if (!cpu_guest_has_userlocal)
1849 return -EINVAL;
1850 *v = read_gc0_userlocal();
1851 break;
1852 #ifdef CONFIG_64BIT
1853 case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1854 if (!cpu_guest_has_contextconfig)
1855 return -EINVAL;
1856 *v = read_gc0_xcontextconfig();
1857 break;
1858 #endif
1859 case KVM_REG_MIPS_CP0_PAGEMASK:
1860 *v = (long)read_gc0_pagemask();
1861 break;
1862 case KVM_REG_MIPS_CP0_PAGEGRAIN:
1863 *v = (long)read_gc0_pagegrain();
1864 break;
1865 case KVM_REG_MIPS_CP0_SEGCTL0:
1866 if (!cpu_guest_has_segments)
1867 return -EINVAL;
1868 *v = read_gc0_segctl0();
1869 break;
1870 case KVM_REG_MIPS_CP0_SEGCTL1:
1871 if (!cpu_guest_has_segments)
1872 return -EINVAL;
1873 *v = read_gc0_segctl1();
1874 break;
1875 case KVM_REG_MIPS_CP0_SEGCTL2:
1876 if (!cpu_guest_has_segments)
1877 return -EINVAL;
1878 *v = read_gc0_segctl2();
1879 break;
1880 case KVM_REG_MIPS_CP0_PWBASE:
1881 if (!cpu_guest_has_htw)
1882 return -EINVAL;
1883 *v = read_gc0_pwbase();
1884 break;
1885 case KVM_REG_MIPS_CP0_PWFIELD:
1886 if (!cpu_guest_has_htw)
1887 return -EINVAL;
1888 *v = read_gc0_pwfield();
1889 break;
1890 case KVM_REG_MIPS_CP0_PWSIZE:
1891 if (!cpu_guest_has_htw)
1892 return -EINVAL;
1893 *v = read_gc0_pwsize();
1894 break;
1895 case KVM_REG_MIPS_CP0_WIRED:
1896 *v = (long)read_gc0_wired();
1897 break;
1898 case KVM_REG_MIPS_CP0_PWCTL:
1899 if (!cpu_guest_has_htw)
1900 return -EINVAL;
1901 *v = read_gc0_pwctl();
1902 break;
1903 case KVM_REG_MIPS_CP0_HWRENA:
1904 *v = (long)read_gc0_hwrena();
1905 break;
1906 case KVM_REG_MIPS_CP0_BADVADDR:
1907 *v = (long)read_gc0_badvaddr();
1908 break;
1909 case KVM_REG_MIPS_CP0_BADINSTR:
1910 if (!cpu_guest_has_badinstr)
1911 return -EINVAL;
1912 *v = read_gc0_badinstr();
1913 break;
1914 case KVM_REG_MIPS_CP0_BADINSTRP:
1915 if (!cpu_guest_has_badinstrp)
1916 return -EINVAL;
1917 *v = read_gc0_badinstrp();
1918 break;
1919 case KVM_REG_MIPS_CP0_COUNT:
1920 *v = kvm_mips_read_count(vcpu);
1921 break;
1922 case KVM_REG_MIPS_CP0_ENTRYHI:
1923 *v = (long)read_gc0_entryhi();
1924 break;
1925 case KVM_REG_MIPS_CP0_COMPARE:
1926 *v = (long)read_gc0_compare();
1927 break;
1928 case KVM_REG_MIPS_CP0_STATUS:
1929 *v = (long)read_gc0_status();
1930 break;
1931 case KVM_REG_MIPS_CP0_INTCTL:
1932 *v = read_gc0_intctl();
1933 break;
1934 case KVM_REG_MIPS_CP0_CAUSE:
1935 *v = (long)read_gc0_cause();
1936 break;
1937 case KVM_REG_MIPS_CP0_EPC:
1938 *v = (long)read_gc0_epc();
1939 break;
1940 case KVM_REG_MIPS_CP0_PRID:
1941 switch (boot_cpu_type()) {
1942 case CPU_CAVIUM_OCTEON3:
1943 /* Octeon III has a read-only guest.PRid */
1944 *v = read_gc0_prid();
1945 break;
1946 default:
1947 *v = (long)kvm_read_c0_guest_prid(cop0);
1948 break;
1949 };
1950 break;
1951 case KVM_REG_MIPS_CP0_EBASE:
1952 *v = kvm_vz_read_gc0_ebase();
1953 break;
1954 case KVM_REG_MIPS_CP0_CONFIG:
1955 *v = read_gc0_config();
1956 break;
1957 case KVM_REG_MIPS_CP0_CONFIG1:
1958 if (!cpu_guest_has_conf1)
1959 return -EINVAL;
1960 *v = read_gc0_config1();
1961 break;
1962 case KVM_REG_MIPS_CP0_CONFIG2:
1963 if (!cpu_guest_has_conf2)
1964 return -EINVAL;
1965 *v = read_gc0_config2();
1966 break;
1967 case KVM_REG_MIPS_CP0_CONFIG3:
1968 if (!cpu_guest_has_conf3)
1969 return -EINVAL;
1970 *v = read_gc0_config3();
1971 break;
1972 case KVM_REG_MIPS_CP0_CONFIG4:
1973 if (!cpu_guest_has_conf4)
1974 return -EINVAL;
1975 *v = read_gc0_config4();
1976 break;
1977 case KVM_REG_MIPS_CP0_CONFIG5:
1978 if (!cpu_guest_has_conf5)
1979 return -EINVAL;
1980 *v = read_gc0_config5();
1981 break;
1982 case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
1983 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
1984 return -EINVAL;
1985 idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
1986 if (idx >= ARRAY_SIZE(vcpu->arch.maar))
1987 return -EINVAL;
1988 *v = vcpu->arch.maar[idx];
1989 break;
1990 case KVM_REG_MIPS_CP0_MAARI:
1991 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
1992 return -EINVAL;
1993 *v = kvm_read_sw_gc0_maari(vcpu->arch.cop0);
1994 break;
1995 #ifdef CONFIG_64BIT
1996 case KVM_REG_MIPS_CP0_XCONTEXT:
1997 *v = read_gc0_xcontext();
1998 break;
1999 #endif
2000 case KVM_REG_MIPS_CP0_ERROREPC:
2001 *v = (long)read_gc0_errorepc();
2002 break;
2003 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2004 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2005 if (!cpu_guest_has_kscr(idx))
2006 return -EINVAL;
2007 switch (idx) {
2008 case 2:
2009 *v = (long)read_gc0_kscratch1();
2010 break;
2011 case 3:
2012 *v = (long)read_gc0_kscratch2();
2013 break;
2014 case 4:
2015 *v = (long)read_gc0_kscratch3();
2016 break;
2017 case 5:
2018 *v = (long)read_gc0_kscratch4();
2019 break;
2020 case 6:
2021 *v = (long)read_gc0_kscratch5();
2022 break;
2023 case 7:
2024 *v = (long)read_gc0_kscratch6();
2025 break;
2026 }
2027 break;
2028 case KVM_REG_MIPS_COUNT_CTL:
2029 *v = vcpu->arch.count_ctl;
2030 break;
2031 case KVM_REG_MIPS_COUNT_RESUME:
2032 *v = ktime_to_ns(vcpu->arch.count_resume);
2033 break;
2034 case KVM_REG_MIPS_COUNT_HZ:
2035 *v = vcpu->arch.count_hz;
2036 break;
2037 default:
2038 return -EINVAL;
2039 }
2040 return 0;
2041 }
2042
kvm_vz_set_one_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg,s64 v)2043 static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
2044 const struct kvm_one_reg *reg,
2045 s64 v)
2046 {
2047 struct mips_coproc *cop0 = vcpu->arch.cop0;
2048 unsigned int idx;
2049 int ret = 0;
2050 unsigned int cur, change;
2051
2052 switch (reg->id) {
2053 case KVM_REG_MIPS_CP0_INDEX:
2054 write_gc0_index(v);
2055 break;
2056 case KVM_REG_MIPS_CP0_ENTRYLO0:
2057 write_gc0_entrylo0(entrylo_user_to_kvm(v));
2058 break;
2059 case KVM_REG_MIPS_CP0_ENTRYLO1:
2060 write_gc0_entrylo1(entrylo_user_to_kvm(v));
2061 break;
2062 case KVM_REG_MIPS_CP0_CONTEXT:
2063 write_gc0_context(v);
2064 break;
2065 case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
2066 if (!cpu_guest_has_contextconfig)
2067 return -EINVAL;
2068 write_gc0_contextconfig(v);
2069 break;
2070 case KVM_REG_MIPS_CP0_USERLOCAL:
2071 if (!cpu_guest_has_userlocal)
2072 return -EINVAL;
2073 write_gc0_userlocal(v);
2074 break;
2075 #ifdef CONFIG_64BIT
2076 case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
2077 if (!cpu_guest_has_contextconfig)
2078 return -EINVAL;
2079 write_gc0_xcontextconfig(v);
2080 break;
2081 #endif
2082 case KVM_REG_MIPS_CP0_PAGEMASK:
2083 write_gc0_pagemask(v);
2084 break;
2085 case KVM_REG_MIPS_CP0_PAGEGRAIN:
2086 write_gc0_pagegrain(v);
2087 break;
2088 case KVM_REG_MIPS_CP0_SEGCTL0:
2089 if (!cpu_guest_has_segments)
2090 return -EINVAL;
2091 write_gc0_segctl0(v);
2092 break;
2093 case KVM_REG_MIPS_CP0_SEGCTL1:
2094 if (!cpu_guest_has_segments)
2095 return -EINVAL;
2096 write_gc0_segctl1(v);
2097 break;
2098 case KVM_REG_MIPS_CP0_SEGCTL2:
2099 if (!cpu_guest_has_segments)
2100 return -EINVAL;
2101 write_gc0_segctl2(v);
2102 break;
2103 case KVM_REG_MIPS_CP0_PWBASE:
2104 if (!cpu_guest_has_htw)
2105 return -EINVAL;
2106 write_gc0_pwbase(v);
2107 break;
2108 case KVM_REG_MIPS_CP0_PWFIELD:
2109 if (!cpu_guest_has_htw)
2110 return -EINVAL;
2111 write_gc0_pwfield(v);
2112 break;
2113 case KVM_REG_MIPS_CP0_PWSIZE:
2114 if (!cpu_guest_has_htw)
2115 return -EINVAL;
2116 write_gc0_pwsize(v);
2117 break;
2118 case KVM_REG_MIPS_CP0_WIRED:
2119 change_gc0_wired(MIPSR6_WIRED_WIRED, v);
2120 break;
2121 case KVM_REG_MIPS_CP0_PWCTL:
2122 if (!cpu_guest_has_htw)
2123 return -EINVAL;
2124 write_gc0_pwctl(v);
2125 break;
2126 case KVM_REG_MIPS_CP0_HWRENA:
2127 write_gc0_hwrena(v);
2128 break;
2129 case KVM_REG_MIPS_CP0_BADVADDR:
2130 write_gc0_badvaddr(v);
2131 break;
2132 case KVM_REG_MIPS_CP0_BADINSTR:
2133 if (!cpu_guest_has_badinstr)
2134 return -EINVAL;
2135 write_gc0_badinstr(v);
2136 break;
2137 case KVM_REG_MIPS_CP0_BADINSTRP:
2138 if (!cpu_guest_has_badinstrp)
2139 return -EINVAL;
2140 write_gc0_badinstrp(v);
2141 break;
2142 case KVM_REG_MIPS_CP0_COUNT:
2143 kvm_mips_write_count(vcpu, v);
2144 break;
2145 case KVM_REG_MIPS_CP0_ENTRYHI:
2146 write_gc0_entryhi(v);
2147 break;
2148 case KVM_REG_MIPS_CP0_COMPARE:
2149 kvm_mips_write_compare(vcpu, v, false);
2150 break;
2151 case KVM_REG_MIPS_CP0_STATUS:
2152 write_gc0_status(v);
2153 break;
2154 case KVM_REG_MIPS_CP0_INTCTL:
2155 write_gc0_intctl(v);
2156 break;
2157 case KVM_REG_MIPS_CP0_CAUSE:
2158 /*
2159 * If the timer is stopped or started (DC bit) it must look
2160 * atomic with changes to the timer interrupt pending bit (TI).
2161 * A timer interrupt should not happen in between.
2162 */
2163 if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
2164 if (v & CAUSEF_DC) {
2165 /* disable timer first */
2166 kvm_mips_count_disable_cause(vcpu);
2167 change_gc0_cause((u32)~CAUSEF_DC, v);
2168 } else {
2169 /* enable timer last */
2170 change_gc0_cause((u32)~CAUSEF_DC, v);
2171 kvm_mips_count_enable_cause(vcpu);
2172 }
2173 } else {
2174 write_gc0_cause(v);
2175 }
2176 break;
2177 case KVM_REG_MIPS_CP0_EPC:
2178 write_gc0_epc(v);
2179 break;
2180 case KVM_REG_MIPS_CP0_PRID:
2181 switch (boot_cpu_type()) {
2182 case CPU_CAVIUM_OCTEON3:
2183 /* Octeon III has a guest.PRid, but its read-only */
2184 break;
2185 default:
2186 kvm_write_c0_guest_prid(cop0, v);
2187 break;
2188 };
2189 break;
2190 case KVM_REG_MIPS_CP0_EBASE:
2191 kvm_vz_write_gc0_ebase(v);
2192 break;
2193 case KVM_REG_MIPS_CP0_CONFIG:
2194 cur = read_gc0_config();
2195 change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
2196 if (change) {
2197 v = cur ^ change;
2198 write_gc0_config(v);
2199 }
2200 break;
2201 case KVM_REG_MIPS_CP0_CONFIG1:
2202 if (!cpu_guest_has_conf1)
2203 break;
2204 cur = read_gc0_config1();
2205 change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
2206 if (change) {
2207 v = cur ^ change;
2208 write_gc0_config1(v);
2209 }
2210 break;
2211 case KVM_REG_MIPS_CP0_CONFIG2:
2212 if (!cpu_guest_has_conf2)
2213 break;
2214 cur = read_gc0_config2();
2215 change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
2216 if (change) {
2217 v = cur ^ change;
2218 write_gc0_config2(v);
2219 }
2220 break;
2221 case KVM_REG_MIPS_CP0_CONFIG3:
2222 if (!cpu_guest_has_conf3)
2223 break;
2224 cur = read_gc0_config3();
2225 change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
2226 if (change) {
2227 v = cur ^ change;
2228 write_gc0_config3(v);
2229 }
2230 break;
2231 case KVM_REG_MIPS_CP0_CONFIG4:
2232 if (!cpu_guest_has_conf4)
2233 break;
2234 cur = read_gc0_config4();
2235 change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
2236 if (change) {
2237 v = cur ^ change;
2238 write_gc0_config4(v);
2239 }
2240 break;
2241 case KVM_REG_MIPS_CP0_CONFIG5:
2242 if (!cpu_guest_has_conf5)
2243 break;
2244 cur = read_gc0_config5();
2245 change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
2246 if (change) {
2247 v = cur ^ change;
2248 write_gc0_config5(v);
2249 }
2250 break;
2251 case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2252 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2253 return -EINVAL;
2254 idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2255 if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2256 return -EINVAL;
2257 vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
2258 break;
2259 case KVM_REG_MIPS_CP0_MAARI:
2260 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2261 return -EINVAL;
2262 kvm_write_maari(vcpu, v);
2263 break;
2264 #ifdef CONFIG_64BIT
2265 case KVM_REG_MIPS_CP0_XCONTEXT:
2266 write_gc0_xcontext(v);
2267 break;
2268 #endif
2269 case KVM_REG_MIPS_CP0_ERROREPC:
2270 write_gc0_errorepc(v);
2271 break;
2272 case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2273 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2274 if (!cpu_guest_has_kscr(idx))
2275 return -EINVAL;
2276 switch (idx) {
2277 case 2:
2278 write_gc0_kscratch1(v);
2279 break;
2280 case 3:
2281 write_gc0_kscratch2(v);
2282 break;
2283 case 4:
2284 write_gc0_kscratch3(v);
2285 break;
2286 case 5:
2287 write_gc0_kscratch4(v);
2288 break;
2289 case 6:
2290 write_gc0_kscratch5(v);
2291 break;
2292 case 7:
2293 write_gc0_kscratch6(v);
2294 break;
2295 }
2296 break;
2297 case KVM_REG_MIPS_COUNT_CTL:
2298 ret = kvm_mips_set_count_ctl(vcpu, v);
2299 break;
2300 case KVM_REG_MIPS_COUNT_RESUME:
2301 ret = kvm_mips_set_count_resume(vcpu, v);
2302 break;
2303 case KVM_REG_MIPS_COUNT_HZ:
2304 ret = kvm_mips_set_count_hz(vcpu, v);
2305 break;
2306 default:
2307 return -EINVAL;
2308 }
2309 return ret;
2310 }
2311
2312 #define guestid_cache(cpu) (cpu_data[cpu].guestid_cache)
kvm_vz_get_new_guestid(unsigned long cpu,struct kvm_vcpu * vcpu)2313 static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
2314 {
2315 unsigned long guestid = guestid_cache(cpu);
2316
2317 if (!(++guestid & GUESTID_MASK)) {
2318 if (cpu_has_vtag_icache)
2319 flush_icache_all();
2320
2321 if (!guestid) /* fix version if needed */
2322 guestid = GUESTID_FIRST_VERSION;
2323
2324 ++guestid; /* guestid 0 reserved for root */
2325
2326 /* start new guestid cycle */
2327 kvm_vz_local_flush_roottlb_all_guests();
2328 kvm_vz_local_flush_guesttlb_all();
2329 }
2330
2331 guestid_cache(cpu) = guestid;
2332 }
2333
2334 /* Returns 1 if the guest TLB may be clobbered */
kvm_vz_check_requests(struct kvm_vcpu * vcpu,int cpu)2335 static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
2336 {
2337 int ret = 0;
2338 int i;
2339
2340 if (!kvm_request_pending(vcpu))
2341 return 0;
2342
2343 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2344 if (cpu_has_guestid) {
2345 /* Drop all GuestIDs for this VCPU */
2346 for_each_possible_cpu(i)
2347 vcpu->arch.vzguestid[i] = 0;
2348 /* This will clobber guest TLB contents too */
2349 ret = 1;
2350 }
2351 /*
2352 * For Root ASID Dealias (RAD) we don't do anything here, but we
2353 * still need the request to ensure we recheck asid_flush_mask.
2354 * We can still return 0 as only the root TLB will be affected
2355 * by a root ASID flush.
2356 */
2357 }
2358
2359 return ret;
2360 }
2361
kvm_vz_vcpu_save_wired(struct kvm_vcpu * vcpu)2362 static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
2363 {
2364 unsigned int wired = read_gc0_wired();
2365 struct kvm_mips_tlb *tlbs;
2366 int i;
2367
2368 /* Expand the wired TLB array if necessary */
2369 wired &= MIPSR6_WIRED_WIRED;
2370 if (wired > vcpu->arch.wired_tlb_limit) {
2371 tlbs = krealloc(vcpu->arch.wired_tlb, wired *
2372 sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
2373 if (WARN_ON(!tlbs)) {
2374 /* Save whatever we can */
2375 wired = vcpu->arch.wired_tlb_limit;
2376 } else {
2377 vcpu->arch.wired_tlb = tlbs;
2378 vcpu->arch.wired_tlb_limit = wired;
2379 }
2380 }
2381
2382 if (wired)
2383 /* Save wired entries from the guest TLB */
2384 kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
2385 /* Invalidate any dropped entries since last time */
2386 for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
2387 vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
2388 vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
2389 vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
2390 vcpu->arch.wired_tlb[i].tlb_mask = 0;
2391 }
2392 vcpu->arch.wired_tlb_used = wired;
2393 }
2394
kvm_vz_vcpu_load_wired(struct kvm_vcpu * vcpu)2395 static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2396 {
2397 /* Load wired entries into the guest TLB */
2398 if (vcpu->arch.wired_tlb)
2399 kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2400 vcpu->arch.wired_tlb_used);
2401 }
2402
kvm_vz_vcpu_load_tlb(struct kvm_vcpu * vcpu,int cpu)2403 static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2404 {
2405 struct kvm *kvm = vcpu->kvm;
2406 struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2407 bool migrated;
2408
2409 /*
2410 * Are we entering guest context on a different CPU to last time?
2411 * If so, the VCPU's guest TLB state on this CPU may be stale.
2412 */
2413 migrated = (vcpu->arch.last_exec_cpu != cpu);
2414 vcpu->arch.last_exec_cpu = cpu;
2415
2416 /*
2417 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2418 * remains set until another vcpu is loaded in. As a rule GuestRID
2419 * remains zeroed when in root context unless the kernel is busy
2420 * manipulating guest tlb entries.
2421 */
2422 if (cpu_has_guestid) {
2423 /*
2424 * Check if our GuestID is of an older version and thus invalid.
2425 *
2426 * We also discard the stored GuestID if we've executed on
2427 * another CPU, as the guest mappings may have changed without
2428 * hypervisor knowledge.
2429 */
2430 if (migrated ||
2431 (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2432 GUESTID_VERSION_MASK) {
2433 kvm_vz_get_new_guestid(cpu, vcpu);
2434 vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2435 trace_kvm_guestid_change(vcpu,
2436 vcpu->arch.vzguestid[cpu]);
2437 }
2438
2439 /* Restore GuestID */
2440 change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2441 } else {
2442 /*
2443 * The Guest TLB only stores a single guest's TLB state, so
2444 * flush it if another VCPU has executed on this CPU.
2445 *
2446 * We also flush if we've executed on another CPU, as the guest
2447 * mappings may have changed without hypervisor knowledge.
2448 */
2449 if (migrated || last_exec_vcpu[cpu] != vcpu)
2450 kvm_vz_local_flush_guesttlb_all();
2451 last_exec_vcpu[cpu] = vcpu;
2452
2453 /*
2454 * Root ASID dealiases guest GPA mappings in the root TLB.
2455 * Allocate new root ASID if needed.
2456 */
2457 if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask)
2458 || (cpu_context(cpu, gpa_mm) ^ asid_cache(cpu)) &
2459 asid_version_mask(cpu))
2460 get_new_mmu_context(gpa_mm, cpu);
2461 }
2462 }
2463
kvm_vz_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2464 static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2465 {
2466 struct mips_coproc *cop0 = vcpu->arch.cop0;
2467 bool migrated, all;
2468
2469 /*
2470 * Have we migrated to a different CPU?
2471 * If so, any old guest TLB state may be stale.
2472 */
2473 migrated = (vcpu->arch.last_sched_cpu != cpu);
2474
2475 /*
2476 * Was this the last VCPU to run on this CPU?
2477 * If not, any old guest state from this VCPU will have been clobbered.
2478 */
2479 all = migrated || (last_vcpu[cpu] != vcpu);
2480 last_vcpu[cpu] = vcpu;
2481
2482 /*
2483 * Restore CP0_Wired unconditionally as we clear it after use, and
2484 * restore wired guest TLB entries (while in guest context).
2485 */
2486 kvm_restore_gc0_wired(cop0);
2487 if (current->flags & PF_VCPU) {
2488 tlbw_use_hazard();
2489 kvm_vz_vcpu_load_tlb(vcpu, cpu);
2490 kvm_vz_vcpu_load_wired(vcpu);
2491 }
2492
2493 /*
2494 * Restore timer state regardless, as e.g. Cause.TI can change over time
2495 * if left unmaintained.
2496 */
2497 kvm_vz_restore_timer(vcpu);
2498
2499 /* Set MC bit if we want to trace guest mode changes */
2500 if (kvm_trace_guest_mode_change)
2501 set_c0_guestctl0(MIPS_GCTL0_MC);
2502 else
2503 clear_c0_guestctl0(MIPS_GCTL0_MC);
2504
2505 /* Don't bother restoring registers multiple times unless necessary */
2506 if (!all)
2507 return 0;
2508
2509 /*
2510 * Restore config registers first, as some implementations restrict
2511 * writes to other registers when the corresponding feature bits aren't
2512 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2513 */
2514 kvm_restore_gc0_config(cop0);
2515 if (cpu_guest_has_conf1)
2516 kvm_restore_gc0_config1(cop0);
2517 if (cpu_guest_has_conf2)
2518 kvm_restore_gc0_config2(cop0);
2519 if (cpu_guest_has_conf3)
2520 kvm_restore_gc0_config3(cop0);
2521 if (cpu_guest_has_conf4)
2522 kvm_restore_gc0_config4(cop0);
2523 if (cpu_guest_has_conf5)
2524 kvm_restore_gc0_config5(cop0);
2525 if (cpu_guest_has_conf6)
2526 kvm_restore_gc0_config6(cop0);
2527 if (cpu_guest_has_conf7)
2528 kvm_restore_gc0_config7(cop0);
2529
2530 kvm_restore_gc0_index(cop0);
2531 kvm_restore_gc0_entrylo0(cop0);
2532 kvm_restore_gc0_entrylo1(cop0);
2533 kvm_restore_gc0_context(cop0);
2534 if (cpu_guest_has_contextconfig)
2535 kvm_restore_gc0_contextconfig(cop0);
2536 #ifdef CONFIG_64BIT
2537 kvm_restore_gc0_xcontext(cop0);
2538 if (cpu_guest_has_contextconfig)
2539 kvm_restore_gc0_xcontextconfig(cop0);
2540 #endif
2541 kvm_restore_gc0_pagemask(cop0);
2542 kvm_restore_gc0_pagegrain(cop0);
2543 kvm_restore_gc0_hwrena(cop0);
2544 kvm_restore_gc0_badvaddr(cop0);
2545 kvm_restore_gc0_entryhi(cop0);
2546 kvm_restore_gc0_status(cop0);
2547 kvm_restore_gc0_intctl(cop0);
2548 kvm_restore_gc0_epc(cop0);
2549 kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2550 if (cpu_guest_has_userlocal)
2551 kvm_restore_gc0_userlocal(cop0);
2552
2553 kvm_restore_gc0_errorepc(cop0);
2554
2555 /* restore KScratch registers if enabled in guest */
2556 if (cpu_guest_has_conf4) {
2557 if (cpu_guest_has_kscr(2))
2558 kvm_restore_gc0_kscratch1(cop0);
2559 if (cpu_guest_has_kscr(3))
2560 kvm_restore_gc0_kscratch2(cop0);
2561 if (cpu_guest_has_kscr(4))
2562 kvm_restore_gc0_kscratch3(cop0);
2563 if (cpu_guest_has_kscr(5))
2564 kvm_restore_gc0_kscratch4(cop0);
2565 if (cpu_guest_has_kscr(6))
2566 kvm_restore_gc0_kscratch5(cop0);
2567 if (cpu_guest_has_kscr(7))
2568 kvm_restore_gc0_kscratch6(cop0);
2569 }
2570
2571 if (cpu_guest_has_badinstr)
2572 kvm_restore_gc0_badinstr(cop0);
2573 if (cpu_guest_has_badinstrp)
2574 kvm_restore_gc0_badinstrp(cop0);
2575
2576 if (cpu_guest_has_segments) {
2577 kvm_restore_gc0_segctl0(cop0);
2578 kvm_restore_gc0_segctl1(cop0);
2579 kvm_restore_gc0_segctl2(cop0);
2580 }
2581
2582 /* restore HTW registers */
2583 if (cpu_guest_has_htw) {
2584 kvm_restore_gc0_pwbase(cop0);
2585 kvm_restore_gc0_pwfield(cop0);
2586 kvm_restore_gc0_pwsize(cop0);
2587 kvm_restore_gc0_pwctl(cop0);
2588 }
2589
2590 /* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2591 if (cpu_has_guestctl2)
2592 write_c0_guestctl2(
2593 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2594
2595 /*
2596 * We should clear linked load bit to break interrupted atomics. This
2597 * prevents a SC on the next VCPU from succeeding by matching a LL on
2598 * the previous VCPU.
2599 */
2600 if (cpu_guest_has_rw_llb)
2601 write_gc0_lladdr(0);
2602
2603 return 0;
2604 }
2605
kvm_vz_vcpu_put(struct kvm_vcpu * vcpu,int cpu)2606 static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2607 {
2608 struct mips_coproc *cop0 = vcpu->arch.cop0;
2609
2610 if (current->flags & PF_VCPU)
2611 kvm_vz_vcpu_save_wired(vcpu);
2612
2613 kvm_lose_fpu(vcpu);
2614
2615 kvm_save_gc0_index(cop0);
2616 kvm_save_gc0_entrylo0(cop0);
2617 kvm_save_gc0_entrylo1(cop0);
2618 kvm_save_gc0_context(cop0);
2619 if (cpu_guest_has_contextconfig)
2620 kvm_save_gc0_contextconfig(cop0);
2621 #ifdef CONFIG_64BIT
2622 kvm_save_gc0_xcontext(cop0);
2623 if (cpu_guest_has_contextconfig)
2624 kvm_save_gc0_xcontextconfig(cop0);
2625 #endif
2626 kvm_save_gc0_pagemask(cop0);
2627 kvm_save_gc0_pagegrain(cop0);
2628 kvm_save_gc0_wired(cop0);
2629 /* allow wired TLB entries to be overwritten */
2630 clear_gc0_wired(MIPSR6_WIRED_WIRED);
2631 kvm_save_gc0_hwrena(cop0);
2632 kvm_save_gc0_badvaddr(cop0);
2633 kvm_save_gc0_entryhi(cop0);
2634 kvm_save_gc0_status(cop0);
2635 kvm_save_gc0_intctl(cop0);
2636 kvm_save_gc0_epc(cop0);
2637 kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2638 if (cpu_guest_has_userlocal)
2639 kvm_save_gc0_userlocal(cop0);
2640
2641 /* only save implemented config registers */
2642 kvm_save_gc0_config(cop0);
2643 if (cpu_guest_has_conf1)
2644 kvm_save_gc0_config1(cop0);
2645 if (cpu_guest_has_conf2)
2646 kvm_save_gc0_config2(cop0);
2647 if (cpu_guest_has_conf3)
2648 kvm_save_gc0_config3(cop0);
2649 if (cpu_guest_has_conf4)
2650 kvm_save_gc0_config4(cop0);
2651 if (cpu_guest_has_conf5)
2652 kvm_save_gc0_config5(cop0);
2653 if (cpu_guest_has_conf6)
2654 kvm_save_gc0_config6(cop0);
2655 if (cpu_guest_has_conf7)
2656 kvm_save_gc0_config7(cop0);
2657
2658 kvm_save_gc0_errorepc(cop0);
2659
2660 /* save KScratch registers if enabled in guest */
2661 if (cpu_guest_has_conf4) {
2662 if (cpu_guest_has_kscr(2))
2663 kvm_save_gc0_kscratch1(cop0);
2664 if (cpu_guest_has_kscr(3))
2665 kvm_save_gc0_kscratch2(cop0);
2666 if (cpu_guest_has_kscr(4))
2667 kvm_save_gc0_kscratch3(cop0);
2668 if (cpu_guest_has_kscr(5))
2669 kvm_save_gc0_kscratch4(cop0);
2670 if (cpu_guest_has_kscr(6))
2671 kvm_save_gc0_kscratch5(cop0);
2672 if (cpu_guest_has_kscr(7))
2673 kvm_save_gc0_kscratch6(cop0);
2674 }
2675
2676 if (cpu_guest_has_badinstr)
2677 kvm_save_gc0_badinstr(cop0);
2678 if (cpu_guest_has_badinstrp)
2679 kvm_save_gc0_badinstrp(cop0);
2680
2681 if (cpu_guest_has_segments) {
2682 kvm_save_gc0_segctl0(cop0);
2683 kvm_save_gc0_segctl1(cop0);
2684 kvm_save_gc0_segctl2(cop0);
2685 }
2686
2687 /* save HTW registers if enabled in guest */
2688 if (cpu_guest_has_htw &&
2689 kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW) {
2690 kvm_save_gc0_pwbase(cop0);
2691 kvm_save_gc0_pwfield(cop0);
2692 kvm_save_gc0_pwsize(cop0);
2693 kvm_save_gc0_pwctl(cop0);
2694 }
2695
2696 kvm_vz_save_timer(vcpu);
2697
2698 /* save Root.GuestCtl2 in unused Guest guestctl2 register */
2699 if (cpu_has_guestctl2)
2700 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2701 read_c0_guestctl2();
2702
2703 return 0;
2704 }
2705
2706 /**
2707 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2708 * @size: Number of guest VTLB entries (0 < @size <= root VTLB entries).
2709 *
2710 * Attempt to resize the guest VTLB by writing guest Config registers. This is
2711 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2712 * entries in the root VTLB.
2713 *
2714 * Returns: The resulting guest VTLB size.
2715 */
kvm_vz_resize_guest_vtlb(unsigned int size)2716 static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2717 {
2718 unsigned int config4 = 0, ret = 0, limit;
2719
2720 /* Write MMUSize - 1 into guest Config registers */
2721 if (cpu_guest_has_conf1)
2722 change_gc0_config1(MIPS_CONF1_TLBS,
2723 (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2724 if (cpu_guest_has_conf4) {
2725 config4 = read_gc0_config4();
2726 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2727 MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2728 config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2729 config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2730 MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2731 } else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2732 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2733 config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2734 config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2735 MIPS_CONF4_MMUSIZEEXT_SHIFT;
2736 }
2737 write_gc0_config4(config4);
2738 }
2739
2740 /*
2741 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2742 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2743 * not dropped)
2744 */
2745 if (cpu_has_mips_r6) {
2746 limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2747 MIPSR6_WIRED_LIMIT_SHIFT;
2748 if (size - 1 <= limit)
2749 limit = 0;
2750 write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2751 }
2752
2753 /* Read back MMUSize - 1 */
2754 back_to_back_c0_hazard();
2755 if (cpu_guest_has_conf1)
2756 ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2757 MIPS_CONF1_TLBS_SHIFT;
2758 if (config4) {
2759 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2760 MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2761 ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2762 MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2763 MIPS_CONF1_TLBS_SIZE;
2764 else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2765 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2766 ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2767 MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2768 MIPS_CONF1_TLBS_SIZE;
2769 }
2770 return ret + 1;
2771 }
2772
kvm_vz_hardware_enable(void)2773 static int kvm_vz_hardware_enable(void)
2774 {
2775 unsigned int mmu_size, guest_mmu_size, ftlb_size;
2776 u64 guest_cvmctl, cvmvmconfig;
2777
2778 switch (current_cpu_type()) {
2779 case CPU_CAVIUM_OCTEON3:
2780 /* Set up guest timer/perfcount IRQ lines */
2781 guest_cvmctl = read_gc0_cvmctl();
2782 guest_cvmctl &= ~CVMCTL_IPTI;
2783 guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
2784 guest_cvmctl &= ~CVMCTL_IPPCI;
2785 guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
2786 write_gc0_cvmctl(guest_cvmctl);
2787
2788 cvmvmconfig = read_c0_cvmvmconfig();
2789 /* No I/O hole translation. */
2790 cvmvmconfig |= CVMVMCONF_DGHT;
2791 /* Halve the root MMU size */
2792 mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2793 >> CVMVMCONF_MMUSIZEM1_S) + 1;
2794 guest_mmu_size = mmu_size / 2;
2795 mmu_size -= guest_mmu_size;
2796 cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2797 cvmvmconfig |= mmu_size - 1;
2798 write_c0_cvmvmconfig(cvmvmconfig);
2799
2800 /* Update our records */
2801 current_cpu_data.tlbsize = mmu_size;
2802 current_cpu_data.tlbsizevtlb = mmu_size;
2803 current_cpu_data.guest.tlbsize = guest_mmu_size;
2804
2805 /* Flush moved entries in new (guest) context */
2806 kvm_vz_local_flush_guesttlb_all();
2807 break;
2808 default:
2809 /*
2810 * ImgTec cores tend to use a shared root/guest TLB. To avoid
2811 * overlap of root wired and guest entries, the guest TLB may
2812 * need resizing.
2813 */
2814 mmu_size = current_cpu_data.tlbsizevtlb;
2815 ftlb_size = current_cpu_data.tlbsize - mmu_size;
2816
2817 /* Try switching to maximum guest VTLB size for flush */
2818 guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2819 current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2820 kvm_vz_local_flush_guesttlb_all();
2821
2822 /*
2823 * Reduce to make space for root wired entries and at least 2
2824 * root non-wired entries. This does assume that long-term wired
2825 * entries won't be added later.
2826 */
2827 guest_mmu_size = mmu_size - num_wired_entries() - 2;
2828 guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2829 current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2830
2831 /*
2832 * Write the VTLB size, but if another CPU has already written,
2833 * check it matches or we won't provide a consistent view to the
2834 * guest. If this ever happens it suggests an asymmetric number
2835 * of wired entries.
2836 */
2837 if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2838 WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2839 "Available guest VTLB size mismatch"))
2840 return -EINVAL;
2841 break;
2842 }
2843
2844 /*
2845 * Enable virtualization features granting guest direct control of
2846 * certain features:
2847 * CP0=1: Guest coprocessor 0 context.
2848 * AT=Guest: Guest MMU.
2849 * CG=1: Hit (virtual address) CACHE operations (optional).
2850 * CF=1: Guest Config registers.
2851 * CGI=1: Indexed flush CACHE operations (optional).
2852 */
2853 write_c0_guestctl0(MIPS_GCTL0_CP0 |
2854 (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2855 MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2856 if (cpu_has_guestctl0ext)
2857 set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2858
2859 if (cpu_has_guestid) {
2860 write_c0_guestctl1(0);
2861 kvm_vz_local_flush_roottlb_all_guests();
2862
2863 GUESTID_MASK = current_cpu_data.guestid_mask;
2864 GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2865 GUESTID_VERSION_MASK = ~GUESTID_MASK;
2866
2867 current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2868 }
2869
2870 /* clear any pending injected virtual guest interrupts */
2871 if (cpu_has_guestctl2)
2872 clear_c0_guestctl2(0x3f << 10);
2873
2874 return 0;
2875 }
2876
kvm_vz_hardware_disable(void)2877 static void kvm_vz_hardware_disable(void)
2878 {
2879 u64 cvmvmconfig;
2880 unsigned int mmu_size;
2881
2882 /* Flush any remaining guest TLB entries */
2883 kvm_vz_local_flush_guesttlb_all();
2884
2885 switch (current_cpu_type()) {
2886 case CPU_CAVIUM_OCTEON3:
2887 /*
2888 * Allocate whole TLB for root. Existing guest TLB entries will
2889 * change ownership to the root TLB. We should be safe though as
2890 * they've already been flushed above while in guest TLB.
2891 */
2892 cvmvmconfig = read_c0_cvmvmconfig();
2893 mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2894 >> CVMVMCONF_MMUSIZEM1_S) + 1;
2895 cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2896 cvmvmconfig |= mmu_size - 1;
2897 write_c0_cvmvmconfig(cvmvmconfig);
2898
2899 /* Update our records */
2900 current_cpu_data.tlbsize = mmu_size;
2901 current_cpu_data.tlbsizevtlb = mmu_size;
2902 current_cpu_data.guest.tlbsize = 0;
2903
2904 /* Flush moved entries in new (root) context */
2905 local_flush_tlb_all();
2906 break;
2907 }
2908
2909 if (cpu_has_guestid) {
2910 write_c0_guestctl1(0);
2911 kvm_vz_local_flush_roottlb_all_guests();
2912 }
2913 }
2914
kvm_vz_check_extension(struct kvm * kvm,long ext)2915 static int kvm_vz_check_extension(struct kvm *kvm, long ext)
2916 {
2917 int r;
2918
2919 switch (ext) {
2920 case KVM_CAP_MIPS_VZ:
2921 /* we wouldn't be here unless cpu_has_vz */
2922 r = 1;
2923 break;
2924 #ifdef CONFIG_64BIT
2925 case KVM_CAP_MIPS_64BIT:
2926 /* We support 64-bit registers/operations and addresses */
2927 r = 2;
2928 break;
2929 #endif
2930 default:
2931 r = 0;
2932 break;
2933 }
2934
2935 return r;
2936 }
2937
kvm_vz_vcpu_init(struct kvm_vcpu * vcpu)2938 static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
2939 {
2940 int i;
2941
2942 for_each_possible_cpu(i)
2943 vcpu->arch.vzguestid[i] = 0;
2944
2945 return 0;
2946 }
2947
kvm_vz_vcpu_uninit(struct kvm_vcpu * vcpu)2948 static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
2949 {
2950 int cpu;
2951
2952 /*
2953 * If the VCPU is freed and reused as another VCPU, we don't want the
2954 * matching pointer wrongly hanging around in last_vcpu[] or
2955 * last_exec_vcpu[].
2956 */
2957 for_each_possible_cpu(cpu) {
2958 if (last_vcpu[cpu] == vcpu)
2959 last_vcpu[cpu] = NULL;
2960 if (last_exec_vcpu[cpu] == vcpu)
2961 last_exec_vcpu[cpu] = NULL;
2962 }
2963 }
2964
kvm_vz_vcpu_setup(struct kvm_vcpu * vcpu)2965 static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
2966 {
2967 struct mips_coproc *cop0 = vcpu->arch.cop0;
2968 unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
2969
2970 /*
2971 * Start off the timer at the same frequency as the host timer, but the
2972 * soft timer doesn't handle frequencies greater than 1GHz yet.
2973 */
2974 if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
2975 count_hz = mips_hpt_frequency;
2976 kvm_mips_init_count(vcpu, count_hz);
2977
2978 /*
2979 * Initialize guest register state to valid architectural reset state.
2980 */
2981
2982 /* PageGrain */
2983 if (cpu_has_mips_r6)
2984 kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
2985 /* Wired */
2986 if (cpu_has_mips_r6)
2987 kvm_write_sw_gc0_wired(cop0,
2988 read_gc0_wired() & MIPSR6_WIRED_LIMIT);
2989 /* Status */
2990 kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
2991 if (cpu_has_mips_r6)
2992 kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
2993 /* IntCtl */
2994 kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
2995 (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
2996 /* PRId */
2997 kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
2998 /* EBase */
2999 kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
3000 /* Config */
3001 kvm_save_gc0_config(cop0);
3002 /* architecturally writable (e.g. from guest) */
3003 kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
3004 _page_cachable_default >> _CACHE_SHIFT);
3005 /* architecturally read only, but maybe writable from root */
3006 kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
3007 if (cpu_guest_has_conf1) {
3008 kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
3009 /* Config1 */
3010 kvm_save_gc0_config1(cop0);
3011 /* architecturally read only, but maybe writable from root */
3012 kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2 |
3013 MIPS_CONF1_MD |
3014 MIPS_CONF1_PC |
3015 MIPS_CONF1_WR |
3016 MIPS_CONF1_CA |
3017 MIPS_CONF1_FP);
3018 }
3019 if (cpu_guest_has_conf2) {
3020 kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
3021 /* Config2 */
3022 kvm_save_gc0_config2(cop0);
3023 }
3024 if (cpu_guest_has_conf3) {
3025 kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
3026 /* Config3 */
3027 kvm_save_gc0_config3(cop0);
3028 /* architecturally writable (e.g. from guest) */
3029 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
3030 /* architecturally read only, but maybe writable from root */
3031 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA |
3032 MIPS_CONF3_BPG |
3033 MIPS_CONF3_ULRI |
3034 MIPS_CONF3_DSP |
3035 MIPS_CONF3_CTXTC |
3036 MIPS_CONF3_ITL |
3037 MIPS_CONF3_LPA |
3038 MIPS_CONF3_VEIC |
3039 MIPS_CONF3_VINT |
3040 MIPS_CONF3_SP |
3041 MIPS_CONF3_CDMM |
3042 MIPS_CONF3_MT |
3043 MIPS_CONF3_SM |
3044 MIPS_CONF3_TL);
3045 }
3046 if (cpu_guest_has_conf4) {
3047 kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
3048 /* Config4 */
3049 kvm_save_gc0_config4(cop0);
3050 }
3051 if (cpu_guest_has_conf5) {
3052 kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
3053 /* Config5 */
3054 kvm_save_gc0_config5(cop0);
3055 /* architecturally writable (e.g. from guest) */
3056 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K |
3057 MIPS_CONF5_CV |
3058 MIPS_CONF5_MSAEN |
3059 MIPS_CONF5_UFE |
3060 MIPS_CONF5_FRE |
3061 MIPS_CONF5_SBRI |
3062 MIPS_CONF5_UFR);
3063 /* architecturally read only, but maybe writable from root */
3064 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
3065 }
3066
3067 if (cpu_guest_has_contextconfig) {
3068 /* ContextConfig */
3069 kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
3070 #ifdef CONFIG_64BIT
3071 /* XContextConfig */
3072 /* bits SEGBITS-13+3:4 set */
3073 kvm_write_sw_gc0_xcontextconfig(cop0,
3074 ((1ull << (cpu_vmbits - 13)) - 1) << 4);
3075 #endif
3076 }
3077
3078 /* Implementation dependent, use the legacy layout */
3079 if (cpu_guest_has_segments) {
3080 /* SegCtl0, SegCtl1, SegCtl2 */
3081 kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
3082 kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
3083 (_page_cachable_default >> _CACHE_SHIFT) <<
3084 (16 + MIPS_SEGCFG_C_SHIFT));
3085 kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
3086 }
3087
3088 /* reset HTW registers */
3089 if (cpu_guest_has_htw && cpu_has_mips_r6) {
3090 /* PWField */
3091 kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
3092 /* PWSize */
3093 kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
3094 }
3095
3096 /* start with no pending virtual guest interrupts */
3097 if (cpu_has_guestctl2)
3098 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
3099
3100 /* Put PC at reset vector */
3101 vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
3102
3103 return 0;
3104 }
3105
kvm_vz_flush_shadow_all(struct kvm * kvm)3106 static void kvm_vz_flush_shadow_all(struct kvm *kvm)
3107 {
3108 if (cpu_has_guestid) {
3109 /* Flush GuestID for each VCPU individually */
3110 kvm_flush_remote_tlbs(kvm);
3111 } else {
3112 /*
3113 * For each CPU there is a single GPA ASID used by all VCPUs in
3114 * the VM, so it doesn't make sense for the VCPUs to handle
3115 * invalidation of these ASIDs individually.
3116 *
3117 * Instead mark all CPUs as needing ASID invalidation in
3118 * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to
3119 * kick any running VCPUs so they check asid_flush_mask.
3120 */
3121 cpumask_setall(&kvm->arch.asid_flush_mask);
3122 kvm_flush_remote_tlbs(kvm);
3123 }
3124 }
3125
kvm_vz_flush_shadow_memslot(struct kvm * kvm,const struct kvm_memory_slot * slot)3126 static void kvm_vz_flush_shadow_memslot(struct kvm *kvm,
3127 const struct kvm_memory_slot *slot)
3128 {
3129 kvm_vz_flush_shadow_all(kvm);
3130 }
3131
kvm_vz_vcpu_reenter(struct kvm_run * run,struct kvm_vcpu * vcpu)3132 static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu)
3133 {
3134 int cpu = smp_processor_id();
3135 int preserve_guest_tlb;
3136
3137 preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
3138
3139 if (preserve_guest_tlb)
3140 kvm_vz_vcpu_save_wired(vcpu);
3141
3142 kvm_vz_vcpu_load_tlb(vcpu, cpu);
3143
3144 if (preserve_guest_tlb)
3145 kvm_vz_vcpu_load_wired(vcpu);
3146 }
3147
kvm_vz_vcpu_run(struct kvm_run * run,struct kvm_vcpu * vcpu)3148 static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
3149 {
3150 int cpu = smp_processor_id();
3151 int r;
3152
3153 kvm_vz_acquire_htimer(vcpu);
3154 /* Check if we have any exceptions/interrupts pending */
3155 kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
3156
3157 kvm_vz_check_requests(vcpu, cpu);
3158 kvm_vz_vcpu_load_tlb(vcpu, cpu);
3159 kvm_vz_vcpu_load_wired(vcpu);
3160
3161 r = vcpu->arch.vcpu_run(run, vcpu);
3162
3163 kvm_vz_vcpu_save_wired(vcpu);
3164
3165 return r;
3166 }
3167
3168 static struct kvm_mips_callbacks kvm_vz_callbacks = {
3169 .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
3170 .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
3171 .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
3172 .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
3173 .handle_addr_err_st = kvm_trap_vz_no_handler,
3174 .handle_addr_err_ld = kvm_trap_vz_no_handler,
3175 .handle_syscall = kvm_trap_vz_no_handler,
3176 .handle_res_inst = kvm_trap_vz_no_handler,
3177 .handle_break = kvm_trap_vz_no_handler,
3178 .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
3179 .handle_guest_exit = kvm_trap_vz_handle_guest_exit,
3180
3181 .hardware_enable = kvm_vz_hardware_enable,
3182 .hardware_disable = kvm_vz_hardware_disable,
3183 .check_extension = kvm_vz_check_extension,
3184 .vcpu_init = kvm_vz_vcpu_init,
3185 .vcpu_uninit = kvm_vz_vcpu_uninit,
3186 .vcpu_setup = kvm_vz_vcpu_setup,
3187 .flush_shadow_all = kvm_vz_flush_shadow_all,
3188 .flush_shadow_memslot = kvm_vz_flush_shadow_memslot,
3189 .gva_to_gpa = kvm_vz_gva_to_gpa_cb,
3190 .queue_timer_int = kvm_vz_queue_timer_int_cb,
3191 .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
3192 .queue_io_int = kvm_vz_queue_io_int_cb,
3193 .dequeue_io_int = kvm_vz_dequeue_io_int_cb,
3194 .irq_deliver = kvm_vz_irq_deliver_cb,
3195 .irq_clear = kvm_vz_irq_clear_cb,
3196 .num_regs = kvm_vz_num_regs,
3197 .copy_reg_indices = kvm_vz_copy_reg_indices,
3198 .get_one_reg = kvm_vz_get_one_reg,
3199 .set_one_reg = kvm_vz_set_one_reg,
3200 .vcpu_load = kvm_vz_vcpu_load,
3201 .vcpu_put = kvm_vz_vcpu_put,
3202 .vcpu_run = kvm_vz_vcpu_run,
3203 .vcpu_reenter = kvm_vz_vcpu_reenter,
3204 };
3205
kvm_mips_emulation_init(struct kvm_mips_callbacks ** install_callbacks)3206 int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
3207 {
3208 if (!cpu_has_vz)
3209 return -ENODEV;
3210
3211 /*
3212 * VZ requires at least 2 KScratch registers, so it should have been
3213 * possible to allocate pgd_reg.
3214 */
3215 if (WARN(pgd_reg == -1,
3216 "pgd_reg not allocated even though cpu_has_vz\n"))
3217 return -ENODEV;
3218
3219 pr_info("Starting KVM with MIPS VZ extensions\n");
3220
3221 *install_callbacks = &kvm_vz_callbacks;
3222 return 0;
3223 }
3224