1 /*
2 * OpenRISC Linux
3 *
4 * Linux architectural port borrowing liberally from similar works of
5 * others. All original copyrights apply as per the original source
6 * declaration.
7 *
8 * Modifications for the OpenRISC architecture:
9 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * DMA mapping callbacks...
18 * As alloc_coherent is the only DMA callback being used currently, that's
19 * the only thing implemented properly. The rest need looking into...
20 */
21
22 #include <linux/dma-mapping.h>
23 #include <linux/dma-debug.h>
24 #include <linux/export.h>
25
26 #include <asm/cpuinfo.h>
27 #include <asm/spr_defs.h>
28 #include <asm/tlbflush.h>
29
30 static int
page_set_nocache(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)31 page_set_nocache(pte_t *pte, unsigned long addr,
32 unsigned long next, struct mm_walk *walk)
33 {
34 unsigned long cl;
35
36 pte_val(*pte) |= _PAGE_CI;
37
38 /*
39 * Flush the page out of the TLB so that the new page flags get
40 * picked up next time there's an access
41 */
42 flush_tlb_page(NULL, addr);
43
44 /* Flush page out of dcache */
45 for (cl = __pa(addr); cl < __pa(next); cl += cpuinfo.dcache_block_size)
46 mtspr(SPR_DCBFR, cl);
47
48 return 0;
49 }
50
51 static int
page_clear_nocache(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)52 page_clear_nocache(pte_t *pte, unsigned long addr,
53 unsigned long next, struct mm_walk *walk)
54 {
55 pte_val(*pte) &= ~_PAGE_CI;
56
57 /*
58 * Flush the page out of the TLB so that the new page flags get
59 * picked up next time there's an access
60 */
61 flush_tlb_page(NULL, addr);
62
63 return 0;
64 }
65
66 /*
67 * Alloc "coherent" memory, which for OpenRISC means simply uncached.
68 *
69 * This function effectively just calls __get_free_pages, sets the
70 * cache-inhibit bit on those pages, and makes sure that the pages are
71 * flushed out of the cache before they are used.
72 *
73 * If the NON_CONSISTENT attribute is set, then this function just
74 * returns "normal", cachable memory.
75 *
76 * There are additional flags WEAK_ORDERING and WRITE_COMBINE to take
77 * into consideration here, too. All current known implementations of
78 * the OR1K support only strongly ordered memory accesses, so that flag
79 * is being ignored for now; uncached but write-combined memory is a
80 * missing feature of the OR1K.
81 */
82 static void *
or1k_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)83 or1k_dma_alloc(struct device *dev, size_t size,
84 dma_addr_t *dma_handle, gfp_t gfp,
85 unsigned long attrs)
86 {
87 unsigned long va;
88 void *page;
89 struct mm_walk walk = {
90 .pte_entry = page_set_nocache,
91 .mm = &init_mm
92 };
93
94 page = alloc_pages_exact(size, gfp);
95 if (!page)
96 return NULL;
97
98 /* This gives us the real physical address of the first page. */
99 *dma_handle = __pa(page);
100
101 va = (unsigned long)page;
102
103 if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
104 /*
105 * We need to iterate through the pages, clearing the dcache for
106 * them and setting the cache-inhibit bit.
107 */
108 if (walk_page_range(va, va + size, &walk)) {
109 free_pages_exact(page, size);
110 return NULL;
111 }
112 }
113
114 return (void *)va;
115 }
116
117 static void
or1k_dma_free(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,unsigned long attrs)118 or1k_dma_free(struct device *dev, size_t size, void *vaddr,
119 dma_addr_t dma_handle, unsigned long attrs)
120 {
121 unsigned long va = (unsigned long)vaddr;
122 struct mm_walk walk = {
123 .pte_entry = page_clear_nocache,
124 .mm = &init_mm
125 };
126
127 if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) {
128 /* walk_page_range shouldn't be able to fail here */
129 WARN_ON(walk_page_range(va, va + size, &walk));
130 }
131
132 free_pages_exact(vaddr, size);
133 }
134
135 static dma_addr_t
or1k_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)136 or1k_map_page(struct device *dev, struct page *page,
137 unsigned long offset, size_t size,
138 enum dma_data_direction dir,
139 unsigned long attrs)
140 {
141 unsigned long cl;
142 dma_addr_t addr = page_to_phys(page) + offset;
143
144 if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
145 return addr;
146
147 switch (dir) {
148 case DMA_TO_DEVICE:
149 /* Flush the dcache for the requested range */
150 for (cl = addr; cl < addr + size;
151 cl += cpuinfo.dcache_block_size)
152 mtspr(SPR_DCBFR, cl);
153 break;
154 case DMA_FROM_DEVICE:
155 /* Invalidate the dcache for the requested range */
156 for (cl = addr; cl < addr + size;
157 cl += cpuinfo.dcache_block_size)
158 mtspr(SPR_DCBIR, cl);
159 break;
160 default:
161 /*
162 * NOTE: If dir == DMA_BIDIRECTIONAL then there's no need to
163 * flush nor invalidate the cache here as the area will need
164 * to be manually synced anyway.
165 */
166 break;
167 }
168
169 return addr;
170 }
171
172 static void
or1k_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)173 or1k_unmap_page(struct device *dev, dma_addr_t dma_handle,
174 size_t size, enum dma_data_direction dir,
175 unsigned long attrs)
176 {
177 /* Nothing special to do here... */
178 }
179
180 static int
or1k_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)181 or1k_map_sg(struct device *dev, struct scatterlist *sg,
182 int nents, enum dma_data_direction dir,
183 unsigned long attrs)
184 {
185 struct scatterlist *s;
186 int i;
187
188 for_each_sg(sg, s, nents, i) {
189 s->dma_address = or1k_map_page(dev, sg_page(s), s->offset,
190 s->length, dir, 0);
191 }
192
193 return nents;
194 }
195
196 static void
or1k_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)197 or1k_unmap_sg(struct device *dev, struct scatterlist *sg,
198 int nents, enum dma_data_direction dir,
199 unsigned long attrs)
200 {
201 struct scatterlist *s;
202 int i;
203
204 for_each_sg(sg, s, nents, i) {
205 or1k_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, 0);
206 }
207 }
208
209 static void
or1k_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)210 or1k_sync_single_for_cpu(struct device *dev,
211 dma_addr_t dma_handle, size_t size,
212 enum dma_data_direction dir)
213 {
214 unsigned long cl;
215 dma_addr_t addr = dma_handle;
216
217 /* Invalidate the dcache for the requested range */
218 for (cl = addr; cl < addr + size; cl += cpuinfo.dcache_block_size)
219 mtspr(SPR_DCBIR, cl);
220 }
221
222 static void
or1k_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)223 or1k_sync_single_for_device(struct device *dev,
224 dma_addr_t dma_handle, size_t size,
225 enum dma_data_direction dir)
226 {
227 unsigned long cl;
228 dma_addr_t addr = dma_handle;
229
230 /* Flush the dcache for the requested range */
231 for (cl = addr; cl < addr + size; cl += cpuinfo.dcache_block_size)
232 mtspr(SPR_DCBFR, cl);
233 }
234
235 const struct dma_map_ops or1k_dma_map_ops = {
236 .alloc = or1k_dma_alloc,
237 .free = or1k_dma_free,
238 .map_page = or1k_map_page,
239 .unmap_page = or1k_unmap_page,
240 .map_sg = or1k_map_sg,
241 .unmap_sg = or1k_unmap_sg,
242 .sync_single_for_cpu = or1k_sync_single_for_cpu,
243 .sync_single_for_device = or1k_sync_single_for_device,
244 };
245 EXPORT_SYMBOL(or1k_dma_map_ops);
246
247 /* Number of entries preallocated for DMA-API debugging */
248 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
249
dma_init(void)250 static int __init dma_init(void)
251 {
252 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
253
254 return 0;
255 }
256 fs_initcall(dma_init);
257