1 #ifndef _ASM_POWERPC_BOOK3S_64_PGALLOC_H
2 #define _ASM_POWERPC_BOOK3S_64_PGALLOC_H
3 /*
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/cpumask.h>
12 #include <linux/percpu.h>
13
14 struct vmemmap_backing {
15 struct vmemmap_backing *list;
16 unsigned long phys;
17 unsigned long virt_addr;
18 };
19 extern struct vmemmap_backing *vmemmap_list;
20
21 /*
22 * Functions that deal with pagetables that could be at any level of
23 * the table need to be passed an "index_size" so they know how to
24 * handle allocation. For PTE pages (which are linked to a struct
25 * page for now, and drawn from the main get_free_pages() pool), the
26 * allocation size will be (2^index_size * sizeof(pointer)) and
27 * allocations are drawn from the kmem_cache in PGT_CACHE(index_size).
28 *
29 * The maximum index size needs to be big enough to allow any
30 * pagetable sizes we need, but small enough to fit in the low bits of
31 * any page table pointer. In other words all pagetables, even tiny
32 * ones, must be aligned to allow at least enough low 0 bits to
33 * contain this value. This value is also used as a mask, so it must
34 * be one less than a power of two.
35 */
36 #define MAX_PGTABLE_INDEX_SIZE 0xf
37
38 extern struct kmem_cache *pgtable_cache[];
39 #define PGT_CACHE(shift) ({ \
40 BUG_ON(!(shift)); \
41 pgtable_cache[(shift) - 1]; \
42 })
43
44 extern pte_t *pte_fragment_alloc(struct mm_struct *, unsigned long, int);
45 extern void pte_fragment_free(unsigned long *, int);
46 extern void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift);
47 #ifdef CONFIG_SMP
48 extern void __tlb_remove_table(void *_table);
49 #endif
50
radix__pgd_alloc(struct mm_struct * mm)51 static inline pgd_t *radix__pgd_alloc(struct mm_struct *mm)
52 {
53 #ifdef CONFIG_PPC_64K_PAGES
54 return (pgd_t *)__get_free_page(pgtable_gfp_flags(mm, PGALLOC_GFP));
55 #else
56 struct page *page;
57 page = alloc_pages(pgtable_gfp_flags(mm, PGALLOC_GFP | __GFP_RETRY_MAYFAIL),
58 4);
59 if (!page)
60 return NULL;
61 return (pgd_t *) page_address(page);
62 #endif
63 }
64
radix__pgd_free(struct mm_struct * mm,pgd_t * pgd)65 static inline void radix__pgd_free(struct mm_struct *mm, pgd_t *pgd)
66 {
67 #ifdef CONFIG_PPC_64K_PAGES
68 free_page((unsigned long)pgd);
69 #else
70 free_pages((unsigned long)pgd, 4);
71 #endif
72 }
73
pgd_alloc(struct mm_struct * mm)74 static inline pgd_t *pgd_alloc(struct mm_struct *mm)
75 {
76 pgd_t *pgd;
77
78 if (radix_enabled())
79 return radix__pgd_alloc(mm);
80
81 pgd = kmem_cache_alloc(PGT_CACHE(PGD_INDEX_SIZE),
82 pgtable_gfp_flags(mm, GFP_KERNEL));
83 memset(pgd, 0, PGD_TABLE_SIZE);
84
85 return pgd;
86 }
87
pgd_free(struct mm_struct * mm,pgd_t * pgd)88 static inline void pgd_free(struct mm_struct *mm, pgd_t *pgd)
89 {
90 if (radix_enabled())
91 return radix__pgd_free(mm, pgd);
92 kmem_cache_free(PGT_CACHE(PGD_INDEX_SIZE), pgd);
93 }
94
pgd_populate(struct mm_struct * mm,pgd_t * pgd,pud_t * pud)95 static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pud_t *pud)
96 {
97 pgd_set(pgd, __pgtable_ptr_val(pud) | PGD_VAL_BITS);
98 }
99
pud_alloc_one(struct mm_struct * mm,unsigned long addr)100 static inline pud_t *pud_alloc_one(struct mm_struct *mm, unsigned long addr)
101 {
102 return kmem_cache_alloc(PGT_CACHE(PUD_INDEX_SIZE),
103 pgtable_gfp_flags(mm, GFP_KERNEL));
104 }
105
pud_free(struct mm_struct * mm,pud_t * pud)106 static inline void pud_free(struct mm_struct *mm, pud_t *pud)
107 {
108 kmem_cache_free(PGT_CACHE(PUD_INDEX_SIZE), pud);
109 }
110
pud_populate(struct mm_struct * mm,pud_t * pud,pmd_t * pmd)111 static inline void pud_populate(struct mm_struct *mm, pud_t *pud, pmd_t *pmd)
112 {
113 pud_set(pud, __pgtable_ptr_val(pmd) | PUD_VAL_BITS);
114 }
115
__pud_free_tlb(struct mmu_gather * tlb,pud_t * pud,unsigned long address)116 static inline void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
117 unsigned long address)
118 {
119 /*
120 * By now all the pud entries should be none entries. So go
121 * ahead and flush the page walk cache
122 */
123 flush_tlb_pgtable(tlb, address);
124 pgtable_free_tlb(tlb, pud, PUD_INDEX_SIZE);
125 }
126
pmd_alloc_one(struct mm_struct * mm,unsigned long addr)127 static inline pmd_t *pmd_alloc_one(struct mm_struct *mm, unsigned long addr)
128 {
129 return kmem_cache_alloc(PGT_CACHE(PMD_CACHE_INDEX),
130 pgtable_gfp_flags(mm, GFP_KERNEL));
131 }
132
pmd_free(struct mm_struct * mm,pmd_t * pmd)133 static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
134 {
135 kmem_cache_free(PGT_CACHE(PMD_CACHE_INDEX), pmd);
136 }
137
__pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd,unsigned long address)138 static inline void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
139 unsigned long address)
140 {
141 /*
142 * By now all the pud entries should be none entries. So go
143 * ahead and flush the page walk cache
144 */
145 flush_tlb_pgtable(tlb, address);
146 return pgtable_free_tlb(tlb, pmd, PMD_CACHE_INDEX);
147 }
148
pmd_populate_kernel(struct mm_struct * mm,pmd_t * pmd,pte_t * pte)149 static inline void pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd,
150 pte_t *pte)
151 {
152 pmd_set(pmd, __pgtable_ptr_val(pte) | PMD_VAL_BITS);
153 }
154
pmd_populate(struct mm_struct * mm,pmd_t * pmd,pgtable_t pte_page)155 static inline void pmd_populate(struct mm_struct *mm, pmd_t *pmd,
156 pgtable_t pte_page)
157 {
158 pmd_set(pmd, __pgtable_ptr_val(pte_page) | PMD_VAL_BITS);
159 }
160
pmd_pgtable(pmd_t pmd)161 static inline pgtable_t pmd_pgtable(pmd_t pmd)
162 {
163 return (pgtable_t)pmd_page_vaddr(pmd);
164 }
165
166 #ifdef CONFIG_PPC_4K_PAGES
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)167 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
168 unsigned long address)
169 {
170 return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
171 }
172
pte_alloc_one(struct mm_struct * mm,unsigned long address)173 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
174 unsigned long address)
175 {
176 struct page *page;
177 pte_t *pte;
178
179 pte = (pte_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO | __GFP_ACCOUNT);
180 if (!pte)
181 return NULL;
182 page = virt_to_page(pte);
183 if (!pgtable_page_ctor(page)) {
184 __free_page(page);
185 return NULL;
186 }
187 return pte;
188 }
189 #else /* if CONFIG_PPC_64K_PAGES */
190
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)191 static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
192 unsigned long address)
193 {
194 return (pte_t *)pte_fragment_alloc(mm, address, 1);
195 }
196
pte_alloc_one(struct mm_struct * mm,unsigned long address)197 static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
198 unsigned long address)
199 {
200 return (pgtable_t)pte_fragment_alloc(mm, address, 0);
201 }
202 #endif
203
pte_free_kernel(struct mm_struct * mm,pte_t * pte)204 static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
205 {
206 pte_fragment_free((unsigned long *)pte, 1);
207 }
208
pte_free(struct mm_struct * mm,pgtable_t ptepage)209 static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
210 {
211 pte_fragment_free((unsigned long *)ptepage, 0);
212 }
213
__pte_free_tlb(struct mmu_gather * tlb,pgtable_t table,unsigned long address)214 static inline void __pte_free_tlb(struct mmu_gather *tlb, pgtable_t table,
215 unsigned long address)
216 {
217 /*
218 * By now all the pud entries should be none entries. So go
219 * ahead and flush the page walk cache
220 */
221 flush_tlb_pgtable(tlb, address);
222 pgtable_free_tlb(tlb, table, 0);
223 }
224
225 #define check_pgt_cache() do { } while (0)
226
227 #endif /* _ASM_POWERPC_BOOK3S_64_PGALLOC_H */
228