1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/export.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
20
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
23 #include <asm/io.h>
24
25 #include <dma-coherence.h>
26
27 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
28 /* User defined DMA coherency from command line. */
29 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
30 EXPORT_SYMBOL_GPL(coherentio);
31 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
32
setcoherentio(char * str)33 static int __init setcoherentio(char *str)
34 {
35 coherentio = IO_COHERENCE_ENABLED;
36 pr_info("Hardware DMA cache coherency (command line)\n");
37 return 0;
38 }
39 early_param("coherentio", setcoherentio);
40
setnocoherentio(char * str)41 static int __init setnocoherentio(char *str)
42 {
43 coherentio = IO_COHERENCE_DISABLED;
44 pr_info("Software DMA cache coherency (command line)\n");
45 return 0;
46 }
47 early_param("nocoherentio", setnocoherentio);
48 #endif
49
dma_addr_to_page(struct device * dev,dma_addr_t dma_addr)50 static inline struct page *dma_addr_to_page(struct device *dev,
51 dma_addr_t dma_addr)
52 {
53 return pfn_to_page(
54 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
55 }
56
57 /*
58 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
59 * speculatively fill random cachelines with stale data at any time,
60 * requiring an extra flush post-DMA.
61 *
62 * Warning on the terminology - Linux calls an uncached area coherent;
63 * MIPS terminology calls memory areas with hardware maintained coherency
64 * coherent.
65 *
66 * Note that the R14000 and R16000 should also be checked for in this
67 * condition. However this function is only called on non-I/O-coherent
68 * systems and only the R10000 and R12000 are used in such systems, the
69 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
70 */
cpu_needs_post_dma_flush(struct device * dev)71 static inline bool cpu_needs_post_dma_flush(struct device *dev)
72 {
73 if (plat_device_is_coherent(dev))
74 return false;
75
76 switch (boot_cpu_type()) {
77 case CPU_R10000:
78 case CPU_R12000:
79 case CPU_BMIPS5000:
80 return true;
81
82 default:
83 /*
84 * Presence of MAARs suggests that the CPU supports
85 * speculatively prefetching data, and therefore requires
86 * the post-DMA flush/invalidate.
87 */
88 return cpu_has_maar;
89 }
90 }
91
massage_gfp_flags(const struct device * dev,gfp_t gfp)92 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
93 {
94 gfp_t dma_flag;
95
96 /* ignore region specifiers */
97 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
98
99 #ifdef CONFIG_ISA
100 if (dev == NULL)
101 dma_flag = __GFP_DMA;
102 else
103 #endif
104 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
105 if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
106 dma_flag = __GFP_DMA;
107 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
108 dma_flag = __GFP_DMA32;
109 else
110 #endif
111 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
112 if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
113 dma_flag = __GFP_DMA32;
114 else
115 #endif
116 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
117 if (dev == NULL ||
118 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
119 dma_flag = __GFP_DMA;
120 else
121 #endif
122 dma_flag = 0;
123
124 /* Don't invoke OOM killer */
125 gfp |= __GFP_NORETRY;
126
127 return gfp | dma_flag;
128 }
129
mips_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)130 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
131 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
132 {
133 void *ret;
134 struct page *page = NULL;
135 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
136
137 gfp = massage_gfp_flags(dev, gfp);
138
139 if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
140 page = dma_alloc_from_contiguous(dev, count, get_order(size),
141 gfp);
142 if (!page)
143 page = alloc_pages(gfp, get_order(size));
144
145 if (!page)
146 return NULL;
147
148 ret = page_address(page);
149 memset(ret, 0, size);
150 *dma_handle = plat_map_dma_mem(dev, ret, size);
151 if (!(attrs & DMA_ATTR_NON_CONSISTENT) &&
152 !plat_device_is_coherent(dev)) {
153 dma_cache_wback_inv((unsigned long) ret, size);
154 ret = UNCAC_ADDR(ret);
155 }
156
157 return ret;
158 }
159
mips_dma_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)160 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
161 dma_addr_t dma_handle, unsigned long attrs)
162 {
163 unsigned long addr = (unsigned long) vaddr;
164 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
165 struct page *page = NULL;
166
167 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
168
169 if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !plat_device_is_coherent(dev))
170 addr = CAC_ADDR(addr);
171
172 page = virt_to_page((void *) addr);
173
174 if (!dma_release_from_contiguous(dev, page, count))
175 __free_pages(page, get_order(size));
176 }
177
mips_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)178 static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
179 void *cpu_addr, dma_addr_t dma_addr, size_t size,
180 unsigned long attrs)
181 {
182 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
183 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
184 unsigned long addr = (unsigned long)cpu_addr;
185 unsigned long off = vma->vm_pgoff;
186 unsigned long pfn;
187 int ret = -ENXIO;
188
189 if (!plat_device_is_coherent(dev))
190 addr = CAC_ADDR(addr);
191
192 pfn = page_to_pfn(virt_to_page((void *)addr));
193
194 if (attrs & DMA_ATTR_WRITE_COMBINE)
195 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
196 else
197 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
198
199 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
200 return ret;
201
202 if (off < count && user_count <= (count - off)) {
203 ret = remap_pfn_range(vma, vma->vm_start,
204 pfn + off,
205 user_count << PAGE_SHIFT,
206 vma->vm_page_prot);
207 }
208
209 return ret;
210 }
211
__dma_sync_virtual(void * addr,size_t size,enum dma_data_direction direction)212 static inline void __dma_sync_virtual(void *addr, size_t size,
213 enum dma_data_direction direction)
214 {
215 switch (direction) {
216 case DMA_TO_DEVICE:
217 dma_cache_wback((unsigned long)addr, size);
218 break;
219
220 case DMA_FROM_DEVICE:
221 dma_cache_inv((unsigned long)addr, size);
222 break;
223
224 case DMA_BIDIRECTIONAL:
225 dma_cache_wback_inv((unsigned long)addr, size);
226 break;
227
228 default:
229 BUG();
230 }
231 }
232
233 /*
234 * A single sg entry may refer to multiple physically contiguous
235 * pages. But we still need to process highmem pages individually.
236 * If highmem is not configured then the bulk of this loop gets
237 * optimized out.
238 */
__dma_sync(struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)239 static inline void __dma_sync(struct page *page,
240 unsigned long offset, size_t size, enum dma_data_direction direction)
241 {
242 size_t left = size;
243
244 do {
245 size_t len = left;
246
247 if (PageHighMem(page)) {
248 void *addr;
249
250 if (offset + len > PAGE_SIZE) {
251 if (offset >= PAGE_SIZE) {
252 page += offset >> PAGE_SHIFT;
253 offset &= ~PAGE_MASK;
254 }
255 len = PAGE_SIZE - offset;
256 }
257
258 addr = kmap_atomic(page);
259 __dma_sync_virtual(addr + offset, len, direction);
260 kunmap_atomic(addr);
261 } else
262 __dma_sync_virtual(page_address(page) + offset,
263 size, direction);
264 offset = 0;
265 page++;
266 left -= len;
267 } while (left);
268 }
269
mips_dma_unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction direction,unsigned long attrs)270 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
271 size_t size, enum dma_data_direction direction, unsigned long attrs)
272 {
273 if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
274 __dma_sync(dma_addr_to_page(dev, dma_addr),
275 dma_addr & ~PAGE_MASK, size, direction);
276 plat_post_dma_flush(dev);
277 plat_unmap_dma_mem(dev, dma_addr, size, direction);
278 }
279
mips_dma_map_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction direction,unsigned long attrs)280 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
281 int nents, enum dma_data_direction direction, unsigned long attrs)
282 {
283 int i;
284 struct scatterlist *sg;
285
286 for_each_sg(sglist, sg, nents, i) {
287 if (!plat_device_is_coherent(dev) &&
288 !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
289 __dma_sync(sg_page(sg), sg->offset, sg->length,
290 direction);
291 #ifdef CONFIG_NEED_SG_DMA_LENGTH
292 sg->dma_length = sg->length;
293 #endif
294 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
295 sg->offset;
296 }
297
298 return nents;
299 }
300
mips_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction,unsigned long attrs)301 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
302 unsigned long offset, size_t size, enum dma_data_direction direction,
303 unsigned long attrs)
304 {
305 if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
306 __dma_sync(page, offset, size, direction);
307
308 return plat_map_dma_mem_page(dev, page) + offset;
309 }
310
mips_dma_unmap_sg(struct device * dev,struct scatterlist * sglist,int nhwentries,enum dma_data_direction direction,unsigned long attrs)311 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
312 int nhwentries, enum dma_data_direction direction,
313 unsigned long attrs)
314 {
315 int i;
316 struct scatterlist *sg;
317
318 for_each_sg(sglist, sg, nhwentries, i) {
319 if (!plat_device_is_coherent(dev) &&
320 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
321 direction != DMA_TO_DEVICE)
322 __dma_sync(sg_page(sg), sg->offset, sg->length,
323 direction);
324 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
325 }
326 }
327
mips_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction)328 static void mips_dma_sync_single_for_cpu(struct device *dev,
329 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
330 {
331 if (cpu_needs_post_dma_flush(dev))
332 __dma_sync(dma_addr_to_page(dev, dma_handle),
333 dma_handle & ~PAGE_MASK, size, direction);
334 plat_post_dma_flush(dev);
335 }
336
mips_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction)337 static void mips_dma_sync_single_for_device(struct device *dev,
338 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
339 {
340 if (!plat_device_is_coherent(dev))
341 __dma_sync(dma_addr_to_page(dev, dma_handle),
342 dma_handle & ~PAGE_MASK, size, direction);
343 }
344
mips_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction)345 static void mips_dma_sync_sg_for_cpu(struct device *dev,
346 struct scatterlist *sglist, int nelems,
347 enum dma_data_direction direction)
348 {
349 int i;
350 struct scatterlist *sg;
351
352 if (cpu_needs_post_dma_flush(dev)) {
353 for_each_sg(sglist, sg, nelems, i) {
354 __dma_sync(sg_page(sg), sg->offset, sg->length,
355 direction);
356 }
357 }
358 plat_post_dma_flush(dev);
359 }
360
mips_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction)361 static void mips_dma_sync_sg_for_device(struct device *dev,
362 struct scatterlist *sglist, int nelems,
363 enum dma_data_direction direction)
364 {
365 int i;
366 struct scatterlist *sg;
367
368 if (!plat_device_is_coherent(dev)) {
369 for_each_sg(sglist, sg, nelems, i) {
370 __dma_sync(sg_page(sg), sg->offset, sg->length,
371 direction);
372 }
373 }
374 }
375
mips_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)376 static int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
377 {
378 return 0;
379 }
380
mips_dma_supported(struct device * dev,u64 mask)381 static int mips_dma_supported(struct device *dev, u64 mask)
382 {
383 return plat_dma_supported(dev, mask);
384 }
385
dma_cache_sync(struct device * dev,void * vaddr,size_t size,enum dma_data_direction direction)386 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
387 enum dma_data_direction direction)
388 {
389 BUG_ON(direction == DMA_NONE);
390
391 if (!plat_device_is_coherent(dev))
392 __dma_sync_virtual(vaddr, size, direction);
393 }
394
395 EXPORT_SYMBOL(dma_cache_sync);
396
397 static const struct dma_map_ops mips_default_dma_map_ops = {
398 .alloc = mips_dma_alloc_coherent,
399 .free = mips_dma_free_coherent,
400 .mmap = mips_dma_mmap,
401 .map_page = mips_dma_map_page,
402 .unmap_page = mips_dma_unmap_page,
403 .map_sg = mips_dma_map_sg,
404 .unmap_sg = mips_dma_unmap_sg,
405 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
406 .sync_single_for_device = mips_dma_sync_single_for_device,
407 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
408 .sync_sg_for_device = mips_dma_sync_sg_for_device,
409 .mapping_error = mips_dma_mapping_error,
410 .dma_supported = mips_dma_supported
411 };
412
413 const struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
414 EXPORT_SYMBOL(mips_dma_map_ops);
415
416 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
417
mips_dma_init(void)418 static int __init mips_dma_init(void)
419 {
420 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
421
422 return 0;
423 }
424 fs_initcall(mips_dma_init);
425