• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PPC64 code to handle Linux booting another kernel.
3  *
4  * Copyright (C) 2004-2005, IBM Corp.
5  *
6  * Created by: Milton D Miller II
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 
13 #include <linux/kexec.h>
14 #include <linux/smp.h>
15 #include <linux/thread_info.h>
16 #include <linux/init_task.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/cpu.h>
20 #include <linux/hardirq.h>
21 
22 #include <asm/page.h>
23 #include <asm/current.h>
24 #include <asm/machdep.h>
25 #include <asm/cacheflush.h>
26 #include <asm/firmware.h>
27 #include <asm/paca.h>
28 #include <asm/mmu.h>
29 #include <asm/sections.h>	/* _end */
30 #include <asm/prom.h>
31 #include <asm/smp.h>
32 #include <asm/hw_breakpoint.h>
33 #include <asm/asm-prototypes.h>
34 
default_machine_kexec_prepare(struct kimage * image)35 int default_machine_kexec_prepare(struct kimage *image)
36 {
37 	int i;
38 	unsigned long begin, end;	/* limits of segment */
39 	unsigned long low, high;	/* limits of blocked memory range */
40 	struct device_node *node;
41 	const unsigned long *basep;
42 	const unsigned int *sizep;
43 
44 	/*
45 	 * Since we use the kernel fault handlers and paging code to
46 	 * handle the virtual mode, we must make sure no destination
47 	 * overlaps kernel static data or bss.
48 	 */
49 	for (i = 0; i < image->nr_segments; i++)
50 		if (image->segment[i].mem < __pa(_end))
51 			return -ETXTBSY;
52 
53 	/* We also should not overwrite the tce tables */
54 	for_each_node_by_type(node, "pci") {
55 		basep = of_get_property(node, "linux,tce-base", NULL);
56 		sizep = of_get_property(node, "linux,tce-size", NULL);
57 		if (basep == NULL || sizep == NULL)
58 			continue;
59 
60 		low = *basep;
61 		high = low + (*sizep);
62 
63 		for (i = 0; i < image->nr_segments; i++) {
64 			begin = image->segment[i].mem;
65 			end = begin + image->segment[i].memsz;
66 
67 			if ((begin < high) && (end > low))
68 				return -ETXTBSY;
69 		}
70 	}
71 
72 	return 0;
73 }
74 
copy_segments(unsigned long ind)75 static void copy_segments(unsigned long ind)
76 {
77 	unsigned long entry;
78 	unsigned long *ptr;
79 	void *dest;
80 	void *addr;
81 
82 	/*
83 	 * We rely on kexec_load to create a lists that properly
84 	 * initializes these pointers before they are used.
85 	 * We will still crash if the list is wrong, but at least
86 	 * the compiler will be quiet.
87 	 */
88 	ptr = NULL;
89 	dest = NULL;
90 
91 	for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
92 		addr = __va(entry & PAGE_MASK);
93 
94 		switch (entry & IND_FLAGS) {
95 		case IND_DESTINATION:
96 			dest = addr;
97 			break;
98 		case IND_INDIRECTION:
99 			ptr = addr;
100 			break;
101 		case IND_SOURCE:
102 			copy_page(dest, addr);
103 			dest += PAGE_SIZE;
104 		}
105 	}
106 }
107 
kexec_copy_flush(struct kimage * image)108 void kexec_copy_flush(struct kimage *image)
109 {
110 	long i, nr_segments = image->nr_segments;
111 	struct  kexec_segment ranges[KEXEC_SEGMENT_MAX];
112 
113 	/* save the ranges on the stack to efficiently flush the icache */
114 	memcpy(ranges, image->segment, sizeof(ranges));
115 
116 	/*
117 	 * After this call we may not use anything allocated in dynamic
118 	 * memory, including *image.
119 	 *
120 	 * Only globals and the stack are allowed.
121 	 */
122 	copy_segments(image->head);
123 
124 	/*
125 	 * we need to clear the icache for all dest pages sometime,
126 	 * including ones that were in place on the original copy
127 	 */
128 	for (i = 0; i < nr_segments; i++)
129 		flush_icache_range((unsigned long)__va(ranges[i].mem),
130 			(unsigned long)__va(ranges[i].mem + ranges[i].memsz));
131 }
132 
133 #ifdef CONFIG_SMP
134 
135 static int kexec_all_irq_disabled = 0;
136 
kexec_smp_down(void * arg)137 static void kexec_smp_down(void *arg)
138 {
139 	local_irq_disable();
140 	hard_irq_disable();
141 
142 	mb(); /* make sure our irqs are disabled before we say they are */
143 	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
144 	while(kexec_all_irq_disabled == 0)
145 		cpu_relax();
146 	mb(); /* make sure all irqs are disabled before this */
147 	hw_breakpoint_disable();
148 	/*
149 	 * Now every CPU has IRQs off, we can clear out any pending
150 	 * IPIs and be sure that no more will come in after this.
151 	 */
152 	if (ppc_md.kexec_cpu_down)
153 		ppc_md.kexec_cpu_down(0, 1);
154 
155 	kexec_smp_wait();
156 	/* NOTREACHED */
157 }
158 
kexec_prepare_cpus_wait(int wait_state)159 static void kexec_prepare_cpus_wait(int wait_state)
160 {
161 	int my_cpu, i, notified=-1;
162 
163 	hw_breakpoint_disable();
164 	my_cpu = get_cpu();
165 	/* Make sure each CPU has at least made it to the state we need.
166 	 *
167 	 * FIXME: There is a (slim) chance of a problem if not all of the CPUs
168 	 * are correctly onlined.  If somehow we start a CPU on boot with RTAS
169 	 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
170 	 * time, the boot CPU will timeout.  If it does eventually execute
171 	 * stuff, the secondary will start up (paca[].cpu_start was written) and
172 	 * get into a peculiar state.  If the platform supports
173 	 * smp_ops->take_timebase(), the secondary CPU will probably be spinning
174 	 * in there.  If not (i.e. pseries), the secondary will continue on and
175 	 * try to online itself/idle/etc. If it survives that, we need to find
176 	 * these possible-but-not-online-but-should-be CPUs and chaperone them
177 	 * into kexec_smp_wait().
178 	 */
179 	for_each_online_cpu(i) {
180 		if (i == my_cpu)
181 			continue;
182 
183 		while (paca[i].kexec_state < wait_state) {
184 			barrier();
185 			if (i != notified) {
186 				printk(KERN_INFO "kexec: waiting for cpu %d "
187 				       "(physical %d) to enter %i state\n",
188 				       i, paca[i].hw_cpu_id, wait_state);
189 				notified = i;
190 			}
191 		}
192 	}
193 	mb();
194 }
195 
196 /*
197  * We need to make sure each present CPU is online.  The next kernel will scan
198  * the device tree and assume primary threads are online and query secondary
199  * threads via RTAS to online them if required.  If we don't online primary
200  * threads, they will be stuck.  However, we also online secondary threads as we
201  * may be using 'cede offline'.  In this case RTAS doesn't see the secondary
202  * threads as offline -- and again, these CPUs will be stuck.
203  *
204  * So, we online all CPUs that should be running, including secondary threads.
205  */
wake_offline_cpus(void)206 static void wake_offline_cpus(void)
207 {
208 	int cpu = 0;
209 
210 	for_each_present_cpu(cpu) {
211 		if (!cpu_online(cpu)) {
212 			printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
213 			       cpu);
214 			WARN_ON(cpu_up(cpu));
215 		}
216 	}
217 }
218 
kexec_prepare_cpus(void)219 static void kexec_prepare_cpus(void)
220 {
221 	wake_offline_cpus();
222 	smp_call_function(kexec_smp_down, NULL, /* wait */0);
223 	local_irq_disable();
224 	hard_irq_disable();
225 
226 	mb(); /* make sure IRQs are disabled before we say they are */
227 	get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
228 
229 	kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
230 	/* we are sure every CPU has IRQs off at this point */
231 	kexec_all_irq_disabled = 1;
232 
233 	/* after we tell the others to go down */
234 	if (ppc_md.kexec_cpu_down)
235 		ppc_md.kexec_cpu_down(0, 0);
236 
237 	/*
238 	 * Before removing MMU mappings make sure all CPUs have entered real
239 	 * mode:
240 	 */
241 	kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
242 
243 	put_cpu();
244 }
245 
246 #else /* ! SMP */
247 
kexec_prepare_cpus(void)248 static void kexec_prepare_cpus(void)
249 {
250 	/*
251 	 * move the secondarys to us so that we can copy
252 	 * the new kernel 0-0x100 safely
253 	 *
254 	 * do this if kexec in setup.c ?
255 	 *
256 	 * We need to release the cpus if we are ever going from an
257 	 * UP to an SMP kernel.
258 	 */
259 	smp_release_cpus();
260 	if (ppc_md.kexec_cpu_down)
261 		ppc_md.kexec_cpu_down(0, 0);
262 	local_irq_disable();
263 	hard_irq_disable();
264 }
265 
266 #endif /* SMP */
267 
268 /*
269  * kexec thread structure and stack.
270  *
271  * We need to make sure that this is 16384-byte aligned due to the
272  * way process stacks are handled.  It also must be statically allocated
273  * or allocated as part of the kimage, because everything else may be
274  * overwritten when we copy the kexec image.  We piggyback on the
275  * "init_task" linker section here to statically allocate a stack.
276  *
277  * We could use a smaller stack if we don't care about anything using
278  * current, but that audit has not been performed.
279  */
280 static union thread_union kexec_stack __init_task_data =
281 	{ };
282 
283 /*
284  * For similar reasons to the stack above, the kexecing CPU needs to be on a
285  * static PACA; we switch to kexec_paca.
286  */
287 struct paca_struct kexec_paca;
288 
289 /* Our assembly helper, in misc_64.S */
290 extern void kexec_sequence(void *newstack, unsigned long start,
291 			   void *image, void *control,
292 			   void (*clear_all)(void),
293 			   bool copy_with_mmu_off) __noreturn;
294 
295 /* too late to fail here */
default_machine_kexec(struct kimage * image)296 void default_machine_kexec(struct kimage *image)
297 {
298 	bool copy_with_mmu_off;
299 
300 	/* prepare control code if any */
301 
302 	/*
303         * If the kexec boot is the normal one, need to shutdown other cpus
304         * into our wait loop and quiesce interrupts.
305         * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
306         * stopping other CPUs and collecting their pt_regs is done before
307         * using debugger IPI.
308         */
309 
310 	if (!kdump_in_progress())
311 		kexec_prepare_cpus();
312 
313 	printk("kexec: Starting switchover sequence.\n");
314 
315 	/* switch to a staticly allocated stack.  Based on irq stack code.
316 	 * We setup preempt_count to avoid using VMX in memcpy.
317 	 * XXX: the task struct will likely be invalid once we do the copy!
318 	 */
319 	kexec_stack.thread_info.task = current_thread_info()->task;
320 	kexec_stack.thread_info.flags = 0;
321 	kexec_stack.thread_info.preempt_count = HARDIRQ_OFFSET;
322 	kexec_stack.thread_info.cpu = current_thread_info()->cpu;
323 
324 	/* We need a static PACA, too; copy this CPU's PACA over and switch to
325 	 * it.  Also poison per_cpu_offset to catch anyone using non-static
326 	 * data.
327 	 */
328 	memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
329 	kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
330 	paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
331 		kexec_paca.paca_index;
332 	setup_paca(&kexec_paca);
333 
334 	/* XXX: If anyone does 'dynamic lppacas' this will also need to be
335 	 * switched to a static version!
336 	 */
337 	/*
338 	 * On Book3S, the copy must happen with the MMU off if we are either
339 	 * using Radix page tables or we are not in an LPAR since we can
340 	 * overwrite the page tables while copying.
341 	 *
342 	 * In an LPAR, we keep the MMU on otherwise we can't access beyond
343 	 * the RMA. On BookE there is no real MMU off mode, so we have to
344 	 * keep it enabled as well (but then we have bolted TLB entries).
345 	 */
346 #ifdef CONFIG_PPC_BOOK3E
347 	copy_with_mmu_off = false;
348 #else
349 	copy_with_mmu_off = radix_enabled() ||
350 		!(firmware_has_feature(FW_FEATURE_LPAR) ||
351 		  firmware_has_feature(FW_FEATURE_PS3_LV1));
352 #endif
353 
354 	/* Some things are best done in assembly.  Finding globals with
355 	 * a toc is easier in C, so pass in what we can.
356 	 */
357 	kexec_sequence(&kexec_stack, image->start, image,
358 		       page_address(image->control_code_page),
359 		       mmu_cleanup_all, copy_with_mmu_off);
360 	/* NOTREACHED */
361 }
362 
363 #ifdef CONFIG_PPC_STD_MMU_64
364 /* Values we need to export to the second kernel via the device tree. */
365 static unsigned long htab_base;
366 static unsigned long htab_size;
367 
368 static struct property htab_base_prop = {
369 	.name = "linux,htab-base",
370 	.length = sizeof(unsigned long),
371 	.value = &htab_base,
372 };
373 
374 static struct property htab_size_prop = {
375 	.name = "linux,htab-size",
376 	.length = sizeof(unsigned long),
377 	.value = &htab_size,
378 };
379 
export_htab_values(void)380 static int __init export_htab_values(void)
381 {
382 	struct device_node *node;
383 
384 	/* On machines with no htab htab_address is NULL */
385 	if (!htab_address)
386 		return -ENODEV;
387 
388 	node = of_find_node_by_path("/chosen");
389 	if (!node)
390 		return -ENODEV;
391 
392 	/* remove any stale propertys so ours can be found */
393 	of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL));
394 	of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL));
395 
396 	htab_base = cpu_to_be64(__pa(htab_address));
397 	of_add_property(node, &htab_base_prop);
398 	htab_size = cpu_to_be64(htab_size_bytes);
399 	of_add_property(node, &htab_size_prop);
400 
401 	of_node_put(node);
402 	return 0;
403 }
404 late_initcall(export_htab_values);
405 #endif /* CONFIG_PPC_STD_MMU_64 */
406