1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
29 #include <linux/fs.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
46 #include <linux/of.h>
47
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/disassemble.h>
51 #include <asm/cputable.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 #include <linux/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/kvm_ppc.h>
57 #include <asm/kvm_book3s.h>
58 #include <asm/mmu_context.h>
59 #include <asm/lppaca.h>
60 #include <asm/processor.h>
61 #include <asm/cputhreads.h>
62 #include <asm/page.h>
63 #include <asm/hvcall.h>
64 #include <asm/switch_to.h>
65 #include <asm/smp.h>
66 #include <asm/dbell.h>
67 #include <asm/hmi.h>
68 #include <asm/pnv-pci.h>
69 #include <asm/mmu.h>
70 #include <asm/opal.h>
71 #include <asm/xics.h>
72 #include <asm/xive.h>
73
74 #include "book3s.h"
75
76 #define CREATE_TRACE_POINTS
77 #include "trace_hv.h"
78
79 /* #define EXIT_DEBUG */
80 /* #define EXIT_DEBUG_SIMPLE */
81 /* #define EXIT_DEBUG_INT */
82
83 /* Used to indicate that a guest page fault needs to be handled */
84 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
85 /* Used to indicate that a guest passthrough interrupt needs to be handled */
86 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
87
88 /* Used as a "null" value for timebase values */
89 #define TB_NIL (~(u64)0)
90
91 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
92
93 static int dynamic_mt_modes = 6;
94 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
96 static int target_smt_mode;
97 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
99
100 #ifdef CONFIG_KVM_XICS
101 static struct kernel_param_ops module_param_ops = {
102 .set = param_set_int,
103 .get = param_get_int,
104 };
105
106 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
107 S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
109
110 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
111 S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
113 #endif
114
115 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
116 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
117
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)118 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
119 int *ip)
120 {
121 int i = *ip;
122 struct kvm_vcpu *vcpu;
123
124 while (++i < MAX_SMT_THREADS) {
125 vcpu = READ_ONCE(vc->runnable_threads[i]);
126 if (vcpu) {
127 *ip = i;
128 return vcpu;
129 }
130 }
131 return NULL;
132 }
133
134 /* Used to traverse the list of runnable threads for a given vcore */
135 #define for_each_runnable_thread(i, vcpu, vc) \
136 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
137
kvmppc_ipi_thread(int cpu)138 static bool kvmppc_ipi_thread(int cpu)
139 {
140 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
141
142 /* On POWER9 we can use msgsnd to IPI any cpu */
143 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
144 msg |= get_hard_smp_processor_id(cpu);
145 smp_mb();
146 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
147 return true;
148 }
149
150 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
151 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
152 preempt_disable();
153 if (cpu_first_thread_sibling(cpu) ==
154 cpu_first_thread_sibling(smp_processor_id())) {
155 msg |= cpu_thread_in_core(cpu);
156 smp_mb();
157 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
158 preempt_enable();
159 return true;
160 }
161 preempt_enable();
162 }
163
164 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165 if (cpu >= 0 && cpu < nr_cpu_ids) {
166 if (paca[cpu].kvm_hstate.xics_phys) {
167 xics_wake_cpu(cpu);
168 return true;
169 }
170 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
171 return true;
172 }
173 #endif
174
175 return false;
176 }
177
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)178 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
179 {
180 int cpu;
181 struct swait_queue_head *wqp;
182
183 wqp = kvm_arch_vcpu_wq(vcpu);
184 if (swq_has_sleeper(wqp)) {
185 swake_up(wqp);
186 ++vcpu->stat.halt_wakeup;
187 }
188
189 cpu = READ_ONCE(vcpu->arch.thread_cpu);
190 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
191 return;
192
193 /* CPU points to the first thread of the core */
194 cpu = vcpu->cpu;
195 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
196 smp_send_reschedule(cpu);
197 }
198
199 /*
200 * We use the vcpu_load/put functions to measure stolen time.
201 * Stolen time is counted as time when either the vcpu is able to
202 * run as part of a virtual core, but the task running the vcore
203 * is preempted or sleeping, or when the vcpu needs something done
204 * in the kernel by the task running the vcpu, but that task is
205 * preempted or sleeping. Those two things have to be counted
206 * separately, since one of the vcpu tasks will take on the job
207 * of running the core, and the other vcpu tasks in the vcore will
208 * sleep waiting for it to do that, but that sleep shouldn't count
209 * as stolen time.
210 *
211 * Hence we accumulate stolen time when the vcpu can run as part of
212 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
213 * needs its task to do other things in the kernel (for example,
214 * service a page fault) in busy_stolen. We don't accumulate
215 * stolen time for a vcore when it is inactive, or for a vcpu
216 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
217 * a misnomer; it means that the vcpu task is not executing in
218 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
219 * the kernel. We don't have any way of dividing up that time
220 * between time that the vcpu is genuinely stopped, time that
221 * the task is actively working on behalf of the vcpu, and time
222 * that the task is preempted, so we don't count any of it as
223 * stolen.
224 *
225 * Updates to busy_stolen are protected by arch.tbacct_lock;
226 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
227 * lock. The stolen times are measured in units of timebase ticks.
228 * (Note that the != TB_NIL checks below are purely defensive;
229 * they should never fail.)
230 */
231
kvmppc_core_start_stolen(struct kvmppc_vcore * vc)232 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
233 {
234 unsigned long flags;
235
236 spin_lock_irqsave(&vc->stoltb_lock, flags);
237 vc->preempt_tb = mftb();
238 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
239 }
240
kvmppc_core_end_stolen(struct kvmppc_vcore * vc)241 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
242 {
243 unsigned long flags;
244
245 spin_lock_irqsave(&vc->stoltb_lock, flags);
246 if (vc->preempt_tb != TB_NIL) {
247 vc->stolen_tb += mftb() - vc->preempt_tb;
248 vc->preempt_tb = TB_NIL;
249 }
250 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
251 }
252
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)253 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
254 {
255 struct kvmppc_vcore *vc = vcpu->arch.vcore;
256 unsigned long flags;
257
258 /*
259 * We can test vc->runner without taking the vcore lock,
260 * because only this task ever sets vc->runner to this
261 * vcpu, and once it is set to this vcpu, only this task
262 * ever sets it to NULL.
263 */
264 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
265 kvmppc_core_end_stolen(vc);
266
267 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
268 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
269 vcpu->arch.busy_preempt != TB_NIL) {
270 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
271 vcpu->arch.busy_preempt = TB_NIL;
272 }
273 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
274 }
275
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)276 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
277 {
278 struct kvmppc_vcore *vc = vcpu->arch.vcore;
279 unsigned long flags;
280
281 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
282 kvmppc_core_start_stolen(vc);
283
284 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
285 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
286 vcpu->arch.busy_preempt = mftb();
287 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
288 }
289
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)290 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
291 {
292 /*
293 * Check for illegal transactional state bit combination
294 * and if we find it, force the TS field to a safe state.
295 */
296 if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
297 msr &= ~MSR_TS_MASK;
298 vcpu->arch.shregs.msr = msr;
299 kvmppc_end_cede(vcpu);
300 }
301
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)302 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
303 {
304 vcpu->arch.pvr = pvr;
305 }
306
307 /* Dummy value used in computing PCR value below */
308 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
309
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)310 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
311 {
312 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
313 struct kvmppc_vcore *vc = vcpu->arch.vcore;
314
315 /* We can (emulate) our own architecture version and anything older */
316 if (cpu_has_feature(CPU_FTR_ARCH_300))
317 host_pcr_bit = PCR_ARCH_300;
318 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
319 host_pcr_bit = PCR_ARCH_207;
320 else if (cpu_has_feature(CPU_FTR_ARCH_206))
321 host_pcr_bit = PCR_ARCH_206;
322 else
323 host_pcr_bit = PCR_ARCH_205;
324
325 /* Determine lowest PCR bit needed to run guest in given PVR level */
326 guest_pcr_bit = host_pcr_bit;
327 if (arch_compat) {
328 switch (arch_compat) {
329 case PVR_ARCH_205:
330 guest_pcr_bit = PCR_ARCH_205;
331 break;
332 case PVR_ARCH_206:
333 case PVR_ARCH_206p:
334 guest_pcr_bit = PCR_ARCH_206;
335 break;
336 case PVR_ARCH_207:
337 guest_pcr_bit = PCR_ARCH_207;
338 break;
339 case PVR_ARCH_300:
340 guest_pcr_bit = PCR_ARCH_300;
341 break;
342 default:
343 return -EINVAL;
344 }
345 }
346
347 /* Check requested PCR bits don't exceed our capabilities */
348 if (guest_pcr_bit > host_pcr_bit)
349 return -EINVAL;
350
351 spin_lock(&vc->lock);
352 vc->arch_compat = arch_compat;
353 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
354 vc->pcr = host_pcr_bit - guest_pcr_bit;
355 spin_unlock(&vc->lock);
356
357 return 0;
358 }
359
kvmppc_dump_regs(struct kvm_vcpu * vcpu)360 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
361 {
362 int r;
363
364 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
365 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
366 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
367 for (r = 0; r < 16; ++r)
368 pr_err("r%2d = %.16lx r%d = %.16lx\n",
369 r, kvmppc_get_gpr(vcpu, r),
370 r+16, kvmppc_get_gpr(vcpu, r+16));
371 pr_err("ctr = %.16lx lr = %.16lx\n",
372 vcpu->arch.ctr, vcpu->arch.lr);
373 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
374 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
375 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
376 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
377 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
378 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
379 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
380 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
381 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
382 pr_err("fault dar = %.16lx dsisr = %.8x\n",
383 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
384 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
385 for (r = 0; r < vcpu->arch.slb_max; ++r)
386 pr_err(" ESID = %.16llx VSID = %.16llx\n",
387 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
388 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
389 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
390 vcpu->arch.last_inst);
391 }
392
kvmppc_find_vcpu(struct kvm * kvm,int id)393 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
394 {
395 return kvm_get_vcpu_by_id(kvm, id);
396 }
397
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)398 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
399 {
400 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
401 vpa->yield_count = cpu_to_be32(1);
402 }
403
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)404 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
405 unsigned long addr, unsigned long len)
406 {
407 /* check address is cacheline aligned */
408 if (addr & (L1_CACHE_BYTES - 1))
409 return -EINVAL;
410 spin_lock(&vcpu->arch.vpa_update_lock);
411 if (v->next_gpa != addr || v->len != len) {
412 v->next_gpa = addr;
413 v->len = addr ? len : 0;
414 v->update_pending = 1;
415 }
416 spin_unlock(&vcpu->arch.vpa_update_lock);
417 return 0;
418 }
419
420 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
421 struct reg_vpa {
422 u32 dummy;
423 union {
424 __be16 hword;
425 __be32 word;
426 } length;
427 };
428
vpa_is_registered(struct kvmppc_vpa * vpap)429 static int vpa_is_registered(struct kvmppc_vpa *vpap)
430 {
431 if (vpap->update_pending)
432 return vpap->next_gpa != 0;
433 return vpap->pinned_addr != NULL;
434 }
435
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)436 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
437 unsigned long flags,
438 unsigned long vcpuid, unsigned long vpa)
439 {
440 struct kvm *kvm = vcpu->kvm;
441 unsigned long len, nb;
442 void *va;
443 struct kvm_vcpu *tvcpu;
444 int err;
445 int subfunc;
446 struct kvmppc_vpa *vpap;
447
448 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
449 if (!tvcpu)
450 return H_PARAMETER;
451
452 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
453 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
454 subfunc == H_VPA_REG_SLB) {
455 /* Registering new area - address must be cache-line aligned */
456 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
457 return H_PARAMETER;
458
459 /* convert logical addr to kernel addr and read length */
460 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
461 if (va == NULL)
462 return H_PARAMETER;
463 if (subfunc == H_VPA_REG_VPA)
464 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
465 else
466 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
467 kvmppc_unpin_guest_page(kvm, va, vpa, false);
468
469 /* Check length */
470 if (len > nb || len < sizeof(struct reg_vpa))
471 return H_PARAMETER;
472 } else {
473 vpa = 0;
474 len = 0;
475 }
476
477 err = H_PARAMETER;
478 vpap = NULL;
479 spin_lock(&tvcpu->arch.vpa_update_lock);
480
481 switch (subfunc) {
482 case H_VPA_REG_VPA: /* register VPA */
483 /*
484 * The size of our lppaca is 1kB because of the way we align
485 * it for the guest to avoid crossing a 4kB boundary. We only
486 * use 640 bytes of the structure though, so we should accept
487 * clients that set a size of 640.
488 */
489 if (len < 640)
490 break;
491 vpap = &tvcpu->arch.vpa;
492 err = 0;
493 break;
494
495 case H_VPA_REG_DTL: /* register DTL */
496 if (len < sizeof(struct dtl_entry))
497 break;
498 len -= len % sizeof(struct dtl_entry);
499
500 /* Check that they have previously registered a VPA */
501 err = H_RESOURCE;
502 if (!vpa_is_registered(&tvcpu->arch.vpa))
503 break;
504
505 vpap = &tvcpu->arch.dtl;
506 err = 0;
507 break;
508
509 case H_VPA_REG_SLB: /* register SLB shadow buffer */
510 /* Check that they have previously registered a VPA */
511 err = H_RESOURCE;
512 if (!vpa_is_registered(&tvcpu->arch.vpa))
513 break;
514
515 vpap = &tvcpu->arch.slb_shadow;
516 err = 0;
517 break;
518
519 case H_VPA_DEREG_VPA: /* deregister VPA */
520 /* Check they don't still have a DTL or SLB buf registered */
521 err = H_RESOURCE;
522 if (vpa_is_registered(&tvcpu->arch.dtl) ||
523 vpa_is_registered(&tvcpu->arch.slb_shadow))
524 break;
525
526 vpap = &tvcpu->arch.vpa;
527 err = 0;
528 break;
529
530 case H_VPA_DEREG_DTL: /* deregister DTL */
531 vpap = &tvcpu->arch.dtl;
532 err = 0;
533 break;
534
535 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
536 vpap = &tvcpu->arch.slb_shadow;
537 err = 0;
538 break;
539 }
540
541 if (vpap) {
542 vpap->next_gpa = vpa;
543 vpap->len = len;
544 vpap->update_pending = 1;
545 }
546
547 spin_unlock(&tvcpu->arch.vpa_update_lock);
548
549 return err;
550 }
551
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)552 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
553 {
554 struct kvm *kvm = vcpu->kvm;
555 void *va;
556 unsigned long nb;
557 unsigned long gpa;
558
559 /*
560 * We need to pin the page pointed to by vpap->next_gpa,
561 * but we can't call kvmppc_pin_guest_page under the lock
562 * as it does get_user_pages() and down_read(). So we
563 * have to drop the lock, pin the page, then get the lock
564 * again and check that a new area didn't get registered
565 * in the meantime.
566 */
567 for (;;) {
568 gpa = vpap->next_gpa;
569 spin_unlock(&vcpu->arch.vpa_update_lock);
570 va = NULL;
571 nb = 0;
572 if (gpa)
573 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
574 spin_lock(&vcpu->arch.vpa_update_lock);
575 if (gpa == vpap->next_gpa)
576 break;
577 /* sigh... unpin that one and try again */
578 if (va)
579 kvmppc_unpin_guest_page(kvm, va, gpa, false);
580 }
581
582 vpap->update_pending = 0;
583 if (va && nb < vpap->len) {
584 /*
585 * If it's now too short, it must be that userspace
586 * has changed the mappings underlying guest memory,
587 * so unregister the region.
588 */
589 kvmppc_unpin_guest_page(kvm, va, gpa, false);
590 va = NULL;
591 }
592 if (vpap->pinned_addr)
593 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
594 vpap->dirty);
595 vpap->gpa = gpa;
596 vpap->pinned_addr = va;
597 vpap->dirty = false;
598 if (va)
599 vpap->pinned_end = va + vpap->len;
600 }
601
kvmppc_update_vpas(struct kvm_vcpu * vcpu)602 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
603 {
604 if (!(vcpu->arch.vpa.update_pending ||
605 vcpu->arch.slb_shadow.update_pending ||
606 vcpu->arch.dtl.update_pending))
607 return;
608
609 spin_lock(&vcpu->arch.vpa_update_lock);
610 if (vcpu->arch.vpa.update_pending) {
611 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
612 if (vcpu->arch.vpa.pinned_addr)
613 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
614 }
615 if (vcpu->arch.dtl.update_pending) {
616 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
617 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
618 vcpu->arch.dtl_index = 0;
619 }
620 if (vcpu->arch.slb_shadow.update_pending)
621 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
622 spin_unlock(&vcpu->arch.vpa_update_lock);
623 }
624
625 /*
626 * Return the accumulated stolen time for the vcore up until `now'.
627 * The caller should hold the vcore lock.
628 */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)629 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
630 {
631 u64 p;
632 unsigned long flags;
633
634 spin_lock_irqsave(&vc->stoltb_lock, flags);
635 p = vc->stolen_tb;
636 if (vc->vcore_state != VCORE_INACTIVE &&
637 vc->preempt_tb != TB_NIL)
638 p += now - vc->preempt_tb;
639 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
640 return p;
641 }
642
kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)643 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
644 struct kvmppc_vcore *vc)
645 {
646 struct dtl_entry *dt;
647 struct lppaca *vpa;
648 unsigned long stolen;
649 unsigned long core_stolen;
650 u64 now;
651 unsigned long flags;
652
653 dt = vcpu->arch.dtl_ptr;
654 vpa = vcpu->arch.vpa.pinned_addr;
655 now = mftb();
656 core_stolen = vcore_stolen_time(vc, now);
657 stolen = core_stolen - vcpu->arch.stolen_logged;
658 vcpu->arch.stolen_logged = core_stolen;
659 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
660 stolen += vcpu->arch.busy_stolen;
661 vcpu->arch.busy_stolen = 0;
662 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
663 if (!dt || !vpa)
664 return;
665 memset(dt, 0, sizeof(struct dtl_entry));
666 dt->dispatch_reason = 7;
667 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
668 dt->timebase = cpu_to_be64(now + vc->tb_offset);
669 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
670 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
671 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
672 ++dt;
673 if (dt == vcpu->arch.dtl.pinned_end)
674 dt = vcpu->arch.dtl.pinned_addr;
675 vcpu->arch.dtl_ptr = dt;
676 /* order writing *dt vs. writing vpa->dtl_idx */
677 smp_wmb();
678 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
679 vcpu->arch.dtl.dirty = true;
680 }
681
682 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)683 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
684 {
685 int thr;
686 struct kvmppc_vcore *vc;
687
688 if (vcpu->arch.doorbell_request)
689 return true;
690 /*
691 * Ensure that the read of vcore->dpdes comes after the read
692 * of vcpu->doorbell_request. This barrier matches the
693 * lwsync in book3s_hv_rmhandlers.S just before the
694 * fast_guest_return label.
695 */
696 smp_rmb();
697 vc = vcpu->arch.vcore;
698 thr = vcpu->vcpu_id - vc->first_vcpuid;
699 return !!(vc->dpdes & (1 << thr));
700 }
701
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)702 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
703 {
704 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
705 return true;
706 if ((!vcpu->arch.vcore->arch_compat) &&
707 cpu_has_feature(CPU_FTR_ARCH_207S))
708 return true;
709 return false;
710 }
711
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)712 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
713 unsigned long resource, unsigned long value1,
714 unsigned long value2)
715 {
716 switch (resource) {
717 case H_SET_MODE_RESOURCE_SET_CIABR:
718 if (!kvmppc_power8_compatible(vcpu))
719 return H_P2;
720 if (value2)
721 return H_P4;
722 if (mflags)
723 return H_UNSUPPORTED_FLAG_START;
724 /* Guests can't breakpoint the hypervisor */
725 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
726 return H_P3;
727 vcpu->arch.ciabr = value1;
728 return H_SUCCESS;
729 case H_SET_MODE_RESOURCE_SET_DAWR:
730 if (!kvmppc_power8_compatible(vcpu))
731 return H_P2;
732 if (mflags)
733 return H_UNSUPPORTED_FLAG_START;
734 if (value2 & DABRX_HYP)
735 return H_P4;
736 vcpu->arch.dawr = value1;
737 vcpu->arch.dawrx = value2;
738 return H_SUCCESS;
739 default:
740 return H_TOO_HARD;
741 }
742 }
743
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)744 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
745 {
746 struct kvmppc_vcore *vcore = target->arch.vcore;
747
748 /*
749 * We expect to have been called by the real mode handler
750 * (kvmppc_rm_h_confer()) which would have directly returned
751 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
752 * have useful work to do and should not confer) so we don't
753 * recheck that here.
754 */
755
756 spin_lock(&vcore->lock);
757 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
758 vcore->vcore_state != VCORE_INACTIVE &&
759 vcore->runner)
760 target = vcore->runner;
761 spin_unlock(&vcore->lock);
762
763 return kvm_vcpu_yield_to(target);
764 }
765
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)766 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
767 {
768 int yield_count = 0;
769 struct lppaca *lppaca;
770
771 spin_lock(&vcpu->arch.vpa_update_lock);
772 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
773 if (lppaca)
774 yield_count = be32_to_cpu(lppaca->yield_count);
775 spin_unlock(&vcpu->arch.vpa_update_lock);
776 return yield_count;
777 }
778
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)779 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
780 {
781 unsigned long req = kvmppc_get_gpr(vcpu, 3);
782 unsigned long target, ret = H_SUCCESS;
783 int yield_count;
784 struct kvm_vcpu *tvcpu;
785 int idx, rc;
786
787 if (req <= MAX_HCALL_OPCODE &&
788 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
789 return RESUME_HOST;
790
791 switch (req) {
792 case H_CEDE:
793 break;
794 case H_PROD:
795 target = kvmppc_get_gpr(vcpu, 4);
796 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
797 if (!tvcpu) {
798 ret = H_PARAMETER;
799 break;
800 }
801 tvcpu->arch.prodded = 1;
802 smp_mb();
803 if (tvcpu->arch.ceded)
804 kvmppc_fast_vcpu_kick_hv(tvcpu);
805 break;
806 case H_CONFER:
807 target = kvmppc_get_gpr(vcpu, 4);
808 if (target == -1)
809 break;
810 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
811 if (!tvcpu) {
812 ret = H_PARAMETER;
813 break;
814 }
815 yield_count = kvmppc_get_gpr(vcpu, 5);
816 if (kvmppc_get_yield_count(tvcpu) != yield_count)
817 break;
818 kvm_arch_vcpu_yield_to(tvcpu);
819 break;
820 case H_REGISTER_VPA:
821 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
822 kvmppc_get_gpr(vcpu, 5),
823 kvmppc_get_gpr(vcpu, 6));
824 break;
825 case H_RTAS:
826 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
827 return RESUME_HOST;
828
829 idx = srcu_read_lock(&vcpu->kvm->srcu);
830 rc = kvmppc_rtas_hcall(vcpu);
831 srcu_read_unlock(&vcpu->kvm->srcu, idx);
832
833 if (rc == -ENOENT)
834 return RESUME_HOST;
835 else if (rc == 0)
836 break;
837
838 /* Send the error out to userspace via KVM_RUN */
839 return rc;
840 case H_LOGICAL_CI_LOAD:
841 ret = kvmppc_h_logical_ci_load(vcpu);
842 if (ret == H_TOO_HARD)
843 return RESUME_HOST;
844 break;
845 case H_LOGICAL_CI_STORE:
846 ret = kvmppc_h_logical_ci_store(vcpu);
847 if (ret == H_TOO_HARD)
848 return RESUME_HOST;
849 break;
850 case H_SET_MODE:
851 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
852 kvmppc_get_gpr(vcpu, 5),
853 kvmppc_get_gpr(vcpu, 6),
854 kvmppc_get_gpr(vcpu, 7));
855 if (ret == H_TOO_HARD)
856 return RESUME_HOST;
857 break;
858 case H_XIRR:
859 case H_CPPR:
860 case H_EOI:
861 case H_IPI:
862 case H_IPOLL:
863 case H_XIRR_X:
864 if (kvmppc_xics_enabled(vcpu)) {
865 if (xive_enabled()) {
866 ret = H_NOT_AVAILABLE;
867 return RESUME_GUEST;
868 }
869 ret = kvmppc_xics_hcall(vcpu, req);
870 break;
871 }
872 return RESUME_HOST;
873 case H_PUT_TCE:
874 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
875 kvmppc_get_gpr(vcpu, 5),
876 kvmppc_get_gpr(vcpu, 6));
877 if (ret == H_TOO_HARD)
878 return RESUME_HOST;
879 break;
880 case H_PUT_TCE_INDIRECT:
881 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
882 kvmppc_get_gpr(vcpu, 5),
883 kvmppc_get_gpr(vcpu, 6),
884 kvmppc_get_gpr(vcpu, 7));
885 if (ret == H_TOO_HARD)
886 return RESUME_HOST;
887 break;
888 case H_STUFF_TCE:
889 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
890 kvmppc_get_gpr(vcpu, 5),
891 kvmppc_get_gpr(vcpu, 6),
892 kvmppc_get_gpr(vcpu, 7));
893 if (ret == H_TOO_HARD)
894 return RESUME_HOST;
895 break;
896 default:
897 return RESUME_HOST;
898 }
899 kvmppc_set_gpr(vcpu, 3, ret);
900 vcpu->arch.hcall_needed = 0;
901 return RESUME_GUEST;
902 }
903
kvmppc_hcall_impl_hv(unsigned long cmd)904 static int kvmppc_hcall_impl_hv(unsigned long cmd)
905 {
906 switch (cmd) {
907 case H_CEDE:
908 case H_PROD:
909 case H_CONFER:
910 case H_REGISTER_VPA:
911 case H_SET_MODE:
912 case H_LOGICAL_CI_LOAD:
913 case H_LOGICAL_CI_STORE:
914 #ifdef CONFIG_KVM_XICS
915 case H_XIRR:
916 case H_CPPR:
917 case H_EOI:
918 case H_IPI:
919 case H_IPOLL:
920 case H_XIRR_X:
921 #endif
922 return 1;
923 }
924
925 /* See if it's in the real-mode table */
926 return kvmppc_hcall_impl_hv_realmode(cmd);
927 }
928
kvmppc_emulate_debug_inst(struct kvm_run * run,struct kvm_vcpu * vcpu)929 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
930 struct kvm_vcpu *vcpu)
931 {
932 u32 last_inst;
933
934 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
935 EMULATE_DONE) {
936 /*
937 * Fetch failed, so return to guest and
938 * try executing it again.
939 */
940 return RESUME_GUEST;
941 }
942
943 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
944 run->exit_reason = KVM_EXIT_DEBUG;
945 run->debug.arch.address = kvmppc_get_pc(vcpu);
946 return RESUME_HOST;
947 } else {
948 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
949 return RESUME_GUEST;
950 }
951 }
952
do_nothing(void * x)953 static void do_nothing(void *x)
954 {
955 }
956
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)957 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
958 {
959 int thr, cpu, pcpu, nthreads;
960 struct kvm_vcpu *v;
961 unsigned long dpdes;
962
963 nthreads = vcpu->kvm->arch.emul_smt_mode;
964 dpdes = 0;
965 cpu = vcpu->vcpu_id & ~(nthreads - 1);
966 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
967 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
968 if (!v)
969 continue;
970 /*
971 * If the vcpu is currently running on a physical cpu thread,
972 * interrupt it in order to pull it out of the guest briefly,
973 * which will update its vcore->dpdes value.
974 */
975 pcpu = READ_ONCE(v->cpu);
976 if (pcpu >= 0)
977 smp_call_function_single(pcpu, do_nothing, NULL, 1);
978 if (kvmppc_doorbell_pending(v))
979 dpdes |= 1 << thr;
980 }
981 return dpdes;
982 }
983
984 /*
985 * On POWER9, emulate doorbell-related instructions in order to
986 * give the guest the illusion of running on a multi-threaded core.
987 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
988 * and mfspr DPDES.
989 */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)990 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
991 {
992 u32 inst, rb, thr;
993 unsigned long arg;
994 struct kvm *kvm = vcpu->kvm;
995 struct kvm_vcpu *tvcpu;
996
997 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
998 return RESUME_GUEST;
999 if (get_op(inst) != 31)
1000 return EMULATE_FAIL;
1001 rb = get_rb(inst);
1002 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1003 switch (get_xop(inst)) {
1004 case OP_31_XOP_MSGSNDP:
1005 arg = kvmppc_get_gpr(vcpu, rb);
1006 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1007 break;
1008 arg &= 0x3f;
1009 if (arg >= kvm->arch.emul_smt_mode)
1010 break;
1011 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1012 if (!tvcpu)
1013 break;
1014 if (!tvcpu->arch.doorbell_request) {
1015 tvcpu->arch.doorbell_request = 1;
1016 kvmppc_fast_vcpu_kick_hv(tvcpu);
1017 }
1018 break;
1019 case OP_31_XOP_MSGCLRP:
1020 arg = kvmppc_get_gpr(vcpu, rb);
1021 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1022 break;
1023 vcpu->arch.vcore->dpdes = 0;
1024 vcpu->arch.doorbell_request = 0;
1025 break;
1026 case OP_31_XOP_MFSPR:
1027 switch (get_sprn(inst)) {
1028 case SPRN_TIR:
1029 arg = thr;
1030 break;
1031 case SPRN_DPDES:
1032 arg = kvmppc_read_dpdes(vcpu);
1033 break;
1034 default:
1035 return EMULATE_FAIL;
1036 }
1037 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1038 break;
1039 default:
1040 return EMULATE_FAIL;
1041 }
1042 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1043 return RESUME_GUEST;
1044 }
1045
1046 /* Called with vcpu->arch.vcore->lock held */
kvmppc_handle_exit_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,struct task_struct * tsk)1047 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1048 struct task_struct *tsk)
1049 {
1050 int r = RESUME_HOST;
1051
1052 vcpu->stat.sum_exits++;
1053
1054 /*
1055 * This can happen if an interrupt occurs in the last stages
1056 * of guest entry or the first stages of guest exit (i.e. after
1057 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1058 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1059 * That can happen due to a bug, or due to a machine check
1060 * occurring at just the wrong time.
1061 */
1062 if (vcpu->arch.shregs.msr & MSR_HV) {
1063 printk(KERN_EMERG "KVM trap in HV mode!\n");
1064 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1065 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1066 vcpu->arch.shregs.msr);
1067 kvmppc_dump_regs(vcpu);
1068 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1069 run->hw.hardware_exit_reason = vcpu->arch.trap;
1070 return RESUME_HOST;
1071 }
1072 run->exit_reason = KVM_EXIT_UNKNOWN;
1073 run->ready_for_interrupt_injection = 1;
1074 switch (vcpu->arch.trap) {
1075 /* We're good on these - the host merely wanted to get our attention */
1076 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1077 vcpu->stat.dec_exits++;
1078 r = RESUME_GUEST;
1079 break;
1080 case BOOK3S_INTERRUPT_EXTERNAL:
1081 case BOOK3S_INTERRUPT_H_DOORBELL:
1082 case BOOK3S_INTERRUPT_H_VIRT:
1083 vcpu->stat.ext_intr_exits++;
1084 r = RESUME_GUEST;
1085 break;
1086 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
1087 case BOOK3S_INTERRUPT_HMI:
1088 case BOOK3S_INTERRUPT_PERFMON:
1089 r = RESUME_GUEST;
1090 break;
1091 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1092 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1093 run->exit_reason = KVM_EXIT_NMI;
1094 run->hw.hardware_exit_reason = vcpu->arch.trap;
1095 /* Clear out the old NMI status from run->flags */
1096 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1097 /* Now set the NMI status */
1098 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1099 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1100 else
1101 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1102
1103 r = RESUME_HOST;
1104 /* Print the MCE event to host console. */
1105 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1106 break;
1107 case BOOK3S_INTERRUPT_PROGRAM:
1108 {
1109 ulong flags;
1110 /*
1111 * Normally program interrupts are delivered directly
1112 * to the guest by the hardware, but we can get here
1113 * as a result of a hypervisor emulation interrupt
1114 * (e40) getting turned into a 700 by BML RTAS.
1115 */
1116 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1117 kvmppc_core_queue_program(vcpu, flags);
1118 r = RESUME_GUEST;
1119 break;
1120 }
1121 case BOOK3S_INTERRUPT_SYSCALL:
1122 {
1123 /* hcall - punt to userspace */
1124 int i;
1125
1126 /* hypercall with MSR_PR has already been handled in rmode,
1127 * and never reaches here.
1128 */
1129
1130 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1131 for (i = 0; i < 9; ++i)
1132 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1133 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1134 vcpu->arch.hcall_needed = 1;
1135 r = RESUME_HOST;
1136 break;
1137 }
1138 /*
1139 * We get these next two if the guest accesses a page which it thinks
1140 * it has mapped but which is not actually present, either because
1141 * it is for an emulated I/O device or because the corresonding
1142 * host page has been paged out. Any other HDSI/HISI interrupts
1143 * have been handled already.
1144 */
1145 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1146 r = RESUME_PAGE_FAULT;
1147 break;
1148 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1149 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1150 vcpu->arch.fault_dsisr = 0;
1151 r = RESUME_PAGE_FAULT;
1152 break;
1153 /*
1154 * This occurs if the guest executes an illegal instruction.
1155 * If the guest debug is disabled, generate a program interrupt
1156 * to the guest. If guest debug is enabled, we need to check
1157 * whether the instruction is a software breakpoint instruction.
1158 * Accordingly return to Guest or Host.
1159 */
1160 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1161 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1162 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1163 swab32(vcpu->arch.emul_inst) :
1164 vcpu->arch.emul_inst;
1165 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1166 /* Need vcore unlocked to call kvmppc_get_last_inst */
1167 spin_unlock(&vcpu->arch.vcore->lock);
1168 r = kvmppc_emulate_debug_inst(run, vcpu);
1169 spin_lock(&vcpu->arch.vcore->lock);
1170 } else {
1171 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1172 r = RESUME_GUEST;
1173 }
1174 break;
1175 /*
1176 * This occurs if the guest (kernel or userspace), does something that
1177 * is prohibited by HFSCR.
1178 * On POWER9, this could be a doorbell instruction that we need
1179 * to emulate.
1180 * Otherwise, we just generate a program interrupt to the guest.
1181 */
1182 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1183 r = EMULATE_FAIL;
1184 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1185 cpu_has_feature(CPU_FTR_ARCH_300)) {
1186 /* Need vcore unlocked to call kvmppc_get_last_inst */
1187 spin_unlock(&vcpu->arch.vcore->lock);
1188 r = kvmppc_emulate_doorbell_instr(vcpu);
1189 spin_lock(&vcpu->arch.vcore->lock);
1190 }
1191 if (r == EMULATE_FAIL) {
1192 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1193 r = RESUME_GUEST;
1194 }
1195 break;
1196 case BOOK3S_INTERRUPT_HV_RM_HARD:
1197 r = RESUME_PASSTHROUGH;
1198 break;
1199 default:
1200 kvmppc_dump_regs(vcpu);
1201 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1202 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1203 vcpu->arch.shregs.msr);
1204 run->hw.hardware_exit_reason = vcpu->arch.trap;
1205 r = RESUME_HOST;
1206 break;
1207 }
1208
1209 return r;
1210 }
1211
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1212 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1213 struct kvm_sregs *sregs)
1214 {
1215 int i;
1216
1217 memset(sregs, 0, sizeof(struct kvm_sregs));
1218 sregs->pvr = vcpu->arch.pvr;
1219 for (i = 0; i < vcpu->arch.slb_max; i++) {
1220 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1221 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1222 }
1223
1224 return 0;
1225 }
1226
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1227 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1228 struct kvm_sregs *sregs)
1229 {
1230 int i, j;
1231
1232 /* Only accept the same PVR as the host's, since we can't spoof it */
1233 if (sregs->pvr != vcpu->arch.pvr)
1234 return -EINVAL;
1235
1236 j = 0;
1237 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1238 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1239 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1240 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1241 ++j;
1242 }
1243 }
1244 vcpu->arch.slb_max = j;
1245
1246 return 0;
1247 }
1248
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)1249 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1250 bool preserve_top32)
1251 {
1252 struct kvm *kvm = vcpu->kvm;
1253 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1254 u64 mask;
1255
1256 spin_lock(&vc->lock);
1257 /*
1258 * If ILE (interrupt little-endian) has changed, update the
1259 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1260 */
1261 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1262 struct kvm_vcpu *vcpu;
1263 int i;
1264
1265 kvm_for_each_vcpu(i, vcpu, kvm) {
1266 if (vcpu->arch.vcore != vc)
1267 continue;
1268 if (new_lpcr & LPCR_ILE)
1269 vcpu->arch.intr_msr |= MSR_LE;
1270 else
1271 vcpu->arch.intr_msr &= ~MSR_LE;
1272 }
1273 }
1274
1275 /*
1276 * Userspace can only modify DPFD (default prefetch depth),
1277 * ILE (interrupt little-endian) and TC (translation control).
1278 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1279 */
1280 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1281 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1282 mask |= LPCR_AIL;
1283 /*
1284 * On POWER9, allow userspace to enable large decrementer for the
1285 * guest, whether or not the host has it enabled.
1286 */
1287 if (cpu_has_feature(CPU_FTR_ARCH_300))
1288 mask |= LPCR_LD;
1289
1290 /* Broken 32-bit version of LPCR must not clear top bits */
1291 if (preserve_top32)
1292 mask &= 0xFFFFFFFF;
1293 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1294 spin_unlock(&vc->lock);
1295 }
1296
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1297 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1298 union kvmppc_one_reg *val)
1299 {
1300 int r = 0;
1301 long int i;
1302
1303 switch (id) {
1304 case KVM_REG_PPC_DEBUG_INST:
1305 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1306 break;
1307 case KVM_REG_PPC_HIOR:
1308 *val = get_reg_val(id, 0);
1309 break;
1310 case KVM_REG_PPC_DABR:
1311 *val = get_reg_val(id, vcpu->arch.dabr);
1312 break;
1313 case KVM_REG_PPC_DABRX:
1314 *val = get_reg_val(id, vcpu->arch.dabrx);
1315 break;
1316 case KVM_REG_PPC_DSCR:
1317 *val = get_reg_val(id, vcpu->arch.dscr);
1318 break;
1319 case KVM_REG_PPC_PURR:
1320 *val = get_reg_val(id, vcpu->arch.purr);
1321 break;
1322 case KVM_REG_PPC_SPURR:
1323 *val = get_reg_val(id, vcpu->arch.spurr);
1324 break;
1325 case KVM_REG_PPC_AMR:
1326 *val = get_reg_val(id, vcpu->arch.amr);
1327 break;
1328 case KVM_REG_PPC_UAMOR:
1329 *val = get_reg_val(id, vcpu->arch.uamor);
1330 break;
1331 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1332 i = id - KVM_REG_PPC_MMCR0;
1333 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1334 break;
1335 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1336 i = id - KVM_REG_PPC_PMC1;
1337 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1338 break;
1339 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1340 i = id - KVM_REG_PPC_SPMC1;
1341 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1342 break;
1343 case KVM_REG_PPC_SIAR:
1344 *val = get_reg_val(id, vcpu->arch.siar);
1345 break;
1346 case KVM_REG_PPC_SDAR:
1347 *val = get_reg_val(id, vcpu->arch.sdar);
1348 break;
1349 case KVM_REG_PPC_SIER:
1350 *val = get_reg_val(id, vcpu->arch.sier);
1351 break;
1352 case KVM_REG_PPC_IAMR:
1353 *val = get_reg_val(id, vcpu->arch.iamr);
1354 break;
1355 case KVM_REG_PPC_PSPB:
1356 *val = get_reg_val(id, vcpu->arch.pspb);
1357 break;
1358 case KVM_REG_PPC_DPDES:
1359 /*
1360 * On POWER9, where we are emulating msgsndp etc.,
1361 * we return 1 bit for each vcpu, which can come from
1362 * either vcore->dpdes or doorbell_request.
1363 * On POWER8, doorbell_request is 0.
1364 */
1365 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1366 vcpu->arch.doorbell_request);
1367 break;
1368 case KVM_REG_PPC_VTB:
1369 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1370 break;
1371 case KVM_REG_PPC_DAWR:
1372 *val = get_reg_val(id, vcpu->arch.dawr);
1373 break;
1374 case KVM_REG_PPC_DAWRX:
1375 *val = get_reg_val(id, vcpu->arch.dawrx);
1376 break;
1377 case KVM_REG_PPC_CIABR:
1378 *val = get_reg_val(id, vcpu->arch.ciabr);
1379 break;
1380 case KVM_REG_PPC_CSIGR:
1381 *val = get_reg_val(id, vcpu->arch.csigr);
1382 break;
1383 case KVM_REG_PPC_TACR:
1384 *val = get_reg_val(id, vcpu->arch.tacr);
1385 break;
1386 case KVM_REG_PPC_TCSCR:
1387 *val = get_reg_val(id, vcpu->arch.tcscr);
1388 break;
1389 case KVM_REG_PPC_PID:
1390 *val = get_reg_val(id, vcpu->arch.pid);
1391 break;
1392 case KVM_REG_PPC_ACOP:
1393 *val = get_reg_val(id, vcpu->arch.acop);
1394 break;
1395 case KVM_REG_PPC_WORT:
1396 *val = get_reg_val(id, vcpu->arch.wort);
1397 break;
1398 case KVM_REG_PPC_TIDR:
1399 *val = get_reg_val(id, vcpu->arch.tid);
1400 break;
1401 case KVM_REG_PPC_PSSCR:
1402 *val = get_reg_val(id, vcpu->arch.psscr);
1403 break;
1404 case KVM_REG_PPC_VPA_ADDR:
1405 spin_lock(&vcpu->arch.vpa_update_lock);
1406 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1407 spin_unlock(&vcpu->arch.vpa_update_lock);
1408 break;
1409 case KVM_REG_PPC_VPA_SLB:
1410 spin_lock(&vcpu->arch.vpa_update_lock);
1411 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1412 val->vpaval.length = vcpu->arch.slb_shadow.len;
1413 spin_unlock(&vcpu->arch.vpa_update_lock);
1414 break;
1415 case KVM_REG_PPC_VPA_DTL:
1416 spin_lock(&vcpu->arch.vpa_update_lock);
1417 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1418 val->vpaval.length = vcpu->arch.dtl.len;
1419 spin_unlock(&vcpu->arch.vpa_update_lock);
1420 break;
1421 case KVM_REG_PPC_TB_OFFSET:
1422 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1423 break;
1424 case KVM_REG_PPC_LPCR:
1425 case KVM_REG_PPC_LPCR_64:
1426 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1427 break;
1428 case KVM_REG_PPC_PPR:
1429 *val = get_reg_val(id, vcpu->arch.ppr);
1430 break;
1431 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1432 case KVM_REG_PPC_TFHAR:
1433 *val = get_reg_val(id, vcpu->arch.tfhar);
1434 break;
1435 case KVM_REG_PPC_TFIAR:
1436 *val = get_reg_val(id, vcpu->arch.tfiar);
1437 break;
1438 case KVM_REG_PPC_TEXASR:
1439 *val = get_reg_val(id, vcpu->arch.texasr);
1440 break;
1441 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1442 i = id - KVM_REG_PPC_TM_GPR0;
1443 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1444 break;
1445 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1446 {
1447 int j;
1448 i = id - KVM_REG_PPC_TM_VSR0;
1449 if (i < 32)
1450 for (j = 0; j < TS_FPRWIDTH; j++)
1451 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1452 else {
1453 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1454 val->vval = vcpu->arch.vr_tm.vr[i-32];
1455 else
1456 r = -ENXIO;
1457 }
1458 break;
1459 }
1460 case KVM_REG_PPC_TM_CR:
1461 *val = get_reg_val(id, vcpu->arch.cr_tm);
1462 break;
1463 case KVM_REG_PPC_TM_XER:
1464 *val = get_reg_val(id, vcpu->arch.xer_tm);
1465 break;
1466 case KVM_REG_PPC_TM_LR:
1467 *val = get_reg_val(id, vcpu->arch.lr_tm);
1468 break;
1469 case KVM_REG_PPC_TM_CTR:
1470 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1471 break;
1472 case KVM_REG_PPC_TM_FPSCR:
1473 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1474 break;
1475 case KVM_REG_PPC_TM_AMR:
1476 *val = get_reg_val(id, vcpu->arch.amr_tm);
1477 break;
1478 case KVM_REG_PPC_TM_PPR:
1479 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1480 break;
1481 case KVM_REG_PPC_TM_VRSAVE:
1482 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1483 break;
1484 case KVM_REG_PPC_TM_VSCR:
1485 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1486 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1487 else
1488 r = -ENXIO;
1489 break;
1490 case KVM_REG_PPC_TM_DSCR:
1491 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1492 break;
1493 case KVM_REG_PPC_TM_TAR:
1494 *val = get_reg_val(id, vcpu->arch.tar_tm);
1495 break;
1496 #endif
1497 case KVM_REG_PPC_ARCH_COMPAT:
1498 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1499 break;
1500 case KVM_REG_PPC_DEC_EXPIRY:
1501 *val = get_reg_val(id, vcpu->arch.dec_expires +
1502 vcpu->arch.vcore->tb_offset);
1503 break;
1504 default:
1505 r = -EINVAL;
1506 break;
1507 }
1508
1509 return r;
1510 }
1511
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1512 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1513 union kvmppc_one_reg *val)
1514 {
1515 int r = 0;
1516 long int i;
1517 unsigned long addr, len;
1518
1519 switch (id) {
1520 case KVM_REG_PPC_HIOR:
1521 /* Only allow this to be set to zero */
1522 if (set_reg_val(id, *val))
1523 r = -EINVAL;
1524 break;
1525 case KVM_REG_PPC_DABR:
1526 vcpu->arch.dabr = set_reg_val(id, *val);
1527 break;
1528 case KVM_REG_PPC_DABRX:
1529 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1530 break;
1531 case KVM_REG_PPC_DSCR:
1532 vcpu->arch.dscr = set_reg_val(id, *val);
1533 break;
1534 case KVM_REG_PPC_PURR:
1535 vcpu->arch.purr = set_reg_val(id, *val);
1536 break;
1537 case KVM_REG_PPC_SPURR:
1538 vcpu->arch.spurr = set_reg_val(id, *val);
1539 break;
1540 case KVM_REG_PPC_AMR:
1541 vcpu->arch.amr = set_reg_val(id, *val);
1542 break;
1543 case KVM_REG_PPC_UAMOR:
1544 vcpu->arch.uamor = set_reg_val(id, *val);
1545 break;
1546 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1547 i = id - KVM_REG_PPC_MMCR0;
1548 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1549 break;
1550 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1551 i = id - KVM_REG_PPC_PMC1;
1552 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1553 break;
1554 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1555 i = id - KVM_REG_PPC_SPMC1;
1556 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1557 break;
1558 case KVM_REG_PPC_SIAR:
1559 vcpu->arch.siar = set_reg_val(id, *val);
1560 break;
1561 case KVM_REG_PPC_SDAR:
1562 vcpu->arch.sdar = set_reg_val(id, *val);
1563 break;
1564 case KVM_REG_PPC_SIER:
1565 vcpu->arch.sier = set_reg_val(id, *val);
1566 break;
1567 case KVM_REG_PPC_IAMR:
1568 vcpu->arch.iamr = set_reg_val(id, *val);
1569 break;
1570 case KVM_REG_PPC_PSPB:
1571 vcpu->arch.pspb = set_reg_val(id, *val);
1572 break;
1573 case KVM_REG_PPC_DPDES:
1574 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1575 break;
1576 case KVM_REG_PPC_VTB:
1577 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1578 break;
1579 case KVM_REG_PPC_DAWR:
1580 vcpu->arch.dawr = set_reg_val(id, *val);
1581 break;
1582 case KVM_REG_PPC_DAWRX:
1583 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1584 break;
1585 case KVM_REG_PPC_CIABR:
1586 vcpu->arch.ciabr = set_reg_val(id, *val);
1587 /* Don't allow setting breakpoints in hypervisor code */
1588 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1589 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1590 break;
1591 case KVM_REG_PPC_CSIGR:
1592 vcpu->arch.csigr = set_reg_val(id, *val);
1593 break;
1594 case KVM_REG_PPC_TACR:
1595 vcpu->arch.tacr = set_reg_val(id, *val);
1596 break;
1597 case KVM_REG_PPC_TCSCR:
1598 vcpu->arch.tcscr = set_reg_val(id, *val);
1599 break;
1600 case KVM_REG_PPC_PID:
1601 vcpu->arch.pid = set_reg_val(id, *val);
1602 break;
1603 case KVM_REG_PPC_ACOP:
1604 vcpu->arch.acop = set_reg_val(id, *val);
1605 break;
1606 case KVM_REG_PPC_WORT:
1607 vcpu->arch.wort = set_reg_val(id, *val);
1608 break;
1609 case KVM_REG_PPC_TIDR:
1610 vcpu->arch.tid = set_reg_val(id, *val);
1611 break;
1612 case KVM_REG_PPC_PSSCR:
1613 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1614 break;
1615 case KVM_REG_PPC_VPA_ADDR:
1616 addr = set_reg_val(id, *val);
1617 r = -EINVAL;
1618 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1619 vcpu->arch.dtl.next_gpa))
1620 break;
1621 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1622 break;
1623 case KVM_REG_PPC_VPA_SLB:
1624 addr = val->vpaval.addr;
1625 len = val->vpaval.length;
1626 r = -EINVAL;
1627 if (addr && !vcpu->arch.vpa.next_gpa)
1628 break;
1629 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1630 break;
1631 case KVM_REG_PPC_VPA_DTL:
1632 addr = val->vpaval.addr;
1633 len = val->vpaval.length;
1634 r = -EINVAL;
1635 if (addr && (len < sizeof(struct dtl_entry) ||
1636 !vcpu->arch.vpa.next_gpa))
1637 break;
1638 len -= len % sizeof(struct dtl_entry);
1639 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1640 break;
1641 case KVM_REG_PPC_TB_OFFSET:
1642 /*
1643 * POWER9 DD1 has an erratum where writing TBU40 causes
1644 * the timebase to lose ticks. So we don't let the
1645 * timebase offset be changed on P9 DD1. (It is
1646 * initialized to zero.)
1647 */
1648 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1649 break;
1650 /* round up to multiple of 2^24 */
1651 vcpu->arch.vcore->tb_offset =
1652 ALIGN(set_reg_val(id, *val), 1UL << 24);
1653 break;
1654 case KVM_REG_PPC_LPCR:
1655 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1656 break;
1657 case KVM_REG_PPC_LPCR_64:
1658 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1659 break;
1660 case KVM_REG_PPC_PPR:
1661 vcpu->arch.ppr = set_reg_val(id, *val);
1662 break;
1663 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1664 case KVM_REG_PPC_TFHAR:
1665 vcpu->arch.tfhar = set_reg_val(id, *val);
1666 break;
1667 case KVM_REG_PPC_TFIAR:
1668 vcpu->arch.tfiar = set_reg_val(id, *val);
1669 break;
1670 case KVM_REG_PPC_TEXASR:
1671 vcpu->arch.texasr = set_reg_val(id, *val);
1672 break;
1673 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1674 i = id - KVM_REG_PPC_TM_GPR0;
1675 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1676 break;
1677 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1678 {
1679 int j;
1680 i = id - KVM_REG_PPC_TM_VSR0;
1681 if (i < 32)
1682 for (j = 0; j < TS_FPRWIDTH; j++)
1683 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1684 else
1685 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1686 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1687 else
1688 r = -ENXIO;
1689 break;
1690 }
1691 case KVM_REG_PPC_TM_CR:
1692 vcpu->arch.cr_tm = set_reg_val(id, *val);
1693 break;
1694 case KVM_REG_PPC_TM_XER:
1695 vcpu->arch.xer_tm = set_reg_val(id, *val);
1696 break;
1697 case KVM_REG_PPC_TM_LR:
1698 vcpu->arch.lr_tm = set_reg_val(id, *val);
1699 break;
1700 case KVM_REG_PPC_TM_CTR:
1701 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1702 break;
1703 case KVM_REG_PPC_TM_FPSCR:
1704 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1705 break;
1706 case KVM_REG_PPC_TM_AMR:
1707 vcpu->arch.amr_tm = set_reg_val(id, *val);
1708 break;
1709 case KVM_REG_PPC_TM_PPR:
1710 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1711 break;
1712 case KVM_REG_PPC_TM_VRSAVE:
1713 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1714 break;
1715 case KVM_REG_PPC_TM_VSCR:
1716 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1717 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1718 else
1719 r = - ENXIO;
1720 break;
1721 case KVM_REG_PPC_TM_DSCR:
1722 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1723 break;
1724 case KVM_REG_PPC_TM_TAR:
1725 vcpu->arch.tar_tm = set_reg_val(id, *val);
1726 break;
1727 #endif
1728 case KVM_REG_PPC_ARCH_COMPAT:
1729 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1730 break;
1731 case KVM_REG_PPC_DEC_EXPIRY:
1732 vcpu->arch.dec_expires = set_reg_val(id, *val) -
1733 vcpu->arch.vcore->tb_offset;
1734 break;
1735 default:
1736 r = -EINVAL;
1737 break;
1738 }
1739
1740 return r;
1741 }
1742
1743 /*
1744 * On POWER9, threads are independent and can be in different partitions.
1745 * Therefore we consider each thread to be a subcore.
1746 * There is a restriction that all threads have to be in the same
1747 * MMU mode (radix or HPT), unfortunately, but since we only support
1748 * HPT guests on a HPT host so far, that isn't an impediment yet.
1749 */
threads_per_vcore(void)1750 static int threads_per_vcore(void)
1751 {
1752 if (cpu_has_feature(CPU_FTR_ARCH_300))
1753 return 1;
1754 return threads_per_subcore;
1755 }
1756
kvmppc_vcore_create(struct kvm * kvm,int core)1757 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1758 {
1759 struct kvmppc_vcore *vcore;
1760
1761 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1762
1763 if (vcore == NULL)
1764 return NULL;
1765
1766 spin_lock_init(&vcore->lock);
1767 spin_lock_init(&vcore->stoltb_lock);
1768 init_swait_queue_head(&vcore->wq);
1769 vcore->preempt_tb = TB_NIL;
1770 vcore->lpcr = kvm->arch.lpcr;
1771 vcore->first_vcpuid = core * kvm->arch.smt_mode;
1772 vcore->kvm = kvm;
1773 INIT_LIST_HEAD(&vcore->preempt_list);
1774
1775 return vcore;
1776 }
1777
1778 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1779 static struct debugfs_timings_element {
1780 const char *name;
1781 size_t offset;
1782 } timings[] = {
1783 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
1784 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
1785 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
1786 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
1787 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
1788 };
1789
1790 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0]))
1791
1792 struct debugfs_timings_state {
1793 struct kvm_vcpu *vcpu;
1794 unsigned int buflen;
1795 char buf[N_TIMINGS * 100];
1796 };
1797
debugfs_timings_open(struct inode * inode,struct file * file)1798 static int debugfs_timings_open(struct inode *inode, struct file *file)
1799 {
1800 struct kvm_vcpu *vcpu = inode->i_private;
1801 struct debugfs_timings_state *p;
1802
1803 p = kzalloc(sizeof(*p), GFP_KERNEL);
1804 if (!p)
1805 return -ENOMEM;
1806
1807 kvm_get_kvm(vcpu->kvm);
1808 p->vcpu = vcpu;
1809 file->private_data = p;
1810
1811 return nonseekable_open(inode, file);
1812 }
1813
debugfs_timings_release(struct inode * inode,struct file * file)1814 static int debugfs_timings_release(struct inode *inode, struct file *file)
1815 {
1816 struct debugfs_timings_state *p = file->private_data;
1817
1818 kvm_put_kvm(p->vcpu->kvm);
1819 kfree(p);
1820 return 0;
1821 }
1822
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1823 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1824 size_t len, loff_t *ppos)
1825 {
1826 struct debugfs_timings_state *p = file->private_data;
1827 struct kvm_vcpu *vcpu = p->vcpu;
1828 char *s, *buf_end;
1829 struct kvmhv_tb_accumulator tb;
1830 u64 count;
1831 loff_t pos;
1832 ssize_t n;
1833 int i, loops;
1834 bool ok;
1835
1836 if (!p->buflen) {
1837 s = p->buf;
1838 buf_end = s + sizeof(p->buf);
1839 for (i = 0; i < N_TIMINGS; ++i) {
1840 struct kvmhv_tb_accumulator *acc;
1841
1842 acc = (struct kvmhv_tb_accumulator *)
1843 ((unsigned long)vcpu + timings[i].offset);
1844 ok = false;
1845 for (loops = 0; loops < 1000; ++loops) {
1846 count = acc->seqcount;
1847 if (!(count & 1)) {
1848 smp_rmb();
1849 tb = *acc;
1850 smp_rmb();
1851 if (count == acc->seqcount) {
1852 ok = true;
1853 break;
1854 }
1855 }
1856 udelay(1);
1857 }
1858 if (!ok)
1859 snprintf(s, buf_end - s, "%s: stuck\n",
1860 timings[i].name);
1861 else
1862 snprintf(s, buf_end - s,
1863 "%s: %llu %llu %llu %llu\n",
1864 timings[i].name, count / 2,
1865 tb_to_ns(tb.tb_total),
1866 tb_to_ns(tb.tb_min),
1867 tb_to_ns(tb.tb_max));
1868 s += strlen(s);
1869 }
1870 p->buflen = s - p->buf;
1871 }
1872
1873 pos = *ppos;
1874 if (pos >= p->buflen)
1875 return 0;
1876 if (len > p->buflen - pos)
1877 len = p->buflen - pos;
1878 n = copy_to_user(buf, p->buf + pos, len);
1879 if (n) {
1880 if (n == len)
1881 return -EFAULT;
1882 len -= n;
1883 }
1884 *ppos = pos + len;
1885 return len;
1886 }
1887
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1888 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1889 size_t len, loff_t *ppos)
1890 {
1891 return -EACCES;
1892 }
1893
1894 static const struct file_operations debugfs_timings_ops = {
1895 .owner = THIS_MODULE,
1896 .open = debugfs_timings_open,
1897 .release = debugfs_timings_release,
1898 .read = debugfs_timings_read,
1899 .write = debugfs_timings_write,
1900 .llseek = generic_file_llseek,
1901 };
1902
1903 /* Create a debugfs directory for the vcpu */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)1904 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1905 {
1906 char buf[16];
1907 struct kvm *kvm = vcpu->kvm;
1908
1909 snprintf(buf, sizeof(buf), "vcpu%u", id);
1910 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1911 return;
1912 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1913 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1914 return;
1915 vcpu->arch.debugfs_timings =
1916 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1917 vcpu, &debugfs_timings_ops);
1918 }
1919
1920 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)1921 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1922 {
1923 }
1924 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1925
kvmppc_core_vcpu_create_hv(struct kvm * kvm,unsigned int id)1926 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1927 unsigned int id)
1928 {
1929 struct kvm_vcpu *vcpu;
1930 int err;
1931 int core;
1932 struct kvmppc_vcore *vcore;
1933
1934 err = -ENOMEM;
1935 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1936 if (!vcpu)
1937 goto out;
1938
1939 err = kvm_vcpu_init(vcpu, kvm, id);
1940 if (err)
1941 goto free_vcpu;
1942
1943 vcpu->arch.shared = &vcpu->arch.shregs;
1944 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1945 /*
1946 * The shared struct is never shared on HV,
1947 * so we can always use host endianness
1948 */
1949 #ifdef __BIG_ENDIAN__
1950 vcpu->arch.shared_big_endian = true;
1951 #else
1952 vcpu->arch.shared_big_endian = false;
1953 #endif
1954 #endif
1955 vcpu->arch.mmcr[0] = MMCR0_FC;
1956 vcpu->arch.ctrl = CTRL_RUNLATCH;
1957 /* default to host PVR, since we can't spoof it */
1958 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1959 spin_lock_init(&vcpu->arch.vpa_update_lock);
1960 spin_lock_init(&vcpu->arch.tbacct_lock);
1961 vcpu->arch.busy_preempt = TB_NIL;
1962 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1963
1964 /*
1965 * Set the default HFSCR for the guest from the host value.
1966 * This value is only used on POWER9.
1967 * On POWER9 DD1, TM doesn't work, so we make sure to
1968 * prevent the guest from using it.
1969 * On POWER9, we want to virtualize the doorbell facility, so we
1970 * turn off the HFSCR bit, which causes those instructions to trap.
1971 */
1972 vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1973 if (!cpu_has_feature(CPU_FTR_TM))
1974 vcpu->arch.hfscr &= ~HFSCR_TM;
1975 if (cpu_has_feature(CPU_FTR_ARCH_300))
1976 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1977
1978 kvmppc_mmu_book3s_hv_init(vcpu);
1979
1980 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1981
1982 init_waitqueue_head(&vcpu->arch.cpu_run);
1983
1984 mutex_lock(&kvm->lock);
1985 vcore = NULL;
1986 err = -EINVAL;
1987 core = id / kvm->arch.smt_mode;
1988 if (core < KVM_MAX_VCORES) {
1989 vcore = kvm->arch.vcores[core];
1990 if (!vcore) {
1991 err = -ENOMEM;
1992 vcore = kvmppc_vcore_create(kvm, core);
1993 kvm->arch.vcores[core] = vcore;
1994 kvm->arch.online_vcores++;
1995 }
1996 }
1997 mutex_unlock(&kvm->lock);
1998
1999 if (!vcore)
2000 goto uninit_vcpu;
2001
2002 spin_lock(&vcore->lock);
2003 ++vcore->num_threads;
2004 spin_unlock(&vcore->lock);
2005 vcpu->arch.vcore = vcore;
2006 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2007 vcpu->arch.thread_cpu = -1;
2008 vcpu->arch.prev_cpu = -1;
2009
2010 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2011 kvmppc_sanity_check(vcpu);
2012
2013 debugfs_vcpu_init(vcpu, id);
2014
2015 return vcpu;
2016
2017 uninit_vcpu:
2018 kvm_vcpu_uninit(vcpu);
2019 free_vcpu:
2020 kmem_cache_free(kvm_vcpu_cache, vcpu);
2021 out:
2022 return ERR_PTR(err);
2023 }
2024
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)2025 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2026 unsigned long flags)
2027 {
2028 int err;
2029 int esmt = 0;
2030
2031 if (flags)
2032 return -EINVAL;
2033 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2034 return -EINVAL;
2035 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2036 /*
2037 * On POWER8 (or POWER7), the threading mode is "strict",
2038 * so we pack smt_mode vcpus per vcore.
2039 */
2040 if (smt_mode > threads_per_subcore)
2041 return -EINVAL;
2042 } else {
2043 /*
2044 * On POWER9, the threading mode is "loose",
2045 * so each vcpu gets its own vcore.
2046 */
2047 esmt = smt_mode;
2048 smt_mode = 1;
2049 }
2050 mutex_lock(&kvm->lock);
2051 err = -EBUSY;
2052 if (!kvm->arch.online_vcores) {
2053 kvm->arch.smt_mode = smt_mode;
2054 kvm->arch.emul_smt_mode = esmt;
2055 err = 0;
2056 }
2057 mutex_unlock(&kvm->lock);
2058
2059 return err;
2060 }
2061
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)2062 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2063 {
2064 if (vpa->pinned_addr)
2065 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2066 vpa->dirty);
2067 }
2068
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)2069 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2070 {
2071 spin_lock(&vcpu->arch.vpa_update_lock);
2072 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2073 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2074 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2075 spin_unlock(&vcpu->arch.vpa_update_lock);
2076 kvm_vcpu_uninit(vcpu);
2077 kmem_cache_free(kvm_vcpu_cache, vcpu);
2078 }
2079
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)2080 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2081 {
2082 /* Indicate we want to get back into the guest */
2083 return 1;
2084 }
2085
kvmppc_set_timer(struct kvm_vcpu * vcpu)2086 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2087 {
2088 unsigned long dec_nsec, now;
2089
2090 now = get_tb();
2091 if (now > vcpu->arch.dec_expires) {
2092 /* decrementer has already gone negative */
2093 kvmppc_core_queue_dec(vcpu);
2094 kvmppc_core_prepare_to_enter(vcpu);
2095 return;
2096 }
2097 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2098 / tb_ticks_per_sec;
2099 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2100 vcpu->arch.timer_running = 1;
2101 }
2102
kvmppc_end_cede(struct kvm_vcpu * vcpu)2103 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2104 {
2105 vcpu->arch.ceded = 0;
2106 if (vcpu->arch.timer_running) {
2107 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2108 vcpu->arch.timer_running = 0;
2109 }
2110 }
2111
2112 extern int __kvmppc_vcore_entry(void);
2113
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu)2114 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2115 struct kvm_vcpu *vcpu)
2116 {
2117 u64 now;
2118
2119 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2120 return;
2121 spin_lock_irq(&vcpu->arch.tbacct_lock);
2122 now = mftb();
2123 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2124 vcpu->arch.stolen_logged;
2125 vcpu->arch.busy_preempt = now;
2126 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2127 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2128 --vc->n_runnable;
2129 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2130 }
2131
kvmppc_grab_hwthread(int cpu)2132 static int kvmppc_grab_hwthread(int cpu)
2133 {
2134 struct paca_struct *tpaca;
2135 long timeout = 10000;
2136
2137 /*
2138 * ISA v3.0 idle routines do not set hwthread_state or test
2139 * hwthread_req, so they can not grab idle threads.
2140 */
2141 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2142 WARN(1, "KVM: can not control sibling threads\n");
2143 return -EBUSY;
2144 }
2145
2146 tpaca = &paca[cpu];
2147
2148 /* Ensure the thread won't go into the kernel if it wakes */
2149 tpaca->kvm_hstate.kvm_vcpu = NULL;
2150 tpaca->kvm_hstate.kvm_vcore = NULL;
2151 tpaca->kvm_hstate.napping = 0;
2152 smp_wmb();
2153 tpaca->kvm_hstate.hwthread_req = 1;
2154
2155 /*
2156 * If the thread is already executing in the kernel (e.g. handling
2157 * a stray interrupt), wait for it to get back to nap mode.
2158 * The smp_mb() is to ensure that our setting of hwthread_req
2159 * is visible before we look at hwthread_state, so if this
2160 * races with the code at system_reset_pSeries and the thread
2161 * misses our setting of hwthread_req, we are sure to see its
2162 * setting of hwthread_state, and vice versa.
2163 */
2164 smp_mb();
2165 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2166 if (--timeout <= 0) {
2167 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2168 return -EBUSY;
2169 }
2170 udelay(1);
2171 }
2172 return 0;
2173 }
2174
kvmppc_release_hwthread(int cpu)2175 static void kvmppc_release_hwthread(int cpu)
2176 {
2177 struct paca_struct *tpaca;
2178
2179 tpaca = &paca[cpu];
2180 tpaca->kvm_hstate.kvm_vcpu = NULL;
2181 tpaca->kvm_hstate.kvm_vcore = NULL;
2182 tpaca->kvm_hstate.kvm_split_mode = NULL;
2183 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2184 tpaca->kvm_hstate.hwthread_req = 0;
2185
2186 }
2187
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)2188 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2189 {
2190 int i;
2191
2192 cpu = cpu_first_thread_sibling(cpu);
2193 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2194 /*
2195 * Make sure setting of bit in need_tlb_flush precedes
2196 * testing of cpu_in_guest bits. The matching barrier on
2197 * the other side is the first smp_mb() in kvmppc_run_core().
2198 */
2199 smp_mb();
2200 for (i = 0; i < threads_per_core; ++i)
2201 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2202 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2203 }
2204
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)2205 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2206 {
2207 struct kvm *kvm = vcpu->kvm;
2208
2209 /*
2210 * With radix, the guest can do TLB invalidations itself,
2211 * and it could choose to use the local form (tlbiel) if
2212 * it is invalidating a translation that has only ever been
2213 * used on one vcpu. However, that doesn't mean it has
2214 * only ever been used on one physical cpu, since vcpus
2215 * can move around between pcpus. To cope with this, when
2216 * a vcpu moves from one pcpu to another, we need to tell
2217 * any vcpus running on the same core as this vcpu previously
2218 * ran to flush the TLB. The TLB is shared between threads,
2219 * so we use a single bit in .need_tlb_flush for all 4 threads.
2220 */
2221 if (vcpu->arch.prev_cpu != pcpu) {
2222 if (vcpu->arch.prev_cpu >= 0 &&
2223 cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2224 cpu_first_thread_sibling(pcpu))
2225 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2226 vcpu->arch.prev_cpu = pcpu;
2227 }
2228 }
2229
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)2230 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2231 {
2232 int cpu;
2233 struct paca_struct *tpaca;
2234 struct kvm *kvm = vc->kvm;
2235
2236 cpu = vc->pcpu;
2237 if (vcpu) {
2238 if (vcpu->arch.timer_running) {
2239 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2240 vcpu->arch.timer_running = 0;
2241 }
2242 cpu += vcpu->arch.ptid;
2243 vcpu->cpu = vc->pcpu;
2244 vcpu->arch.thread_cpu = cpu;
2245 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2246 }
2247 tpaca = &paca[cpu];
2248 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2249 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2250 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2251 smp_wmb();
2252 tpaca->kvm_hstate.kvm_vcore = vc;
2253 if (cpu != smp_processor_id())
2254 kvmppc_ipi_thread(cpu);
2255 }
2256
kvmppc_wait_for_nap(void)2257 static void kvmppc_wait_for_nap(void)
2258 {
2259 int cpu = smp_processor_id();
2260 int i, loops;
2261 int n_threads = threads_per_vcore();
2262
2263 if (n_threads <= 1)
2264 return;
2265 for (loops = 0; loops < 1000000; ++loops) {
2266 /*
2267 * Check if all threads are finished.
2268 * We set the vcore pointer when starting a thread
2269 * and the thread clears it when finished, so we look
2270 * for any threads that still have a non-NULL vcore ptr.
2271 */
2272 for (i = 1; i < n_threads; ++i)
2273 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2274 break;
2275 if (i == n_threads) {
2276 HMT_medium();
2277 return;
2278 }
2279 HMT_low();
2280 }
2281 HMT_medium();
2282 for (i = 1; i < n_threads; ++i)
2283 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2284 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2285 }
2286
2287 /*
2288 * Check that we are on thread 0 and that any other threads in
2289 * this core are off-line. Then grab the threads so they can't
2290 * enter the kernel.
2291 */
on_primary_thread(void)2292 static int on_primary_thread(void)
2293 {
2294 int cpu = smp_processor_id();
2295 int thr;
2296
2297 /* Are we on a primary subcore? */
2298 if (cpu_thread_in_subcore(cpu))
2299 return 0;
2300
2301 thr = 0;
2302 while (++thr < threads_per_subcore)
2303 if (cpu_online(cpu + thr))
2304 return 0;
2305
2306 /* Grab all hw threads so they can't go into the kernel */
2307 for (thr = 1; thr < threads_per_subcore; ++thr) {
2308 if (kvmppc_grab_hwthread(cpu + thr)) {
2309 /* Couldn't grab one; let the others go */
2310 do {
2311 kvmppc_release_hwthread(cpu + thr);
2312 } while (--thr > 0);
2313 return 0;
2314 }
2315 }
2316 return 1;
2317 }
2318
2319 /*
2320 * A list of virtual cores for each physical CPU.
2321 * These are vcores that could run but their runner VCPU tasks are
2322 * (or may be) preempted.
2323 */
2324 struct preempted_vcore_list {
2325 struct list_head list;
2326 spinlock_t lock;
2327 };
2328
2329 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2330
init_vcore_lists(void)2331 static void init_vcore_lists(void)
2332 {
2333 int cpu;
2334
2335 for_each_possible_cpu(cpu) {
2336 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2337 spin_lock_init(&lp->lock);
2338 INIT_LIST_HEAD(&lp->list);
2339 }
2340 }
2341
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)2342 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2343 {
2344 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2345
2346 vc->vcore_state = VCORE_PREEMPT;
2347 vc->pcpu = smp_processor_id();
2348 if (vc->num_threads < threads_per_vcore()) {
2349 spin_lock(&lp->lock);
2350 list_add_tail(&vc->preempt_list, &lp->list);
2351 spin_unlock(&lp->lock);
2352 }
2353
2354 /* Start accumulating stolen time */
2355 kvmppc_core_start_stolen(vc);
2356 }
2357
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)2358 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2359 {
2360 struct preempted_vcore_list *lp;
2361
2362 kvmppc_core_end_stolen(vc);
2363 if (!list_empty(&vc->preempt_list)) {
2364 lp = &per_cpu(preempted_vcores, vc->pcpu);
2365 spin_lock(&lp->lock);
2366 list_del_init(&vc->preempt_list);
2367 spin_unlock(&lp->lock);
2368 }
2369 vc->vcore_state = VCORE_INACTIVE;
2370 }
2371
2372 /*
2373 * This stores information about the virtual cores currently
2374 * assigned to a physical core.
2375 */
2376 struct core_info {
2377 int n_subcores;
2378 int max_subcore_threads;
2379 int total_threads;
2380 int subcore_threads[MAX_SUBCORES];
2381 struct kvmppc_vcore *vc[MAX_SUBCORES];
2382 };
2383
2384 /*
2385 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2386 * respectively in 2-way micro-threading (split-core) mode.
2387 */
2388 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2389
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)2390 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2391 {
2392 memset(cip, 0, sizeof(*cip));
2393 cip->n_subcores = 1;
2394 cip->max_subcore_threads = vc->num_threads;
2395 cip->total_threads = vc->num_threads;
2396 cip->subcore_threads[0] = vc->num_threads;
2397 cip->vc[0] = vc;
2398 }
2399
subcore_config_ok(int n_subcores,int n_threads)2400 static bool subcore_config_ok(int n_subcores, int n_threads)
2401 {
2402 /* Can only dynamically split if unsplit to begin with */
2403 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2404 return false;
2405 if (n_subcores > MAX_SUBCORES)
2406 return false;
2407 if (n_subcores > 1) {
2408 if (!(dynamic_mt_modes & 2))
2409 n_subcores = 4;
2410 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2411 return false;
2412 }
2413
2414 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2415 }
2416
init_vcore_to_run(struct kvmppc_vcore * vc)2417 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2418 {
2419 vc->entry_exit_map = 0;
2420 vc->in_guest = 0;
2421 vc->napping_threads = 0;
2422 vc->conferring_threads = 0;
2423 }
2424
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)2425 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2426 {
2427 int n_threads = vc->num_threads;
2428 int sub;
2429
2430 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2431 return false;
2432
2433 if (n_threads < cip->max_subcore_threads)
2434 n_threads = cip->max_subcore_threads;
2435 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2436 return false;
2437 cip->max_subcore_threads = n_threads;
2438
2439 sub = cip->n_subcores;
2440 ++cip->n_subcores;
2441 cip->total_threads += vc->num_threads;
2442 cip->subcore_threads[sub] = vc->num_threads;
2443 cip->vc[sub] = vc;
2444 init_vcore_to_run(vc);
2445 list_del_init(&vc->preempt_list);
2446
2447 return true;
2448 }
2449
2450 /*
2451 * Work out whether it is possible to piggyback the execution of
2452 * vcore *pvc onto the execution of the other vcores described in *cip.
2453 */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)2454 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2455 int target_threads)
2456 {
2457 if (cip->total_threads + pvc->num_threads > target_threads)
2458 return false;
2459
2460 return can_dynamic_split(pvc, cip);
2461 }
2462
prepare_threads(struct kvmppc_vcore * vc)2463 static void prepare_threads(struct kvmppc_vcore *vc)
2464 {
2465 int i;
2466 struct kvm_vcpu *vcpu;
2467
2468 for_each_runnable_thread(i, vcpu, vc) {
2469 if (signal_pending(vcpu->arch.run_task))
2470 vcpu->arch.ret = -EINTR;
2471 else if (vcpu->arch.vpa.update_pending ||
2472 vcpu->arch.slb_shadow.update_pending ||
2473 vcpu->arch.dtl.update_pending)
2474 vcpu->arch.ret = RESUME_GUEST;
2475 else
2476 continue;
2477 kvmppc_remove_runnable(vc, vcpu);
2478 wake_up(&vcpu->arch.cpu_run);
2479 }
2480 }
2481
collect_piggybacks(struct core_info * cip,int target_threads)2482 static void collect_piggybacks(struct core_info *cip, int target_threads)
2483 {
2484 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2485 struct kvmppc_vcore *pvc, *vcnext;
2486
2487 spin_lock(&lp->lock);
2488 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2489 if (!spin_trylock(&pvc->lock))
2490 continue;
2491 prepare_threads(pvc);
2492 if (!pvc->n_runnable) {
2493 list_del_init(&pvc->preempt_list);
2494 if (pvc->runner == NULL) {
2495 pvc->vcore_state = VCORE_INACTIVE;
2496 kvmppc_core_end_stolen(pvc);
2497 }
2498 spin_unlock(&pvc->lock);
2499 continue;
2500 }
2501 if (!can_piggyback(pvc, cip, target_threads)) {
2502 spin_unlock(&pvc->lock);
2503 continue;
2504 }
2505 kvmppc_core_end_stolen(pvc);
2506 pvc->vcore_state = VCORE_PIGGYBACK;
2507 if (cip->total_threads >= target_threads)
2508 break;
2509 }
2510 spin_unlock(&lp->lock);
2511 }
2512
recheck_signals(struct core_info * cip)2513 static bool recheck_signals(struct core_info *cip)
2514 {
2515 int sub, i;
2516 struct kvm_vcpu *vcpu;
2517
2518 for (sub = 0; sub < cip->n_subcores; ++sub)
2519 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2520 if (signal_pending(vcpu->arch.run_task))
2521 return true;
2522 return false;
2523 }
2524
post_guest_process(struct kvmppc_vcore * vc,bool is_master)2525 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2526 {
2527 int still_running = 0, i;
2528 u64 now;
2529 long ret;
2530 struct kvm_vcpu *vcpu;
2531
2532 spin_lock(&vc->lock);
2533 now = get_tb();
2534 for_each_runnable_thread(i, vcpu, vc) {
2535 /* cancel pending dec exception if dec is positive */
2536 if (now < vcpu->arch.dec_expires &&
2537 kvmppc_core_pending_dec(vcpu))
2538 kvmppc_core_dequeue_dec(vcpu);
2539
2540 trace_kvm_guest_exit(vcpu);
2541
2542 ret = RESUME_GUEST;
2543 if (vcpu->arch.trap)
2544 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2545 vcpu->arch.run_task);
2546
2547 vcpu->arch.ret = ret;
2548 vcpu->arch.trap = 0;
2549
2550 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2551 if (vcpu->arch.pending_exceptions)
2552 kvmppc_core_prepare_to_enter(vcpu);
2553 if (vcpu->arch.ceded)
2554 kvmppc_set_timer(vcpu);
2555 else
2556 ++still_running;
2557 } else {
2558 kvmppc_remove_runnable(vc, vcpu);
2559 wake_up(&vcpu->arch.cpu_run);
2560 }
2561 }
2562 if (!is_master) {
2563 if (still_running > 0) {
2564 kvmppc_vcore_preempt(vc);
2565 } else if (vc->runner) {
2566 vc->vcore_state = VCORE_PREEMPT;
2567 kvmppc_core_start_stolen(vc);
2568 } else {
2569 vc->vcore_state = VCORE_INACTIVE;
2570 }
2571 if (vc->n_runnable > 0 && vc->runner == NULL) {
2572 /* make sure there's a candidate runner awake */
2573 i = -1;
2574 vcpu = next_runnable_thread(vc, &i);
2575 wake_up(&vcpu->arch.cpu_run);
2576 }
2577 }
2578 spin_unlock(&vc->lock);
2579 }
2580
2581 /*
2582 * Clear core from the list of active host cores as we are about to
2583 * enter the guest. Only do this if it is the primary thread of the
2584 * core (not if a subcore) that is entering the guest.
2585 */
kvmppc_clear_host_core(unsigned int cpu)2586 static inline int kvmppc_clear_host_core(unsigned int cpu)
2587 {
2588 int core;
2589
2590 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2591 return 0;
2592 /*
2593 * Memory barrier can be omitted here as we will do a smp_wmb()
2594 * later in kvmppc_start_thread and we need ensure that state is
2595 * visible to other CPUs only after we enter guest.
2596 */
2597 core = cpu >> threads_shift;
2598 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2599 return 0;
2600 }
2601
2602 /*
2603 * Advertise this core as an active host core since we exited the guest
2604 * Only need to do this if it is the primary thread of the core that is
2605 * exiting.
2606 */
kvmppc_set_host_core(unsigned int cpu)2607 static inline int kvmppc_set_host_core(unsigned int cpu)
2608 {
2609 int core;
2610
2611 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2612 return 0;
2613
2614 /*
2615 * Memory barrier can be omitted here because we do a spin_unlock
2616 * immediately after this which provides the memory barrier.
2617 */
2618 core = cpu >> threads_shift;
2619 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2620 return 0;
2621 }
2622
set_irq_happened(int trap)2623 static void set_irq_happened(int trap)
2624 {
2625 switch (trap) {
2626 case BOOK3S_INTERRUPT_EXTERNAL:
2627 local_paca->irq_happened |= PACA_IRQ_EE;
2628 break;
2629 case BOOK3S_INTERRUPT_H_DOORBELL:
2630 local_paca->irq_happened |= PACA_IRQ_DBELL;
2631 break;
2632 case BOOK3S_INTERRUPT_HMI:
2633 local_paca->irq_happened |= PACA_IRQ_HMI;
2634 break;
2635 }
2636 }
2637
2638 /*
2639 * Run a set of guest threads on a physical core.
2640 * Called with vc->lock held.
2641 */
kvmppc_run_core(struct kvmppc_vcore * vc)2642 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2643 {
2644 struct kvm_vcpu *vcpu;
2645 int i;
2646 int srcu_idx;
2647 struct core_info core_info;
2648 struct kvmppc_vcore *pvc;
2649 struct kvm_split_mode split_info, *sip;
2650 int split, subcore_size, active;
2651 int sub;
2652 bool thr0_done;
2653 unsigned long cmd_bit, stat_bit;
2654 int pcpu, thr;
2655 int target_threads;
2656 int controlled_threads;
2657 int trap;
2658
2659 /*
2660 * Remove from the list any threads that have a signal pending
2661 * or need a VPA update done
2662 */
2663 prepare_threads(vc);
2664
2665 /* if the runner is no longer runnable, let the caller pick a new one */
2666 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2667 return;
2668
2669 /*
2670 * Initialize *vc.
2671 */
2672 init_vcore_to_run(vc);
2673 vc->preempt_tb = TB_NIL;
2674
2675 /*
2676 * Number of threads that we will be controlling: the same as
2677 * the number of threads per subcore, except on POWER9,
2678 * where it's 1 because the threads are (mostly) independent.
2679 */
2680 controlled_threads = threads_per_vcore();
2681
2682 /*
2683 * Make sure we are running on primary threads, and that secondary
2684 * threads are offline. Also check if the number of threads in this
2685 * guest are greater than the current system threads per guest.
2686 */
2687 if ((controlled_threads > 1) &&
2688 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2689 for_each_runnable_thread(i, vcpu, vc) {
2690 vcpu->arch.ret = -EBUSY;
2691 kvmppc_remove_runnable(vc, vcpu);
2692 wake_up(&vcpu->arch.cpu_run);
2693 }
2694 goto out;
2695 }
2696
2697 /*
2698 * See if we could run any other vcores on the physical core
2699 * along with this one.
2700 */
2701 init_core_info(&core_info, vc);
2702 pcpu = smp_processor_id();
2703 target_threads = controlled_threads;
2704 if (target_smt_mode && target_smt_mode < target_threads)
2705 target_threads = target_smt_mode;
2706 if (vc->num_threads < target_threads)
2707 collect_piggybacks(&core_info, target_threads);
2708
2709 /*
2710 * On radix, arrange for TLB flushing if necessary.
2711 * This has to be done before disabling interrupts since
2712 * it uses smp_call_function().
2713 */
2714 pcpu = smp_processor_id();
2715 if (kvm_is_radix(vc->kvm)) {
2716 for (sub = 0; sub < core_info.n_subcores; ++sub)
2717 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2718 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2719 }
2720
2721 /*
2722 * Hard-disable interrupts, and check resched flag and signals.
2723 * If we need to reschedule or deliver a signal, clean up
2724 * and return without going into the guest(s).
2725 * If the hpte_setup_done flag has been cleared, don't go into the
2726 * guest because that means a HPT resize operation is in progress.
2727 */
2728 local_irq_disable();
2729 hard_irq_disable();
2730 if (lazy_irq_pending() || need_resched() ||
2731 recheck_signals(&core_info) ||
2732 (!kvm_is_radix(vc->kvm) && !vc->kvm->arch.hpte_setup_done)) {
2733 local_irq_enable();
2734 vc->vcore_state = VCORE_INACTIVE;
2735 /* Unlock all except the primary vcore */
2736 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2737 pvc = core_info.vc[sub];
2738 /* Put back on to the preempted vcores list */
2739 kvmppc_vcore_preempt(pvc);
2740 spin_unlock(&pvc->lock);
2741 }
2742 for (i = 0; i < controlled_threads; ++i)
2743 kvmppc_release_hwthread(pcpu + i);
2744 return;
2745 }
2746
2747 kvmppc_clear_host_core(pcpu);
2748
2749 /* Decide on micro-threading (split-core) mode */
2750 subcore_size = threads_per_subcore;
2751 cmd_bit = stat_bit = 0;
2752 split = core_info.n_subcores;
2753 sip = NULL;
2754 if (split > 1) {
2755 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2756 if (split == 2 && (dynamic_mt_modes & 2)) {
2757 cmd_bit = HID0_POWER8_1TO2LPAR;
2758 stat_bit = HID0_POWER8_2LPARMODE;
2759 } else {
2760 split = 4;
2761 cmd_bit = HID0_POWER8_1TO4LPAR;
2762 stat_bit = HID0_POWER8_4LPARMODE;
2763 }
2764 subcore_size = MAX_SMT_THREADS / split;
2765 sip = &split_info;
2766 memset(&split_info, 0, sizeof(split_info));
2767 split_info.rpr = mfspr(SPRN_RPR);
2768 split_info.pmmar = mfspr(SPRN_PMMAR);
2769 split_info.ldbar = mfspr(SPRN_LDBAR);
2770 split_info.subcore_size = subcore_size;
2771 for (sub = 0; sub < core_info.n_subcores; ++sub)
2772 split_info.vc[sub] = core_info.vc[sub];
2773 /* order writes to split_info before kvm_split_mode pointer */
2774 smp_wmb();
2775 }
2776 for (thr = 0; thr < controlled_threads; ++thr)
2777 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2778
2779 /* Initiate micro-threading (split-core) if required */
2780 if (cmd_bit) {
2781 unsigned long hid0 = mfspr(SPRN_HID0);
2782
2783 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2784 mb();
2785 mtspr(SPRN_HID0, hid0);
2786 isync();
2787 for (;;) {
2788 hid0 = mfspr(SPRN_HID0);
2789 if (hid0 & stat_bit)
2790 break;
2791 cpu_relax();
2792 }
2793 }
2794
2795 /* Start all the threads */
2796 active = 0;
2797 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2798 thr = subcore_thread_map[sub];
2799 thr0_done = false;
2800 active |= 1 << thr;
2801 pvc = core_info.vc[sub];
2802 pvc->pcpu = pcpu + thr;
2803 for_each_runnable_thread(i, vcpu, pvc) {
2804 kvmppc_start_thread(vcpu, pvc);
2805 kvmppc_create_dtl_entry(vcpu, pvc);
2806 trace_kvm_guest_enter(vcpu);
2807 if (!vcpu->arch.ptid)
2808 thr0_done = true;
2809 active |= 1 << (thr + vcpu->arch.ptid);
2810 }
2811 /*
2812 * We need to start the first thread of each subcore
2813 * even if it doesn't have a vcpu.
2814 */
2815 if (!thr0_done)
2816 kvmppc_start_thread(NULL, pvc);
2817 thr += pvc->num_threads;
2818 }
2819
2820 /*
2821 * Ensure that split_info.do_nap is set after setting
2822 * the vcore pointer in the PACA of the secondaries.
2823 */
2824 smp_mb();
2825 if (cmd_bit)
2826 split_info.do_nap = 1; /* ask secondaries to nap when done */
2827
2828 /*
2829 * When doing micro-threading, poke the inactive threads as well.
2830 * This gets them to the nap instruction after kvm_do_nap,
2831 * which reduces the time taken to unsplit later.
2832 */
2833 if (split > 1)
2834 for (thr = 1; thr < threads_per_subcore; ++thr)
2835 if (!(active & (1 << thr)))
2836 kvmppc_ipi_thread(pcpu + thr);
2837
2838 vc->vcore_state = VCORE_RUNNING;
2839 preempt_disable();
2840
2841 trace_kvmppc_run_core(vc, 0);
2842
2843 for (sub = 0; sub < core_info.n_subcores; ++sub)
2844 spin_unlock(&core_info.vc[sub]->lock);
2845
2846 /*
2847 * Interrupts will be enabled once we get into the guest,
2848 * so tell lockdep that we're about to enable interrupts.
2849 */
2850 trace_hardirqs_on();
2851
2852 guest_enter_irqoff();
2853
2854 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2855
2856 trap = __kvmppc_vcore_entry();
2857
2858 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2859
2860 trace_hardirqs_off();
2861 set_irq_happened(trap);
2862
2863 spin_lock(&vc->lock);
2864 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2865 vc->vcore_state = VCORE_EXITING;
2866
2867 /* wait for secondary threads to finish writing their state to memory */
2868 kvmppc_wait_for_nap();
2869
2870 /* Return to whole-core mode if we split the core earlier */
2871 if (split > 1) {
2872 unsigned long hid0 = mfspr(SPRN_HID0);
2873 unsigned long loops = 0;
2874
2875 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2876 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2877 mb();
2878 mtspr(SPRN_HID0, hid0);
2879 isync();
2880 for (;;) {
2881 hid0 = mfspr(SPRN_HID0);
2882 if (!(hid0 & stat_bit))
2883 break;
2884 cpu_relax();
2885 ++loops;
2886 }
2887 split_info.do_nap = 0;
2888 }
2889
2890 kvmppc_set_host_core(pcpu);
2891
2892 local_irq_enable();
2893 guest_exit();
2894
2895 /* Let secondaries go back to the offline loop */
2896 for (i = 0; i < controlled_threads; ++i) {
2897 kvmppc_release_hwthread(pcpu + i);
2898 if (sip && sip->napped[i])
2899 kvmppc_ipi_thread(pcpu + i);
2900 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2901 }
2902
2903 spin_unlock(&vc->lock);
2904
2905 /* make sure updates to secondary vcpu structs are visible now */
2906 smp_mb();
2907
2908 preempt_enable();
2909
2910 for (sub = 0; sub < core_info.n_subcores; ++sub) {
2911 pvc = core_info.vc[sub];
2912 post_guest_process(pvc, pvc == vc);
2913 }
2914
2915 spin_lock(&vc->lock);
2916
2917 out:
2918 vc->vcore_state = VCORE_INACTIVE;
2919 trace_kvmppc_run_core(vc, 1);
2920 }
2921
2922 /*
2923 * Wait for some other vcpu thread to execute us, and
2924 * wake us up when we need to handle something in the host.
2925 */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)2926 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2927 struct kvm_vcpu *vcpu, int wait_state)
2928 {
2929 DEFINE_WAIT(wait);
2930
2931 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2932 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2933 spin_unlock(&vc->lock);
2934 schedule();
2935 spin_lock(&vc->lock);
2936 }
2937 finish_wait(&vcpu->arch.cpu_run, &wait);
2938 }
2939
grow_halt_poll_ns(struct kvmppc_vcore * vc)2940 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2941 {
2942 /* 10us base */
2943 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2944 vc->halt_poll_ns = 10000;
2945 else
2946 vc->halt_poll_ns *= halt_poll_ns_grow;
2947 }
2948
shrink_halt_poll_ns(struct kvmppc_vcore * vc)2949 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2950 {
2951 if (halt_poll_ns_shrink == 0)
2952 vc->halt_poll_ns = 0;
2953 else
2954 vc->halt_poll_ns /= halt_poll_ns_shrink;
2955 }
2956
2957 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)2958 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2959 {
2960 if (!xive_enabled())
2961 return false;
2962 return vcpu->arch.xive_saved_state.pipr <
2963 vcpu->arch.xive_saved_state.cppr;
2964 }
2965 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)2966 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2967 {
2968 return false;
2969 }
2970 #endif /* CONFIG_KVM_XICS */
2971
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)2972 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2973 {
2974 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2975 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2976 return true;
2977
2978 return false;
2979 }
2980
2981 /*
2982 * Check to see if any of the runnable vcpus on the vcore have pending
2983 * exceptions or are no longer ceded
2984 */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)2985 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2986 {
2987 struct kvm_vcpu *vcpu;
2988 int i;
2989
2990 for_each_runnable_thread(i, vcpu, vc) {
2991 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2992 return 1;
2993 }
2994
2995 return 0;
2996 }
2997
2998 /*
2999 * All the vcpus in this vcore are idle, so wait for a decrementer
3000 * or external interrupt to one of the vcpus. vc->lock is held.
3001 */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)3002 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3003 {
3004 ktime_t cur, start_poll, start_wait;
3005 int do_sleep = 1;
3006 u64 block_ns;
3007 DECLARE_SWAITQUEUE(wait);
3008
3009 /* Poll for pending exceptions and ceded state */
3010 cur = start_poll = ktime_get();
3011 if (vc->halt_poll_ns) {
3012 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3013 ++vc->runner->stat.halt_attempted_poll;
3014
3015 vc->vcore_state = VCORE_POLLING;
3016 spin_unlock(&vc->lock);
3017
3018 do {
3019 if (kvmppc_vcore_check_block(vc)) {
3020 do_sleep = 0;
3021 break;
3022 }
3023 cur = ktime_get();
3024 } while (single_task_running() && ktime_before(cur, stop));
3025
3026 spin_lock(&vc->lock);
3027 vc->vcore_state = VCORE_INACTIVE;
3028
3029 if (!do_sleep) {
3030 ++vc->runner->stat.halt_successful_poll;
3031 goto out;
3032 }
3033 }
3034
3035 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3036
3037 if (kvmppc_vcore_check_block(vc)) {
3038 finish_swait(&vc->wq, &wait);
3039 do_sleep = 0;
3040 /* If we polled, count this as a successful poll */
3041 if (vc->halt_poll_ns)
3042 ++vc->runner->stat.halt_successful_poll;
3043 goto out;
3044 }
3045
3046 start_wait = ktime_get();
3047
3048 vc->vcore_state = VCORE_SLEEPING;
3049 trace_kvmppc_vcore_blocked(vc, 0);
3050 spin_unlock(&vc->lock);
3051 schedule();
3052 finish_swait(&vc->wq, &wait);
3053 spin_lock(&vc->lock);
3054 vc->vcore_state = VCORE_INACTIVE;
3055 trace_kvmppc_vcore_blocked(vc, 1);
3056 ++vc->runner->stat.halt_successful_wait;
3057
3058 cur = ktime_get();
3059
3060 out:
3061 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3062
3063 /* Attribute wait time */
3064 if (do_sleep) {
3065 vc->runner->stat.halt_wait_ns +=
3066 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3067 /* Attribute failed poll time */
3068 if (vc->halt_poll_ns)
3069 vc->runner->stat.halt_poll_fail_ns +=
3070 ktime_to_ns(start_wait) -
3071 ktime_to_ns(start_poll);
3072 } else {
3073 /* Attribute successful poll time */
3074 if (vc->halt_poll_ns)
3075 vc->runner->stat.halt_poll_success_ns +=
3076 ktime_to_ns(cur) -
3077 ktime_to_ns(start_poll);
3078 }
3079
3080 /* Adjust poll time */
3081 if (halt_poll_ns) {
3082 if (block_ns <= vc->halt_poll_ns)
3083 ;
3084 /* We slept and blocked for longer than the max halt time */
3085 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3086 shrink_halt_poll_ns(vc);
3087 /* We slept and our poll time is too small */
3088 else if (vc->halt_poll_ns < halt_poll_ns &&
3089 block_ns < halt_poll_ns)
3090 grow_halt_poll_ns(vc);
3091 if (vc->halt_poll_ns > halt_poll_ns)
3092 vc->halt_poll_ns = halt_poll_ns;
3093 } else
3094 vc->halt_poll_ns = 0;
3095
3096 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3097 }
3098
kvmppc_run_vcpu(struct kvm_run * kvm_run,struct kvm_vcpu * vcpu)3099 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3100 {
3101 int n_ceded, i, r;
3102 struct kvmppc_vcore *vc;
3103 struct kvm_vcpu *v;
3104
3105 trace_kvmppc_run_vcpu_enter(vcpu);
3106
3107 kvm_run->exit_reason = 0;
3108 vcpu->arch.ret = RESUME_GUEST;
3109 vcpu->arch.trap = 0;
3110 kvmppc_update_vpas(vcpu);
3111
3112 /*
3113 * Synchronize with other threads in this virtual core
3114 */
3115 vc = vcpu->arch.vcore;
3116 spin_lock(&vc->lock);
3117 vcpu->arch.ceded = 0;
3118 vcpu->arch.run_task = current;
3119 vcpu->arch.kvm_run = kvm_run;
3120 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3121 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3122 vcpu->arch.busy_preempt = TB_NIL;
3123 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3124 ++vc->n_runnable;
3125
3126 /*
3127 * This happens the first time this is called for a vcpu.
3128 * If the vcore is already running, we may be able to start
3129 * this thread straight away and have it join in.
3130 */
3131 if (!signal_pending(current)) {
3132 if (vc->vcore_state == VCORE_PIGGYBACK) {
3133 if (spin_trylock(&vc->lock)) {
3134 if (vc->vcore_state == VCORE_RUNNING &&
3135 !VCORE_IS_EXITING(vc)) {
3136 kvmppc_create_dtl_entry(vcpu, vc);
3137 kvmppc_start_thread(vcpu, vc);
3138 trace_kvm_guest_enter(vcpu);
3139 }
3140 spin_unlock(&vc->lock);
3141 }
3142 } else if (vc->vcore_state == VCORE_RUNNING &&
3143 !VCORE_IS_EXITING(vc)) {
3144 kvmppc_create_dtl_entry(vcpu, vc);
3145 kvmppc_start_thread(vcpu, vc);
3146 trace_kvm_guest_enter(vcpu);
3147 } else if (vc->vcore_state == VCORE_SLEEPING) {
3148 swake_up(&vc->wq);
3149 }
3150
3151 }
3152
3153 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3154 !signal_pending(current)) {
3155 /* See if the HPT and VRMA are ready to go */
3156 if (!kvm_is_radix(vcpu->kvm) &&
3157 !vcpu->kvm->arch.hpte_setup_done) {
3158 spin_unlock(&vc->lock);
3159 r = kvmppc_hv_setup_htab_rma(vcpu);
3160 spin_lock(&vc->lock);
3161 if (r) {
3162 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3163 kvm_run->fail_entry.hardware_entry_failure_reason = 0;
3164 vcpu->arch.ret = r;
3165 break;
3166 }
3167 }
3168
3169 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3170 kvmppc_vcore_end_preempt(vc);
3171
3172 if (vc->vcore_state != VCORE_INACTIVE) {
3173 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3174 continue;
3175 }
3176 for_each_runnable_thread(i, v, vc) {
3177 kvmppc_core_prepare_to_enter(v);
3178 if (signal_pending(v->arch.run_task)) {
3179 kvmppc_remove_runnable(vc, v);
3180 v->stat.signal_exits++;
3181 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3182 v->arch.ret = -EINTR;
3183 wake_up(&v->arch.cpu_run);
3184 }
3185 }
3186 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3187 break;
3188 n_ceded = 0;
3189 for_each_runnable_thread(i, v, vc) {
3190 if (!kvmppc_vcpu_woken(v))
3191 n_ceded += v->arch.ceded;
3192 else
3193 v->arch.ceded = 0;
3194 }
3195 vc->runner = vcpu;
3196 if (n_ceded == vc->n_runnable) {
3197 kvmppc_vcore_blocked(vc);
3198 } else if (need_resched()) {
3199 kvmppc_vcore_preempt(vc);
3200 /* Let something else run */
3201 cond_resched_lock(&vc->lock);
3202 if (vc->vcore_state == VCORE_PREEMPT)
3203 kvmppc_vcore_end_preempt(vc);
3204 } else {
3205 kvmppc_run_core(vc);
3206 }
3207 vc->runner = NULL;
3208 }
3209
3210 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3211 (vc->vcore_state == VCORE_RUNNING ||
3212 vc->vcore_state == VCORE_EXITING ||
3213 vc->vcore_state == VCORE_PIGGYBACK))
3214 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3215
3216 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3217 kvmppc_vcore_end_preempt(vc);
3218
3219 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3220 kvmppc_remove_runnable(vc, vcpu);
3221 vcpu->stat.signal_exits++;
3222 kvm_run->exit_reason = KVM_EXIT_INTR;
3223 vcpu->arch.ret = -EINTR;
3224 }
3225
3226 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3227 /* Wake up some vcpu to run the core */
3228 i = -1;
3229 v = next_runnable_thread(vc, &i);
3230 wake_up(&v->arch.cpu_run);
3231 }
3232
3233 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3234 spin_unlock(&vc->lock);
3235 return vcpu->arch.ret;
3236 }
3237
kvmppc_vcpu_run_hv(struct kvm_run * run,struct kvm_vcpu * vcpu)3238 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3239 {
3240 int r;
3241 int srcu_idx;
3242 unsigned long ebb_regs[3] = {}; /* shut up GCC */
3243 unsigned long user_tar = 0;
3244 unsigned int user_vrsave;
3245
3246 if (!vcpu->arch.sane) {
3247 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3248 return -EINVAL;
3249 }
3250
3251 /*
3252 * Don't allow entry with a suspended transaction, because
3253 * the guest entry/exit code will lose it.
3254 * If the guest has TM enabled, save away their TM-related SPRs
3255 * (they will get restored by the TM unavailable interrupt).
3256 */
3257 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3258 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3259 (current->thread.regs->msr & MSR_TM)) {
3260 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3261 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3262 run->fail_entry.hardware_entry_failure_reason = 0;
3263 return -EINVAL;
3264 }
3265 /* Enable TM so we can read the TM SPRs */
3266 mtmsr(mfmsr() | MSR_TM);
3267 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3268 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3269 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3270 current->thread.regs->msr &= ~MSR_TM;
3271 }
3272 #endif
3273
3274 kvmppc_core_prepare_to_enter(vcpu);
3275
3276 /* No need to go into the guest when all we'll do is come back out */
3277 if (signal_pending(current)) {
3278 run->exit_reason = KVM_EXIT_INTR;
3279 return -EINTR;
3280 }
3281
3282 atomic_inc(&vcpu->kvm->arch.vcpus_running);
3283 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3284 smp_mb();
3285
3286 flush_all_to_thread(current);
3287
3288 /* Save userspace EBB and other register values */
3289 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3290 ebb_regs[0] = mfspr(SPRN_EBBHR);
3291 ebb_regs[1] = mfspr(SPRN_EBBRR);
3292 ebb_regs[2] = mfspr(SPRN_BESCR);
3293 user_tar = mfspr(SPRN_TAR);
3294 }
3295 user_vrsave = mfspr(SPRN_VRSAVE);
3296
3297 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3298 vcpu->arch.pgdir = current->mm->pgd;
3299 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3300
3301 do {
3302 r = kvmppc_run_vcpu(run, vcpu);
3303
3304 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3305 !(vcpu->arch.shregs.msr & MSR_PR)) {
3306 trace_kvm_hcall_enter(vcpu);
3307 r = kvmppc_pseries_do_hcall(vcpu);
3308 trace_kvm_hcall_exit(vcpu, r);
3309 kvmppc_core_prepare_to_enter(vcpu);
3310 } else if (r == RESUME_PAGE_FAULT) {
3311 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3312 r = kvmppc_book3s_hv_page_fault(run, vcpu,
3313 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3314 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3315 } else if (r == RESUME_PASSTHROUGH) {
3316 if (WARN_ON(xive_enabled()))
3317 r = H_SUCCESS;
3318 else
3319 r = kvmppc_xics_rm_complete(vcpu, 0);
3320 }
3321 } while (is_kvmppc_resume_guest(r));
3322
3323 /* Restore userspace EBB and other register values */
3324 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3325 mtspr(SPRN_EBBHR, ebb_regs[0]);
3326 mtspr(SPRN_EBBRR, ebb_regs[1]);
3327 mtspr(SPRN_BESCR, ebb_regs[2]);
3328 mtspr(SPRN_TAR, user_tar);
3329 mtspr(SPRN_FSCR, current->thread.fscr);
3330 }
3331 mtspr(SPRN_VRSAVE, user_vrsave);
3332
3333 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3334 atomic_dec(&vcpu->kvm->arch.vcpus_running);
3335 return r;
3336 }
3337
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int linux_psize)3338 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3339 int linux_psize)
3340 {
3341 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3342
3343 if (!def->shift)
3344 return;
3345 (*sps)->page_shift = def->shift;
3346 (*sps)->slb_enc = def->sllp;
3347 (*sps)->enc[0].page_shift = def->shift;
3348 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
3349 /*
3350 * Add 16MB MPSS support if host supports it
3351 */
3352 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3353 (*sps)->enc[1].page_shift = 24;
3354 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3355 }
3356 (*sps)++;
3357 }
3358
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)3359 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3360 struct kvm_ppc_smmu_info *info)
3361 {
3362 struct kvm_ppc_one_seg_page_size *sps;
3363
3364 /*
3365 * Since we don't yet support HPT guests on a radix host,
3366 * return an error if the host uses radix.
3367 */
3368 if (radix_enabled())
3369 return -EINVAL;
3370
3371 /*
3372 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3373 * POWER7 doesn't support keys for instruction accesses,
3374 * POWER8 and POWER9 do.
3375 */
3376 info->data_keys = 32;
3377 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3378
3379 info->flags = KVM_PPC_PAGE_SIZES_REAL;
3380 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3381 info->flags |= KVM_PPC_1T_SEGMENTS;
3382 info->slb_size = mmu_slb_size;
3383
3384 /* We only support these sizes for now, and no muti-size segments */
3385 sps = &info->sps[0];
3386 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3387 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3388 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3389
3390 return 0;
3391 }
3392
3393 /*
3394 * Get (and clear) the dirty memory log for a memory slot.
3395 */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)3396 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3397 struct kvm_dirty_log *log)
3398 {
3399 struct kvm_memslots *slots;
3400 struct kvm_memory_slot *memslot;
3401 int i, r;
3402 unsigned long n;
3403 unsigned long *buf;
3404 struct kvm_vcpu *vcpu;
3405
3406 mutex_lock(&kvm->slots_lock);
3407
3408 r = -EINVAL;
3409 if (log->slot >= KVM_USER_MEM_SLOTS)
3410 goto out;
3411
3412 slots = kvm_memslots(kvm);
3413 memslot = id_to_memslot(slots, log->slot);
3414 r = -ENOENT;
3415 if (!memslot->dirty_bitmap)
3416 goto out;
3417
3418 /*
3419 * Use second half of bitmap area because radix accumulates
3420 * bits in the first half.
3421 */
3422 n = kvm_dirty_bitmap_bytes(memslot);
3423 buf = memslot->dirty_bitmap + n / sizeof(long);
3424 memset(buf, 0, n);
3425
3426 if (kvm_is_radix(kvm))
3427 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3428 else
3429 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3430 if (r)
3431 goto out;
3432
3433 /* Harvest dirty bits from VPA and DTL updates */
3434 /* Note: we never modify the SLB shadow buffer areas */
3435 kvm_for_each_vcpu(i, vcpu, kvm) {
3436 spin_lock(&vcpu->arch.vpa_update_lock);
3437 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3438 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3439 spin_unlock(&vcpu->arch.vpa_update_lock);
3440 }
3441
3442 r = -EFAULT;
3443 if (copy_to_user(log->dirty_bitmap, buf, n))
3444 goto out;
3445
3446 r = 0;
3447 out:
3448 mutex_unlock(&kvm->slots_lock);
3449 return r;
3450 }
3451
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)3452 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3453 struct kvm_memory_slot *dont)
3454 {
3455 if (!dont || free->arch.rmap != dont->arch.rmap) {
3456 vfree(free->arch.rmap);
3457 free->arch.rmap = NULL;
3458 }
3459 }
3460
kvmppc_core_create_memslot_hv(struct kvm_memory_slot * slot,unsigned long npages)3461 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3462 unsigned long npages)
3463 {
3464 /*
3465 * For now, if radix_enabled() then we only support radix guests,
3466 * and in that case we don't need the rmap array.
3467 */
3468 if (radix_enabled()) {
3469 slot->arch.rmap = NULL;
3470 return 0;
3471 }
3472
3473 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3474 if (!slot->arch.rmap)
3475 return -ENOMEM;
3476
3477 return 0;
3478 }
3479
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem)3480 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3481 struct kvm_memory_slot *memslot,
3482 const struct kvm_userspace_memory_region *mem)
3483 {
3484 return 0;
3485 }
3486
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new)3487 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3488 const struct kvm_userspace_memory_region *mem,
3489 const struct kvm_memory_slot *old,
3490 const struct kvm_memory_slot *new)
3491 {
3492 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3493 struct kvm_memslots *slots;
3494 struct kvm_memory_slot *memslot;
3495
3496 /*
3497 * If we are making a new memslot, it might make
3498 * some address that was previously cached as emulated
3499 * MMIO be no longer emulated MMIO, so invalidate
3500 * all the caches of emulated MMIO translations.
3501 */
3502 if (npages)
3503 atomic64_inc(&kvm->arch.mmio_update);
3504
3505 if (npages && old->npages && !kvm_is_radix(kvm)) {
3506 /*
3507 * If modifying a memslot, reset all the rmap dirty bits.
3508 * If this is a new memslot, we don't need to do anything
3509 * since the rmap array starts out as all zeroes,
3510 * i.e. no pages are dirty.
3511 */
3512 slots = kvm_memslots(kvm);
3513 memslot = id_to_memslot(slots, mem->slot);
3514 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3515 }
3516 }
3517
3518 /*
3519 * Update LPCR values in kvm->arch and in vcores.
3520 * Caller must hold kvm->lock.
3521 */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)3522 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3523 {
3524 long int i;
3525 u32 cores_done = 0;
3526
3527 if ((kvm->arch.lpcr & mask) == lpcr)
3528 return;
3529
3530 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3531
3532 for (i = 0; i < KVM_MAX_VCORES; ++i) {
3533 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3534 if (!vc)
3535 continue;
3536 spin_lock(&vc->lock);
3537 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3538 spin_unlock(&vc->lock);
3539 if (++cores_done >= kvm->arch.online_vcores)
3540 break;
3541 }
3542 }
3543
kvmppc_mmu_destroy_hv(struct kvm_vcpu * vcpu)3544 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3545 {
3546 return;
3547 }
3548
kvmppc_setup_partition_table(struct kvm * kvm)3549 static void kvmppc_setup_partition_table(struct kvm *kvm)
3550 {
3551 unsigned long dw0, dw1;
3552
3553 if (!kvm_is_radix(kvm)) {
3554 /* PS field - page size for VRMA */
3555 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3556 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3557 /* HTABSIZE and HTABORG fields */
3558 dw0 |= kvm->arch.sdr1;
3559
3560 /* Second dword as set by userspace */
3561 dw1 = kvm->arch.process_table;
3562 } else {
3563 dw0 = PATB_HR | radix__get_tree_size() |
3564 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3565 dw1 = PATB_GR | kvm->arch.process_table;
3566 }
3567
3568 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3569 }
3570
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)3571 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3572 {
3573 int err = 0;
3574 struct kvm *kvm = vcpu->kvm;
3575 unsigned long hva;
3576 struct kvm_memory_slot *memslot;
3577 struct vm_area_struct *vma;
3578 unsigned long lpcr = 0, senc;
3579 unsigned long psize, porder;
3580 int srcu_idx;
3581
3582 mutex_lock(&kvm->lock);
3583 if (kvm->arch.hpte_setup_done)
3584 goto out; /* another vcpu beat us to it */
3585
3586 /* Allocate hashed page table (if not done already) and reset it */
3587 if (!kvm->arch.hpt.virt) {
3588 int order = KVM_DEFAULT_HPT_ORDER;
3589 struct kvm_hpt_info info;
3590
3591 err = kvmppc_allocate_hpt(&info, order);
3592 /* If we get here, it means userspace didn't specify a
3593 * size explicitly. So, try successively smaller
3594 * sizes if the default failed. */
3595 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3596 err = kvmppc_allocate_hpt(&info, order);
3597
3598 if (err < 0) {
3599 pr_err("KVM: Couldn't alloc HPT\n");
3600 goto out;
3601 }
3602
3603 kvmppc_set_hpt(kvm, &info);
3604 }
3605
3606 /* Look up the memslot for guest physical address 0 */
3607 srcu_idx = srcu_read_lock(&kvm->srcu);
3608 memslot = gfn_to_memslot(kvm, 0);
3609
3610 /* We must have some memory at 0 by now */
3611 err = -EINVAL;
3612 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3613 goto out_srcu;
3614
3615 /* Look up the VMA for the start of this memory slot */
3616 hva = memslot->userspace_addr;
3617 down_read(¤t->mm->mmap_sem);
3618 vma = find_vma(current->mm, hva);
3619 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3620 goto up_out;
3621
3622 psize = vma_kernel_pagesize(vma);
3623
3624 up_read(¤t->mm->mmap_sem);
3625
3626 /* We can handle 4k, 64k or 16M pages in the VRMA */
3627 if (psize >= 0x1000000)
3628 psize = 0x1000000;
3629 else if (psize >= 0x10000)
3630 psize = 0x10000;
3631 else
3632 psize = 0x1000;
3633 porder = __ilog2(psize);
3634
3635 senc = slb_pgsize_encoding(psize);
3636 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3637 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3638 /* Create HPTEs in the hash page table for the VRMA */
3639 kvmppc_map_vrma(vcpu, memslot, porder);
3640
3641 /* Update VRMASD field in the LPCR */
3642 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3643 /* the -4 is to account for senc values starting at 0x10 */
3644 lpcr = senc << (LPCR_VRMASD_SH - 4);
3645 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3646 } else {
3647 kvmppc_setup_partition_table(kvm);
3648 }
3649
3650 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3651 smp_wmb();
3652 kvm->arch.hpte_setup_done = 1;
3653 err = 0;
3654 out_srcu:
3655 srcu_read_unlock(&kvm->srcu, srcu_idx);
3656 out:
3657 mutex_unlock(&kvm->lock);
3658 return err;
3659
3660 up_out:
3661 up_read(¤t->mm->mmap_sem);
3662 goto out_srcu;
3663 }
3664
3665 #ifdef CONFIG_KVM_XICS
3666 /*
3667 * Allocate a per-core structure for managing state about which cores are
3668 * running in the host versus the guest and for exchanging data between
3669 * real mode KVM and CPU running in the host.
3670 * This is only done for the first VM.
3671 * The allocated structure stays even if all VMs have stopped.
3672 * It is only freed when the kvm-hv module is unloaded.
3673 * It's OK for this routine to fail, we just don't support host
3674 * core operations like redirecting H_IPI wakeups.
3675 */
kvmppc_alloc_host_rm_ops(void)3676 void kvmppc_alloc_host_rm_ops(void)
3677 {
3678 struct kvmppc_host_rm_ops *ops;
3679 unsigned long l_ops;
3680 int cpu, core;
3681 int size;
3682
3683 /* Not the first time here ? */
3684 if (kvmppc_host_rm_ops_hv != NULL)
3685 return;
3686
3687 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3688 if (!ops)
3689 return;
3690
3691 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3692 ops->rm_core = kzalloc(size, GFP_KERNEL);
3693
3694 if (!ops->rm_core) {
3695 kfree(ops);
3696 return;
3697 }
3698
3699 cpus_read_lock();
3700
3701 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3702 if (!cpu_online(cpu))
3703 continue;
3704
3705 core = cpu >> threads_shift;
3706 ops->rm_core[core].rm_state.in_host = 1;
3707 }
3708
3709 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3710
3711 /*
3712 * Make the contents of the kvmppc_host_rm_ops structure visible
3713 * to other CPUs before we assign it to the global variable.
3714 * Do an atomic assignment (no locks used here), but if someone
3715 * beats us to it, just free our copy and return.
3716 */
3717 smp_wmb();
3718 l_ops = (unsigned long) ops;
3719
3720 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3721 cpus_read_unlock();
3722 kfree(ops->rm_core);
3723 kfree(ops);
3724 return;
3725 }
3726
3727 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3728 "ppc/kvm_book3s:prepare",
3729 kvmppc_set_host_core,
3730 kvmppc_clear_host_core);
3731 cpus_read_unlock();
3732 }
3733
kvmppc_free_host_rm_ops(void)3734 void kvmppc_free_host_rm_ops(void)
3735 {
3736 if (kvmppc_host_rm_ops_hv) {
3737 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3738 kfree(kvmppc_host_rm_ops_hv->rm_core);
3739 kfree(kvmppc_host_rm_ops_hv);
3740 kvmppc_host_rm_ops_hv = NULL;
3741 }
3742 }
3743 #endif
3744
kvmppc_core_init_vm_hv(struct kvm * kvm)3745 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3746 {
3747 unsigned long lpcr, lpid;
3748 char buf[32];
3749 int ret;
3750
3751 /* Allocate the guest's logical partition ID */
3752
3753 lpid = kvmppc_alloc_lpid();
3754 if ((long)lpid < 0)
3755 return -ENOMEM;
3756 kvm->arch.lpid = lpid;
3757
3758 kvmppc_alloc_host_rm_ops();
3759
3760 /*
3761 * Since we don't flush the TLB when tearing down a VM,
3762 * and this lpid might have previously been used,
3763 * make sure we flush on each core before running the new VM.
3764 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3765 * does this flush for us.
3766 */
3767 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3768 cpumask_setall(&kvm->arch.need_tlb_flush);
3769
3770 /* Start out with the default set of hcalls enabled */
3771 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3772 sizeof(kvm->arch.enabled_hcalls));
3773
3774 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3775 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3776
3777 /* Init LPCR for virtual RMA mode */
3778 kvm->arch.host_lpid = mfspr(SPRN_LPID);
3779 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3780 lpcr &= LPCR_PECE | LPCR_LPES;
3781 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3782 LPCR_VPM0 | LPCR_VPM1;
3783 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3784 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3785 /* On POWER8 turn on online bit to enable PURR/SPURR */
3786 if (cpu_has_feature(CPU_FTR_ARCH_207S))
3787 lpcr |= LPCR_ONL;
3788 /*
3789 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3790 * Set HVICE bit to enable hypervisor virtualization interrupts.
3791 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3792 * be unnecessary but better safe than sorry in case we re-enable
3793 * EE in HV mode with this LPCR still set)
3794 */
3795 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3796 lpcr &= ~LPCR_VPM0;
3797 lpcr |= LPCR_HVICE | LPCR_HEIC;
3798
3799 /*
3800 * If xive is enabled, we route 0x500 interrupts directly
3801 * to the guest.
3802 */
3803 if (xive_enabled())
3804 lpcr |= LPCR_LPES;
3805 }
3806
3807 /*
3808 * For now, if the host uses radix, the guest must be radix.
3809 */
3810 if (radix_enabled()) {
3811 kvm->arch.radix = 1;
3812 lpcr &= ~LPCR_VPM1;
3813 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3814 ret = kvmppc_init_vm_radix(kvm);
3815 if (ret) {
3816 kvmppc_free_lpid(kvm->arch.lpid);
3817 return ret;
3818 }
3819 kvmppc_setup_partition_table(kvm);
3820 }
3821
3822 kvm->arch.lpcr = lpcr;
3823
3824 /* Initialization for future HPT resizes */
3825 kvm->arch.resize_hpt = NULL;
3826
3827 /*
3828 * Work out how many sets the TLB has, for the use of
3829 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3830 */
3831 if (kvm_is_radix(kvm))
3832 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
3833 else if (cpu_has_feature(CPU_FTR_ARCH_300))
3834 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
3835 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3836 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
3837 else
3838 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
3839
3840 /*
3841 * Track that we now have a HV mode VM active. This blocks secondary
3842 * CPU threads from coming online.
3843 * On POWER9, we only need to do this for HPT guests on a radix
3844 * host, which is not yet supported.
3845 */
3846 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3847 kvm_hv_vm_activated();
3848
3849 /*
3850 * Initialize smt_mode depending on processor.
3851 * POWER8 and earlier have to use "strict" threading, where
3852 * all vCPUs in a vcore have to run on the same (sub)core,
3853 * whereas on POWER9 the threads can each run a different
3854 * guest.
3855 */
3856 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3857 kvm->arch.smt_mode = threads_per_subcore;
3858 else
3859 kvm->arch.smt_mode = 1;
3860 kvm->arch.emul_smt_mode = 1;
3861
3862 /*
3863 * Create a debugfs directory for the VM
3864 */
3865 snprintf(buf, sizeof(buf), "vm%d", current->pid);
3866 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3867 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3868 kvmppc_mmu_debugfs_init(kvm);
3869
3870 return 0;
3871 }
3872
kvmppc_free_vcores(struct kvm * kvm)3873 static void kvmppc_free_vcores(struct kvm *kvm)
3874 {
3875 long int i;
3876
3877 for (i = 0; i < KVM_MAX_VCORES; ++i)
3878 kfree(kvm->arch.vcores[i]);
3879 kvm->arch.online_vcores = 0;
3880 }
3881
kvmppc_core_destroy_vm_hv(struct kvm * kvm)3882 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3883 {
3884 debugfs_remove_recursive(kvm->arch.debugfs_dir);
3885
3886 if (!cpu_has_feature(CPU_FTR_ARCH_300))
3887 kvm_hv_vm_deactivated();
3888
3889 kvmppc_free_vcores(kvm);
3890
3891 kvmppc_free_lpid(kvm->arch.lpid);
3892
3893 if (kvm_is_radix(kvm))
3894 kvmppc_free_radix(kvm);
3895 else
3896 kvmppc_free_hpt(&kvm->arch.hpt);
3897
3898 kvmppc_free_pimap(kvm);
3899 }
3900
3901 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int inst,int * advance)3902 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3903 unsigned int inst, int *advance)
3904 {
3905 return EMULATE_FAIL;
3906 }
3907
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)3908 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3909 ulong spr_val)
3910 {
3911 return EMULATE_FAIL;
3912 }
3913
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)3914 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3915 ulong *spr_val)
3916 {
3917 return EMULATE_FAIL;
3918 }
3919
kvmppc_core_check_processor_compat_hv(void)3920 static int kvmppc_core_check_processor_compat_hv(void)
3921 {
3922 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3923 !cpu_has_feature(CPU_FTR_ARCH_206))
3924 return -EIO;
3925
3926 return 0;
3927 }
3928
3929 #ifdef CONFIG_KVM_XICS
3930
kvmppc_free_pimap(struct kvm * kvm)3931 void kvmppc_free_pimap(struct kvm *kvm)
3932 {
3933 kfree(kvm->arch.pimap);
3934 }
3935
kvmppc_alloc_pimap(void)3936 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3937 {
3938 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3939 }
3940
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)3941 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3942 {
3943 struct irq_desc *desc;
3944 struct kvmppc_irq_map *irq_map;
3945 struct kvmppc_passthru_irqmap *pimap;
3946 struct irq_chip *chip;
3947 int i, rc = 0;
3948
3949 if (!kvm_irq_bypass)
3950 return 1;
3951
3952 desc = irq_to_desc(host_irq);
3953 if (!desc)
3954 return -EIO;
3955
3956 mutex_lock(&kvm->lock);
3957
3958 pimap = kvm->arch.pimap;
3959 if (pimap == NULL) {
3960 /* First call, allocate structure to hold IRQ map */
3961 pimap = kvmppc_alloc_pimap();
3962 if (pimap == NULL) {
3963 mutex_unlock(&kvm->lock);
3964 return -ENOMEM;
3965 }
3966 kvm->arch.pimap = pimap;
3967 }
3968
3969 /*
3970 * For now, we only support interrupts for which the EOI operation
3971 * is an OPAL call followed by a write to XIRR, since that's
3972 * what our real-mode EOI code does, or a XIVE interrupt
3973 */
3974 chip = irq_data_get_irq_chip(&desc->irq_data);
3975 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3976 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3977 host_irq, guest_gsi);
3978 mutex_unlock(&kvm->lock);
3979 return -ENOENT;
3980 }
3981
3982 /*
3983 * See if we already have an entry for this guest IRQ number.
3984 * If it's mapped to a hardware IRQ number, that's an error,
3985 * otherwise re-use this entry.
3986 */
3987 for (i = 0; i < pimap->n_mapped; i++) {
3988 if (guest_gsi == pimap->mapped[i].v_hwirq) {
3989 if (pimap->mapped[i].r_hwirq) {
3990 mutex_unlock(&kvm->lock);
3991 return -EINVAL;
3992 }
3993 break;
3994 }
3995 }
3996
3997 if (i == KVMPPC_PIRQ_MAPPED) {
3998 mutex_unlock(&kvm->lock);
3999 return -EAGAIN; /* table is full */
4000 }
4001
4002 irq_map = &pimap->mapped[i];
4003
4004 irq_map->v_hwirq = guest_gsi;
4005 irq_map->desc = desc;
4006
4007 /*
4008 * Order the above two stores before the next to serialize with
4009 * the KVM real mode handler.
4010 */
4011 smp_wmb();
4012 irq_map->r_hwirq = desc->irq_data.hwirq;
4013
4014 if (i == pimap->n_mapped)
4015 pimap->n_mapped++;
4016
4017 if (xive_enabled())
4018 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4019 else
4020 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4021 if (rc)
4022 irq_map->r_hwirq = 0;
4023
4024 mutex_unlock(&kvm->lock);
4025
4026 return 0;
4027 }
4028
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)4029 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4030 {
4031 struct irq_desc *desc;
4032 struct kvmppc_passthru_irqmap *pimap;
4033 int i, rc = 0;
4034
4035 if (!kvm_irq_bypass)
4036 return 0;
4037
4038 desc = irq_to_desc(host_irq);
4039 if (!desc)
4040 return -EIO;
4041
4042 mutex_lock(&kvm->lock);
4043 if (!kvm->arch.pimap)
4044 goto unlock;
4045
4046 pimap = kvm->arch.pimap;
4047
4048 for (i = 0; i < pimap->n_mapped; i++) {
4049 if (guest_gsi == pimap->mapped[i].v_hwirq)
4050 break;
4051 }
4052
4053 if (i == pimap->n_mapped) {
4054 mutex_unlock(&kvm->lock);
4055 return -ENODEV;
4056 }
4057
4058 if (xive_enabled())
4059 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4060 else
4061 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4062
4063 /* invalidate the entry (what do do on error from the above ?) */
4064 pimap->mapped[i].r_hwirq = 0;
4065
4066 /*
4067 * We don't free this structure even when the count goes to
4068 * zero. The structure is freed when we destroy the VM.
4069 */
4070 unlock:
4071 mutex_unlock(&kvm->lock);
4072 return rc;
4073 }
4074
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)4075 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4076 struct irq_bypass_producer *prod)
4077 {
4078 int ret = 0;
4079 struct kvm_kernel_irqfd *irqfd =
4080 container_of(cons, struct kvm_kernel_irqfd, consumer);
4081
4082 irqfd->producer = prod;
4083
4084 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4085 if (ret)
4086 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4087 prod->irq, irqfd->gsi, ret);
4088
4089 return ret;
4090 }
4091
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)4092 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4093 struct irq_bypass_producer *prod)
4094 {
4095 int ret;
4096 struct kvm_kernel_irqfd *irqfd =
4097 container_of(cons, struct kvm_kernel_irqfd, consumer);
4098
4099 irqfd->producer = NULL;
4100
4101 /*
4102 * When producer of consumer is unregistered, we change back to
4103 * default external interrupt handling mode - KVM real mode
4104 * will switch back to host.
4105 */
4106 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4107 if (ret)
4108 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4109 prod->irq, irqfd->gsi, ret);
4110 }
4111 #endif
4112
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)4113 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4114 unsigned int ioctl, unsigned long arg)
4115 {
4116 struct kvm *kvm __maybe_unused = filp->private_data;
4117 void __user *argp = (void __user *)arg;
4118 long r;
4119
4120 switch (ioctl) {
4121
4122 case KVM_PPC_ALLOCATE_HTAB: {
4123 u32 htab_order;
4124
4125 r = -EFAULT;
4126 if (get_user(htab_order, (u32 __user *)argp))
4127 break;
4128 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4129 if (r)
4130 break;
4131 r = 0;
4132 break;
4133 }
4134
4135 case KVM_PPC_GET_HTAB_FD: {
4136 struct kvm_get_htab_fd ghf;
4137
4138 r = -EFAULT;
4139 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4140 break;
4141 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4142 break;
4143 }
4144
4145 case KVM_PPC_RESIZE_HPT_PREPARE: {
4146 struct kvm_ppc_resize_hpt rhpt;
4147
4148 r = -EFAULT;
4149 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4150 break;
4151
4152 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4153 break;
4154 }
4155
4156 case KVM_PPC_RESIZE_HPT_COMMIT: {
4157 struct kvm_ppc_resize_hpt rhpt;
4158
4159 r = -EFAULT;
4160 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4161 break;
4162
4163 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4164 break;
4165 }
4166
4167 default:
4168 r = -ENOTTY;
4169 }
4170
4171 return r;
4172 }
4173
4174 /*
4175 * List of hcall numbers to enable by default.
4176 * For compatibility with old userspace, we enable by default
4177 * all hcalls that were implemented before the hcall-enabling
4178 * facility was added. Note this list should not include H_RTAS.
4179 */
4180 static unsigned int default_hcall_list[] = {
4181 H_REMOVE,
4182 H_ENTER,
4183 H_READ,
4184 H_PROTECT,
4185 H_BULK_REMOVE,
4186 H_GET_TCE,
4187 H_PUT_TCE,
4188 H_SET_DABR,
4189 H_SET_XDABR,
4190 H_CEDE,
4191 H_PROD,
4192 H_CONFER,
4193 H_REGISTER_VPA,
4194 #ifdef CONFIG_KVM_XICS
4195 H_EOI,
4196 H_CPPR,
4197 H_IPI,
4198 H_IPOLL,
4199 H_XIRR,
4200 H_XIRR_X,
4201 #endif
4202 0
4203 };
4204
init_default_hcalls(void)4205 static void init_default_hcalls(void)
4206 {
4207 int i;
4208 unsigned int hcall;
4209
4210 for (i = 0; default_hcall_list[i]; ++i) {
4211 hcall = default_hcall_list[i];
4212 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4213 __set_bit(hcall / 4, default_enabled_hcalls);
4214 }
4215 }
4216
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)4217 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4218 {
4219 unsigned long lpcr;
4220 int radix;
4221
4222 /* If not on a POWER9, reject it */
4223 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4224 return -ENODEV;
4225
4226 /* If any unknown flags set, reject it */
4227 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4228 return -EINVAL;
4229
4230 /* We can't change a guest to/from radix yet */
4231 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4232 if (radix != kvm_is_radix(kvm))
4233 return -EINVAL;
4234
4235 /* GR (guest radix) bit in process_table field must match */
4236 if (!!(cfg->process_table & PATB_GR) != radix)
4237 return -EINVAL;
4238
4239 /* Process table size field must be reasonable, i.e. <= 24 */
4240 if ((cfg->process_table & PRTS_MASK) > 24)
4241 return -EINVAL;
4242
4243 mutex_lock(&kvm->lock);
4244 kvm->arch.process_table = cfg->process_table;
4245 kvmppc_setup_partition_table(kvm);
4246
4247 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4248 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4249 mutex_unlock(&kvm->lock);
4250
4251 return 0;
4252 }
4253
4254 static struct kvmppc_ops kvm_ops_hv = {
4255 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4256 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4257 .get_one_reg = kvmppc_get_one_reg_hv,
4258 .set_one_reg = kvmppc_set_one_reg_hv,
4259 .vcpu_load = kvmppc_core_vcpu_load_hv,
4260 .vcpu_put = kvmppc_core_vcpu_put_hv,
4261 .set_msr = kvmppc_set_msr_hv,
4262 .vcpu_run = kvmppc_vcpu_run_hv,
4263 .vcpu_create = kvmppc_core_vcpu_create_hv,
4264 .vcpu_free = kvmppc_core_vcpu_free_hv,
4265 .check_requests = kvmppc_core_check_requests_hv,
4266 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
4267 .flush_memslot = kvmppc_core_flush_memslot_hv,
4268 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4269 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
4270 .unmap_hva = kvm_unmap_hva_hv,
4271 .unmap_hva_range = kvm_unmap_hva_range_hv,
4272 .age_hva = kvm_age_hva_hv,
4273 .test_age_hva = kvm_test_age_hva_hv,
4274 .set_spte_hva = kvm_set_spte_hva_hv,
4275 .mmu_destroy = kvmppc_mmu_destroy_hv,
4276 .free_memslot = kvmppc_core_free_memslot_hv,
4277 .create_memslot = kvmppc_core_create_memslot_hv,
4278 .init_vm = kvmppc_core_init_vm_hv,
4279 .destroy_vm = kvmppc_core_destroy_vm_hv,
4280 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4281 .emulate_op = kvmppc_core_emulate_op_hv,
4282 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4283 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4284 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4285 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
4286 .hcall_implemented = kvmppc_hcall_impl_hv,
4287 #ifdef CONFIG_KVM_XICS
4288 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4289 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4290 #endif
4291 .configure_mmu = kvmhv_configure_mmu,
4292 .get_rmmu_info = kvmhv_get_rmmu_info,
4293 .set_smt_mode = kvmhv_set_smt_mode,
4294 };
4295
kvm_init_subcore_bitmap(void)4296 static int kvm_init_subcore_bitmap(void)
4297 {
4298 int i, j;
4299 int nr_cores = cpu_nr_cores();
4300 struct sibling_subcore_state *sibling_subcore_state;
4301
4302 for (i = 0; i < nr_cores; i++) {
4303 int first_cpu = i * threads_per_core;
4304 int node = cpu_to_node(first_cpu);
4305
4306 /* Ignore if it is already allocated. */
4307 if (paca[first_cpu].sibling_subcore_state)
4308 continue;
4309
4310 sibling_subcore_state =
4311 kmalloc_node(sizeof(struct sibling_subcore_state),
4312 GFP_KERNEL, node);
4313 if (!sibling_subcore_state)
4314 return -ENOMEM;
4315
4316 memset(sibling_subcore_state, 0,
4317 sizeof(struct sibling_subcore_state));
4318
4319 for (j = 0; j < threads_per_core; j++) {
4320 int cpu = first_cpu + j;
4321
4322 paca[cpu].sibling_subcore_state = sibling_subcore_state;
4323 }
4324 }
4325 return 0;
4326 }
4327
kvmppc_radix_possible(void)4328 static int kvmppc_radix_possible(void)
4329 {
4330 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4331 }
4332
kvmppc_book3s_init_hv(void)4333 static int kvmppc_book3s_init_hv(void)
4334 {
4335 int r;
4336 /*
4337 * FIXME!! Do we need to check on all cpus ?
4338 */
4339 r = kvmppc_core_check_processor_compat_hv();
4340 if (r < 0)
4341 return -ENODEV;
4342
4343 r = kvm_init_subcore_bitmap();
4344 if (r)
4345 return r;
4346
4347 /*
4348 * We need a way of accessing the XICS interrupt controller,
4349 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4350 * indirectly, via OPAL.
4351 */
4352 #ifdef CONFIG_SMP
4353 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4354 struct device_node *np;
4355
4356 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4357 if (!np) {
4358 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4359 return -ENODEV;
4360 }
4361 /* presence of intc confirmed - node can be dropped again */
4362 of_node_put(np);
4363 }
4364 #endif
4365
4366 kvm_ops_hv.owner = THIS_MODULE;
4367 kvmppc_hv_ops = &kvm_ops_hv;
4368
4369 init_default_hcalls();
4370
4371 init_vcore_lists();
4372
4373 r = kvmppc_mmu_hv_init();
4374 if (r)
4375 return r;
4376
4377 if (kvmppc_radix_possible())
4378 r = kvmppc_radix_init();
4379 return r;
4380 }
4381
kvmppc_book3s_exit_hv(void)4382 static void kvmppc_book3s_exit_hv(void)
4383 {
4384 kvmppc_free_host_rm_ops();
4385 if (kvmppc_radix_possible())
4386 kvmppc_radix_exit();
4387 kvmppc_hv_ops = NULL;
4388 }
4389
4390 module_init(kvmppc_book3s_init_hv);
4391 module_exit(kvmppc_book3s_exit_hv);
4392 MODULE_LICENSE("GPL");
4393 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4394 MODULE_ALIAS("devname:kvm");
4395
4396