• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
7  * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
8  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9  */
10 
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/export.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
20 
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
23 #include <asm/io.h>
24 
25 #include <dma-coherence.h>
26 
27 #if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
28 /* User defined DMA coherency from command line. */
29 enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
30 EXPORT_SYMBOL_GPL(coherentio);
31 int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
32 
setcoherentio(char * str)33 static int __init setcoherentio(char *str)
34 {
35 	coherentio = IO_COHERENCE_ENABLED;
36 	pr_info("Hardware DMA cache coherency (command line)\n");
37 	return 0;
38 }
39 early_param("coherentio", setcoherentio);
40 
setnocoherentio(char * str)41 static int __init setnocoherentio(char *str)
42 {
43 	coherentio = IO_COHERENCE_DISABLED;
44 	pr_info("Software DMA cache coherency (command line)\n");
45 	return 0;
46 }
47 early_param("nocoherentio", setnocoherentio);
48 #endif
49 
dma_addr_to_page(struct device * dev,dma_addr_t dma_addr)50 static inline struct page *dma_addr_to_page(struct device *dev,
51 	dma_addr_t dma_addr)
52 {
53 	return pfn_to_page(
54 		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
55 }
56 
57 /*
58  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
59  * speculatively fill random cachelines with stale data at any time,
60  * requiring an extra flush post-DMA.
61  *
62  * Warning on the terminology - Linux calls an uncached area coherent;
63  * MIPS terminology calls memory areas with hardware maintained coherency
64  * coherent.
65  *
66  * Note that the R14000 and R16000 should also be checked for in this
67  * condition.  However this function is only called on non-I/O-coherent
68  * systems and only the R10000 and R12000 are used in such systems, the
69  * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
70  */
cpu_needs_post_dma_flush(struct device * dev)71 static inline bool cpu_needs_post_dma_flush(struct device *dev)
72 {
73 	if (plat_device_is_coherent(dev))
74 		return false;
75 
76 	switch (boot_cpu_type()) {
77 	case CPU_R10000:
78 	case CPU_R12000:
79 	case CPU_BMIPS5000:
80 		return true;
81 
82 	default:
83 		/*
84 		 * Presence of MAARs suggests that the CPU supports
85 		 * speculatively prefetching data, and therefore requires
86 		 * the post-DMA flush/invalidate.
87 		 */
88 		return cpu_has_maar;
89 	}
90 }
91 
massage_gfp_flags(const struct device * dev,gfp_t gfp)92 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
93 {
94 	gfp_t dma_flag;
95 
96 	/* ignore region specifiers */
97 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
98 
99 #ifdef CONFIG_ISA
100 	if (dev == NULL)
101 		dma_flag = __GFP_DMA;
102 	else
103 #endif
104 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
105 	     if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
106 			dma_flag = __GFP_DMA;
107 	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
108 			dma_flag = __GFP_DMA32;
109 	else
110 #endif
111 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
112 	     if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
113 		dma_flag = __GFP_DMA32;
114 	else
115 #endif
116 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
117 	     if (dev == NULL ||
118 		 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
119 		dma_flag = __GFP_DMA;
120 	else
121 #endif
122 		dma_flag = 0;
123 
124 	/* Don't invoke OOM killer */
125 	gfp |= __GFP_NORETRY;
126 
127 	return gfp | dma_flag;
128 }
129 
mips_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)130 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
131 	dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
132 {
133 	void *ret;
134 	struct page *page = NULL;
135 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
136 
137 	gfp = massage_gfp_flags(dev, gfp);
138 
139 	if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
140 		page = dma_alloc_from_contiguous(dev, count, get_order(size),
141 						 gfp);
142 	if (!page)
143 		page = alloc_pages(gfp, get_order(size));
144 
145 	if (!page)
146 		return NULL;
147 
148 	ret = page_address(page);
149 	memset(ret, 0, size);
150 	*dma_handle = plat_map_dma_mem(dev, ret, size);
151 	if (!(attrs & DMA_ATTR_NON_CONSISTENT) &&
152 	    !plat_device_is_coherent(dev)) {
153 		dma_cache_wback_inv((unsigned long) ret, size);
154 		ret = UNCAC_ADDR(ret);
155 	}
156 
157 	return ret;
158 }
159 
mips_dma_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)160 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
161 	dma_addr_t dma_handle, unsigned long attrs)
162 {
163 	unsigned long addr = (unsigned long) vaddr;
164 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
165 	struct page *page = NULL;
166 
167 	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
168 
169 	if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !plat_device_is_coherent(dev))
170 		addr = CAC_ADDR(addr);
171 
172 	page = virt_to_page((void *) addr);
173 
174 	if (!dma_release_from_contiguous(dev, page, count))
175 		__free_pages(page, get_order(size));
176 }
177 
mips_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)178 static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
179 	void *cpu_addr, dma_addr_t dma_addr, size_t size,
180 	unsigned long attrs)
181 {
182 	unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
183 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
184 	unsigned long addr = (unsigned long)cpu_addr;
185 	unsigned long off = vma->vm_pgoff;
186 	unsigned long pfn;
187 	int ret = -ENXIO;
188 
189 	if (!plat_device_is_coherent(dev))
190 		addr = CAC_ADDR(addr);
191 
192 	pfn = page_to_pfn(virt_to_page((void *)addr));
193 
194 	if (attrs & DMA_ATTR_WRITE_COMBINE)
195 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
196 	else
197 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
198 
199 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
200 		return ret;
201 
202 	if (off < count && user_count <= (count - off)) {
203 		ret = remap_pfn_range(vma, vma->vm_start,
204 				      pfn + off,
205 				      user_count << PAGE_SHIFT,
206 				      vma->vm_page_prot);
207 	}
208 
209 	return ret;
210 }
211 
__dma_sync_virtual(void * addr,size_t size,enum dma_data_direction direction)212 static inline void __dma_sync_virtual(void *addr, size_t size,
213 	enum dma_data_direction direction)
214 {
215 	switch (direction) {
216 	case DMA_TO_DEVICE:
217 		dma_cache_wback((unsigned long)addr, size);
218 		break;
219 
220 	case DMA_FROM_DEVICE:
221 		dma_cache_inv((unsigned long)addr, size);
222 		break;
223 
224 	case DMA_BIDIRECTIONAL:
225 		dma_cache_wback_inv((unsigned long)addr, size);
226 		break;
227 
228 	default:
229 		BUG();
230 	}
231 }
232 
233 /*
234  * A single sg entry may refer to multiple physically contiguous
235  * pages. But we still need to process highmem pages individually.
236  * If highmem is not configured then the bulk of this loop gets
237  * optimized out.
238  */
__dma_sync(struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)239 static inline void __dma_sync(struct page *page,
240 	unsigned long offset, size_t size, enum dma_data_direction direction)
241 {
242 	size_t left = size;
243 
244 	do {
245 		size_t len = left;
246 
247 		if (PageHighMem(page)) {
248 			void *addr;
249 
250 			if (offset + len > PAGE_SIZE) {
251 				if (offset >= PAGE_SIZE) {
252 					page += offset >> PAGE_SHIFT;
253 					offset &= ~PAGE_MASK;
254 				}
255 				len = PAGE_SIZE - offset;
256 			}
257 
258 			addr = kmap_atomic(page);
259 			__dma_sync_virtual(addr + offset, len, direction);
260 			kunmap_atomic(addr);
261 		} else
262 			__dma_sync_virtual(page_address(page) + offset,
263 					   size, direction);
264 		offset = 0;
265 		page++;
266 		left -= len;
267 	} while (left);
268 }
269 
mips_dma_unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction direction,unsigned long attrs)270 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
271 	size_t size, enum dma_data_direction direction, unsigned long attrs)
272 {
273 	if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
274 		__dma_sync(dma_addr_to_page(dev, dma_addr),
275 			   dma_addr & ~PAGE_MASK, size, direction);
276 	plat_post_dma_flush(dev);
277 	plat_unmap_dma_mem(dev, dma_addr, size, direction);
278 }
279 
mips_dma_map_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction direction,unsigned long attrs)280 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
281 	int nents, enum dma_data_direction direction, unsigned long attrs)
282 {
283 	int i;
284 	struct scatterlist *sg;
285 
286 	for_each_sg(sglist, sg, nents, i) {
287 		if (!plat_device_is_coherent(dev) &&
288 		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
289 			__dma_sync(sg_page(sg), sg->offset, sg->length,
290 				   direction);
291 #ifdef CONFIG_NEED_SG_DMA_LENGTH
292 		sg->dma_length = sg->length;
293 #endif
294 		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
295 				  sg->offset;
296 	}
297 
298 	return nents;
299 }
300 
mips_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction,unsigned long attrs)301 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
302 	unsigned long offset, size_t size, enum dma_data_direction direction,
303 	unsigned long attrs)
304 {
305 	if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
306 		__dma_sync(page, offset, size, direction);
307 
308 	return plat_map_dma_mem_page(dev, page) + offset;
309 }
310 
mips_dma_unmap_sg(struct device * dev,struct scatterlist * sglist,int nhwentries,enum dma_data_direction direction,unsigned long attrs)311 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
312 	int nhwentries, enum dma_data_direction direction,
313 	unsigned long attrs)
314 {
315 	int i;
316 	struct scatterlist *sg;
317 
318 	for_each_sg(sglist, sg, nhwentries, i) {
319 		if (!plat_device_is_coherent(dev) &&
320 		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
321 		    direction != DMA_TO_DEVICE)
322 			__dma_sync(sg_page(sg), sg->offset, sg->length,
323 				   direction);
324 		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
325 	}
326 }
327 
mips_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction)328 static void mips_dma_sync_single_for_cpu(struct device *dev,
329 	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
330 {
331 	if (cpu_needs_post_dma_flush(dev))
332 		__dma_sync(dma_addr_to_page(dev, dma_handle),
333 			   dma_handle & ~PAGE_MASK, size, direction);
334 	plat_post_dma_flush(dev);
335 }
336 
mips_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction)337 static void mips_dma_sync_single_for_device(struct device *dev,
338 	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
339 {
340 	if (!plat_device_is_coherent(dev))
341 		__dma_sync(dma_addr_to_page(dev, dma_handle),
342 			   dma_handle & ~PAGE_MASK, size, direction);
343 }
344 
mips_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction)345 static void mips_dma_sync_sg_for_cpu(struct device *dev,
346 	struct scatterlist *sglist, int nelems,
347 	enum dma_data_direction direction)
348 {
349 	int i;
350 	struct scatterlist *sg;
351 
352 	if (cpu_needs_post_dma_flush(dev)) {
353 		for_each_sg(sglist, sg, nelems, i) {
354 			__dma_sync(sg_page(sg), sg->offset, sg->length,
355 				   direction);
356 		}
357 	}
358 	plat_post_dma_flush(dev);
359 }
360 
mips_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction)361 static void mips_dma_sync_sg_for_device(struct device *dev,
362 	struct scatterlist *sglist, int nelems,
363 	enum dma_data_direction direction)
364 {
365 	int i;
366 	struct scatterlist *sg;
367 
368 	if (!plat_device_is_coherent(dev)) {
369 		for_each_sg(sglist, sg, nelems, i) {
370 			__dma_sync(sg_page(sg), sg->offset, sg->length,
371 				   direction);
372 		}
373 	}
374 }
375 
mips_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)376 static int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
377 {
378 	return 0;
379 }
380 
mips_dma_supported(struct device * dev,u64 mask)381 static int mips_dma_supported(struct device *dev, u64 mask)
382 {
383 	return plat_dma_supported(dev, mask);
384 }
385 
dma_cache_sync(struct device * dev,void * vaddr,size_t size,enum dma_data_direction direction)386 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
387 			 enum dma_data_direction direction)
388 {
389 	BUG_ON(direction == DMA_NONE);
390 
391 	if (!plat_device_is_coherent(dev))
392 		__dma_sync_virtual(vaddr, size, direction);
393 }
394 
395 EXPORT_SYMBOL(dma_cache_sync);
396 
397 static const struct dma_map_ops mips_default_dma_map_ops = {
398 	.alloc = mips_dma_alloc_coherent,
399 	.free = mips_dma_free_coherent,
400 	.mmap = mips_dma_mmap,
401 	.map_page = mips_dma_map_page,
402 	.unmap_page = mips_dma_unmap_page,
403 	.map_sg = mips_dma_map_sg,
404 	.unmap_sg = mips_dma_unmap_sg,
405 	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
406 	.sync_single_for_device = mips_dma_sync_single_for_device,
407 	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
408 	.sync_sg_for_device = mips_dma_sync_sg_for_device,
409 	.mapping_error = mips_dma_mapping_error,
410 	.dma_supported = mips_dma_supported
411 };
412 
413 const struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
414 EXPORT_SYMBOL(mips_dma_map_ops);
415 
416 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
417 
mips_dma_init(void)418 static int __init mips_dma_init(void)
419 {
420 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
421 
422 	return 0;
423 }
424 fs_initcall(mips_dma_init);
425