1 /*
2 * Contains common pci routines for ALL ppc platform
3 * (based on pci_32.c and pci_64.c)
4 *
5 * Port for PPC64 David Engebretsen, IBM Corp.
6 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7 *
8 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9 * Rework, based on alpha PCI code.
10 *
11 * Common pmac/prep/chrp pci routines. -- Cort
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/list.h>
30 #include <linux/syscalls.h>
31 #include <linux/irq.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35
36 #include <asm/processor.h>
37 #include <asm/io.h>
38 #include <asm/prom.h>
39 #include <asm/pci-bridge.h>
40 #include <asm/byteorder.h>
41 #include <asm/machdep.h>
42 #include <asm/ppc-pci.h>
43 #include <asm/eeh.h>
44
45 /* hose_spinlock protects accesses to the the phb_bitmap. */
46 static DEFINE_SPINLOCK(hose_spinlock);
47 LIST_HEAD(hose_list);
48
49 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
50 #define MAX_PHBS 0x10000
51
52 /*
53 * For dynamic PHB numbering: used/free PHBs tracking bitmap.
54 * Accesses to this bitmap should be protected by hose_spinlock.
55 */
56 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
57
58 /* ISA Memory physical address */
59 resource_size_t isa_mem_base;
60 EXPORT_SYMBOL(isa_mem_base);
61
62
63 static const struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
64
set_pci_dma_ops(const struct dma_map_ops * dma_ops)65 void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
66 {
67 pci_dma_ops = dma_ops;
68 }
69
get_pci_dma_ops(void)70 const struct dma_map_ops *get_pci_dma_ops(void)
71 {
72 return pci_dma_ops;
73 }
74 EXPORT_SYMBOL(get_pci_dma_ops);
75
76 /*
77 * This function should run under locking protection, specifically
78 * hose_spinlock.
79 */
get_phb_number(struct device_node * dn)80 static int get_phb_number(struct device_node *dn)
81 {
82 int ret, phb_id = -1;
83 u32 prop_32;
84 u64 prop;
85
86 /*
87 * Try fixed PHB numbering first, by checking archs and reading
88 * the respective device-tree properties. Firstly, try powernv by
89 * reading "ibm,opal-phbid", only present in OPAL environment.
90 */
91 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
92 if (ret) {
93 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
94 prop = prop_32;
95 }
96
97 if (!ret)
98 phb_id = (int)(prop & (MAX_PHBS - 1));
99
100 /* We need to be sure to not use the same PHB number twice. */
101 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
102 return phb_id;
103
104 /*
105 * If not pseries nor powernv, or if fixed PHB numbering tried to add
106 * the same PHB number twice, then fallback to dynamic PHB numbering.
107 */
108 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
109 BUG_ON(phb_id >= MAX_PHBS);
110 set_bit(phb_id, phb_bitmap);
111
112 return phb_id;
113 }
114
pcibios_alloc_controller(struct device_node * dev)115 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
116 {
117 struct pci_controller *phb;
118
119 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
120 if (phb == NULL)
121 return NULL;
122 spin_lock(&hose_spinlock);
123 phb->global_number = get_phb_number(dev);
124 list_add_tail(&phb->list_node, &hose_list);
125 spin_unlock(&hose_spinlock);
126 phb->dn = dev;
127 phb->is_dynamic = slab_is_available();
128 #ifdef CONFIG_PPC64
129 if (dev) {
130 int nid = of_node_to_nid(dev);
131
132 if (nid < 0 || !node_online(nid))
133 nid = -1;
134
135 PHB_SET_NODE(phb, nid);
136 }
137 #endif
138 return phb;
139 }
140 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
141
pcibios_free_controller(struct pci_controller * phb)142 void pcibios_free_controller(struct pci_controller *phb)
143 {
144 spin_lock(&hose_spinlock);
145
146 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */
147 if (phb->global_number < MAX_PHBS)
148 clear_bit(phb->global_number, phb_bitmap);
149
150 list_del(&phb->list_node);
151 spin_unlock(&hose_spinlock);
152
153 if (phb->is_dynamic)
154 kfree(phb);
155 }
156 EXPORT_SYMBOL_GPL(pcibios_free_controller);
157
158 /*
159 * This function is used to call pcibios_free_controller()
160 * in a deferred manner: a callback from the PCI subsystem.
161 *
162 * _*DO NOT*_ call pcibios_free_controller() explicitly if
163 * this is used (or it may access an invalid *phb pointer).
164 *
165 * The callback occurs when all references to the root bus
166 * are dropped (e.g., child buses/devices and their users).
167 *
168 * It's called as .release_fn() of 'struct pci_host_bridge'
169 * which is associated with the 'struct pci_controller.bus'
170 * (root bus) - it expects .release_data to hold a pointer
171 * to 'struct pci_controller'.
172 *
173 * In order to use it, register .release_fn()/release_data
174 * like this:
175 *
176 * pci_set_host_bridge_release(bridge,
177 * pcibios_free_controller_deferred
178 * (void *) phb);
179 *
180 * e.g. in the pcibios_root_bridge_prepare() callback from
181 * pci_create_root_bus().
182 */
pcibios_free_controller_deferred(struct pci_host_bridge * bridge)183 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
184 {
185 struct pci_controller *phb = (struct pci_controller *)
186 bridge->release_data;
187
188 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
189
190 pcibios_free_controller(phb);
191 }
192 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
193
194 /*
195 * The function is used to return the minimal alignment
196 * for memory or I/O windows of the associated P2P bridge.
197 * By default, 4KiB alignment for I/O windows and 1MiB for
198 * memory windows.
199 */
pcibios_window_alignment(struct pci_bus * bus,unsigned long type)200 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
201 unsigned long type)
202 {
203 struct pci_controller *phb = pci_bus_to_host(bus);
204
205 if (phb->controller_ops.window_alignment)
206 return phb->controller_ops.window_alignment(bus, type);
207
208 /*
209 * PCI core will figure out the default
210 * alignment: 4KiB for I/O and 1MiB for
211 * memory window.
212 */
213 return 1;
214 }
215
pcibios_setup_bridge(struct pci_bus * bus,unsigned long type)216 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
217 {
218 struct pci_controller *hose = pci_bus_to_host(bus);
219
220 if (hose->controller_ops.setup_bridge)
221 hose->controller_ops.setup_bridge(bus, type);
222 }
223
pcibios_reset_secondary_bus(struct pci_dev * dev)224 void pcibios_reset_secondary_bus(struct pci_dev *dev)
225 {
226 struct pci_controller *phb = pci_bus_to_host(dev->bus);
227
228 if (phb->controller_ops.reset_secondary_bus) {
229 phb->controller_ops.reset_secondary_bus(dev);
230 return;
231 }
232
233 pci_reset_secondary_bus(dev);
234 }
235
pcibios_default_alignment(void)236 resource_size_t pcibios_default_alignment(void)
237 {
238 if (ppc_md.pcibios_default_alignment)
239 return ppc_md.pcibios_default_alignment();
240
241 return 0;
242 }
243
244 #ifdef CONFIG_PCI_IOV
pcibios_iov_resource_alignment(struct pci_dev * pdev,int resno)245 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
246 {
247 if (ppc_md.pcibios_iov_resource_alignment)
248 return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
249
250 return pci_iov_resource_size(pdev, resno);
251 }
252 #endif /* CONFIG_PCI_IOV */
253
pcibios_io_size(const struct pci_controller * hose)254 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
255 {
256 #ifdef CONFIG_PPC64
257 return hose->pci_io_size;
258 #else
259 return resource_size(&hose->io_resource);
260 #endif
261 }
262
pcibios_vaddr_is_ioport(void __iomem * address)263 int pcibios_vaddr_is_ioport(void __iomem *address)
264 {
265 int ret = 0;
266 struct pci_controller *hose;
267 resource_size_t size;
268
269 spin_lock(&hose_spinlock);
270 list_for_each_entry(hose, &hose_list, list_node) {
271 size = pcibios_io_size(hose);
272 if (address >= hose->io_base_virt &&
273 address < (hose->io_base_virt + size)) {
274 ret = 1;
275 break;
276 }
277 }
278 spin_unlock(&hose_spinlock);
279 return ret;
280 }
281
pci_address_to_pio(phys_addr_t address)282 unsigned long pci_address_to_pio(phys_addr_t address)
283 {
284 struct pci_controller *hose;
285 resource_size_t size;
286 unsigned long ret = ~0;
287
288 spin_lock(&hose_spinlock);
289 list_for_each_entry(hose, &hose_list, list_node) {
290 size = pcibios_io_size(hose);
291 if (address >= hose->io_base_phys &&
292 address < (hose->io_base_phys + size)) {
293 unsigned long base =
294 (unsigned long)hose->io_base_virt - _IO_BASE;
295 ret = base + (address - hose->io_base_phys);
296 break;
297 }
298 }
299 spin_unlock(&hose_spinlock);
300
301 return ret;
302 }
303 EXPORT_SYMBOL_GPL(pci_address_to_pio);
304
305 /*
306 * Return the domain number for this bus.
307 */
pci_domain_nr(struct pci_bus * bus)308 int pci_domain_nr(struct pci_bus *bus)
309 {
310 struct pci_controller *hose = pci_bus_to_host(bus);
311
312 return hose->global_number;
313 }
314 EXPORT_SYMBOL(pci_domain_nr);
315
316 /* This routine is meant to be used early during boot, when the
317 * PCI bus numbers have not yet been assigned, and you need to
318 * issue PCI config cycles to an OF device.
319 * It could also be used to "fix" RTAS config cycles if you want
320 * to set pci_assign_all_buses to 1 and still use RTAS for PCI
321 * config cycles.
322 */
pci_find_hose_for_OF_device(struct device_node * node)323 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
324 {
325 while(node) {
326 struct pci_controller *hose, *tmp;
327 list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
328 if (hose->dn == node)
329 return hose;
330 node = node->parent;
331 }
332 return NULL;
333 }
334
335 /*
336 * Reads the interrupt pin to determine if interrupt is use by card.
337 * If the interrupt is used, then gets the interrupt line from the
338 * openfirmware and sets it in the pci_dev and pci_config line.
339 */
pci_read_irq_line(struct pci_dev * pci_dev)340 static int pci_read_irq_line(struct pci_dev *pci_dev)
341 {
342 struct of_phandle_args oirq;
343 unsigned int virq;
344
345 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
346
347 #ifdef DEBUG
348 memset(&oirq, 0xff, sizeof(oirq));
349 #endif
350 /* Try to get a mapping from the device-tree */
351 if (of_irq_parse_pci(pci_dev, &oirq)) {
352 u8 line, pin;
353
354 /* If that fails, lets fallback to what is in the config
355 * space and map that through the default controller. We
356 * also set the type to level low since that's what PCI
357 * interrupts are. If your platform does differently, then
358 * either provide a proper interrupt tree or don't use this
359 * function.
360 */
361 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
362 return -1;
363 if (pin == 0)
364 return -1;
365 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
366 line == 0xff || line == 0) {
367 return -1;
368 }
369 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
370 line, pin);
371
372 virq = irq_create_mapping(NULL, line);
373 if (virq)
374 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
375 } else {
376 pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %pOF\n",
377 oirq.args_count, oirq.args[0], oirq.args[1], oirq.np);
378
379 virq = irq_create_of_mapping(&oirq);
380 }
381
382 if (!virq) {
383 pr_debug(" Failed to map !\n");
384 return -1;
385 }
386
387 pr_debug(" Mapped to linux irq %d\n", virq);
388
389 pci_dev->irq = virq;
390
391 return 0;
392 }
393
394 /*
395 * Platform support for /proc/bus/pci/X/Y mmap()s,
396 * modelled on the sparc64 implementation by Dave Miller.
397 * -- paulus.
398 */
399
400 /*
401 * Adjust vm_pgoff of VMA such that it is the physical page offset
402 * corresponding to the 32-bit pci bus offset for DEV requested by the user.
403 *
404 * Basically, the user finds the base address for his device which he wishes
405 * to mmap. They read the 32-bit value from the config space base register,
406 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
407 * offset parameter of mmap on /proc/bus/pci/XXX for that device.
408 *
409 * Returns negative error code on failure, zero on success.
410 */
__pci_mmap_make_offset(struct pci_dev * dev,resource_size_t * offset,enum pci_mmap_state mmap_state)411 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
412 resource_size_t *offset,
413 enum pci_mmap_state mmap_state)
414 {
415 struct pci_controller *hose = pci_bus_to_host(dev->bus);
416 unsigned long io_offset = 0;
417 int i, res_bit;
418
419 if (hose == NULL)
420 return NULL; /* should never happen */
421
422 /* If memory, add on the PCI bridge address offset */
423 if (mmap_state == pci_mmap_mem) {
424 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
425 *offset += hose->pci_mem_offset;
426 #endif
427 res_bit = IORESOURCE_MEM;
428 } else {
429 io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
430 *offset += io_offset;
431 res_bit = IORESOURCE_IO;
432 }
433
434 /*
435 * Check that the offset requested corresponds to one of the
436 * resources of the device.
437 */
438 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
439 struct resource *rp = &dev->resource[i];
440 int flags = rp->flags;
441
442 /* treat ROM as memory (should be already) */
443 if (i == PCI_ROM_RESOURCE)
444 flags |= IORESOURCE_MEM;
445
446 /* Active and same type? */
447 if ((flags & res_bit) == 0)
448 continue;
449
450 /* In the range of this resource? */
451 if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
452 continue;
453
454 /* found it! construct the final physical address */
455 if (mmap_state == pci_mmap_io)
456 *offset += hose->io_base_phys - io_offset;
457 return rp;
458 }
459
460 return NULL;
461 }
462
463 /*
464 * This one is used by /dev/mem and fbdev who have no clue about the
465 * PCI device, it tries to find the PCI device first and calls the
466 * above routine
467 */
pci_phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t prot)468 pgprot_t pci_phys_mem_access_prot(struct file *file,
469 unsigned long pfn,
470 unsigned long size,
471 pgprot_t prot)
472 {
473 struct pci_dev *pdev = NULL;
474 struct resource *found = NULL;
475 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
476 int i;
477
478 if (page_is_ram(pfn))
479 return prot;
480
481 prot = pgprot_noncached(prot);
482 for_each_pci_dev(pdev) {
483 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
484 struct resource *rp = &pdev->resource[i];
485 int flags = rp->flags;
486
487 /* Active and same type? */
488 if ((flags & IORESOURCE_MEM) == 0)
489 continue;
490 /* In the range of this resource? */
491 if (offset < (rp->start & PAGE_MASK) ||
492 offset > rp->end)
493 continue;
494 found = rp;
495 break;
496 }
497 if (found)
498 break;
499 }
500 if (found) {
501 if (found->flags & IORESOURCE_PREFETCH)
502 prot = pgprot_noncached_wc(prot);
503 pci_dev_put(pdev);
504 }
505
506 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
507 (unsigned long long)offset, pgprot_val(prot));
508
509 return prot;
510 }
511
512
513 /*
514 * Perform the actual remap of the pages for a PCI device mapping, as
515 * appropriate for this architecture. The region in the process to map
516 * is described by vm_start and vm_end members of VMA, the base physical
517 * address is found in vm_pgoff.
518 * The pci device structure is provided so that architectures may make mapping
519 * decisions on a per-device or per-bus basis.
520 *
521 * Returns a negative error code on failure, zero on success.
522 */
pci_mmap_page_range(struct pci_dev * dev,int bar,struct vm_area_struct * vma,enum pci_mmap_state mmap_state,int write_combine)523 int pci_mmap_page_range(struct pci_dev *dev, int bar,
524 struct vm_area_struct *vma,
525 enum pci_mmap_state mmap_state, int write_combine)
526 {
527 resource_size_t offset =
528 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
529 struct resource *rp;
530 int ret;
531
532 rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
533 if (rp == NULL)
534 return -EINVAL;
535
536 vma->vm_pgoff = offset >> PAGE_SHIFT;
537 if (write_combine)
538 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
539 else
540 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
541
542 ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
543 vma->vm_end - vma->vm_start, vma->vm_page_prot);
544
545 return ret;
546 }
547
548 /* This provides legacy IO read access on a bus */
pci_legacy_read(struct pci_bus * bus,loff_t port,u32 * val,size_t size)549 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
550 {
551 unsigned long offset;
552 struct pci_controller *hose = pci_bus_to_host(bus);
553 struct resource *rp = &hose->io_resource;
554 void __iomem *addr;
555
556 /* Check if port can be supported by that bus. We only check
557 * the ranges of the PHB though, not the bus itself as the rules
558 * for forwarding legacy cycles down bridges are not our problem
559 * here. So if the host bridge supports it, we do it.
560 */
561 offset = (unsigned long)hose->io_base_virt - _IO_BASE;
562 offset += port;
563
564 if (!(rp->flags & IORESOURCE_IO))
565 return -ENXIO;
566 if (offset < rp->start || (offset + size) > rp->end)
567 return -ENXIO;
568 addr = hose->io_base_virt + port;
569
570 switch(size) {
571 case 1:
572 *((u8 *)val) = in_8(addr);
573 return 1;
574 case 2:
575 if (port & 1)
576 return -EINVAL;
577 *((u16 *)val) = in_le16(addr);
578 return 2;
579 case 4:
580 if (port & 3)
581 return -EINVAL;
582 *((u32 *)val) = in_le32(addr);
583 return 4;
584 }
585 return -EINVAL;
586 }
587
588 /* This provides legacy IO write access on a bus */
pci_legacy_write(struct pci_bus * bus,loff_t port,u32 val,size_t size)589 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
590 {
591 unsigned long offset;
592 struct pci_controller *hose = pci_bus_to_host(bus);
593 struct resource *rp = &hose->io_resource;
594 void __iomem *addr;
595
596 /* Check if port can be supported by that bus. We only check
597 * the ranges of the PHB though, not the bus itself as the rules
598 * for forwarding legacy cycles down bridges are not our problem
599 * here. So if the host bridge supports it, we do it.
600 */
601 offset = (unsigned long)hose->io_base_virt - _IO_BASE;
602 offset += port;
603
604 if (!(rp->flags & IORESOURCE_IO))
605 return -ENXIO;
606 if (offset < rp->start || (offset + size) > rp->end)
607 return -ENXIO;
608 addr = hose->io_base_virt + port;
609
610 /* WARNING: The generic code is idiotic. It gets passed a pointer
611 * to what can be a 1, 2 or 4 byte quantity and always reads that
612 * as a u32, which means that we have to correct the location of
613 * the data read within those 32 bits for size 1 and 2
614 */
615 switch(size) {
616 case 1:
617 out_8(addr, val >> 24);
618 return 1;
619 case 2:
620 if (port & 1)
621 return -EINVAL;
622 out_le16(addr, val >> 16);
623 return 2;
624 case 4:
625 if (port & 3)
626 return -EINVAL;
627 out_le32(addr, val);
628 return 4;
629 }
630 return -EINVAL;
631 }
632
633 /* This provides legacy IO or memory mmap access on a bus */
pci_mmap_legacy_page_range(struct pci_bus * bus,struct vm_area_struct * vma,enum pci_mmap_state mmap_state)634 int pci_mmap_legacy_page_range(struct pci_bus *bus,
635 struct vm_area_struct *vma,
636 enum pci_mmap_state mmap_state)
637 {
638 struct pci_controller *hose = pci_bus_to_host(bus);
639 resource_size_t offset =
640 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
641 resource_size_t size = vma->vm_end - vma->vm_start;
642 struct resource *rp;
643
644 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
645 pci_domain_nr(bus), bus->number,
646 mmap_state == pci_mmap_mem ? "MEM" : "IO",
647 (unsigned long long)offset,
648 (unsigned long long)(offset + size - 1));
649
650 if (mmap_state == pci_mmap_mem) {
651 /* Hack alert !
652 *
653 * Because X is lame and can fail starting if it gets an error trying
654 * to mmap legacy_mem (instead of just moving on without legacy memory
655 * access) we fake it here by giving it anonymous memory, effectively
656 * behaving just like /dev/zero
657 */
658 if ((offset + size) > hose->isa_mem_size) {
659 printk(KERN_DEBUG
660 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
661 current->comm, current->pid, pci_domain_nr(bus), bus->number);
662 if (vma->vm_flags & VM_SHARED)
663 return shmem_zero_setup(vma);
664 return 0;
665 }
666 offset += hose->isa_mem_phys;
667 } else {
668 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
669 unsigned long roffset = offset + io_offset;
670 rp = &hose->io_resource;
671 if (!(rp->flags & IORESOURCE_IO))
672 return -ENXIO;
673 if (roffset < rp->start || (roffset + size) > rp->end)
674 return -ENXIO;
675 offset += hose->io_base_phys;
676 }
677 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
678
679 vma->vm_pgoff = offset >> PAGE_SHIFT;
680 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
681 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
682 vma->vm_end - vma->vm_start,
683 vma->vm_page_prot);
684 }
685
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)686 void pci_resource_to_user(const struct pci_dev *dev, int bar,
687 const struct resource *rsrc,
688 resource_size_t *start, resource_size_t *end)
689 {
690 struct pci_bus_region region;
691
692 if (rsrc->flags & IORESOURCE_IO) {
693 pcibios_resource_to_bus(dev->bus, ®ion,
694 (struct resource *) rsrc);
695 *start = region.start;
696 *end = region.end;
697 return;
698 }
699
700 /* We pass a CPU physical address to userland for MMIO instead of a
701 * BAR value because X is lame and expects to be able to use that
702 * to pass to /dev/mem!
703 *
704 * That means we may have 64-bit values where some apps only expect
705 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
706 */
707 *start = rsrc->start;
708 *end = rsrc->end;
709 }
710
711 /**
712 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
713 * @hose: newly allocated pci_controller to be setup
714 * @dev: device node of the host bridge
715 * @primary: set if primary bus (32 bits only, soon to be deprecated)
716 *
717 * This function will parse the "ranges" property of a PCI host bridge device
718 * node and setup the resource mapping of a pci controller based on its
719 * content.
720 *
721 * Life would be boring if it wasn't for a few issues that we have to deal
722 * with here:
723 *
724 * - We can only cope with one IO space range and up to 3 Memory space
725 * ranges. However, some machines (thanks Apple !) tend to split their
726 * space into lots of small contiguous ranges. So we have to coalesce.
727 *
728 * - Some busses have IO space not starting at 0, which causes trouble with
729 * the way we do our IO resource renumbering. The code somewhat deals with
730 * it for 64 bits but I would expect problems on 32 bits.
731 *
732 * - Some 32 bits platforms such as 4xx can have physical space larger than
733 * 32 bits so we need to use 64 bits values for the parsing
734 */
pci_process_bridge_OF_ranges(struct pci_controller * hose,struct device_node * dev,int primary)735 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
736 struct device_node *dev, int primary)
737 {
738 int memno = 0;
739 struct resource *res;
740 struct of_pci_range range;
741 struct of_pci_range_parser parser;
742
743 printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
744 dev, primary ? "(primary)" : "");
745
746 /* Check for ranges property */
747 if (of_pci_range_parser_init(&parser, dev))
748 return;
749
750 /* Parse it */
751 for_each_of_pci_range(&parser, &range) {
752 /* If we failed translation or got a zero-sized region
753 * (some FW try to feed us with non sensical zero sized regions
754 * such as power3 which look like some kind of attempt at exposing
755 * the VGA memory hole)
756 */
757 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
758 continue;
759
760 /* Act based on address space type */
761 res = NULL;
762 switch (range.flags & IORESOURCE_TYPE_BITS) {
763 case IORESOURCE_IO:
764 printk(KERN_INFO
765 " IO 0x%016llx..0x%016llx -> 0x%016llx\n",
766 range.cpu_addr, range.cpu_addr + range.size - 1,
767 range.pci_addr);
768
769 /* We support only one IO range */
770 if (hose->pci_io_size) {
771 printk(KERN_INFO
772 " \\--> Skipped (too many) !\n");
773 continue;
774 }
775 #ifdef CONFIG_PPC32
776 /* On 32 bits, limit I/O space to 16MB */
777 if (range.size > 0x01000000)
778 range.size = 0x01000000;
779
780 /* 32 bits needs to map IOs here */
781 hose->io_base_virt = ioremap(range.cpu_addr,
782 range.size);
783
784 /* Expect trouble if pci_addr is not 0 */
785 if (primary)
786 isa_io_base =
787 (unsigned long)hose->io_base_virt;
788 #endif /* CONFIG_PPC32 */
789 /* pci_io_size and io_base_phys always represent IO
790 * space starting at 0 so we factor in pci_addr
791 */
792 hose->pci_io_size = range.pci_addr + range.size;
793 hose->io_base_phys = range.cpu_addr - range.pci_addr;
794
795 /* Build resource */
796 res = &hose->io_resource;
797 range.cpu_addr = range.pci_addr;
798 break;
799 case IORESOURCE_MEM:
800 printk(KERN_INFO
801 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
802 range.cpu_addr, range.cpu_addr + range.size - 1,
803 range.pci_addr,
804 (range.pci_space & 0x40000000) ?
805 "Prefetch" : "");
806
807 /* We support only 3 memory ranges */
808 if (memno >= 3) {
809 printk(KERN_INFO
810 " \\--> Skipped (too many) !\n");
811 continue;
812 }
813 /* Handles ISA memory hole space here */
814 if (range.pci_addr == 0) {
815 if (primary || isa_mem_base == 0)
816 isa_mem_base = range.cpu_addr;
817 hose->isa_mem_phys = range.cpu_addr;
818 hose->isa_mem_size = range.size;
819 }
820
821 /* Build resource */
822 hose->mem_offset[memno] = range.cpu_addr -
823 range.pci_addr;
824 res = &hose->mem_resources[memno++];
825 break;
826 }
827 if (res != NULL) {
828 res->name = dev->full_name;
829 res->flags = range.flags;
830 res->start = range.cpu_addr;
831 res->end = range.cpu_addr + range.size - 1;
832 res->parent = res->child = res->sibling = NULL;
833 }
834 }
835 }
836
837 /* Decide whether to display the domain number in /proc */
pci_proc_domain(struct pci_bus * bus)838 int pci_proc_domain(struct pci_bus *bus)
839 {
840 struct pci_controller *hose = pci_bus_to_host(bus);
841
842 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
843 return 0;
844 if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
845 return hose->global_number != 0;
846 return 1;
847 }
848
pcibios_root_bridge_prepare(struct pci_host_bridge * bridge)849 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
850 {
851 if (ppc_md.pcibios_root_bridge_prepare)
852 return ppc_md.pcibios_root_bridge_prepare(bridge);
853
854 return 0;
855 }
856
857 /* This header fixup will do the resource fixup for all devices as they are
858 * probed, but not for bridge ranges
859 */
pcibios_fixup_resources(struct pci_dev * dev)860 static void pcibios_fixup_resources(struct pci_dev *dev)
861 {
862 struct pci_controller *hose = pci_bus_to_host(dev->bus);
863 int i;
864
865 if (!hose) {
866 printk(KERN_ERR "No host bridge for PCI dev %s !\n",
867 pci_name(dev));
868 return;
869 }
870
871 if (dev->is_virtfn)
872 return;
873
874 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
875 struct resource *res = dev->resource + i;
876 struct pci_bus_region reg;
877 if (!res->flags)
878 continue;
879
880 /* If we're going to re-assign everything, we mark all resources
881 * as unset (and 0-base them). In addition, we mark BARs starting
882 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
883 * since in that case, we don't want to re-assign anything
884 */
885 pcibios_resource_to_bus(dev->bus, ®, res);
886 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
887 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
888 /* Only print message if not re-assigning */
889 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
890 pr_debug("PCI:%s Resource %d %pR is unassigned\n",
891 pci_name(dev), i, res);
892 res->end -= res->start;
893 res->start = 0;
894 res->flags |= IORESOURCE_UNSET;
895 continue;
896 }
897
898 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
899 }
900
901 /* Call machine specific resource fixup */
902 if (ppc_md.pcibios_fixup_resources)
903 ppc_md.pcibios_fixup_resources(dev);
904 }
905 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
906
907 /* This function tries to figure out if a bridge resource has been initialized
908 * by the firmware or not. It doesn't have to be absolutely bullet proof, but
909 * things go more smoothly when it gets it right. It should covers cases such
910 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
911 */
pcibios_uninitialized_bridge_resource(struct pci_bus * bus,struct resource * res)912 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
913 struct resource *res)
914 {
915 struct pci_controller *hose = pci_bus_to_host(bus);
916 struct pci_dev *dev = bus->self;
917 resource_size_t offset;
918 struct pci_bus_region region;
919 u16 command;
920 int i;
921
922 /* We don't do anything if PCI_PROBE_ONLY is set */
923 if (pci_has_flag(PCI_PROBE_ONLY))
924 return 0;
925
926 /* Job is a bit different between memory and IO */
927 if (res->flags & IORESOURCE_MEM) {
928 pcibios_resource_to_bus(dev->bus, ®ion, res);
929
930 /* If the BAR is non-0 then it's probably been initialized */
931 if (region.start != 0)
932 return 0;
933
934 /* The BAR is 0, let's check if memory decoding is enabled on
935 * the bridge. If not, we consider it unassigned
936 */
937 pci_read_config_word(dev, PCI_COMMAND, &command);
938 if ((command & PCI_COMMAND_MEMORY) == 0)
939 return 1;
940
941 /* Memory decoding is enabled and the BAR is 0. If any of the bridge
942 * resources covers that starting address (0 then it's good enough for
943 * us for memory space)
944 */
945 for (i = 0; i < 3; i++) {
946 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
947 hose->mem_resources[i].start == hose->mem_offset[i])
948 return 0;
949 }
950
951 /* Well, it starts at 0 and we know it will collide so we may as
952 * well consider it as unassigned. That covers the Apple case.
953 */
954 return 1;
955 } else {
956 /* If the BAR is non-0, then we consider it assigned */
957 offset = (unsigned long)hose->io_base_virt - _IO_BASE;
958 if (((res->start - offset) & 0xfffffffful) != 0)
959 return 0;
960
961 /* Here, we are a bit different than memory as typically IO space
962 * starting at low addresses -is- valid. What we do instead if that
963 * we consider as unassigned anything that doesn't have IO enabled
964 * in the PCI command register, and that's it.
965 */
966 pci_read_config_word(dev, PCI_COMMAND, &command);
967 if (command & PCI_COMMAND_IO)
968 return 0;
969
970 /* It's starting at 0 and IO is disabled in the bridge, consider
971 * it unassigned
972 */
973 return 1;
974 }
975 }
976
977 /* Fixup resources of a PCI<->PCI bridge */
pcibios_fixup_bridge(struct pci_bus * bus)978 static void pcibios_fixup_bridge(struct pci_bus *bus)
979 {
980 struct resource *res;
981 int i;
982
983 struct pci_dev *dev = bus->self;
984
985 pci_bus_for_each_resource(bus, res, i) {
986 if (!res || !res->flags)
987 continue;
988 if (i >= 3 && bus->self->transparent)
989 continue;
990
991 /* If we're going to reassign everything, we can
992 * shrink the P2P resource to have size as being
993 * of 0 in order to save space.
994 */
995 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
996 res->flags |= IORESOURCE_UNSET;
997 res->start = 0;
998 res->end = -1;
999 continue;
1000 }
1001
1002 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
1003
1004 /* Try to detect uninitialized P2P bridge resources,
1005 * and clear them out so they get re-assigned later
1006 */
1007 if (pcibios_uninitialized_bridge_resource(bus, res)) {
1008 res->flags = 0;
1009 pr_debug("PCI:%s (unassigned)\n", pci_name(dev));
1010 }
1011 }
1012 }
1013
pcibios_setup_bus_self(struct pci_bus * bus)1014 void pcibios_setup_bus_self(struct pci_bus *bus)
1015 {
1016 struct pci_controller *phb;
1017
1018 /* Fix up the bus resources for P2P bridges */
1019 if (bus->self != NULL)
1020 pcibios_fixup_bridge(bus);
1021
1022 /* Platform specific bus fixups. This is currently only used
1023 * by fsl_pci and I'm hoping to get rid of it at some point
1024 */
1025 if (ppc_md.pcibios_fixup_bus)
1026 ppc_md.pcibios_fixup_bus(bus);
1027
1028 /* Setup bus DMA mappings */
1029 phb = pci_bus_to_host(bus);
1030 if (phb->controller_ops.dma_bus_setup)
1031 phb->controller_ops.dma_bus_setup(bus);
1032 }
1033
pcibios_setup_device(struct pci_dev * dev)1034 static void pcibios_setup_device(struct pci_dev *dev)
1035 {
1036 struct pci_controller *phb;
1037 /* Fixup NUMA node as it may not be setup yet by the generic
1038 * code and is needed by the DMA init
1039 */
1040 set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1041
1042 /* Hook up default DMA ops */
1043 set_dma_ops(&dev->dev, pci_dma_ops);
1044 set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
1045
1046 /* Additional platform DMA/iommu setup */
1047 phb = pci_bus_to_host(dev->bus);
1048 if (phb->controller_ops.dma_dev_setup)
1049 phb->controller_ops.dma_dev_setup(dev);
1050
1051 /* Read default IRQs and fixup if necessary */
1052 pci_read_irq_line(dev);
1053 if (ppc_md.pci_irq_fixup)
1054 ppc_md.pci_irq_fixup(dev);
1055 }
1056
pcibios_add_device(struct pci_dev * dev)1057 int pcibios_add_device(struct pci_dev *dev)
1058 {
1059 /*
1060 * We can only call pcibios_setup_device() after bus setup is complete,
1061 * since some of the platform specific DMA setup code depends on it.
1062 */
1063 if (dev->bus->is_added)
1064 pcibios_setup_device(dev);
1065
1066 #ifdef CONFIG_PCI_IOV
1067 if (ppc_md.pcibios_fixup_sriov)
1068 ppc_md.pcibios_fixup_sriov(dev);
1069 #endif /* CONFIG_PCI_IOV */
1070
1071 return 0;
1072 }
1073
pcibios_setup_bus_devices(struct pci_bus * bus)1074 void pcibios_setup_bus_devices(struct pci_bus *bus)
1075 {
1076 struct pci_dev *dev;
1077
1078 pr_debug("PCI: Fixup bus devices %d (%s)\n",
1079 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1080
1081 list_for_each_entry(dev, &bus->devices, bus_list) {
1082 /* Cardbus can call us to add new devices to a bus, so ignore
1083 * those who are already fully discovered
1084 */
1085 if (dev->is_added)
1086 continue;
1087
1088 pcibios_setup_device(dev);
1089 }
1090 }
1091
pcibios_set_master(struct pci_dev * dev)1092 void pcibios_set_master(struct pci_dev *dev)
1093 {
1094 /* No special bus mastering setup handling */
1095 }
1096
pcibios_fixup_bus(struct pci_bus * bus)1097 void pcibios_fixup_bus(struct pci_bus *bus)
1098 {
1099 /* When called from the generic PCI probe, read PCI<->PCI bridge
1100 * bases. This is -not- called when generating the PCI tree from
1101 * the OF device-tree.
1102 */
1103 pci_read_bridge_bases(bus);
1104
1105 /* Now fixup the bus bus */
1106 pcibios_setup_bus_self(bus);
1107
1108 /* Now fixup devices on that bus */
1109 pcibios_setup_bus_devices(bus);
1110 }
1111 EXPORT_SYMBOL(pcibios_fixup_bus);
1112
pci_fixup_cardbus(struct pci_bus * bus)1113 void pci_fixup_cardbus(struct pci_bus *bus)
1114 {
1115 /* Now fixup devices on that bus */
1116 pcibios_setup_bus_devices(bus);
1117 }
1118
1119
skip_isa_ioresource_align(struct pci_dev * dev)1120 static int skip_isa_ioresource_align(struct pci_dev *dev)
1121 {
1122 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1123 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1124 return 1;
1125 return 0;
1126 }
1127
1128 /*
1129 * We need to avoid collisions with `mirrored' VGA ports
1130 * and other strange ISA hardware, so we always want the
1131 * addresses to be allocated in the 0x000-0x0ff region
1132 * modulo 0x400.
1133 *
1134 * Why? Because some silly external IO cards only decode
1135 * the low 10 bits of the IO address. The 0x00-0xff region
1136 * is reserved for motherboard devices that decode all 16
1137 * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1138 * but we want to try to avoid allocating at 0x2900-0x2bff
1139 * which might have be mirrored at 0x0100-0x03ff..
1140 */
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)1141 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1142 resource_size_t size, resource_size_t align)
1143 {
1144 struct pci_dev *dev = data;
1145 resource_size_t start = res->start;
1146
1147 if (res->flags & IORESOURCE_IO) {
1148 if (skip_isa_ioresource_align(dev))
1149 return start;
1150 if (start & 0x300)
1151 start = (start + 0x3ff) & ~0x3ff;
1152 }
1153
1154 return start;
1155 }
1156 EXPORT_SYMBOL(pcibios_align_resource);
1157
1158 /*
1159 * Reparent resource children of pr that conflict with res
1160 * under res, and make res replace those children.
1161 */
reparent_resources(struct resource * parent,struct resource * res)1162 static int reparent_resources(struct resource *parent,
1163 struct resource *res)
1164 {
1165 struct resource *p, **pp;
1166 struct resource **firstpp = NULL;
1167
1168 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1169 if (p->end < res->start)
1170 continue;
1171 if (res->end < p->start)
1172 break;
1173 if (p->start < res->start || p->end > res->end)
1174 return -1; /* not completely contained */
1175 if (firstpp == NULL)
1176 firstpp = pp;
1177 }
1178 if (firstpp == NULL)
1179 return -1; /* didn't find any conflicting entries? */
1180 res->parent = parent;
1181 res->child = *firstpp;
1182 res->sibling = *pp;
1183 *firstpp = res;
1184 *pp = NULL;
1185 for (p = res->child; p != NULL; p = p->sibling) {
1186 p->parent = res;
1187 pr_debug("PCI: Reparented %s %pR under %s\n",
1188 p->name, p, res->name);
1189 }
1190 return 0;
1191 }
1192
1193 /*
1194 * Handle resources of PCI devices. If the world were perfect, we could
1195 * just allocate all the resource regions and do nothing more. It isn't.
1196 * On the other hand, we cannot just re-allocate all devices, as it would
1197 * require us to know lots of host bridge internals. So we attempt to
1198 * keep as much of the original configuration as possible, but tweak it
1199 * when it's found to be wrong.
1200 *
1201 * Known BIOS problems we have to work around:
1202 * - I/O or memory regions not configured
1203 * - regions configured, but not enabled in the command register
1204 * - bogus I/O addresses above 64K used
1205 * - expansion ROMs left enabled (this may sound harmless, but given
1206 * the fact the PCI specs explicitly allow address decoders to be
1207 * shared between expansion ROMs and other resource regions, it's
1208 * at least dangerous)
1209 *
1210 * Our solution:
1211 * (1) Allocate resources for all buses behind PCI-to-PCI bridges.
1212 * This gives us fixed barriers on where we can allocate.
1213 * (2) Allocate resources for all enabled devices. If there is
1214 * a collision, just mark the resource as unallocated. Also
1215 * disable expansion ROMs during this step.
1216 * (3) Try to allocate resources for disabled devices. If the
1217 * resources were assigned correctly, everything goes well,
1218 * if they weren't, they won't disturb allocation of other
1219 * resources.
1220 * (4) Assign new addresses to resources which were either
1221 * not configured at all or misconfigured. If explicitly
1222 * requested by the user, configure expansion ROM address
1223 * as well.
1224 */
1225
pcibios_allocate_bus_resources(struct pci_bus * bus)1226 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1227 {
1228 struct pci_bus *b;
1229 int i;
1230 struct resource *res, *pr;
1231
1232 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1233 pci_domain_nr(bus), bus->number);
1234
1235 pci_bus_for_each_resource(bus, res, i) {
1236 if (!res || !res->flags || res->start > res->end || res->parent)
1237 continue;
1238
1239 /* If the resource was left unset at this point, we clear it */
1240 if (res->flags & IORESOURCE_UNSET)
1241 goto clear_resource;
1242
1243 if (bus->parent == NULL)
1244 pr = (res->flags & IORESOURCE_IO) ?
1245 &ioport_resource : &iomem_resource;
1246 else {
1247 pr = pci_find_parent_resource(bus->self, res);
1248 if (pr == res) {
1249 /* this happens when the generic PCI
1250 * code (wrongly) decides that this
1251 * bridge is transparent -- paulus
1252 */
1253 continue;
1254 }
1255 }
1256
1257 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1258 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1259 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1260
1261 if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1262 struct pci_dev *dev = bus->self;
1263
1264 if (request_resource(pr, res) == 0)
1265 continue;
1266 /*
1267 * Must be a conflict with an existing entry.
1268 * Move that entry (or entries) under the
1269 * bridge resource and try again.
1270 */
1271 if (reparent_resources(pr, res) == 0)
1272 continue;
1273
1274 if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1275 pci_claim_bridge_resource(dev,
1276 i + PCI_BRIDGE_RESOURCES) == 0)
1277 continue;
1278 }
1279 pr_warning("PCI: Cannot allocate resource region "
1280 "%d of PCI bridge %d, will remap\n", i, bus->number);
1281 clear_resource:
1282 /* The resource might be figured out when doing
1283 * reassignment based on the resources required
1284 * by the downstream PCI devices. Here we set
1285 * the size of the resource to be 0 in order to
1286 * save more space.
1287 */
1288 res->start = 0;
1289 res->end = -1;
1290 res->flags = 0;
1291 }
1292
1293 list_for_each_entry(b, &bus->children, node)
1294 pcibios_allocate_bus_resources(b);
1295 }
1296
alloc_resource(struct pci_dev * dev,int idx)1297 static inline void alloc_resource(struct pci_dev *dev, int idx)
1298 {
1299 struct resource *pr, *r = &dev->resource[idx];
1300
1301 pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1302 pci_name(dev), idx, r);
1303
1304 pr = pci_find_parent_resource(dev, r);
1305 if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1306 request_resource(pr, r) < 0) {
1307 printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1308 " of device %s, will remap\n", idx, pci_name(dev));
1309 if (pr)
1310 pr_debug("PCI: parent is %p: %pR\n", pr, pr);
1311 /* We'll assign a new address later */
1312 r->flags |= IORESOURCE_UNSET;
1313 r->end -= r->start;
1314 r->start = 0;
1315 }
1316 }
1317
pcibios_allocate_resources(int pass)1318 static void __init pcibios_allocate_resources(int pass)
1319 {
1320 struct pci_dev *dev = NULL;
1321 int idx, disabled;
1322 u16 command;
1323 struct resource *r;
1324
1325 for_each_pci_dev(dev) {
1326 pci_read_config_word(dev, PCI_COMMAND, &command);
1327 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1328 r = &dev->resource[idx];
1329 if (r->parent) /* Already allocated */
1330 continue;
1331 if (!r->flags || (r->flags & IORESOURCE_UNSET))
1332 continue; /* Not assigned at all */
1333 /* We only allocate ROMs on pass 1 just in case they
1334 * have been screwed up by firmware
1335 */
1336 if (idx == PCI_ROM_RESOURCE )
1337 disabled = 1;
1338 if (r->flags & IORESOURCE_IO)
1339 disabled = !(command & PCI_COMMAND_IO);
1340 else
1341 disabled = !(command & PCI_COMMAND_MEMORY);
1342 if (pass == disabled)
1343 alloc_resource(dev, idx);
1344 }
1345 if (pass)
1346 continue;
1347 r = &dev->resource[PCI_ROM_RESOURCE];
1348 if (r->flags) {
1349 /* Turn the ROM off, leave the resource region,
1350 * but keep it unregistered.
1351 */
1352 u32 reg;
1353 pci_read_config_dword(dev, dev->rom_base_reg, ®);
1354 if (reg & PCI_ROM_ADDRESS_ENABLE) {
1355 pr_debug("PCI: Switching off ROM of %s\n",
1356 pci_name(dev));
1357 r->flags &= ~IORESOURCE_ROM_ENABLE;
1358 pci_write_config_dword(dev, dev->rom_base_reg,
1359 reg & ~PCI_ROM_ADDRESS_ENABLE);
1360 }
1361 }
1362 }
1363 }
1364
pcibios_reserve_legacy_regions(struct pci_bus * bus)1365 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1366 {
1367 struct pci_controller *hose = pci_bus_to_host(bus);
1368 resource_size_t offset;
1369 struct resource *res, *pres;
1370 int i;
1371
1372 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1373
1374 /* Check for IO */
1375 if (!(hose->io_resource.flags & IORESOURCE_IO))
1376 goto no_io;
1377 offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1378 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1379 BUG_ON(res == NULL);
1380 res->name = "Legacy IO";
1381 res->flags = IORESOURCE_IO;
1382 res->start = offset;
1383 res->end = (offset + 0xfff) & 0xfffffffful;
1384 pr_debug("Candidate legacy IO: %pR\n", res);
1385 if (request_resource(&hose->io_resource, res)) {
1386 printk(KERN_DEBUG
1387 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1388 pci_domain_nr(bus), bus->number, res);
1389 kfree(res);
1390 }
1391
1392 no_io:
1393 /* Check for memory */
1394 for (i = 0; i < 3; i++) {
1395 pres = &hose->mem_resources[i];
1396 offset = hose->mem_offset[i];
1397 if (!(pres->flags & IORESOURCE_MEM))
1398 continue;
1399 pr_debug("hose mem res: %pR\n", pres);
1400 if ((pres->start - offset) <= 0xa0000 &&
1401 (pres->end - offset) >= 0xbffff)
1402 break;
1403 }
1404 if (i >= 3)
1405 return;
1406 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1407 BUG_ON(res == NULL);
1408 res->name = "Legacy VGA memory";
1409 res->flags = IORESOURCE_MEM;
1410 res->start = 0xa0000 + offset;
1411 res->end = 0xbffff + offset;
1412 pr_debug("Candidate VGA memory: %pR\n", res);
1413 if (request_resource(pres, res)) {
1414 printk(KERN_DEBUG
1415 "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1416 pci_domain_nr(bus), bus->number, res);
1417 kfree(res);
1418 }
1419 }
1420
pcibios_resource_survey(void)1421 void __init pcibios_resource_survey(void)
1422 {
1423 struct pci_bus *b;
1424
1425 /* Allocate and assign resources */
1426 list_for_each_entry(b, &pci_root_buses, node)
1427 pcibios_allocate_bus_resources(b);
1428 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1429 pcibios_allocate_resources(0);
1430 pcibios_allocate_resources(1);
1431 }
1432
1433 /* Before we start assigning unassigned resource, we try to reserve
1434 * the low IO area and the VGA memory area if they intersect the
1435 * bus available resources to avoid allocating things on top of them
1436 */
1437 if (!pci_has_flag(PCI_PROBE_ONLY)) {
1438 list_for_each_entry(b, &pci_root_buses, node)
1439 pcibios_reserve_legacy_regions(b);
1440 }
1441
1442 /* Now, if the platform didn't decide to blindly trust the firmware,
1443 * we proceed to assigning things that were left unassigned
1444 */
1445 if (!pci_has_flag(PCI_PROBE_ONLY)) {
1446 pr_debug("PCI: Assigning unassigned resources...\n");
1447 pci_assign_unassigned_resources();
1448 }
1449
1450 /* Call machine dependent fixup */
1451 if (ppc_md.pcibios_fixup)
1452 ppc_md.pcibios_fixup();
1453 }
1454
1455 /* This is used by the PCI hotplug driver to allocate resource
1456 * of newly plugged busses. We can try to consolidate with the
1457 * rest of the code later, for now, keep it as-is as our main
1458 * resource allocation function doesn't deal with sub-trees yet.
1459 */
pcibios_claim_one_bus(struct pci_bus * bus)1460 void pcibios_claim_one_bus(struct pci_bus *bus)
1461 {
1462 struct pci_dev *dev;
1463 struct pci_bus *child_bus;
1464
1465 list_for_each_entry(dev, &bus->devices, bus_list) {
1466 int i;
1467
1468 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1469 struct resource *r = &dev->resource[i];
1470
1471 if (r->parent || !r->start || !r->flags)
1472 continue;
1473
1474 pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1475 pci_name(dev), i, r);
1476
1477 if (pci_claim_resource(dev, i) == 0)
1478 continue;
1479
1480 pci_claim_bridge_resource(dev, i);
1481 }
1482 }
1483
1484 list_for_each_entry(child_bus, &bus->children, node)
1485 pcibios_claim_one_bus(child_bus);
1486 }
1487 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1488
1489
1490 /* pcibios_finish_adding_to_bus
1491 *
1492 * This is to be called by the hotplug code after devices have been
1493 * added to a bus, this include calling it for a PHB that is just
1494 * being added
1495 */
pcibios_finish_adding_to_bus(struct pci_bus * bus)1496 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1497 {
1498 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1499 pci_domain_nr(bus), bus->number);
1500
1501 /* Allocate bus and devices resources */
1502 pcibios_allocate_bus_resources(bus);
1503 pcibios_claim_one_bus(bus);
1504 if (!pci_has_flag(PCI_PROBE_ONLY)) {
1505 if (bus->self)
1506 pci_assign_unassigned_bridge_resources(bus->self);
1507 else
1508 pci_assign_unassigned_bus_resources(bus);
1509 }
1510
1511 /* Fixup EEH */
1512 eeh_add_device_tree_late(bus);
1513
1514 /* Add new devices to global lists. Register in proc, sysfs. */
1515 pci_bus_add_devices(bus);
1516
1517 /* sysfs files should only be added after devices are added */
1518 eeh_add_sysfs_files(bus);
1519 }
1520 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1521
pcibios_enable_device(struct pci_dev * dev,int mask)1522 int pcibios_enable_device(struct pci_dev *dev, int mask)
1523 {
1524 struct pci_controller *phb = pci_bus_to_host(dev->bus);
1525
1526 if (phb->controller_ops.enable_device_hook)
1527 if (!phb->controller_ops.enable_device_hook(dev))
1528 return -EINVAL;
1529
1530 return pci_enable_resources(dev, mask);
1531 }
1532
pcibios_disable_device(struct pci_dev * dev)1533 void pcibios_disable_device(struct pci_dev *dev)
1534 {
1535 struct pci_controller *phb = pci_bus_to_host(dev->bus);
1536
1537 if (phb->controller_ops.disable_device)
1538 phb->controller_ops.disable_device(dev);
1539 }
1540
pcibios_io_space_offset(struct pci_controller * hose)1541 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1542 {
1543 return (unsigned long) hose->io_base_virt - _IO_BASE;
1544 }
1545
pcibios_setup_phb_resources(struct pci_controller * hose,struct list_head * resources)1546 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1547 struct list_head *resources)
1548 {
1549 struct resource *res;
1550 resource_size_t offset;
1551 int i;
1552
1553 /* Hookup PHB IO resource */
1554 res = &hose->io_resource;
1555
1556 if (!res->flags) {
1557 pr_debug("PCI: I/O resource not set for host"
1558 " bridge %pOF (domain %d)\n",
1559 hose->dn, hose->global_number);
1560 } else {
1561 offset = pcibios_io_space_offset(hose);
1562
1563 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n",
1564 res, (unsigned long long)offset);
1565 pci_add_resource_offset(resources, res, offset);
1566 }
1567
1568 /* Hookup PHB Memory resources */
1569 for (i = 0; i < 3; ++i) {
1570 res = &hose->mem_resources[i];
1571 if (!res->flags)
1572 continue;
1573
1574 offset = hose->mem_offset[i];
1575 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1576 res, (unsigned long long)offset);
1577
1578 pci_add_resource_offset(resources, res, offset);
1579 }
1580 }
1581
1582 /*
1583 * Null PCI config access functions, for the case when we can't
1584 * find a hose.
1585 */
1586 #define NULL_PCI_OP(rw, size, type) \
1587 static int \
1588 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \
1589 { \
1590 return PCIBIOS_DEVICE_NOT_FOUND; \
1591 }
1592
1593 static int
null_read_config(struct pci_bus * bus,unsigned int devfn,int offset,int len,u32 * val)1594 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1595 int len, u32 *val)
1596 {
1597 return PCIBIOS_DEVICE_NOT_FOUND;
1598 }
1599
1600 static int
null_write_config(struct pci_bus * bus,unsigned int devfn,int offset,int len,u32 val)1601 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1602 int len, u32 val)
1603 {
1604 return PCIBIOS_DEVICE_NOT_FOUND;
1605 }
1606
1607 static struct pci_ops null_pci_ops =
1608 {
1609 .read = null_read_config,
1610 .write = null_write_config,
1611 };
1612
1613 /*
1614 * These functions are used early on before PCI scanning is done
1615 * and all of the pci_dev and pci_bus structures have been created.
1616 */
1617 static struct pci_bus *
fake_pci_bus(struct pci_controller * hose,int busnr)1618 fake_pci_bus(struct pci_controller *hose, int busnr)
1619 {
1620 static struct pci_bus bus;
1621
1622 if (hose == NULL) {
1623 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1624 }
1625 bus.number = busnr;
1626 bus.sysdata = hose;
1627 bus.ops = hose? hose->ops: &null_pci_ops;
1628 return &bus;
1629 }
1630
1631 #define EARLY_PCI_OP(rw, size, type) \
1632 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \
1633 int devfn, int offset, type value) \
1634 { \
1635 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \
1636 devfn, offset, value); \
1637 }
1638
EARLY_PCI_OP(read,byte,u8 *)1639 EARLY_PCI_OP(read, byte, u8 *)
1640 EARLY_PCI_OP(read, word, u16 *)
1641 EARLY_PCI_OP(read, dword, u32 *)
1642 EARLY_PCI_OP(write, byte, u8)
1643 EARLY_PCI_OP(write, word, u16)
1644 EARLY_PCI_OP(write, dword, u32)
1645
1646 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1647 int cap)
1648 {
1649 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1650 }
1651
pcibios_get_phb_of_node(struct pci_bus * bus)1652 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1653 {
1654 struct pci_controller *hose = bus->sysdata;
1655
1656 return of_node_get(hose->dn);
1657 }
1658
1659 /**
1660 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1661 * @hose: Pointer to the PCI host controller instance structure
1662 */
pcibios_scan_phb(struct pci_controller * hose)1663 void pcibios_scan_phb(struct pci_controller *hose)
1664 {
1665 LIST_HEAD(resources);
1666 struct pci_bus *bus;
1667 struct device_node *node = hose->dn;
1668 int mode;
1669
1670 pr_debug("PCI: Scanning PHB %pOF\n", node);
1671
1672 /* Get some IO space for the new PHB */
1673 pcibios_setup_phb_io_space(hose);
1674
1675 /* Wire up PHB bus resources */
1676 pcibios_setup_phb_resources(hose, &resources);
1677
1678 hose->busn.start = hose->first_busno;
1679 hose->busn.end = hose->last_busno;
1680 hose->busn.flags = IORESOURCE_BUS;
1681 pci_add_resource(&resources, &hose->busn);
1682
1683 /* Create an empty bus for the toplevel */
1684 bus = pci_create_root_bus(hose->parent, hose->first_busno,
1685 hose->ops, hose, &resources);
1686 if (bus == NULL) {
1687 pr_err("Failed to create bus for PCI domain %04x\n",
1688 hose->global_number);
1689 pci_free_resource_list(&resources);
1690 return;
1691 }
1692 hose->bus = bus;
1693
1694 /* Get probe mode and perform scan */
1695 mode = PCI_PROBE_NORMAL;
1696 if (node && hose->controller_ops.probe_mode)
1697 mode = hose->controller_ops.probe_mode(bus);
1698 pr_debug(" probe mode: %d\n", mode);
1699 if (mode == PCI_PROBE_DEVTREE)
1700 of_scan_bus(node, bus);
1701
1702 if (mode == PCI_PROBE_NORMAL) {
1703 pci_bus_update_busn_res_end(bus, 255);
1704 hose->last_busno = pci_scan_child_bus(bus);
1705 pci_bus_update_busn_res_end(bus, hose->last_busno);
1706 }
1707
1708 /* Platform gets a chance to do some global fixups before
1709 * we proceed to resource allocation
1710 */
1711 if (ppc_md.pcibios_fixup_phb)
1712 ppc_md.pcibios_fixup_phb(hose);
1713
1714 /* Configure PCI Express settings */
1715 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1716 struct pci_bus *child;
1717 list_for_each_entry(child, &bus->children, node)
1718 pcie_bus_configure_settings(child);
1719 }
1720 }
1721 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1722
fixup_hide_host_resource_fsl(struct pci_dev * dev)1723 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1724 {
1725 int i, class = dev->class >> 8;
1726 /* When configured as agent, programing interface = 1 */
1727 int prog_if = dev->class & 0xf;
1728
1729 if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1730 class == PCI_CLASS_BRIDGE_OTHER) &&
1731 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1732 (prog_if == 0) &&
1733 (dev->bus->parent == NULL)) {
1734 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1735 dev->resource[i].start = 0;
1736 dev->resource[i].end = 0;
1737 dev->resource[i].flags = 0;
1738 }
1739 }
1740 }
1741 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1742 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1743
fixup_vga(struct pci_dev * pdev)1744 static void fixup_vga(struct pci_dev *pdev)
1745 {
1746 u16 cmd;
1747
1748 pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1749 if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device())
1750 vga_set_default_device(pdev);
1751
1752 }
1753 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID,
1754 PCI_CLASS_DISPLAY_VGA, 8, fixup_vga);
1755