1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
27 */
28
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/extable.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <asm/sections.h>
39 #include <linux/uaccess.h>
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
45
is_current_kprobe_addr(unsigned long addr)46 int is_current_kprobe_addr(unsigned long addr)
47 {
48 struct kprobe *p = kprobe_running();
49 return (p && (unsigned long)p->addr == addr) ? 1 : 0;
50 }
51
arch_within_kprobe_blacklist(unsigned long addr)52 bool arch_within_kprobe_blacklist(unsigned long addr)
53 {
54 return (addr >= (unsigned long)__kprobes_text_start &&
55 addr < (unsigned long)__kprobes_text_end) ||
56 (addr >= (unsigned long)_stext &&
57 addr < (unsigned long)__head_end);
58 }
59
kprobe_lookup_name(const char * name,unsigned int offset)60 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
61 {
62 kprobe_opcode_t *addr;
63
64 #ifdef PPC64_ELF_ABI_v2
65 /* PPC64 ABIv2 needs local entry point */
66 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
67 if (addr && !offset) {
68 #ifdef CONFIG_KPROBES_ON_FTRACE
69 unsigned long faddr;
70 /*
71 * Per livepatch.h, ftrace location is always within the first
72 * 16 bytes of a function on powerpc with -mprofile-kernel.
73 */
74 faddr = ftrace_location_range((unsigned long)addr,
75 (unsigned long)addr + 16);
76 if (faddr)
77 addr = (kprobe_opcode_t *)faddr;
78 else
79 #endif
80 addr = (kprobe_opcode_t *)ppc_function_entry(addr);
81 }
82 #elif defined(PPC64_ELF_ABI_v1)
83 /*
84 * 64bit powerpc ABIv1 uses function descriptors:
85 * - Check for the dot variant of the symbol first.
86 * - If that fails, try looking up the symbol provided.
87 *
88 * This ensures we always get to the actual symbol and not
89 * the descriptor.
90 *
91 * Also handle <module:symbol> format.
92 */
93 char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
94 const char *modsym;
95 bool dot_appended = false;
96 if ((modsym = strchr(name, ':')) != NULL) {
97 modsym++;
98 if (*modsym != '\0' && *modsym != '.') {
99 /* Convert to <module:.symbol> */
100 strncpy(dot_name, name, modsym - name);
101 dot_name[modsym - name] = '.';
102 dot_name[modsym - name + 1] = '\0';
103 strncat(dot_name, modsym,
104 sizeof(dot_name) - (modsym - name) - 2);
105 dot_appended = true;
106 } else {
107 dot_name[0] = '\0';
108 strncat(dot_name, name, sizeof(dot_name) - 1);
109 }
110 } else if (name[0] != '.') {
111 dot_name[0] = '.';
112 dot_name[1] = '\0';
113 strncat(dot_name, name, KSYM_NAME_LEN - 2);
114 dot_appended = true;
115 } else {
116 dot_name[0] = '\0';
117 strncat(dot_name, name, KSYM_NAME_LEN - 1);
118 }
119 addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
120 if (!addr && dot_appended) {
121 /* Let's try the original non-dot symbol lookup */
122 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
123 }
124 #else
125 addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
126 #endif
127
128 return addr;
129 }
130
arch_prepare_kprobe(struct kprobe * p)131 int arch_prepare_kprobe(struct kprobe *p)
132 {
133 int ret = 0;
134 kprobe_opcode_t insn = *p->addr;
135
136 if ((unsigned long)p->addr & 0x03) {
137 printk("Attempt to register kprobe at an unaligned address\n");
138 ret = -EINVAL;
139 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
140 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
141 ret = -EINVAL;
142 }
143
144 /* insn must be on a special executable page on ppc64. This is
145 * not explicitly required on ppc32 (right now), but it doesn't hurt */
146 if (!ret) {
147 p->ainsn.insn = get_insn_slot();
148 if (!p->ainsn.insn)
149 ret = -ENOMEM;
150 }
151
152 if (!ret) {
153 memcpy(p->ainsn.insn, p->addr,
154 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
155 p->opcode = *p->addr;
156 flush_icache_range((unsigned long)p->ainsn.insn,
157 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
158 }
159
160 p->ainsn.boostable = 0;
161 return ret;
162 }
163 NOKPROBE_SYMBOL(arch_prepare_kprobe);
164
arch_arm_kprobe(struct kprobe * p)165 void arch_arm_kprobe(struct kprobe *p)
166 {
167 patch_instruction(p->addr, BREAKPOINT_INSTRUCTION);
168 }
169 NOKPROBE_SYMBOL(arch_arm_kprobe);
170
arch_disarm_kprobe(struct kprobe * p)171 void arch_disarm_kprobe(struct kprobe *p)
172 {
173 patch_instruction(p->addr, p->opcode);
174 }
175 NOKPROBE_SYMBOL(arch_disarm_kprobe);
176
arch_remove_kprobe(struct kprobe * p)177 void arch_remove_kprobe(struct kprobe *p)
178 {
179 if (p->ainsn.insn) {
180 free_insn_slot(p->ainsn.insn, 0);
181 p->ainsn.insn = NULL;
182 }
183 }
184 NOKPROBE_SYMBOL(arch_remove_kprobe);
185
prepare_singlestep(struct kprobe * p,struct pt_regs * regs)186 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
187 {
188 enable_single_step(regs);
189
190 /*
191 * On powerpc we should single step on the original
192 * instruction even if the probed insn is a trap
193 * variant as values in regs could play a part in
194 * if the trap is taken or not
195 */
196 regs->nip = (unsigned long)p->ainsn.insn;
197 }
198
save_previous_kprobe(struct kprobe_ctlblk * kcb)199 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
200 {
201 kcb->prev_kprobe.kp = kprobe_running();
202 kcb->prev_kprobe.status = kcb->kprobe_status;
203 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
204 }
205
restore_previous_kprobe(struct kprobe_ctlblk * kcb)206 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
207 {
208 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
209 kcb->kprobe_status = kcb->prev_kprobe.status;
210 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
211 }
212
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)213 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
214 struct kprobe_ctlblk *kcb)
215 {
216 __this_cpu_write(current_kprobe, p);
217 kcb->kprobe_saved_msr = regs->msr;
218 }
219
arch_kprobe_on_func_entry(unsigned long offset)220 bool arch_kprobe_on_func_entry(unsigned long offset)
221 {
222 #ifdef PPC64_ELF_ABI_v2
223 #ifdef CONFIG_KPROBES_ON_FTRACE
224 return offset <= 16;
225 #else
226 return offset <= 8;
227 #endif
228 #else
229 return !offset;
230 #endif
231 }
232
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)233 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
234 {
235 ri->ret_addr = (kprobe_opcode_t *)regs->link;
236
237 /* Replace the return addr with trampoline addr */
238 regs->link = (unsigned long)kretprobe_trampoline;
239 }
240 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
241
try_to_emulate(struct kprobe * p,struct pt_regs * regs)242 int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
243 {
244 int ret;
245 unsigned int insn = *p->ainsn.insn;
246
247 /* regs->nip is also adjusted if emulate_step returns 1 */
248 ret = emulate_step(regs, insn);
249 if (ret > 0) {
250 /*
251 * Once this instruction has been boosted
252 * successfully, set the boostable flag
253 */
254 if (unlikely(p->ainsn.boostable == 0))
255 p->ainsn.boostable = 1;
256 } else if (ret < 0) {
257 /*
258 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
259 * So, we should never get here... but, its still
260 * good to catch them, just in case...
261 */
262 printk("Can't step on instruction %x\n", insn);
263 BUG();
264 } else if (ret == 0)
265 /* This instruction can't be boosted */
266 p->ainsn.boostable = -1;
267
268 return ret;
269 }
270 NOKPROBE_SYMBOL(try_to_emulate);
271
kprobe_handler(struct pt_regs * regs)272 int kprobe_handler(struct pt_regs *regs)
273 {
274 struct kprobe *p;
275 int ret = 0;
276 unsigned int *addr = (unsigned int *)regs->nip;
277 struct kprobe_ctlblk *kcb;
278
279 if (user_mode(regs))
280 return 0;
281
282 /*
283 * We don't want to be preempted for the entire
284 * duration of kprobe processing
285 */
286 preempt_disable();
287 kcb = get_kprobe_ctlblk();
288
289 /* Check we're not actually recursing */
290 if (kprobe_running()) {
291 p = get_kprobe(addr);
292 if (p) {
293 kprobe_opcode_t insn = *p->ainsn.insn;
294 if (kcb->kprobe_status == KPROBE_HIT_SS &&
295 is_trap(insn)) {
296 /* Turn off 'trace' bits */
297 regs->msr &= ~MSR_SINGLESTEP;
298 regs->msr |= kcb->kprobe_saved_msr;
299 goto no_kprobe;
300 }
301 /* We have reentered the kprobe_handler(), since
302 * another probe was hit while within the handler.
303 * We here save the original kprobes variables and
304 * just single step on the instruction of the new probe
305 * without calling any user handlers.
306 */
307 save_previous_kprobe(kcb);
308 set_current_kprobe(p, regs, kcb);
309 kprobes_inc_nmissed_count(p);
310 kcb->kprobe_status = KPROBE_REENTER;
311 if (p->ainsn.boostable >= 0) {
312 ret = try_to_emulate(p, regs);
313
314 if (ret > 0) {
315 restore_previous_kprobe(kcb);
316 preempt_enable_no_resched();
317 return 1;
318 }
319 }
320 prepare_singlestep(p, regs);
321 return 1;
322 } else {
323 if (*addr != BREAKPOINT_INSTRUCTION) {
324 /* If trap variant, then it belongs not to us */
325 kprobe_opcode_t cur_insn = *addr;
326 if (is_trap(cur_insn))
327 goto no_kprobe;
328 /* The breakpoint instruction was removed by
329 * another cpu right after we hit, no further
330 * handling of this interrupt is appropriate
331 */
332 ret = 1;
333 goto no_kprobe;
334 }
335 p = __this_cpu_read(current_kprobe);
336 if (p->break_handler && p->break_handler(p, regs)) {
337 if (!skip_singlestep(p, regs, kcb))
338 goto ss_probe;
339 ret = 1;
340 }
341 }
342 goto no_kprobe;
343 }
344
345 p = get_kprobe(addr);
346 if (!p) {
347 if (*addr != BREAKPOINT_INSTRUCTION) {
348 /*
349 * PowerPC has multiple variants of the "trap"
350 * instruction. If the current instruction is a
351 * trap variant, it could belong to someone else
352 */
353 kprobe_opcode_t cur_insn = *addr;
354 if (is_trap(cur_insn))
355 goto no_kprobe;
356 /*
357 * The breakpoint instruction was removed right
358 * after we hit it. Another cpu has removed
359 * either a probepoint or a debugger breakpoint
360 * at this address. In either case, no further
361 * handling of this interrupt is appropriate.
362 */
363 ret = 1;
364 }
365 /* Not one of ours: let kernel handle it */
366 goto no_kprobe;
367 }
368
369 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
370 set_current_kprobe(p, regs, kcb);
371 if (p->pre_handler && p->pre_handler(p, regs))
372 /* handler has already set things up, so skip ss setup */
373 return 1;
374
375 ss_probe:
376 if (p->ainsn.boostable >= 0) {
377 ret = try_to_emulate(p, regs);
378
379 if (ret > 0) {
380 if (p->post_handler)
381 p->post_handler(p, regs, 0);
382
383 kcb->kprobe_status = KPROBE_HIT_SSDONE;
384 reset_current_kprobe();
385 preempt_enable_no_resched();
386 return 1;
387 }
388 }
389 prepare_singlestep(p, regs);
390 kcb->kprobe_status = KPROBE_HIT_SS;
391 return 1;
392
393 no_kprobe:
394 preempt_enable_no_resched();
395 return ret;
396 }
397 NOKPROBE_SYMBOL(kprobe_handler);
398
399 /*
400 * Function return probe trampoline:
401 * - init_kprobes() establishes a probepoint here
402 * - When the probed function returns, this probe
403 * causes the handlers to fire
404 */
405 asm(".global kretprobe_trampoline\n"
406 ".type kretprobe_trampoline, @function\n"
407 "kretprobe_trampoline:\n"
408 "nop\n"
409 "blr\n"
410 ".size kretprobe_trampoline, .-kretprobe_trampoline\n");
411
412 /*
413 * Called when the probe at kretprobe trampoline is hit
414 */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)415 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
416 {
417 struct kretprobe_instance *ri = NULL;
418 struct hlist_head *head, empty_rp;
419 struct hlist_node *tmp;
420 unsigned long flags, orig_ret_address = 0;
421 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
422
423 INIT_HLIST_HEAD(&empty_rp);
424 kretprobe_hash_lock(current, &head, &flags);
425
426 /*
427 * It is possible to have multiple instances associated with a given
428 * task either because an multiple functions in the call path
429 * have a return probe installed on them, and/or more than one return
430 * return probe was registered for a target function.
431 *
432 * We can handle this because:
433 * - instances are always inserted at the head of the list
434 * - when multiple return probes are registered for the same
435 * function, the first instance's ret_addr will point to the
436 * real return address, and all the rest will point to
437 * kretprobe_trampoline
438 */
439 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
440 if (ri->task != current)
441 /* another task is sharing our hash bucket */
442 continue;
443
444 if (ri->rp && ri->rp->handler)
445 ri->rp->handler(ri, regs);
446
447 orig_ret_address = (unsigned long)ri->ret_addr;
448 recycle_rp_inst(ri, &empty_rp);
449
450 if (orig_ret_address != trampoline_address)
451 /*
452 * This is the real return address. Any other
453 * instances associated with this task are for
454 * other calls deeper on the call stack
455 */
456 break;
457 }
458
459 kretprobe_assert(ri, orig_ret_address, trampoline_address);
460
461 /*
462 * We get here through one of two paths:
463 * 1. by taking a trap -> kprobe_handler() -> here
464 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
465 *
466 * When going back through (1), we need regs->nip to be setup properly
467 * as it is used to determine the return address from the trap.
468 * For (2), since nip is not honoured with optprobes, we instead setup
469 * the link register properly so that the subsequent 'blr' in
470 * kretprobe_trampoline jumps back to the right instruction.
471 *
472 * For nip, we should set the address to the previous instruction since
473 * we end up emulating it in kprobe_handler(), which increments the nip
474 * again.
475 */
476 regs->nip = orig_ret_address - 4;
477 regs->link = orig_ret_address;
478
479 kretprobe_hash_unlock(current, &flags);
480
481 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
482 hlist_del(&ri->hlist);
483 kfree(ri);
484 }
485
486 return 0;
487 }
488 NOKPROBE_SYMBOL(trampoline_probe_handler);
489
490 /*
491 * Called after single-stepping. p->addr is the address of the
492 * instruction whose first byte has been replaced by the "breakpoint"
493 * instruction. To avoid the SMP problems that can occur when we
494 * temporarily put back the original opcode to single-step, we
495 * single-stepped a copy of the instruction. The address of this
496 * copy is p->ainsn.insn.
497 */
kprobe_post_handler(struct pt_regs * regs)498 int kprobe_post_handler(struct pt_regs *regs)
499 {
500 struct kprobe *cur = kprobe_running();
501 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
502
503 if (!cur || user_mode(regs))
504 return 0;
505
506 /* make sure we got here for instruction we have a kprobe on */
507 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
508 return 0;
509
510 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
511 kcb->kprobe_status = KPROBE_HIT_SSDONE;
512 cur->post_handler(cur, regs, 0);
513 }
514
515 /* Adjust nip to after the single-stepped instruction */
516 regs->nip = (unsigned long)cur->addr + 4;
517 regs->msr |= kcb->kprobe_saved_msr;
518
519 /*Restore back the original saved kprobes variables and continue. */
520 if (kcb->kprobe_status == KPROBE_REENTER) {
521 restore_previous_kprobe(kcb);
522 goto out;
523 }
524 reset_current_kprobe();
525 out:
526 preempt_enable_no_resched();
527
528 /*
529 * if somebody else is singlestepping across a probe point, msr
530 * will have DE/SE set, in which case, continue the remaining processing
531 * of do_debug, as if this is not a probe hit.
532 */
533 if (regs->msr & MSR_SINGLESTEP)
534 return 0;
535
536 return 1;
537 }
538 NOKPROBE_SYMBOL(kprobe_post_handler);
539
kprobe_fault_handler(struct pt_regs * regs,int trapnr)540 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
541 {
542 struct kprobe *cur = kprobe_running();
543 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
544 const struct exception_table_entry *entry;
545
546 switch(kcb->kprobe_status) {
547 case KPROBE_HIT_SS:
548 case KPROBE_REENTER:
549 /*
550 * We are here because the instruction being single
551 * stepped caused a page fault. We reset the current
552 * kprobe and the nip points back to the probe address
553 * and allow the page fault handler to continue as a
554 * normal page fault.
555 */
556 regs->nip = (unsigned long)cur->addr;
557 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
558 regs->msr |= kcb->kprobe_saved_msr;
559 if (kcb->kprobe_status == KPROBE_REENTER)
560 restore_previous_kprobe(kcb);
561 else
562 reset_current_kprobe();
563 preempt_enable_no_resched();
564 break;
565 case KPROBE_HIT_ACTIVE:
566 case KPROBE_HIT_SSDONE:
567 /*
568 * We increment the nmissed count for accounting,
569 * we can also use npre/npostfault count for accounting
570 * these specific fault cases.
571 */
572 kprobes_inc_nmissed_count(cur);
573
574 /*
575 * We come here because instructions in the pre/post
576 * handler caused the page_fault, this could happen
577 * if handler tries to access user space by
578 * copy_from_user(), get_user() etc. Let the
579 * user-specified handler try to fix it first.
580 */
581 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
582 return 1;
583
584 /*
585 * In case the user-specified fault handler returned
586 * zero, try to fix up.
587 */
588 if ((entry = search_exception_tables(regs->nip)) != NULL) {
589 regs->nip = extable_fixup(entry);
590 return 1;
591 }
592
593 /*
594 * fixup_exception() could not handle it,
595 * Let do_page_fault() fix it.
596 */
597 break;
598 default:
599 break;
600 }
601 return 0;
602 }
603 NOKPROBE_SYMBOL(kprobe_fault_handler);
604
arch_deref_entry_point(void * entry)605 unsigned long arch_deref_entry_point(void *entry)
606 {
607 #ifdef PPC64_ELF_ABI_v1
608 if (!kernel_text_address((unsigned long)entry))
609 return ppc_global_function_entry(entry);
610 else
611 #endif
612 return (unsigned long)entry;
613 }
614 NOKPROBE_SYMBOL(arch_deref_entry_point);
615
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)616 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
617 {
618 struct jprobe *jp = container_of(p, struct jprobe, kp);
619 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
620
621 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
622
623 /* setup return addr to the jprobe handler routine */
624 regs->nip = arch_deref_entry_point(jp->entry);
625 #ifdef PPC64_ELF_ABI_v2
626 regs->gpr[12] = (unsigned long)jp->entry;
627 #elif defined(PPC64_ELF_ABI_v1)
628 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
629 #endif
630
631 /*
632 * jprobes use jprobe_return() which skips the normal return
633 * path of the function, and this messes up the accounting of the
634 * function graph tracer.
635 *
636 * Pause function graph tracing while performing the jprobe function.
637 */
638 pause_graph_tracing();
639
640 return 1;
641 }
642 NOKPROBE_SYMBOL(setjmp_pre_handler);
643
jprobe_return(void)644 void __used jprobe_return(void)
645 {
646 asm volatile("trap" ::: "memory");
647 }
648 NOKPROBE_SYMBOL(jprobe_return);
649
jprobe_return_end(void)650 static void __used jprobe_return_end(void)
651 {
652 }
653 NOKPROBE_SYMBOL(jprobe_return_end);
654
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)655 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
656 {
657 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
658
659 /*
660 * FIXME - we should ideally be validating that we got here 'cos
661 * of the "trap" in jprobe_return() above, before restoring the
662 * saved regs...
663 */
664 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
665 /* It's OK to start function graph tracing again */
666 unpause_graph_tracing();
667 preempt_enable_no_resched();
668 return 1;
669 }
670 NOKPROBE_SYMBOL(longjmp_break_handler);
671
672 static struct kprobe trampoline_p = {
673 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
674 .pre_handler = trampoline_probe_handler
675 };
676
arch_init_kprobes(void)677 int __init arch_init_kprobes(void)
678 {
679 return register_kprobe(&trampoline_p);
680 }
681
arch_trampoline_kprobe(struct kprobe * p)682 int arch_trampoline_kprobe(struct kprobe *p)
683 {
684 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
685 return 1;
686
687 return 0;
688 }
689 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
690