• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
29 #include <linux/fs.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
46 #include <linux/of.h>
47 
48 #include <asm/reg.h>
49 #include <asm/ppc-opcode.h>
50 #include <asm/disassemble.h>
51 #include <asm/cputable.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 #include <linux/uaccess.h>
55 #include <asm/io.h>
56 #include <asm/kvm_ppc.h>
57 #include <asm/kvm_book3s.h>
58 #include <asm/mmu_context.h>
59 #include <asm/lppaca.h>
60 #include <asm/processor.h>
61 #include <asm/cputhreads.h>
62 #include <asm/page.h>
63 #include <asm/hvcall.h>
64 #include <asm/switch_to.h>
65 #include <asm/smp.h>
66 #include <asm/dbell.h>
67 #include <asm/hmi.h>
68 #include <asm/pnv-pci.h>
69 #include <asm/mmu.h>
70 #include <asm/opal.h>
71 #include <asm/xics.h>
72 #include <asm/xive.h>
73 
74 #include "book3s.h"
75 
76 #define CREATE_TRACE_POINTS
77 #include "trace_hv.h"
78 
79 /* #define EXIT_DEBUG */
80 /* #define EXIT_DEBUG_SIMPLE */
81 /* #define EXIT_DEBUG_INT */
82 
83 /* Used to indicate that a guest page fault needs to be handled */
84 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
85 /* Used to indicate that a guest passthrough interrupt needs to be handled */
86 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
87 
88 /* Used as a "null" value for timebase values */
89 #define TB_NIL	(~(u64)0)
90 
91 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
92 
93 static int dynamic_mt_modes = 6;
94 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
96 static int target_smt_mode;
97 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
99 
100 #ifdef CONFIG_KVM_XICS
101 static struct kernel_param_ops module_param_ops = {
102 	.set = param_set_int,
103 	.get = param_get_int,
104 };
105 
106 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
107 							S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
109 
110 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
111 							S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
113 #endif
114 
115 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
116 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
117 
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)118 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
119 		int *ip)
120 {
121 	int i = *ip;
122 	struct kvm_vcpu *vcpu;
123 
124 	while (++i < MAX_SMT_THREADS) {
125 		vcpu = READ_ONCE(vc->runnable_threads[i]);
126 		if (vcpu) {
127 			*ip = i;
128 			return vcpu;
129 		}
130 	}
131 	return NULL;
132 }
133 
134 /* Used to traverse the list of runnable threads for a given vcore */
135 #define for_each_runnable_thread(i, vcpu, vc) \
136 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
137 
kvmppc_ipi_thread(int cpu)138 static bool kvmppc_ipi_thread(int cpu)
139 {
140 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
141 
142 	/* On POWER9 we can use msgsnd to IPI any cpu */
143 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
144 		msg |= get_hard_smp_processor_id(cpu);
145 		smp_mb();
146 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
147 		return true;
148 	}
149 
150 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
151 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
152 		preempt_disable();
153 		if (cpu_first_thread_sibling(cpu) ==
154 		    cpu_first_thread_sibling(smp_processor_id())) {
155 			msg |= cpu_thread_in_core(cpu);
156 			smp_mb();
157 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
158 			preempt_enable();
159 			return true;
160 		}
161 		preempt_enable();
162 	}
163 
164 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
165 	if (cpu >= 0 && cpu < nr_cpu_ids) {
166 		if (paca[cpu].kvm_hstate.xics_phys) {
167 			xics_wake_cpu(cpu);
168 			return true;
169 		}
170 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
171 		return true;
172 	}
173 #endif
174 
175 	return false;
176 }
177 
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)178 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
179 {
180 	int cpu;
181 	struct swait_queue_head *wqp;
182 
183 	wqp = kvm_arch_vcpu_wq(vcpu);
184 	if (swq_has_sleeper(wqp)) {
185 		swake_up(wqp);
186 		++vcpu->stat.halt_wakeup;
187 	}
188 
189 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
190 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
191 		return;
192 
193 	/* CPU points to the first thread of the core */
194 	cpu = vcpu->cpu;
195 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
196 		smp_send_reschedule(cpu);
197 }
198 
199 /*
200  * We use the vcpu_load/put functions to measure stolen time.
201  * Stolen time is counted as time when either the vcpu is able to
202  * run as part of a virtual core, but the task running the vcore
203  * is preempted or sleeping, or when the vcpu needs something done
204  * in the kernel by the task running the vcpu, but that task is
205  * preempted or sleeping.  Those two things have to be counted
206  * separately, since one of the vcpu tasks will take on the job
207  * of running the core, and the other vcpu tasks in the vcore will
208  * sleep waiting for it to do that, but that sleep shouldn't count
209  * as stolen time.
210  *
211  * Hence we accumulate stolen time when the vcpu can run as part of
212  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
213  * needs its task to do other things in the kernel (for example,
214  * service a page fault) in busy_stolen.  We don't accumulate
215  * stolen time for a vcore when it is inactive, or for a vcpu
216  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
217  * a misnomer; it means that the vcpu task is not executing in
218  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
219  * the kernel.  We don't have any way of dividing up that time
220  * between time that the vcpu is genuinely stopped, time that
221  * the task is actively working on behalf of the vcpu, and time
222  * that the task is preempted, so we don't count any of it as
223  * stolen.
224  *
225  * Updates to busy_stolen are protected by arch.tbacct_lock;
226  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
227  * lock.  The stolen times are measured in units of timebase ticks.
228  * (Note that the != TB_NIL checks below are purely defensive;
229  * they should never fail.)
230  */
231 
kvmppc_core_start_stolen(struct kvmppc_vcore * vc)232 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
233 {
234 	unsigned long flags;
235 
236 	spin_lock_irqsave(&vc->stoltb_lock, flags);
237 	vc->preempt_tb = mftb();
238 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
239 }
240 
kvmppc_core_end_stolen(struct kvmppc_vcore * vc)241 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
242 {
243 	unsigned long flags;
244 
245 	spin_lock_irqsave(&vc->stoltb_lock, flags);
246 	if (vc->preempt_tb != TB_NIL) {
247 		vc->stolen_tb += mftb() - vc->preempt_tb;
248 		vc->preempt_tb = TB_NIL;
249 	}
250 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
251 }
252 
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)253 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
254 {
255 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
256 	unsigned long flags;
257 
258 	/*
259 	 * We can test vc->runner without taking the vcore lock,
260 	 * because only this task ever sets vc->runner to this
261 	 * vcpu, and once it is set to this vcpu, only this task
262 	 * ever sets it to NULL.
263 	 */
264 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
265 		kvmppc_core_end_stolen(vc);
266 
267 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
268 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
269 	    vcpu->arch.busy_preempt != TB_NIL) {
270 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
271 		vcpu->arch.busy_preempt = TB_NIL;
272 	}
273 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
274 }
275 
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)276 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
277 {
278 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
279 	unsigned long flags;
280 
281 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
282 		kvmppc_core_start_stolen(vc);
283 
284 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
285 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
286 		vcpu->arch.busy_preempt = mftb();
287 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
288 }
289 
kvmppc_set_msr_hv(struct kvm_vcpu * vcpu,u64 msr)290 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
291 {
292 	/*
293 	 * Check for illegal transactional state bit combination
294 	 * and if we find it, force the TS field to a safe state.
295 	 */
296 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
297 		msr &= ~MSR_TS_MASK;
298 	vcpu->arch.shregs.msr = msr;
299 	kvmppc_end_cede(vcpu);
300 }
301 
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)302 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
303 {
304 	vcpu->arch.pvr = pvr;
305 }
306 
307 /* Dummy value used in computing PCR value below */
308 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
309 
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)310 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
311 {
312 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
313 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
314 
315 	/* We can (emulate) our own architecture version and anything older */
316 	if (cpu_has_feature(CPU_FTR_ARCH_300))
317 		host_pcr_bit = PCR_ARCH_300;
318 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
319 		host_pcr_bit = PCR_ARCH_207;
320 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
321 		host_pcr_bit = PCR_ARCH_206;
322 	else
323 		host_pcr_bit = PCR_ARCH_205;
324 
325 	/* Determine lowest PCR bit needed to run guest in given PVR level */
326 	guest_pcr_bit = host_pcr_bit;
327 	if (arch_compat) {
328 		switch (arch_compat) {
329 		case PVR_ARCH_205:
330 			guest_pcr_bit = PCR_ARCH_205;
331 			break;
332 		case PVR_ARCH_206:
333 		case PVR_ARCH_206p:
334 			guest_pcr_bit = PCR_ARCH_206;
335 			break;
336 		case PVR_ARCH_207:
337 			guest_pcr_bit = PCR_ARCH_207;
338 			break;
339 		case PVR_ARCH_300:
340 			guest_pcr_bit = PCR_ARCH_300;
341 			break;
342 		default:
343 			return -EINVAL;
344 		}
345 	}
346 
347 	/* Check requested PCR bits don't exceed our capabilities */
348 	if (guest_pcr_bit > host_pcr_bit)
349 		return -EINVAL;
350 
351 	spin_lock(&vc->lock);
352 	vc->arch_compat = arch_compat;
353 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
354 	vc->pcr = host_pcr_bit - guest_pcr_bit;
355 	spin_unlock(&vc->lock);
356 
357 	return 0;
358 }
359 
kvmppc_dump_regs(struct kvm_vcpu * vcpu)360 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
361 {
362 	int r;
363 
364 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
365 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
366 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
367 	for (r = 0; r < 16; ++r)
368 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
369 		       r, kvmppc_get_gpr(vcpu, r),
370 		       r+16, kvmppc_get_gpr(vcpu, r+16));
371 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
372 	       vcpu->arch.ctr, vcpu->arch.lr);
373 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
374 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
375 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
376 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
377 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
378 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
379 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
380 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
381 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
382 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
383 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
384 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
385 	for (r = 0; r < vcpu->arch.slb_max; ++r)
386 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
387 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
388 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
389 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
390 	       vcpu->arch.last_inst);
391 }
392 
kvmppc_find_vcpu(struct kvm * kvm,int id)393 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
394 {
395 	return kvm_get_vcpu_by_id(kvm, id);
396 }
397 
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)398 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
399 {
400 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
401 	vpa->yield_count = cpu_to_be32(1);
402 }
403 
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)404 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
405 		   unsigned long addr, unsigned long len)
406 {
407 	/* check address is cacheline aligned */
408 	if (addr & (L1_CACHE_BYTES - 1))
409 		return -EINVAL;
410 	spin_lock(&vcpu->arch.vpa_update_lock);
411 	if (v->next_gpa != addr || v->len != len) {
412 		v->next_gpa = addr;
413 		v->len = addr ? len : 0;
414 		v->update_pending = 1;
415 	}
416 	spin_unlock(&vcpu->arch.vpa_update_lock);
417 	return 0;
418 }
419 
420 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
421 struct reg_vpa {
422 	u32 dummy;
423 	union {
424 		__be16 hword;
425 		__be32 word;
426 	} length;
427 };
428 
vpa_is_registered(struct kvmppc_vpa * vpap)429 static int vpa_is_registered(struct kvmppc_vpa *vpap)
430 {
431 	if (vpap->update_pending)
432 		return vpap->next_gpa != 0;
433 	return vpap->pinned_addr != NULL;
434 }
435 
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)436 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
437 				       unsigned long flags,
438 				       unsigned long vcpuid, unsigned long vpa)
439 {
440 	struct kvm *kvm = vcpu->kvm;
441 	unsigned long len, nb;
442 	void *va;
443 	struct kvm_vcpu *tvcpu;
444 	int err;
445 	int subfunc;
446 	struct kvmppc_vpa *vpap;
447 
448 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
449 	if (!tvcpu)
450 		return H_PARAMETER;
451 
452 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
453 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
454 	    subfunc == H_VPA_REG_SLB) {
455 		/* Registering new area - address must be cache-line aligned */
456 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
457 			return H_PARAMETER;
458 
459 		/* convert logical addr to kernel addr and read length */
460 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
461 		if (va == NULL)
462 			return H_PARAMETER;
463 		if (subfunc == H_VPA_REG_VPA)
464 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
465 		else
466 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
467 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
468 
469 		/* Check length */
470 		if (len > nb || len < sizeof(struct reg_vpa))
471 			return H_PARAMETER;
472 	} else {
473 		vpa = 0;
474 		len = 0;
475 	}
476 
477 	err = H_PARAMETER;
478 	vpap = NULL;
479 	spin_lock(&tvcpu->arch.vpa_update_lock);
480 
481 	switch (subfunc) {
482 	case H_VPA_REG_VPA:		/* register VPA */
483 		/*
484 		 * The size of our lppaca is 1kB because of the way we align
485 		 * it for the guest to avoid crossing a 4kB boundary. We only
486 		 * use 640 bytes of the structure though, so we should accept
487 		 * clients that set a size of 640.
488 		 */
489 		if (len < 640)
490 			break;
491 		vpap = &tvcpu->arch.vpa;
492 		err = 0;
493 		break;
494 
495 	case H_VPA_REG_DTL:		/* register DTL */
496 		if (len < sizeof(struct dtl_entry))
497 			break;
498 		len -= len % sizeof(struct dtl_entry);
499 
500 		/* Check that they have previously registered a VPA */
501 		err = H_RESOURCE;
502 		if (!vpa_is_registered(&tvcpu->arch.vpa))
503 			break;
504 
505 		vpap = &tvcpu->arch.dtl;
506 		err = 0;
507 		break;
508 
509 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
510 		/* Check that they have previously registered a VPA */
511 		err = H_RESOURCE;
512 		if (!vpa_is_registered(&tvcpu->arch.vpa))
513 			break;
514 
515 		vpap = &tvcpu->arch.slb_shadow;
516 		err = 0;
517 		break;
518 
519 	case H_VPA_DEREG_VPA:		/* deregister VPA */
520 		/* Check they don't still have a DTL or SLB buf registered */
521 		err = H_RESOURCE;
522 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
523 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
524 			break;
525 
526 		vpap = &tvcpu->arch.vpa;
527 		err = 0;
528 		break;
529 
530 	case H_VPA_DEREG_DTL:		/* deregister DTL */
531 		vpap = &tvcpu->arch.dtl;
532 		err = 0;
533 		break;
534 
535 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
536 		vpap = &tvcpu->arch.slb_shadow;
537 		err = 0;
538 		break;
539 	}
540 
541 	if (vpap) {
542 		vpap->next_gpa = vpa;
543 		vpap->len = len;
544 		vpap->update_pending = 1;
545 	}
546 
547 	spin_unlock(&tvcpu->arch.vpa_update_lock);
548 
549 	return err;
550 }
551 
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)552 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
553 {
554 	struct kvm *kvm = vcpu->kvm;
555 	void *va;
556 	unsigned long nb;
557 	unsigned long gpa;
558 
559 	/*
560 	 * We need to pin the page pointed to by vpap->next_gpa,
561 	 * but we can't call kvmppc_pin_guest_page under the lock
562 	 * as it does get_user_pages() and down_read().  So we
563 	 * have to drop the lock, pin the page, then get the lock
564 	 * again and check that a new area didn't get registered
565 	 * in the meantime.
566 	 */
567 	for (;;) {
568 		gpa = vpap->next_gpa;
569 		spin_unlock(&vcpu->arch.vpa_update_lock);
570 		va = NULL;
571 		nb = 0;
572 		if (gpa)
573 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
574 		spin_lock(&vcpu->arch.vpa_update_lock);
575 		if (gpa == vpap->next_gpa)
576 			break;
577 		/* sigh... unpin that one and try again */
578 		if (va)
579 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
580 	}
581 
582 	vpap->update_pending = 0;
583 	if (va && nb < vpap->len) {
584 		/*
585 		 * If it's now too short, it must be that userspace
586 		 * has changed the mappings underlying guest memory,
587 		 * so unregister the region.
588 		 */
589 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
590 		va = NULL;
591 	}
592 	if (vpap->pinned_addr)
593 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
594 					vpap->dirty);
595 	vpap->gpa = gpa;
596 	vpap->pinned_addr = va;
597 	vpap->dirty = false;
598 	if (va)
599 		vpap->pinned_end = va + vpap->len;
600 }
601 
kvmppc_update_vpas(struct kvm_vcpu * vcpu)602 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
603 {
604 	if (!(vcpu->arch.vpa.update_pending ||
605 	      vcpu->arch.slb_shadow.update_pending ||
606 	      vcpu->arch.dtl.update_pending))
607 		return;
608 
609 	spin_lock(&vcpu->arch.vpa_update_lock);
610 	if (vcpu->arch.vpa.update_pending) {
611 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
612 		if (vcpu->arch.vpa.pinned_addr)
613 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
614 	}
615 	if (vcpu->arch.dtl.update_pending) {
616 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
617 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
618 		vcpu->arch.dtl_index = 0;
619 	}
620 	if (vcpu->arch.slb_shadow.update_pending)
621 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
622 	spin_unlock(&vcpu->arch.vpa_update_lock);
623 }
624 
625 /*
626  * Return the accumulated stolen time for the vcore up until `now'.
627  * The caller should hold the vcore lock.
628  */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)629 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
630 {
631 	u64 p;
632 	unsigned long flags;
633 
634 	spin_lock_irqsave(&vc->stoltb_lock, flags);
635 	p = vc->stolen_tb;
636 	if (vc->vcore_state != VCORE_INACTIVE &&
637 	    vc->preempt_tb != TB_NIL)
638 		p += now - vc->preempt_tb;
639 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
640 	return p;
641 }
642 
kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)643 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
644 				    struct kvmppc_vcore *vc)
645 {
646 	struct dtl_entry *dt;
647 	struct lppaca *vpa;
648 	unsigned long stolen;
649 	unsigned long core_stolen;
650 	u64 now;
651 	unsigned long flags;
652 
653 	dt = vcpu->arch.dtl_ptr;
654 	vpa = vcpu->arch.vpa.pinned_addr;
655 	now = mftb();
656 	core_stolen = vcore_stolen_time(vc, now);
657 	stolen = core_stolen - vcpu->arch.stolen_logged;
658 	vcpu->arch.stolen_logged = core_stolen;
659 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
660 	stolen += vcpu->arch.busy_stolen;
661 	vcpu->arch.busy_stolen = 0;
662 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
663 	if (!dt || !vpa)
664 		return;
665 	memset(dt, 0, sizeof(struct dtl_entry));
666 	dt->dispatch_reason = 7;
667 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
668 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
669 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
670 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
671 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
672 	++dt;
673 	if (dt == vcpu->arch.dtl.pinned_end)
674 		dt = vcpu->arch.dtl.pinned_addr;
675 	vcpu->arch.dtl_ptr = dt;
676 	/* order writing *dt vs. writing vpa->dtl_idx */
677 	smp_wmb();
678 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
679 	vcpu->arch.dtl.dirty = true;
680 }
681 
682 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)683 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
684 {
685 	int thr;
686 	struct kvmppc_vcore *vc;
687 
688 	if (vcpu->arch.doorbell_request)
689 		return true;
690 	/*
691 	 * Ensure that the read of vcore->dpdes comes after the read
692 	 * of vcpu->doorbell_request.  This barrier matches the
693 	 * lwsync in book3s_hv_rmhandlers.S just before the
694 	 * fast_guest_return label.
695 	 */
696 	smp_rmb();
697 	vc = vcpu->arch.vcore;
698 	thr = vcpu->vcpu_id - vc->first_vcpuid;
699 	return !!(vc->dpdes & (1 << thr));
700 }
701 
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)702 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
703 {
704 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
705 		return true;
706 	if ((!vcpu->arch.vcore->arch_compat) &&
707 	    cpu_has_feature(CPU_FTR_ARCH_207S))
708 		return true;
709 	return false;
710 }
711 
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)712 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
713 			     unsigned long resource, unsigned long value1,
714 			     unsigned long value2)
715 {
716 	switch (resource) {
717 	case H_SET_MODE_RESOURCE_SET_CIABR:
718 		if (!kvmppc_power8_compatible(vcpu))
719 			return H_P2;
720 		if (value2)
721 			return H_P4;
722 		if (mflags)
723 			return H_UNSUPPORTED_FLAG_START;
724 		/* Guests can't breakpoint the hypervisor */
725 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
726 			return H_P3;
727 		vcpu->arch.ciabr  = value1;
728 		return H_SUCCESS;
729 	case H_SET_MODE_RESOURCE_SET_DAWR:
730 		if (!kvmppc_power8_compatible(vcpu))
731 			return H_P2;
732 		if (mflags)
733 			return H_UNSUPPORTED_FLAG_START;
734 		if (value2 & DABRX_HYP)
735 			return H_P4;
736 		vcpu->arch.dawr  = value1;
737 		vcpu->arch.dawrx = value2;
738 		return H_SUCCESS;
739 	default:
740 		return H_TOO_HARD;
741 	}
742 }
743 
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)744 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
745 {
746 	struct kvmppc_vcore *vcore = target->arch.vcore;
747 
748 	/*
749 	 * We expect to have been called by the real mode handler
750 	 * (kvmppc_rm_h_confer()) which would have directly returned
751 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
752 	 * have useful work to do and should not confer) so we don't
753 	 * recheck that here.
754 	 */
755 
756 	spin_lock(&vcore->lock);
757 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
758 	    vcore->vcore_state != VCORE_INACTIVE &&
759 	    vcore->runner)
760 		target = vcore->runner;
761 	spin_unlock(&vcore->lock);
762 
763 	return kvm_vcpu_yield_to(target);
764 }
765 
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)766 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
767 {
768 	int yield_count = 0;
769 	struct lppaca *lppaca;
770 
771 	spin_lock(&vcpu->arch.vpa_update_lock);
772 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
773 	if (lppaca)
774 		yield_count = be32_to_cpu(lppaca->yield_count);
775 	spin_unlock(&vcpu->arch.vpa_update_lock);
776 	return yield_count;
777 }
778 
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)779 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
780 {
781 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
782 	unsigned long target, ret = H_SUCCESS;
783 	int yield_count;
784 	struct kvm_vcpu *tvcpu;
785 	int idx, rc;
786 
787 	if (req <= MAX_HCALL_OPCODE &&
788 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
789 		return RESUME_HOST;
790 
791 	switch (req) {
792 	case H_CEDE:
793 		break;
794 	case H_PROD:
795 		target = kvmppc_get_gpr(vcpu, 4);
796 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
797 		if (!tvcpu) {
798 			ret = H_PARAMETER;
799 			break;
800 		}
801 		tvcpu->arch.prodded = 1;
802 		smp_mb();
803 		if (tvcpu->arch.ceded)
804 			kvmppc_fast_vcpu_kick_hv(tvcpu);
805 		break;
806 	case H_CONFER:
807 		target = kvmppc_get_gpr(vcpu, 4);
808 		if (target == -1)
809 			break;
810 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
811 		if (!tvcpu) {
812 			ret = H_PARAMETER;
813 			break;
814 		}
815 		yield_count = kvmppc_get_gpr(vcpu, 5);
816 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
817 			break;
818 		kvm_arch_vcpu_yield_to(tvcpu);
819 		break;
820 	case H_REGISTER_VPA:
821 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
822 					kvmppc_get_gpr(vcpu, 5),
823 					kvmppc_get_gpr(vcpu, 6));
824 		break;
825 	case H_RTAS:
826 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
827 			return RESUME_HOST;
828 
829 		idx = srcu_read_lock(&vcpu->kvm->srcu);
830 		rc = kvmppc_rtas_hcall(vcpu);
831 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
832 
833 		if (rc == -ENOENT)
834 			return RESUME_HOST;
835 		else if (rc == 0)
836 			break;
837 
838 		/* Send the error out to userspace via KVM_RUN */
839 		return rc;
840 	case H_LOGICAL_CI_LOAD:
841 		ret = kvmppc_h_logical_ci_load(vcpu);
842 		if (ret == H_TOO_HARD)
843 			return RESUME_HOST;
844 		break;
845 	case H_LOGICAL_CI_STORE:
846 		ret = kvmppc_h_logical_ci_store(vcpu);
847 		if (ret == H_TOO_HARD)
848 			return RESUME_HOST;
849 		break;
850 	case H_SET_MODE:
851 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
852 					kvmppc_get_gpr(vcpu, 5),
853 					kvmppc_get_gpr(vcpu, 6),
854 					kvmppc_get_gpr(vcpu, 7));
855 		if (ret == H_TOO_HARD)
856 			return RESUME_HOST;
857 		break;
858 	case H_XIRR:
859 	case H_CPPR:
860 	case H_EOI:
861 	case H_IPI:
862 	case H_IPOLL:
863 	case H_XIRR_X:
864 		if (kvmppc_xics_enabled(vcpu)) {
865 			if (xive_enabled()) {
866 				ret = H_NOT_AVAILABLE;
867 				return RESUME_GUEST;
868 			}
869 			ret = kvmppc_xics_hcall(vcpu, req);
870 			break;
871 		}
872 		return RESUME_HOST;
873 	case H_PUT_TCE:
874 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
875 						kvmppc_get_gpr(vcpu, 5),
876 						kvmppc_get_gpr(vcpu, 6));
877 		if (ret == H_TOO_HARD)
878 			return RESUME_HOST;
879 		break;
880 	case H_PUT_TCE_INDIRECT:
881 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
882 						kvmppc_get_gpr(vcpu, 5),
883 						kvmppc_get_gpr(vcpu, 6),
884 						kvmppc_get_gpr(vcpu, 7));
885 		if (ret == H_TOO_HARD)
886 			return RESUME_HOST;
887 		break;
888 	case H_STUFF_TCE:
889 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
890 						kvmppc_get_gpr(vcpu, 5),
891 						kvmppc_get_gpr(vcpu, 6),
892 						kvmppc_get_gpr(vcpu, 7));
893 		if (ret == H_TOO_HARD)
894 			return RESUME_HOST;
895 		break;
896 	default:
897 		return RESUME_HOST;
898 	}
899 	kvmppc_set_gpr(vcpu, 3, ret);
900 	vcpu->arch.hcall_needed = 0;
901 	return RESUME_GUEST;
902 }
903 
kvmppc_hcall_impl_hv(unsigned long cmd)904 static int kvmppc_hcall_impl_hv(unsigned long cmd)
905 {
906 	switch (cmd) {
907 	case H_CEDE:
908 	case H_PROD:
909 	case H_CONFER:
910 	case H_REGISTER_VPA:
911 	case H_SET_MODE:
912 	case H_LOGICAL_CI_LOAD:
913 	case H_LOGICAL_CI_STORE:
914 #ifdef CONFIG_KVM_XICS
915 	case H_XIRR:
916 	case H_CPPR:
917 	case H_EOI:
918 	case H_IPI:
919 	case H_IPOLL:
920 	case H_XIRR_X:
921 #endif
922 		return 1;
923 	}
924 
925 	/* See if it's in the real-mode table */
926 	return kvmppc_hcall_impl_hv_realmode(cmd);
927 }
928 
kvmppc_emulate_debug_inst(struct kvm_run * run,struct kvm_vcpu * vcpu)929 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
930 					struct kvm_vcpu *vcpu)
931 {
932 	u32 last_inst;
933 
934 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
935 					EMULATE_DONE) {
936 		/*
937 		 * Fetch failed, so return to guest and
938 		 * try executing it again.
939 		 */
940 		return RESUME_GUEST;
941 	}
942 
943 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
944 		run->exit_reason = KVM_EXIT_DEBUG;
945 		run->debug.arch.address = kvmppc_get_pc(vcpu);
946 		return RESUME_HOST;
947 	} else {
948 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
949 		return RESUME_GUEST;
950 	}
951 }
952 
do_nothing(void * x)953 static void do_nothing(void *x)
954 {
955 }
956 
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)957 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
958 {
959 	int thr, cpu, pcpu, nthreads;
960 	struct kvm_vcpu *v;
961 	unsigned long dpdes;
962 
963 	nthreads = vcpu->kvm->arch.emul_smt_mode;
964 	dpdes = 0;
965 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
966 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
967 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
968 		if (!v)
969 			continue;
970 		/*
971 		 * If the vcpu is currently running on a physical cpu thread,
972 		 * interrupt it in order to pull it out of the guest briefly,
973 		 * which will update its vcore->dpdes value.
974 		 */
975 		pcpu = READ_ONCE(v->cpu);
976 		if (pcpu >= 0)
977 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
978 		if (kvmppc_doorbell_pending(v))
979 			dpdes |= 1 << thr;
980 	}
981 	return dpdes;
982 }
983 
984 /*
985  * On POWER9, emulate doorbell-related instructions in order to
986  * give the guest the illusion of running on a multi-threaded core.
987  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
988  * and mfspr DPDES.
989  */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)990 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
991 {
992 	u32 inst, rb, thr;
993 	unsigned long arg;
994 	struct kvm *kvm = vcpu->kvm;
995 	struct kvm_vcpu *tvcpu;
996 
997 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
998 		return RESUME_GUEST;
999 	if (get_op(inst) != 31)
1000 		return EMULATE_FAIL;
1001 	rb = get_rb(inst);
1002 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1003 	switch (get_xop(inst)) {
1004 	case OP_31_XOP_MSGSNDP:
1005 		arg = kvmppc_get_gpr(vcpu, rb);
1006 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1007 			break;
1008 		arg &= 0x3f;
1009 		if (arg >= kvm->arch.emul_smt_mode)
1010 			break;
1011 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1012 		if (!tvcpu)
1013 			break;
1014 		if (!tvcpu->arch.doorbell_request) {
1015 			tvcpu->arch.doorbell_request = 1;
1016 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1017 		}
1018 		break;
1019 	case OP_31_XOP_MSGCLRP:
1020 		arg = kvmppc_get_gpr(vcpu, rb);
1021 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1022 			break;
1023 		vcpu->arch.vcore->dpdes = 0;
1024 		vcpu->arch.doorbell_request = 0;
1025 		break;
1026 	case OP_31_XOP_MFSPR:
1027 		switch (get_sprn(inst)) {
1028 		case SPRN_TIR:
1029 			arg = thr;
1030 			break;
1031 		case SPRN_DPDES:
1032 			arg = kvmppc_read_dpdes(vcpu);
1033 			break;
1034 		default:
1035 			return EMULATE_FAIL;
1036 		}
1037 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1038 		break;
1039 	default:
1040 		return EMULATE_FAIL;
1041 	}
1042 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1043 	return RESUME_GUEST;
1044 }
1045 
1046 /* Called with vcpu->arch.vcore->lock held */
kvmppc_handle_exit_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,struct task_struct * tsk)1047 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1048 				 struct task_struct *tsk)
1049 {
1050 	int r = RESUME_HOST;
1051 
1052 	vcpu->stat.sum_exits++;
1053 
1054 	/*
1055 	 * This can happen if an interrupt occurs in the last stages
1056 	 * of guest entry or the first stages of guest exit (i.e. after
1057 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1058 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1059 	 * That can happen due to a bug, or due to a machine check
1060 	 * occurring at just the wrong time.
1061 	 */
1062 	if (vcpu->arch.shregs.msr & MSR_HV) {
1063 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1064 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1065 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1066 			vcpu->arch.shregs.msr);
1067 		kvmppc_dump_regs(vcpu);
1068 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1069 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1070 		return RESUME_HOST;
1071 	}
1072 	run->exit_reason = KVM_EXIT_UNKNOWN;
1073 	run->ready_for_interrupt_injection = 1;
1074 	switch (vcpu->arch.trap) {
1075 	/* We're good on these - the host merely wanted to get our attention */
1076 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1077 		vcpu->stat.dec_exits++;
1078 		r = RESUME_GUEST;
1079 		break;
1080 	case BOOK3S_INTERRUPT_EXTERNAL:
1081 	case BOOK3S_INTERRUPT_H_DOORBELL:
1082 	case BOOK3S_INTERRUPT_H_VIRT:
1083 		vcpu->stat.ext_intr_exits++;
1084 		r = RESUME_GUEST;
1085 		break;
1086 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
1087 	case BOOK3S_INTERRUPT_HMI:
1088 	case BOOK3S_INTERRUPT_PERFMON:
1089 		r = RESUME_GUEST;
1090 		break;
1091 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1092 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1093 		run->exit_reason = KVM_EXIT_NMI;
1094 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1095 		/* Clear out the old NMI status from run->flags */
1096 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1097 		/* Now set the NMI status */
1098 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1099 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1100 		else
1101 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1102 
1103 		r = RESUME_HOST;
1104 		/* Print the MCE event to host console. */
1105 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1106 		break;
1107 	case BOOK3S_INTERRUPT_PROGRAM:
1108 	{
1109 		ulong flags;
1110 		/*
1111 		 * Normally program interrupts are delivered directly
1112 		 * to the guest by the hardware, but we can get here
1113 		 * as a result of a hypervisor emulation interrupt
1114 		 * (e40) getting turned into a 700 by BML RTAS.
1115 		 */
1116 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1117 		kvmppc_core_queue_program(vcpu, flags);
1118 		r = RESUME_GUEST;
1119 		break;
1120 	}
1121 	case BOOK3S_INTERRUPT_SYSCALL:
1122 	{
1123 		/* hcall - punt to userspace */
1124 		int i;
1125 
1126 		/* hypercall with MSR_PR has already been handled in rmode,
1127 		 * and never reaches here.
1128 		 */
1129 
1130 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1131 		for (i = 0; i < 9; ++i)
1132 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1133 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1134 		vcpu->arch.hcall_needed = 1;
1135 		r = RESUME_HOST;
1136 		break;
1137 	}
1138 	/*
1139 	 * We get these next two if the guest accesses a page which it thinks
1140 	 * it has mapped but which is not actually present, either because
1141 	 * it is for an emulated I/O device or because the corresonding
1142 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1143 	 * have been handled already.
1144 	 */
1145 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1146 		r = RESUME_PAGE_FAULT;
1147 		break;
1148 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1149 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1150 		vcpu->arch.fault_dsisr = 0;
1151 		r = RESUME_PAGE_FAULT;
1152 		break;
1153 	/*
1154 	 * This occurs if the guest executes an illegal instruction.
1155 	 * If the guest debug is disabled, generate a program interrupt
1156 	 * to the guest. If guest debug is enabled, we need to check
1157 	 * whether the instruction is a software breakpoint instruction.
1158 	 * Accordingly return to Guest or Host.
1159 	 */
1160 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1161 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1162 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1163 				swab32(vcpu->arch.emul_inst) :
1164 				vcpu->arch.emul_inst;
1165 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1166 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1167 			spin_unlock(&vcpu->arch.vcore->lock);
1168 			r = kvmppc_emulate_debug_inst(run, vcpu);
1169 			spin_lock(&vcpu->arch.vcore->lock);
1170 		} else {
1171 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1172 			r = RESUME_GUEST;
1173 		}
1174 		break;
1175 	/*
1176 	 * This occurs if the guest (kernel or userspace), does something that
1177 	 * is prohibited by HFSCR.
1178 	 * On POWER9, this could be a doorbell instruction that we need
1179 	 * to emulate.
1180 	 * Otherwise, we just generate a program interrupt to the guest.
1181 	 */
1182 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1183 		r = EMULATE_FAIL;
1184 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1185 		    cpu_has_feature(CPU_FTR_ARCH_300)) {
1186 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1187 			spin_unlock(&vcpu->arch.vcore->lock);
1188 			r = kvmppc_emulate_doorbell_instr(vcpu);
1189 			spin_lock(&vcpu->arch.vcore->lock);
1190 		}
1191 		if (r == EMULATE_FAIL) {
1192 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1193 			r = RESUME_GUEST;
1194 		}
1195 		break;
1196 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1197 		r = RESUME_PASSTHROUGH;
1198 		break;
1199 	default:
1200 		kvmppc_dump_regs(vcpu);
1201 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1202 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1203 			vcpu->arch.shregs.msr);
1204 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1205 		r = RESUME_HOST;
1206 		break;
1207 	}
1208 
1209 	return r;
1210 }
1211 
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1212 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1213 					    struct kvm_sregs *sregs)
1214 {
1215 	int i;
1216 
1217 	memset(sregs, 0, sizeof(struct kvm_sregs));
1218 	sregs->pvr = vcpu->arch.pvr;
1219 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1220 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1221 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1222 	}
1223 
1224 	return 0;
1225 }
1226 
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1227 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1228 					    struct kvm_sregs *sregs)
1229 {
1230 	int i, j;
1231 
1232 	/* Only accept the same PVR as the host's, since we can't spoof it */
1233 	if (sregs->pvr != vcpu->arch.pvr)
1234 		return -EINVAL;
1235 
1236 	j = 0;
1237 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1238 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1239 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1240 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1241 			++j;
1242 		}
1243 	}
1244 	vcpu->arch.slb_max = j;
1245 
1246 	return 0;
1247 }
1248 
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)1249 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1250 		bool preserve_top32)
1251 {
1252 	struct kvm *kvm = vcpu->kvm;
1253 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1254 	u64 mask;
1255 
1256 	spin_lock(&vc->lock);
1257 	/*
1258 	 * If ILE (interrupt little-endian) has changed, update the
1259 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1260 	 */
1261 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1262 		struct kvm_vcpu *vcpu;
1263 		int i;
1264 
1265 		kvm_for_each_vcpu(i, vcpu, kvm) {
1266 			if (vcpu->arch.vcore != vc)
1267 				continue;
1268 			if (new_lpcr & LPCR_ILE)
1269 				vcpu->arch.intr_msr |= MSR_LE;
1270 			else
1271 				vcpu->arch.intr_msr &= ~MSR_LE;
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * Userspace can only modify DPFD (default prefetch depth),
1277 	 * ILE (interrupt little-endian) and TC (translation control).
1278 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1279 	 */
1280 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1281 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1282 		mask |= LPCR_AIL;
1283 	/*
1284 	 * On POWER9, allow userspace to enable large decrementer for the
1285 	 * guest, whether or not the host has it enabled.
1286 	 */
1287 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1288 		mask |= LPCR_LD;
1289 
1290 	/* Broken 32-bit version of LPCR must not clear top bits */
1291 	if (preserve_top32)
1292 		mask &= 0xFFFFFFFF;
1293 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1294 	spin_unlock(&vc->lock);
1295 }
1296 
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1297 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1298 				 union kvmppc_one_reg *val)
1299 {
1300 	int r = 0;
1301 	long int i;
1302 
1303 	switch (id) {
1304 	case KVM_REG_PPC_DEBUG_INST:
1305 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1306 		break;
1307 	case KVM_REG_PPC_HIOR:
1308 		*val = get_reg_val(id, 0);
1309 		break;
1310 	case KVM_REG_PPC_DABR:
1311 		*val = get_reg_val(id, vcpu->arch.dabr);
1312 		break;
1313 	case KVM_REG_PPC_DABRX:
1314 		*val = get_reg_val(id, vcpu->arch.dabrx);
1315 		break;
1316 	case KVM_REG_PPC_DSCR:
1317 		*val = get_reg_val(id, vcpu->arch.dscr);
1318 		break;
1319 	case KVM_REG_PPC_PURR:
1320 		*val = get_reg_val(id, vcpu->arch.purr);
1321 		break;
1322 	case KVM_REG_PPC_SPURR:
1323 		*val = get_reg_val(id, vcpu->arch.spurr);
1324 		break;
1325 	case KVM_REG_PPC_AMR:
1326 		*val = get_reg_val(id, vcpu->arch.amr);
1327 		break;
1328 	case KVM_REG_PPC_UAMOR:
1329 		*val = get_reg_val(id, vcpu->arch.uamor);
1330 		break;
1331 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1332 		i = id - KVM_REG_PPC_MMCR0;
1333 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1334 		break;
1335 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1336 		i = id - KVM_REG_PPC_PMC1;
1337 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1338 		break;
1339 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1340 		i = id - KVM_REG_PPC_SPMC1;
1341 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1342 		break;
1343 	case KVM_REG_PPC_SIAR:
1344 		*val = get_reg_val(id, vcpu->arch.siar);
1345 		break;
1346 	case KVM_REG_PPC_SDAR:
1347 		*val = get_reg_val(id, vcpu->arch.sdar);
1348 		break;
1349 	case KVM_REG_PPC_SIER:
1350 		*val = get_reg_val(id, vcpu->arch.sier);
1351 		break;
1352 	case KVM_REG_PPC_IAMR:
1353 		*val = get_reg_val(id, vcpu->arch.iamr);
1354 		break;
1355 	case KVM_REG_PPC_PSPB:
1356 		*val = get_reg_val(id, vcpu->arch.pspb);
1357 		break;
1358 	case KVM_REG_PPC_DPDES:
1359 		/*
1360 		 * On POWER9, where we are emulating msgsndp etc.,
1361 		 * we return 1 bit for each vcpu, which can come from
1362 		 * either vcore->dpdes or doorbell_request.
1363 		 * On POWER8, doorbell_request is 0.
1364 		 */
1365 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1366 				   vcpu->arch.doorbell_request);
1367 		break;
1368 	case KVM_REG_PPC_VTB:
1369 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1370 		break;
1371 	case KVM_REG_PPC_DAWR:
1372 		*val = get_reg_val(id, vcpu->arch.dawr);
1373 		break;
1374 	case KVM_REG_PPC_DAWRX:
1375 		*val = get_reg_val(id, vcpu->arch.dawrx);
1376 		break;
1377 	case KVM_REG_PPC_CIABR:
1378 		*val = get_reg_val(id, vcpu->arch.ciabr);
1379 		break;
1380 	case KVM_REG_PPC_CSIGR:
1381 		*val = get_reg_val(id, vcpu->arch.csigr);
1382 		break;
1383 	case KVM_REG_PPC_TACR:
1384 		*val = get_reg_val(id, vcpu->arch.tacr);
1385 		break;
1386 	case KVM_REG_PPC_TCSCR:
1387 		*val = get_reg_val(id, vcpu->arch.tcscr);
1388 		break;
1389 	case KVM_REG_PPC_PID:
1390 		*val = get_reg_val(id, vcpu->arch.pid);
1391 		break;
1392 	case KVM_REG_PPC_ACOP:
1393 		*val = get_reg_val(id, vcpu->arch.acop);
1394 		break;
1395 	case KVM_REG_PPC_WORT:
1396 		*val = get_reg_val(id, vcpu->arch.wort);
1397 		break;
1398 	case KVM_REG_PPC_TIDR:
1399 		*val = get_reg_val(id, vcpu->arch.tid);
1400 		break;
1401 	case KVM_REG_PPC_PSSCR:
1402 		*val = get_reg_val(id, vcpu->arch.psscr);
1403 		break;
1404 	case KVM_REG_PPC_VPA_ADDR:
1405 		spin_lock(&vcpu->arch.vpa_update_lock);
1406 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1407 		spin_unlock(&vcpu->arch.vpa_update_lock);
1408 		break;
1409 	case KVM_REG_PPC_VPA_SLB:
1410 		spin_lock(&vcpu->arch.vpa_update_lock);
1411 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1412 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1413 		spin_unlock(&vcpu->arch.vpa_update_lock);
1414 		break;
1415 	case KVM_REG_PPC_VPA_DTL:
1416 		spin_lock(&vcpu->arch.vpa_update_lock);
1417 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1418 		val->vpaval.length = vcpu->arch.dtl.len;
1419 		spin_unlock(&vcpu->arch.vpa_update_lock);
1420 		break;
1421 	case KVM_REG_PPC_TB_OFFSET:
1422 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1423 		break;
1424 	case KVM_REG_PPC_LPCR:
1425 	case KVM_REG_PPC_LPCR_64:
1426 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1427 		break;
1428 	case KVM_REG_PPC_PPR:
1429 		*val = get_reg_val(id, vcpu->arch.ppr);
1430 		break;
1431 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1432 	case KVM_REG_PPC_TFHAR:
1433 		*val = get_reg_val(id, vcpu->arch.tfhar);
1434 		break;
1435 	case KVM_REG_PPC_TFIAR:
1436 		*val = get_reg_val(id, vcpu->arch.tfiar);
1437 		break;
1438 	case KVM_REG_PPC_TEXASR:
1439 		*val = get_reg_val(id, vcpu->arch.texasr);
1440 		break;
1441 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1442 		i = id - KVM_REG_PPC_TM_GPR0;
1443 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1444 		break;
1445 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1446 	{
1447 		int j;
1448 		i = id - KVM_REG_PPC_TM_VSR0;
1449 		if (i < 32)
1450 			for (j = 0; j < TS_FPRWIDTH; j++)
1451 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1452 		else {
1453 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1454 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1455 			else
1456 				r = -ENXIO;
1457 		}
1458 		break;
1459 	}
1460 	case KVM_REG_PPC_TM_CR:
1461 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1462 		break;
1463 	case KVM_REG_PPC_TM_XER:
1464 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1465 		break;
1466 	case KVM_REG_PPC_TM_LR:
1467 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1468 		break;
1469 	case KVM_REG_PPC_TM_CTR:
1470 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1471 		break;
1472 	case KVM_REG_PPC_TM_FPSCR:
1473 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1474 		break;
1475 	case KVM_REG_PPC_TM_AMR:
1476 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1477 		break;
1478 	case KVM_REG_PPC_TM_PPR:
1479 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1480 		break;
1481 	case KVM_REG_PPC_TM_VRSAVE:
1482 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1483 		break;
1484 	case KVM_REG_PPC_TM_VSCR:
1485 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1486 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1487 		else
1488 			r = -ENXIO;
1489 		break;
1490 	case KVM_REG_PPC_TM_DSCR:
1491 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1492 		break;
1493 	case KVM_REG_PPC_TM_TAR:
1494 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1495 		break;
1496 #endif
1497 	case KVM_REG_PPC_ARCH_COMPAT:
1498 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1499 		break;
1500 	case KVM_REG_PPC_DEC_EXPIRY:
1501 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1502 				   vcpu->arch.vcore->tb_offset);
1503 		break;
1504 	default:
1505 		r = -EINVAL;
1506 		break;
1507 	}
1508 
1509 	return r;
1510 }
1511 
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1512 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1513 				 union kvmppc_one_reg *val)
1514 {
1515 	int r = 0;
1516 	long int i;
1517 	unsigned long addr, len;
1518 
1519 	switch (id) {
1520 	case KVM_REG_PPC_HIOR:
1521 		/* Only allow this to be set to zero */
1522 		if (set_reg_val(id, *val))
1523 			r = -EINVAL;
1524 		break;
1525 	case KVM_REG_PPC_DABR:
1526 		vcpu->arch.dabr = set_reg_val(id, *val);
1527 		break;
1528 	case KVM_REG_PPC_DABRX:
1529 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1530 		break;
1531 	case KVM_REG_PPC_DSCR:
1532 		vcpu->arch.dscr = set_reg_val(id, *val);
1533 		break;
1534 	case KVM_REG_PPC_PURR:
1535 		vcpu->arch.purr = set_reg_val(id, *val);
1536 		break;
1537 	case KVM_REG_PPC_SPURR:
1538 		vcpu->arch.spurr = set_reg_val(id, *val);
1539 		break;
1540 	case KVM_REG_PPC_AMR:
1541 		vcpu->arch.amr = set_reg_val(id, *val);
1542 		break;
1543 	case KVM_REG_PPC_UAMOR:
1544 		vcpu->arch.uamor = set_reg_val(id, *val);
1545 		break;
1546 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1547 		i = id - KVM_REG_PPC_MMCR0;
1548 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1549 		break;
1550 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1551 		i = id - KVM_REG_PPC_PMC1;
1552 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1553 		break;
1554 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1555 		i = id - KVM_REG_PPC_SPMC1;
1556 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1557 		break;
1558 	case KVM_REG_PPC_SIAR:
1559 		vcpu->arch.siar = set_reg_val(id, *val);
1560 		break;
1561 	case KVM_REG_PPC_SDAR:
1562 		vcpu->arch.sdar = set_reg_val(id, *val);
1563 		break;
1564 	case KVM_REG_PPC_SIER:
1565 		vcpu->arch.sier = set_reg_val(id, *val);
1566 		break;
1567 	case KVM_REG_PPC_IAMR:
1568 		vcpu->arch.iamr = set_reg_val(id, *val);
1569 		break;
1570 	case KVM_REG_PPC_PSPB:
1571 		vcpu->arch.pspb = set_reg_val(id, *val);
1572 		break;
1573 	case KVM_REG_PPC_DPDES:
1574 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1575 		break;
1576 	case KVM_REG_PPC_VTB:
1577 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1578 		break;
1579 	case KVM_REG_PPC_DAWR:
1580 		vcpu->arch.dawr = set_reg_val(id, *val);
1581 		break;
1582 	case KVM_REG_PPC_DAWRX:
1583 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1584 		break;
1585 	case KVM_REG_PPC_CIABR:
1586 		vcpu->arch.ciabr = set_reg_val(id, *val);
1587 		/* Don't allow setting breakpoints in hypervisor code */
1588 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1589 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1590 		break;
1591 	case KVM_REG_PPC_CSIGR:
1592 		vcpu->arch.csigr = set_reg_val(id, *val);
1593 		break;
1594 	case KVM_REG_PPC_TACR:
1595 		vcpu->arch.tacr = set_reg_val(id, *val);
1596 		break;
1597 	case KVM_REG_PPC_TCSCR:
1598 		vcpu->arch.tcscr = set_reg_val(id, *val);
1599 		break;
1600 	case KVM_REG_PPC_PID:
1601 		vcpu->arch.pid = set_reg_val(id, *val);
1602 		break;
1603 	case KVM_REG_PPC_ACOP:
1604 		vcpu->arch.acop = set_reg_val(id, *val);
1605 		break;
1606 	case KVM_REG_PPC_WORT:
1607 		vcpu->arch.wort = set_reg_val(id, *val);
1608 		break;
1609 	case KVM_REG_PPC_TIDR:
1610 		vcpu->arch.tid = set_reg_val(id, *val);
1611 		break;
1612 	case KVM_REG_PPC_PSSCR:
1613 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1614 		break;
1615 	case KVM_REG_PPC_VPA_ADDR:
1616 		addr = set_reg_val(id, *val);
1617 		r = -EINVAL;
1618 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1619 			      vcpu->arch.dtl.next_gpa))
1620 			break;
1621 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1622 		break;
1623 	case KVM_REG_PPC_VPA_SLB:
1624 		addr = val->vpaval.addr;
1625 		len = val->vpaval.length;
1626 		r = -EINVAL;
1627 		if (addr && !vcpu->arch.vpa.next_gpa)
1628 			break;
1629 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1630 		break;
1631 	case KVM_REG_PPC_VPA_DTL:
1632 		addr = val->vpaval.addr;
1633 		len = val->vpaval.length;
1634 		r = -EINVAL;
1635 		if (addr && (len < sizeof(struct dtl_entry) ||
1636 			     !vcpu->arch.vpa.next_gpa))
1637 			break;
1638 		len -= len % sizeof(struct dtl_entry);
1639 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1640 		break;
1641 	case KVM_REG_PPC_TB_OFFSET:
1642 		/*
1643 		 * POWER9 DD1 has an erratum where writing TBU40 causes
1644 		 * the timebase to lose ticks.  So we don't let the
1645 		 * timebase offset be changed on P9 DD1.  (It is
1646 		 * initialized to zero.)
1647 		 */
1648 		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1649 			break;
1650 		/* round up to multiple of 2^24 */
1651 		vcpu->arch.vcore->tb_offset =
1652 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1653 		break;
1654 	case KVM_REG_PPC_LPCR:
1655 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1656 		break;
1657 	case KVM_REG_PPC_LPCR_64:
1658 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1659 		break;
1660 	case KVM_REG_PPC_PPR:
1661 		vcpu->arch.ppr = set_reg_val(id, *val);
1662 		break;
1663 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1664 	case KVM_REG_PPC_TFHAR:
1665 		vcpu->arch.tfhar = set_reg_val(id, *val);
1666 		break;
1667 	case KVM_REG_PPC_TFIAR:
1668 		vcpu->arch.tfiar = set_reg_val(id, *val);
1669 		break;
1670 	case KVM_REG_PPC_TEXASR:
1671 		vcpu->arch.texasr = set_reg_val(id, *val);
1672 		break;
1673 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1674 		i = id - KVM_REG_PPC_TM_GPR0;
1675 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1676 		break;
1677 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1678 	{
1679 		int j;
1680 		i = id - KVM_REG_PPC_TM_VSR0;
1681 		if (i < 32)
1682 			for (j = 0; j < TS_FPRWIDTH; j++)
1683 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1684 		else
1685 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1686 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1687 			else
1688 				r = -ENXIO;
1689 		break;
1690 	}
1691 	case KVM_REG_PPC_TM_CR:
1692 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1693 		break;
1694 	case KVM_REG_PPC_TM_XER:
1695 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1696 		break;
1697 	case KVM_REG_PPC_TM_LR:
1698 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1699 		break;
1700 	case KVM_REG_PPC_TM_CTR:
1701 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1702 		break;
1703 	case KVM_REG_PPC_TM_FPSCR:
1704 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1705 		break;
1706 	case KVM_REG_PPC_TM_AMR:
1707 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1708 		break;
1709 	case KVM_REG_PPC_TM_PPR:
1710 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1711 		break;
1712 	case KVM_REG_PPC_TM_VRSAVE:
1713 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1714 		break;
1715 	case KVM_REG_PPC_TM_VSCR:
1716 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1717 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1718 		else
1719 			r = - ENXIO;
1720 		break;
1721 	case KVM_REG_PPC_TM_DSCR:
1722 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1723 		break;
1724 	case KVM_REG_PPC_TM_TAR:
1725 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1726 		break;
1727 #endif
1728 	case KVM_REG_PPC_ARCH_COMPAT:
1729 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1730 		break;
1731 	case KVM_REG_PPC_DEC_EXPIRY:
1732 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
1733 			vcpu->arch.vcore->tb_offset;
1734 		break;
1735 	default:
1736 		r = -EINVAL;
1737 		break;
1738 	}
1739 
1740 	return r;
1741 }
1742 
1743 /*
1744  * On POWER9, threads are independent and can be in different partitions.
1745  * Therefore we consider each thread to be a subcore.
1746  * There is a restriction that all threads have to be in the same
1747  * MMU mode (radix or HPT), unfortunately, but since we only support
1748  * HPT guests on a HPT host so far, that isn't an impediment yet.
1749  */
threads_per_vcore(void)1750 static int threads_per_vcore(void)
1751 {
1752 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1753 		return 1;
1754 	return threads_per_subcore;
1755 }
1756 
kvmppc_vcore_create(struct kvm * kvm,int core)1757 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1758 {
1759 	struct kvmppc_vcore *vcore;
1760 
1761 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1762 
1763 	if (vcore == NULL)
1764 		return NULL;
1765 
1766 	spin_lock_init(&vcore->lock);
1767 	spin_lock_init(&vcore->stoltb_lock);
1768 	init_swait_queue_head(&vcore->wq);
1769 	vcore->preempt_tb = TB_NIL;
1770 	vcore->lpcr = kvm->arch.lpcr;
1771 	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1772 	vcore->kvm = kvm;
1773 	INIT_LIST_HEAD(&vcore->preempt_list);
1774 
1775 	return vcore;
1776 }
1777 
1778 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1779 static struct debugfs_timings_element {
1780 	const char *name;
1781 	size_t offset;
1782 } timings[] = {
1783 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1784 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1785 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1786 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1787 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1788 };
1789 
1790 #define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))
1791 
1792 struct debugfs_timings_state {
1793 	struct kvm_vcpu	*vcpu;
1794 	unsigned int	buflen;
1795 	char		buf[N_TIMINGS * 100];
1796 };
1797 
debugfs_timings_open(struct inode * inode,struct file * file)1798 static int debugfs_timings_open(struct inode *inode, struct file *file)
1799 {
1800 	struct kvm_vcpu *vcpu = inode->i_private;
1801 	struct debugfs_timings_state *p;
1802 
1803 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1804 	if (!p)
1805 		return -ENOMEM;
1806 
1807 	kvm_get_kvm(vcpu->kvm);
1808 	p->vcpu = vcpu;
1809 	file->private_data = p;
1810 
1811 	return nonseekable_open(inode, file);
1812 }
1813 
debugfs_timings_release(struct inode * inode,struct file * file)1814 static int debugfs_timings_release(struct inode *inode, struct file *file)
1815 {
1816 	struct debugfs_timings_state *p = file->private_data;
1817 
1818 	kvm_put_kvm(p->vcpu->kvm);
1819 	kfree(p);
1820 	return 0;
1821 }
1822 
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1823 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1824 				    size_t len, loff_t *ppos)
1825 {
1826 	struct debugfs_timings_state *p = file->private_data;
1827 	struct kvm_vcpu *vcpu = p->vcpu;
1828 	char *s, *buf_end;
1829 	struct kvmhv_tb_accumulator tb;
1830 	u64 count;
1831 	loff_t pos;
1832 	ssize_t n;
1833 	int i, loops;
1834 	bool ok;
1835 
1836 	if (!p->buflen) {
1837 		s = p->buf;
1838 		buf_end = s + sizeof(p->buf);
1839 		for (i = 0; i < N_TIMINGS; ++i) {
1840 			struct kvmhv_tb_accumulator *acc;
1841 
1842 			acc = (struct kvmhv_tb_accumulator *)
1843 				((unsigned long)vcpu + timings[i].offset);
1844 			ok = false;
1845 			for (loops = 0; loops < 1000; ++loops) {
1846 				count = acc->seqcount;
1847 				if (!(count & 1)) {
1848 					smp_rmb();
1849 					tb = *acc;
1850 					smp_rmb();
1851 					if (count == acc->seqcount) {
1852 						ok = true;
1853 						break;
1854 					}
1855 				}
1856 				udelay(1);
1857 			}
1858 			if (!ok)
1859 				snprintf(s, buf_end - s, "%s: stuck\n",
1860 					timings[i].name);
1861 			else
1862 				snprintf(s, buf_end - s,
1863 					"%s: %llu %llu %llu %llu\n",
1864 					timings[i].name, count / 2,
1865 					tb_to_ns(tb.tb_total),
1866 					tb_to_ns(tb.tb_min),
1867 					tb_to_ns(tb.tb_max));
1868 			s += strlen(s);
1869 		}
1870 		p->buflen = s - p->buf;
1871 	}
1872 
1873 	pos = *ppos;
1874 	if (pos >= p->buflen)
1875 		return 0;
1876 	if (len > p->buflen - pos)
1877 		len = p->buflen - pos;
1878 	n = copy_to_user(buf, p->buf + pos, len);
1879 	if (n) {
1880 		if (n == len)
1881 			return -EFAULT;
1882 		len -= n;
1883 	}
1884 	*ppos = pos + len;
1885 	return len;
1886 }
1887 
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1888 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1889 				     size_t len, loff_t *ppos)
1890 {
1891 	return -EACCES;
1892 }
1893 
1894 static const struct file_operations debugfs_timings_ops = {
1895 	.owner	 = THIS_MODULE,
1896 	.open	 = debugfs_timings_open,
1897 	.release = debugfs_timings_release,
1898 	.read	 = debugfs_timings_read,
1899 	.write	 = debugfs_timings_write,
1900 	.llseek	 = generic_file_llseek,
1901 };
1902 
1903 /* Create a debugfs directory for the vcpu */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)1904 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1905 {
1906 	char buf[16];
1907 	struct kvm *kvm = vcpu->kvm;
1908 
1909 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1910 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1911 		return;
1912 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1913 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1914 		return;
1915 	vcpu->arch.debugfs_timings =
1916 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1917 				    vcpu, &debugfs_timings_ops);
1918 }
1919 
1920 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)1921 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1922 {
1923 }
1924 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1925 
kvmppc_core_vcpu_create_hv(struct kvm * kvm,unsigned int id)1926 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1927 						   unsigned int id)
1928 {
1929 	struct kvm_vcpu *vcpu;
1930 	int err;
1931 	int core;
1932 	struct kvmppc_vcore *vcore;
1933 
1934 	err = -ENOMEM;
1935 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1936 	if (!vcpu)
1937 		goto out;
1938 
1939 	err = kvm_vcpu_init(vcpu, kvm, id);
1940 	if (err)
1941 		goto free_vcpu;
1942 
1943 	vcpu->arch.shared = &vcpu->arch.shregs;
1944 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1945 	/*
1946 	 * The shared struct is never shared on HV,
1947 	 * so we can always use host endianness
1948 	 */
1949 #ifdef __BIG_ENDIAN__
1950 	vcpu->arch.shared_big_endian = true;
1951 #else
1952 	vcpu->arch.shared_big_endian = false;
1953 #endif
1954 #endif
1955 	vcpu->arch.mmcr[0] = MMCR0_FC;
1956 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1957 	/* default to host PVR, since we can't spoof it */
1958 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1959 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1960 	spin_lock_init(&vcpu->arch.tbacct_lock);
1961 	vcpu->arch.busy_preempt = TB_NIL;
1962 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1963 
1964 	/*
1965 	 * Set the default HFSCR for the guest from the host value.
1966 	 * This value is only used on POWER9.
1967 	 * On POWER9 DD1, TM doesn't work, so we make sure to
1968 	 * prevent the guest from using it.
1969 	 * On POWER9, we want to virtualize the doorbell facility, so we
1970 	 * turn off the HFSCR bit, which causes those instructions to trap.
1971 	 */
1972 	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1973 	if (!cpu_has_feature(CPU_FTR_TM))
1974 		vcpu->arch.hfscr &= ~HFSCR_TM;
1975 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1976 		vcpu->arch.hfscr &= ~HFSCR_MSGP;
1977 
1978 	kvmppc_mmu_book3s_hv_init(vcpu);
1979 
1980 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1981 
1982 	init_waitqueue_head(&vcpu->arch.cpu_run);
1983 
1984 	mutex_lock(&kvm->lock);
1985 	vcore = NULL;
1986 	err = -EINVAL;
1987 	core = id / kvm->arch.smt_mode;
1988 	if (core < KVM_MAX_VCORES) {
1989 		vcore = kvm->arch.vcores[core];
1990 		if (!vcore) {
1991 			err = -ENOMEM;
1992 			vcore = kvmppc_vcore_create(kvm, core);
1993 			kvm->arch.vcores[core] = vcore;
1994 			kvm->arch.online_vcores++;
1995 		}
1996 	}
1997 	mutex_unlock(&kvm->lock);
1998 
1999 	if (!vcore)
2000 		goto uninit_vcpu;
2001 
2002 	spin_lock(&vcore->lock);
2003 	++vcore->num_threads;
2004 	spin_unlock(&vcore->lock);
2005 	vcpu->arch.vcore = vcore;
2006 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2007 	vcpu->arch.thread_cpu = -1;
2008 	vcpu->arch.prev_cpu = -1;
2009 
2010 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2011 	kvmppc_sanity_check(vcpu);
2012 
2013 	debugfs_vcpu_init(vcpu, id);
2014 
2015 	return vcpu;
2016 
2017 uninit_vcpu:
2018 	kvm_vcpu_uninit(vcpu);
2019 free_vcpu:
2020 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2021 out:
2022 	return ERR_PTR(err);
2023 }
2024 
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)2025 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2026 			      unsigned long flags)
2027 {
2028 	int err;
2029 	int esmt = 0;
2030 
2031 	if (flags)
2032 		return -EINVAL;
2033 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2034 		return -EINVAL;
2035 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2036 		/*
2037 		 * On POWER8 (or POWER7), the threading mode is "strict",
2038 		 * so we pack smt_mode vcpus per vcore.
2039 		 */
2040 		if (smt_mode > threads_per_subcore)
2041 			return -EINVAL;
2042 	} else {
2043 		/*
2044 		 * On POWER9, the threading mode is "loose",
2045 		 * so each vcpu gets its own vcore.
2046 		 */
2047 		esmt = smt_mode;
2048 		smt_mode = 1;
2049 	}
2050 	mutex_lock(&kvm->lock);
2051 	err = -EBUSY;
2052 	if (!kvm->arch.online_vcores) {
2053 		kvm->arch.smt_mode = smt_mode;
2054 		kvm->arch.emul_smt_mode = esmt;
2055 		err = 0;
2056 	}
2057 	mutex_unlock(&kvm->lock);
2058 
2059 	return err;
2060 }
2061 
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)2062 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2063 {
2064 	if (vpa->pinned_addr)
2065 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2066 					vpa->dirty);
2067 }
2068 
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)2069 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2070 {
2071 	spin_lock(&vcpu->arch.vpa_update_lock);
2072 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2073 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2074 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2075 	spin_unlock(&vcpu->arch.vpa_update_lock);
2076 	kvm_vcpu_uninit(vcpu);
2077 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2078 }
2079 
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)2080 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2081 {
2082 	/* Indicate we want to get back into the guest */
2083 	return 1;
2084 }
2085 
kvmppc_set_timer(struct kvm_vcpu * vcpu)2086 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2087 {
2088 	unsigned long dec_nsec, now;
2089 
2090 	now = get_tb();
2091 	if (now > vcpu->arch.dec_expires) {
2092 		/* decrementer has already gone negative */
2093 		kvmppc_core_queue_dec(vcpu);
2094 		kvmppc_core_prepare_to_enter(vcpu);
2095 		return;
2096 	}
2097 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2098 		   / tb_ticks_per_sec;
2099 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2100 	vcpu->arch.timer_running = 1;
2101 }
2102 
kvmppc_end_cede(struct kvm_vcpu * vcpu)2103 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2104 {
2105 	vcpu->arch.ceded = 0;
2106 	if (vcpu->arch.timer_running) {
2107 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2108 		vcpu->arch.timer_running = 0;
2109 	}
2110 }
2111 
2112 extern int __kvmppc_vcore_entry(void);
2113 
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu)2114 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2115 				   struct kvm_vcpu *vcpu)
2116 {
2117 	u64 now;
2118 
2119 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2120 		return;
2121 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2122 	now = mftb();
2123 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2124 		vcpu->arch.stolen_logged;
2125 	vcpu->arch.busy_preempt = now;
2126 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2127 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2128 	--vc->n_runnable;
2129 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2130 }
2131 
kvmppc_grab_hwthread(int cpu)2132 static int kvmppc_grab_hwthread(int cpu)
2133 {
2134 	struct paca_struct *tpaca;
2135 	long timeout = 10000;
2136 
2137 	/*
2138 	 * ISA v3.0 idle routines do not set hwthread_state or test
2139 	 * hwthread_req, so they can not grab idle threads.
2140 	 */
2141 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2142 		WARN(1, "KVM: can not control sibling threads\n");
2143 		return -EBUSY;
2144 	}
2145 
2146 	tpaca = &paca[cpu];
2147 
2148 	/* Ensure the thread won't go into the kernel if it wakes */
2149 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2150 	tpaca->kvm_hstate.kvm_vcore = NULL;
2151 	tpaca->kvm_hstate.napping = 0;
2152 	smp_wmb();
2153 	tpaca->kvm_hstate.hwthread_req = 1;
2154 
2155 	/*
2156 	 * If the thread is already executing in the kernel (e.g. handling
2157 	 * a stray interrupt), wait for it to get back to nap mode.
2158 	 * The smp_mb() is to ensure that our setting of hwthread_req
2159 	 * is visible before we look at hwthread_state, so if this
2160 	 * races with the code at system_reset_pSeries and the thread
2161 	 * misses our setting of hwthread_req, we are sure to see its
2162 	 * setting of hwthread_state, and vice versa.
2163 	 */
2164 	smp_mb();
2165 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2166 		if (--timeout <= 0) {
2167 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2168 			return -EBUSY;
2169 		}
2170 		udelay(1);
2171 	}
2172 	return 0;
2173 }
2174 
kvmppc_release_hwthread(int cpu)2175 static void kvmppc_release_hwthread(int cpu)
2176 {
2177 	struct paca_struct *tpaca;
2178 
2179 	tpaca = &paca[cpu];
2180 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2181 	tpaca->kvm_hstate.kvm_vcore = NULL;
2182 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2183 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
2184 		tpaca->kvm_hstate.hwthread_req = 0;
2185 
2186 }
2187 
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)2188 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2189 {
2190 	int i;
2191 
2192 	cpu = cpu_first_thread_sibling(cpu);
2193 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2194 	/*
2195 	 * Make sure setting of bit in need_tlb_flush precedes
2196 	 * testing of cpu_in_guest bits.  The matching barrier on
2197 	 * the other side is the first smp_mb() in kvmppc_run_core().
2198 	 */
2199 	smp_mb();
2200 	for (i = 0; i < threads_per_core; ++i)
2201 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2202 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2203 }
2204 
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)2205 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2206 {
2207 	struct kvm *kvm = vcpu->kvm;
2208 
2209 	/*
2210 	 * With radix, the guest can do TLB invalidations itself,
2211 	 * and it could choose to use the local form (tlbiel) if
2212 	 * it is invalidating a translation that has only ever been
2213 	 * used on one vcpu.  However, that doesn't mean it has
2214 	 * only ever been used on one physical cpu, since vcpus
2215 	 * can move around between pcpus.  To cope with this, when
2216 	 * a vcpu moves from one pcpu to another, we need to tell
2217 	 * any vcpus running on the same core as this vcpu previously
2218 	 * ran to flush the TLB.  The TLB is shared between threads,
2219 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2220 	 */
2221 	if (vcpu->arch.prev_cpu != pcpu) {
2222 		if (vcpu->arch.prev_cpu >= 0 &&
2223 		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2224 		    cpu_first_thread_sibling(pcpu))
2225 			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2226 		vcpu->arch.prev_cpu = pcpu;
2227 	}
2228 }
2229 
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)2230 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2231 {
2232 	int cpu;
2233 	struct paca_struct *tpaca;
2234 	struct kvm *kvm = vc->kvm;
2235 
2236 	cpu = vc->pcpu;
2237 	if (vcpu) {
2238 		if (vcpu->arch.timer_running) {
2239 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2240 			vcpu->arch.timer_running = 0;
2241 		}
2242 		cpu += vcpu->arch.ptid;
2243 		vcpu->cpu = vc->pcpu;
2244 		vcpu->arch.thread_cpu = cpu;
2245 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2246 	}
2247 	tpaca = &paca[cpu];
2248 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2249 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2250 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2251 	smp_wmb();
2252 	tpaca->kvm_hstate.kvm_vcore = vc;
2253 	if (cpu != smp_processor_id())
2254 		kvmppc_ipi_thread(cpu);
2255 }
2256 
kvmppc_wait_for_nap(void)2257 static void kvmppc_wait_for_nap(void)
2258 {
2259 	int cpu = smp_processor_id();
2260 	int i, loops;
2261 	int n_threads = threads_per_vcore();
2262 
2263 	if (n_threads <= 1)
2264 		return;
2265 	for (loops = 0; loops < 1000000; ++loops) {
2266 		/*
2267 		 * Check if all threads are finished.
2268 		 * We set the vcore pointer when starting a thread
2269 		 * and the thread clears it when finished, so we look
2270 		 * for any threads that still have a non-NULL vcore ptr.
2271 		 */
2272 		for (i = 1; i < n_threads; ++i)
2273 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2274 				break;
2275 		if (i == n_threads) {
2276 			HMT_medium();
2277 			return;
2278 		}
2279 		HMT_low();
2280 	}
2281 	HMT_medium();
2282 	for (i = 1; i < n_threads; ++i)
2283 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2284 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2285 }
2286 
2287 /*
2288  * Check that we are on thread 0 and that any other threads in
2289  * this core are off-line.  Then grab the threads so they can't
2290  * enter the kernel.
2291  */
on_primary_thread(void)2292 static int on_primary_thread(void)
2293 {
2294 	int cpu = smp_processor_id();
2295 	int thr;
2296 
2297 	/* Are we on a primary subcore? */
2298 	if (cpu_thread_in_subcore(cpu))
2299 		return 0;
2300 
2301 	thr = 0;
2302 	while (++thr < threads_per_subcore)
2303 		if (cpu_online(cpu + thr))
2304 			return 0;
2305 
2306 	/* Grab all hw threads so they can't go into the kernel */
2307 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2308 		if (kvmppc_grab_hwthread(cpu + thr)) {
2309 			/* Couldn't grab one; let the others go */
2310 			do {
2311 				kvmppc_release_hwthread(cpu + thr);
2312 			} while (--thr > 0);
2313 			return 0;
2314 		}
2315 	}
2316 	return 1;
2317 }
2318 
2319 /*
2320  * A list of virtual cores for each physical CPU.
2321  * These are vcores that could run but their runner VCPU tasks are
2322  * (or may be) preempted.
2323  */
2324 struct preempted_vcore_list {
2325 	struct list_head	list;
2326 	spinlock_t		lock;
2327 };
2328 
2329 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2330 
init_vcore_lists(void)2331 static void init_vcore_lists(void)
2332 {
2333 	int cpu;
2334 
2335 	for_each_possible_cpu(cpu) {
2336 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2337 		spin_lock_init(&lp->lock);
2338 		INIT_LIST_HEAD(&lp->list);
2339 	}
2340 }
2341 
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)2342 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2343 {
2344 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2345 
2346 	vc->vcore_state = VCORE_PREEMPT;
2347 	vc->pcpu = smp_processor_id();
2348 	if (vc->num_threads < threads_per_vcore()) {
2349 		spin_lock(&lp->lock);
2350 		list_add_tail(&vc->preempt_list, &lp->list);
2351 		spin_unlock(&lp->lock);
2352 	}
2353 
2354 	/* Start accumulating stolen time */
2355 	kvmppc_core_start_stolen(vc);
2356 }
2357 
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)2358 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2359 {
2360 	struct preempted_vcore_list *lp;
2361 
2362 	kvmppc_core_end_stolen(vc);
2363 	if (!list_empty(&vc->preempt_list)) {
2364 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2365 		spin_lock(&lp->lock);
2366 		list_del_init(&vc->preempt_list);
2367 		spin_unlock(&lp->lock);
2368 	}
2369 	vc->vcore_state = VCORE_INACTIVE;
2370 }
2371 
2372 /*
2373  * This stores information about the virtual cores currently
2374  * assigned to a physical core.
2375  */
2376 struct core_info {
2377 	int		n_subcores;
2378 	int		max_subcore_threads;
2379 	int		total_threads;
2380 	int		subcore_threads[MAX_SUBCORES];
2381 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2382 };
2383 
2384 /*
2385  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2386  * respectively in 2-way micro-threading (split-core) mode.
2387  */
2388 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2389 
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)2390 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2391 {
2392 	memset(cip, 0, sizeof(*cip));
2393 	cip->n_subcores = 1;
2394 	cip->max_subcore_threads = vc->num_threads;
2395 	cip->total_threads = vc->num_threads;
2396 	cip->subcore_threads[0] = vc->num_threads;
2397 	cip->vc[0] = vc;
2398 }
2399 
subcore_config_ok(int n_subcores,int n_threads)2400 static bool subcore_config_ok(int n_subcores, int n_threads)
2401 {
2402 	/* Can only dynamically split if unsplit to begin with */
2403 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2404 		return false;
2405 	if (n_subcores > MAX_SUBCORES)
2406 		return false;
2407 	if (n_subcores > 1) {
2408 		if (!(dynamic_mt_modes & 2))
2409 			n_subcores = 4;
2410 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2411 			return false;
2412 	}
2413 
2414 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2415 }
2416 
init_vcore_to_run(struct kvmppc_vcore * vc)2417 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2418 {
2419 	vc->entry_exit_map = 0;
2420 	vc->in_guest = 0;
2421 	vc->napping_threads = 0;
2422 	vc->conferring_threads = 0;
2423 }
2424 
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)2425 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2426 {
2427 	int n_threads = vc->num_threads;
2428 	int sub;
2429 
2430 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2431 		return false;
2432 
2433 	if (n_threads < cip->max_subcore_threads)
2434 		n_threads = cip->max_subcore_threads;
2435 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2436 		return false;
2437 	cip->max_subcore_threads = n_threads;
2438 
2439 	sub = cip->n_subcores;
2440 	++cip->n_subcores;
2441 	cip->total_threads += vc->num_threads;
2442 	cip->subcore_threads[sub] = vc->num_threads;
2443 	cip->vc[sub] = vc;
2444 	init_vcore_to_run(vc);
2445 	list_del_init(&vc->preempt_list);
2446 
2447 	return true;
2448 }
2449 
2450 /*
2451  * Work out whether it is possible to piggyback the execution of
2452  * vcore *pvc onto the execution of the other vcores described in *cip.
2453  */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)2454 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2455 			  int target_threads)
2456 {
2457 	if (cip->total_threads + pvc->num_threads > target_threads)
2458 		return false;
2459 
2460 	return can_dynamic_split(pvc, cip);
2461 }
2462 
prepare_threads(struct kvmppc_vcore * vc)2463 static void prepare_threads(struct kvmppc_vcore *vc)
2464 {
2465 	int i;
2466 	struct kvm_vcpu *vcpu;
2467 
2468 	for_each_runnable_thread(i, vcpu, vc) {
2469 		if (signal_pending(vcpu->arch.run_task))
2470 			vcpu->arch.ret = -EINTR;
2471 		else if (vcpu->arch.vpa.update_pending ||
2472 			 vcpu->arch.slb_shadow.update_pending ||
2473 			 vcpu->arch.dtl.update_pending)
2474 			vcpu->arch.ret = RESUME_GUEST;
2475 		else
2476 			continue;
2477 		kvmppc_remove_runnable(vc, vcpu);
2478 		wake_up(&vcpu->arch.cpu_run);
2479 	}
2480 }
2481 
collect_piggybacks(struct core_info * cip,int target_threads)2482 static void collect_piggybacks(struct core_info *cip, int target_threads)
2483 {
2484 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2485 	struct kvmppc_vcore *pvc, *vcnext;
2486 
2487 	spin_lock(&lp->lock);
2488 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2489 		if (!spin_trylock(&pvc->lock))
2490 			continue;
2491 		prepare_threads(pvc);
2492 		if (!pvc->n_runnable) {
2493 			list_del_init(&pvc->preempt_list);
2494 			if (pvc->runner == NULL) {
2495 				pvc->vcore_state = VCORE_INACTIVE;
2496 				kvmppc_core_end_stolen(pvc);
2497 			}
2498 			spin_unlock(&pvc->lock);
2499 			continue;
2500 		}
2501 		if (!can_piggyback(pvc, cip, target_threads)) {
2502 			spin_unlock(&pvc->lock);
2503 			continue;
2504 		}
2505 		kvmppc_core_end_stolen(pvc);
2506 		pvc->vcore_state = VCORE_PIGGYBACK;
2507 		if (cip->total_threads >= target_threads)
2508 			break;
2509 	}
2510 	spin_unlock(&lp->lock);
2511 }
2512 
recheck_signals(struct core_info * cip)2513 static bool recheck_signals(struct core_info *cip)
2514 {
2515 	int sub, i;
2516 	struct kvm_vcpu *vcpu;
2517 
2518 	for (sub = 0; sub < cip->n_subcores; ++sub)
2519 		for_each_runnable_thread(i, vcpu, cip->vc[sub])
2520 			if (signal_pending(vcpu->arch.run_task))
2521 				return true;
2522 	return false;
2523 }
2524 
post_guest_process(struct kvmppc_vcore * vc,bool is_master)2525 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2526 {
2527 	int still_running = 0, i;
2528 	u64 now;
2529 	long ret;
2530 	struct kvm_vcpu *vcpu;
2531 
2532 	spin_lock(&vc->lock);
2533 	now = get_tb();
2534 	for_each_runnable_thread(i, vcpu, vc) {
2535 		/* cancel pending dec exception if dec is positive */
2536 		if (now < vcpu->arch.dec_expires &&
2537 		    kvmppc_core_pending_dec(vcpu))
2538 			kvmppc_core_dequeue_dec(vcpu);
2539 
2540 		trace_kvm_guest_exit(vcpu);
2541 
2542 		ret = RESUME_GUEST;
2543 		if (vcpu->arch.trap)
2544 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2545 						    vcpu->arch.run_task);
2546 
2547 		vcpu->arch.ret = ret;
2548 		vcpu->arch.trap = 0;
2549 
2550 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2551 			if (vcpu->arch.pending_exceptions)
2552 				kvmppc_core_prepare_to_enter(vcpu);
2553 			if (vcpu->arch.ceded)
2554 				kvmppc_set_timer(vcpu);
2555 			else
2556 				++still_running;
2557 		} else {
2558 			kvmppc_remove_runnable(vc, vcpu);
2559 			wake_up(&vcpu->arch.cpu_run);
2560 		}
2561 	}
2562 	if (!is_master) {
2563 		if (still_running > 0) {
2564 			kvmppc_vcore_preempt(vc);
2565 		} else if (vc->runner) {
2566 			vc->vcore_state = VCORE_PREEMPT;
2567 			kvmppc_core_start_stolen(vc);
2568 		} else {
2569 			vc->vcore_state = VCORE_INACTIVE;
2570 		}
2571 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2572 			/* make sure there's a candidate runner awake */
2573 			i = -1;
2574 			vcpu = next_runnable_thread(vc, &i);
2575 			wake_up(&vcpu->arch.cpu_run);
2576 		}
2577 	}
2578 	spin_unlock(&vc->lock);
2579 }
2580 
2581 /*
2582  * Clear core from the list of active host cores as we are about to
2583  * enter the guest. Only do this if it is the primary thread of the
2584  * core (not if a subcore) that is entering the guest.
2585  */
kvmppc_clear_host_core(unsigned int cpu)2586 static inline int kvmppc_clear_host_core(unsigned int cpu)
2587 {
2588 	int core;
2589 
2590 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2591 		return 0;
2592 	/*
2593 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2594 	 * later in kvmppc_start_thread and we need ensure that state is
2595 	 * visible to other CPUs only after we enter guest.
2596 	 */
2597 	core = cpu >> threads_shift;
2598 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2599 	return 0;
2600 }
2601 
2602 /*
2603  * Advertise this core as an active host core since we exited the guest
2604  * Only need to do this if it is the primary thread of the core that is
2605  * exiting.
2606  */
kvmppc_set_host_core(unsigned int cpu)2607 static inline int kvmppc_set_host_core(unsigned int cpu)
2608 {
2609 	int core;
2610 
2611 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2612 		return 0;
2613 
2614 	/*
2615 	 * Memory barrier can be omitted here because we do a spin_unlock
2616 	 * immediately after this which provides the memory barrier.
2617 	 */
2618 	core = cpu >> threads_shift;
2619 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2620 	return 0;
2621 }
2622 
set_irq_happened(int trap)2623 static void set_irq_happened(int trap)
2624 {
2625 	switch (trap) {
2626 	case BOOK3S_INTERRUPT_EXTERNAL:
2627 		local_paca->irq_happened |= PACA_IRQ_EE;
2628 		break;
2629 	case BOOK3S_INTERRUPT_H_DOORBELL:
2630 		local_paca->irq_happened |= PACA_IRQ_DBELL;
2631 		break;
2632 	case BOOK3S_INTERRUPT_HMI:
2633 		local_paca->irq_happened |= PACA_IRQ_HMI;
2634 		break;
2635 	}
2636 }
2637 
2638 /*
2639  * Run a set of guest threads on a physical core.
2640  * Called with vc->lock held.
2641  */
kvmppc_run_core(struct kvmppc_vcore * vc)2642 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2643 {
2644 	struct kvm_vcpu *vcpu;
2645 	int i;
2646 	int srcu_idx;
2647 	struct core_info core_info;
2648 	struct kvmppc_vcore *pvc;
2649 	struct kvm_split_mode split_info, *sip;
2650 	int split, subcore_size, active;
2651 	int sub;
2652 	bool thr0_done;
2653 	unsigned long cmd_bit, stat_bit;
2654 	int pcpu, thr;
2655 	int target_threads;
2656 	int controlled_threads;
2657 	int trap;
2658 
2659 	/*
2660 	 * Remove from the list any threads that have a signal pending
2661 	 * or need a VPA update done
2662 	 */
2663 	prepare_threads(vc);
2664 
2665 	/* if the runner is no longer runnable, let the caller pick a new one */
2666 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2667 		return;
2668 
2669 	/*
2670 	 * Initialize *vc.
2671 	 */
2672 	init_vcore_to_run(vc);
2673 	vc->preempt_tb = TB_NIL;
2674 
2675 	/*
2676 	 * Number of threads that we will be controlling: the same as
2677 	 * the number of threads per subcore, except on POWER9,
2678 	 * where it's 1 because the threads are (mostly) independent.
2679 	 */
2680 	controlled_threads = threads_per_vcore();
2681 
2682 	/*
2683 	 * Make sure we are running on primary threads, and that secondary
2684 	 * threads are offline.  Also check if the number of threads in this
2685 	 * guest are greater than the current system threads per guest.
2686 	 */
2687 	if ((controlled_threads > 1) &&
2688 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2689 		for_each_runnable_thread(i, vcpu, vc) {
2690 			vcpu->arch.ret = -EBUSY;
2691 			kvmppc_remove_runnable(vc, vcpu);
2692 			wake_up(&vcpu->arch.cpu_run);
2693 		}
2694 		goto out;
2695 	}
2696 
2697 	/*
2698 	 * See if we could run any other vcores on the physical core
2699 	 * along with this one.
2700 	 */
2701 	init_core_info(&core_info, vc);
2702 	pcpu = smp_processor_id();
2703 	target_threads = controlled_threads;
2704 	if (target_smt_mode && target_smt_mode < target_threads)
2705 		target_threads = target_smt_mode;
2706 	if (vc->num_threads < target_threads)
2707 		collect_piggybacks(&core_info, target_threads);
2708 
2709 	/*
2710 	 * On radix, arrange for TLB flushing if necessary.
2711 	 * This has to be done before disabling interrupts since
2712 	 * it uses smp_call_function().
2713 	 */
2714 	pcpu = smp_processor_id();
2715 	if (kvm_is_radix(vc->kvm)) {
2716 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2717 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2718 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2719 	}
2720 
2721 	/*
2722 	 * Hard-disable interrupts, and check resched flag and signals.
2723 	 * If we need to reschedule or deliver a signal, clean up
2724 	 * and return without going into the guest(s).
2725 	 * If the hpte_setup_done flag has been cleared, don't go into the
2726 	 * guest because that means a HPT resize operation is in progress.
2727 	 */
2728 	local_irq_disable();
2729 	hard_irq_disable();
2730 	if (lazy_irq_pending() || need_resched() ||
2731 	    recheck_signals(&core_info) ||
2732 	    (!kvm_is_radix(vc->kvm) && !vc->kvm->arch.hpte_setup_done)) {
2733 		local_irq_enable();
2734 		vc->vcore_state = VCORE_INACTIVE;
2735 		/* Unlock all except the primary vcore */
2736 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
2737 			pvc = core_info.vc[sub];
2738 			/* Put back on to the preempted vcores list */
2739 			kvmppc_vcore_preempt(pvc);
2740 			spin_unlock(&pvc->lock);
2741 		}
2742 		for (i = 0; i < controlled_threads; ++i)
2743 			kvmppc_release_hwthread(pcpu + i);
2744 		return;
2745 	}
2746 
2747 	kvmppc_clear_host_core(pcpu);
2748 
2749 	/* Decide on micro-threading (split-core) mode */
2750 	subcore_size = threads_per_subcore;
2751 	cmd_bit = stat_bit = 0;
2752 	split = core_info.n_subcores;
2753 	sip = NULL;
2754 	if (split > 1) {
2755 		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2756 		if (split == 2 && (dynamic_mt_modes & 2)) {
2757 			cmd_bit = HID0_POWER8_1TO2LPAR;
2758 			stat_bit = HID0_POWER8_2LPARMODE;
2759 		} else {
2760 			split = 4;
2761 			cmd_bit = HID0_POWER8_1TO4LPAR;
2762 			stat_bit = HID0_POWER8_4LPARMODE;
2763 		}
2764 		subcore_size = MAX_SMT_THREADS / split;
2765 		sip = &split_info;
2766 		memset(&split_info, 0, sizeof(split_info));
2767 		split_info.rpr = mfspr(SPRN_RPR);
2768 		split_info.pmmar = mfspr(SPRN_PMMAR);
2769 		split_info.ldbar = mfspr(SPRN_LDBAR);
2770 		split_info.subcore_size = subcore_size;
2771 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2772 			split_info.vc[sub] = core_info.vc[sub];
2773 		/* order writes to split_info before kvm_split_mode pointer */
2774 		smp_wmb();
2775 	}
2776 	for (thr = 0; thr < controlled_threads; ++thr)
2777 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2778 
2779 	/* Initiate micro-threading (split-core) if required */
2780 	if (cmd_bit) {
2781 		unsigned long hid0 = mfspr(SPRN_HID0);
2782 
2783 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2784 		mb();
2785 		mtspr(SPRN_HID0, hid0);
2786 		isync();
2787 		for (;;) {
2788 			hid0 = mfspr(SPRN_HID0);
2789 			if (hid0 & stat_bit)
2790 				break;
2791 			cpu_relax();
2792 		}
2793 	}
2794 
2795 	/* Start all the threads */
2796 	active = 0;
2797 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2798 		thr = subcore_thread_map[sub];
2799 		thr0_done = false;
2800 		active |= 1 << thr;
2801 		pvc = core_info.vc[sub];
2802 		pvc->pcpu = pcpu + thr;
2803 		for_each_runnable_thread(i, vcpu, pvc) {
2804 			kvmppc_start_thread(vcpu, pvc);
2805 			kvmppc_create_dtl_entry(vcpu, pvc);
2806 			trace_kvm_guest_enter(vcpu);
2807 			if (!vcpu->arch.ptid)
2808 				thr0_done = true;
2809 			active |= 1 << (thr + vcpu->arch.ptid);
2810 		}
2811 		/*
2812 		 * We need to start the first thread of each subcore
2813 		 * even if it doesn't have a vcpu.
2814 		 */
2815 		if (!thr0_done)
2816 			kvmppc_start_thread(NULL, pvc);
2817 		thr += pvc->num_threads;
2818 	}
2819 
2820 	/*
2821 	 * Ensure that split_info.do_nap is set after setting
2822 	 * the vcore pointer in the PACA of the secondaries.
2823 	 */
2824 	smp_mb();
2825 	if (cmd_bit)
2826 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2827 
2828 	/*
2829 	 * When doing micro-threading, poke the inactive threads as well.
2830 	 * This gets them to the nap instruction after kvm_do_nap,
2831 	 * which reduces the time taken to unsplit later.
2832 	 */
2833 	if (split > 1)
2834 		for (thr = 1; thr < threads_per_subcore; ++thr)
2835 			if (!(active & (1 << thr)))
2836 				kvmppc_ipi_thread(pcpu + thr);
2837 
2838 	vc->vcore_state = VCORE_RUNNING;
2839 	preempt_disable();
2840 
2841 	trace_kvmppc_run_core(vc, 0);
2842 
2843 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2844 		spin_unlock(&core_info.vc[sub]->lock);
2845 
2846 	/*
2847 	 * Interrupts will be enabled once we get into the guest,
2848 	 * so tell lockdep that we're about to enable interrupts.
2849 	 */
2850 	trace_hardirqs_on();
2851 
2852 	guest_enter_irqoff();
2853 
2854 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2855 
2856 	trap = __kvmppc_vcore_entry();
2857 
2858 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2859 
2860 	trace_hardirqs_off();
2861 	set_irq_happened(trap);
2862 
2863 	spin_lock(&vc->lock);
2864 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2865 	vc->vcore_state = VCORE_EXITING;
2866 
2867 	/* wait for secondary threads to finish writing their state to memory */
2868 	kvmppc_wait_for_nap();
2869 
2870 	/* Return to whole-core mode if we split the core earlier */
2871 	if (split > 1) {
2872 		unsigned long hid0 = mfspr(SPRN_HID0);
2873 		unsigned long loops = 0;
2874 
2875 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2876 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2877 		mb();
2878 		mtspr(SPRN_HID0, hid0);
2879 		isync();
2880 		for (;;) {
2881 			hid0 = mfspr(SPRN_HID0);
2882 			if (!(hid0 & stat_bit))
2883 				break;
2884 			cpu_relax();
2885 			++loops;
2886 		}
2887 		split_info.do_nap = 0;
2888 	}
2889 
2890 	kvmppc_set_host_core(pcpu);
2891 
2892 	local_irq_enable();
2893 	guest_exit();
2894 
2895 	/* Let secondaries go back to the offline loop */
2896 	for (i = 0; i < controlled_threads; ++i) {
2897 		kvmppc_release_hwthread(pcpu + i);
2898 		if (sip && sip->napped[i])
2899 			kvmppc_ipi_thread(pcpu + i);
2900 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2901 	}
2902 
2903 	spin_unlock(&vc->lock);
2904 
2905 	/* make sure updates to secondary vcpu structs are visible now */
2906 	smp_mb();
2907 
2908 	preempt_enable();
2909 
2910 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2911 		pvc = core_info.vc[sub];
2912 		post_guest_process(pvc, pvc == vc);
2913 	}
2914 
2915 	spin_lock(&vc->lock);
2916 
2917  out:
2918 	vc->vcore_state = VCORE_INACTIVE;
2919 	trace_kvmppc_run_core(vc, 1);
2920 }
2921 
2922 /*
2923  * Wait for some other vcpu thread to execute us, and
2924  * wake us up when we need to handle something in the host.
2925  */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)2926 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2927 				 struct kvm_vcpu *vcpu, int wait_state)
2928 {
2929 	DEFINE_WAIT(wait);
2930 
2931 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2932 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2933 		spin_unlock(&vc->lock);
2934 		schedule();
2935 		spin_lock(&vc->lock);
2936 	}
2937 	finish_wait(&vcpu->arch.cpu_run, &wait);
2938 }
2939 
grow_halt_poll_ns(struct kvmppc_vcore * vc)2940 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2941 {
2942 	/* 10us base */
2943 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2944 		vc->halt_poll_ns = 10000;
2945 	else
2946 		vc->halt_poll_ns *= halt_poll_ns_grow;
2947 }
2948 
shrink_halt_poll_ns(struct kvmppc_vcore * vc)2949 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2950 {
2951 	if (halt_poll_ns_shrink == 0)
2952 		vc->halt_poll_ns = 0;
2953 	else
2954 		vc->halt_poll_ns /= halt_poll_ns_shrink;
2955 }
2956 
2957 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)2958 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2959 {
2960 	if (!xive_enabled())
2961 		return false;
2962 	return vcpu->arch.xive_saved_state.pipr <
2963 		vcpu->arch.xive_saved_state.cppr;
2964 }
2965 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)2966 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2967 {
2968 	return false;
2969 }
2970 #endif /* CONFIG_KVM_XICS */
2971 
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)2972 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
2973 {
2974 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
2975 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
2976 		return true;
2977 
2978 	return false;
2979 }
2980 
2981 /*
2982  * Check to see if any of the runnable vcpus on the vcore have pending
2983  * exceptions or are no longer ceded
2984  */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)2985 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2986 {
2987 	struct kvm_vcpu *vcpu;
2988 	int i;
2989 
2990 	for_each_runnable_thread(i, vcpu, vc) {
2991 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
2992 			return 1;
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 /*
2999  * All the vcpus in this vcore are idle, so wait for a decrementer
3000  * or external interrupt to one of the vcpus.  vc->lock is held.
3001  */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)3002 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3003 {
3004 	ktime_t cur, start_poll, start_wait;
3005 	int do_sleep = 1;
3006 	u64 block_ns;
3007 	DECLARE_SWAITQUEUE(wait);
3008 
3009 	/* Poll for pending exceptions and ceded state */
3010 	cur = start_poll = ktime_get();
3011 	if (vc->halt_poll_ns) {
3012 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3013 		++vc->runner->stat.halt_attempted_poll;
3014 
3015 		vc->vcore_state = VCORE_POLLING;
3016 		spin_unlock(&vc->lock);
3017 
3018 		do {
3019 			if (kvmppc_vcore_check_block(vc)) {
3020 				do_sleep = 0;
3021 				break;
3022 			}
3023 			cur = ktime_get();
3024 		} while (single_task_running() && ktime_before(cur, stop));
3025 
3026 		spin_lock(&vc->lock);
3027 		vc->vcore_state = VCORE_INACTIVE;
3028 
3029 		if (!do_sleep) {
3030 			++vc->runner->stat.halt_successful_poll;
3031 			goto out;
3032 		}
3033 	}
3034 
3035 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3036 
3037 	if (kvmppc_vcore_check_block(vc)) {
3038 		finish_swait(&vc->wq, &wait);
3039 		do_sleep = 0;
3040 		/* If we polled, count this as a successful poll */
3041 		if (vc->halt_poll_ns)
3042 			++vc->runner->stat.halt_successful_poll;
3043 		goto out;
3044 	}
3045 
3046 	start_wait = ktime_get();
3047 
3048 	vc->vcore_state = VCORE_SLEEPING;
3049 	trace_kvmppc_vcore_blocked(vc, 0);
3050 	spin_unlock(&vc->lock);
3051 	schedule();
3052 	finish_swait(&vc->wq, &wait);
3053 	spin_lock(&vc->lock);
3054 	vc->vcore_state = VCORE_INACTIVE;
3055 	trace_kvmppc_vcore_blocked(vc, 1);
3056 	++vc->runner->stat.halt_successful_wait;
3057 
3058 	cur = ktime_get();
3059 
3060 out:
3061 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3062 
3063 	/* Attribute wait time */
3064 	if (do_sleep) {
3065 		vc->runner->stat.halt_wait_ns +=
3066 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3067 		/* Attribute failed poll time */
3068 		if (vc->halt_poll_ns)
3069 			vc->runner->stat.halt_poll_fail_ns +=
3070 				ktime_to_ns(start_wait) -
3071 				ktime_to_ns(start_poll);
3072 	} else {
3073 		/* Attribute successful poll time */
3074 		if (vc->halt_poll_ns)
3075 			vc->runner->stat.halt_poll_success_ns +=
3076 				ktime_to_ns(cur) -
3077 				ktime_to_ns(start_poll);
3078 	}
3079 
3080 	/* Adjust poll time */
3081 	if (halt_poll_ns) {
3082 		if (block_ns <= vc->halt_poll_ns)
3083 			;
3084 		/* We slept and blocked for longer than the max halt time */
3085 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3086 			shrink_halt_poll_ns(vc);
3087 		/* We slept and our poll time is too small */
3088 		else if (vc->halt_poll_ns < halt_poll_ns &&
3089 				block_ns < halt_poll_ns)
3090 			grow_halt_poll_ns(vc);
3091 		if (vc->halt_poll_ns > halt_poll_ns)
3092 			vc->halt_poll_ns = halt_poll_ns;
3093 	} else
3094 		vc->halt_poll_ns = 0;
3095 
3096 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3097 }
3098 
kvmppc_run_vcpu(struct kvm_run * kvm_run,struct kvm_vcpu * vcpu)3099 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3100 {
3101 	int n_ceded, i, r;
3102 	struct kvmppc_vcore *vc;
3103 	struct kvm_vcpu *v;
3104 
3105 	trace_kvmppc_run_vcpu_enter(vcpu);
3106 
3107 	kvm_run->exit_reason = 0;
3108 	vcpu->arch.ret = RESUME_GUEST;
3109 	vcpu->arch.trap = 0;
3110 	kvmppc_update_vpas(vcpu);
3111 
3112 	/*
3113 	 * Synchronize with other threads in this virtual core
3114 	 */
3115 	vc = vcpu->arch.vcore;
3116 	spin_lock(&vc->lock);
3117 	vcpu->arch.ceded = 0;
3118 	vcpu->arch.run_task = current;
3119 	vcpu->arch.kvm_run = kvm_run;
3120 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3121 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3122 	vcpu->arch.busy_preempt = TB_NIL;
3123 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3124 	++vc->n_runnable;
3125 
3126 	/*
3127 	 * This happens the first time this is called for a vcpu.
3128 	 * If the vcore is already running, we may be able to start
3129 	 * this thread straight away and have it join in.
3130 	 */
3131 	if (!signal_pending(current)) {
3132 		if (vc->vcore_state == VCORE_PIGGYBACK) {
3133 			if (spin_trylock(&vc->lock)) {
3134 				if (vc->vcore_state == VCORE_RUNNING &&
3135 				    !VCORE_IS_EXITING(vc)) {
3136 					kvmppc_create_dtl_entry(vcpu, vc);
3137 					kvmppc_start_thread(vcpu, vc);
3138 					trace_kvm_guest_enter(vcpu);
3139 				}
3140 				spin_unlock(&vc->lock);
3141 			}
3142 		} else if (vc->vcore_state == VCORE_RUNNING &&
3143 			   !VCORE_IS_EXITING(vc)) {
3144 			kvmppc_create_dtl_entry(vcpu, vc);
3145 			kvmppc_start_thread(vcpu, vc);
3146 			trace_kvm_guest_enter(vcpu);
3147 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3148 			swake_up(&vc->wq);
3149 		}
3150 
3151 	}
3152 
3153 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3154 	       !signal_pending(current)) {
3155 		/* See if the HPT and VRMA are ready to go */
3156 		if (!kvm_is_radix(vcpu->kvm) &&
3157 		    !vcpu->kvm->arch.hpte_setup_done) {
3158 			spin_unlock(&vc->lock);
3159 			r = kvmppc_hv_setup_htab_rma(vcpu);
3160 			spin_lock(&vc->lock);
3161 			if (r) {
3162 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3163 				kvm_run->fail_entry.hardware_entry_failure_reason = 0;
3164 				vcpu->arch.ret = r;
3165 				break;
3166 			}
3167 		}
3168 
3169 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3170 			kvmppc_vcore_end_preempt(vc);
3171 
3172 		if (vc->vcore_state != VCORE_INACTIVE) {
3173 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3174 			continue;
3175 		}
3176 		for_each_runnable_thread(i, v, vc) {
3177 			kvmppc_core_prepare_to_enter(v);
3178 			if (signal_pending(v->arch.run_task)) {
3179 				kvmppc_remove_runnable(vc, v);
3180 				v->stat.signal_exits++;
3181 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3182 				v->arch.ret = -EINTR;
3183 				wake_up(&v->arch.cpu_run);
3184 			}
3185 		}
3186 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3187 			break;
3188 		n_ceded = 0;
3189 		for_each_runnable_thread(i, v, vc) {
3190 			if (!kvmppc_vcpu_woken(v))
3191 				n_ceded += v->arch.ceded;
3192 			else
3193 				v->arch.ceded = 0;
3194 		}
3195 		vc->runner = vcpu;
3196 		if (n_ceded == vc->n_runnable) {
3197 			kvmppc_vcore_blocked(vc);
3198 		} else if (need_resched()) {
3199 			kvmppc_vcore_preempt(vc);
3200 			/* Let something else run */
3201 			cond_resched_lock(&vc->lock);
3202 			if (vc->vcore_state == VCORE_PREEMPT)
3203 				kvmppc_vcore_end_preempt(vc);
3204 		} else {
3205 			kvmppc_run_core(vc);
3206 		}
3207 		vc->runner = NULL;
3208 	}
3209 
3210 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3211 	       (vc->vcore_state == VCORE_RUNNING ||
3212 		vc->vcore_state == VCORE_EXITING ||
3213 		vc->vcore_state == VCORE_PIGGYBACK))
3214 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3215 
3216 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3217 		kvmppc_vcore_end_preempt(vc);
3218 
3219 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3220 		kvmppc_remove_runnable(vc, vcpu);
3221 		vcpu->stat.signal_exits++;
3222 		kvm_run->exit_reason = KVM_EXIT_INTR;
3223 		vcpu->arch.ret = -EINTR;
3224 	}
3225 
3226 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3227 		/* Wake up some vcpu to run the core */
3228 		i = -1;
3229 		v = next_runnable_thread(vc, &i);
3230 		wake_up(&v->arch.cpu_run);
3231 	}
3232 
3233 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3234 	spin_unlock(&vc->lock);
3235 	return vcpu->arch.ret;
3236 }
3237 
kvmppc_vcpu_run_hv(struct kvm_run * run,struct kvm_vcpu * vcpu)3238 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3239 {
3240 	int r;
3241 	int srcu_idx;
3242 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3243 	unsigned long user_tar = 0;
3244 	unsigned int user_vrsave;
3245 
3246 	if (!vcpu->arch.sane) {
3247 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3248 		return -EINVAL;
3249 	}
3250 
3251 	/*
3252 	 * Don't allow entry with a suspended transaction, because
3253 	 * the guest entry/exit code will lose it.
3254 	 * If the guest has TM enabled, save away their TM-related SPRs
3255 	 * (they will get restored by the TM unavailable interrupt).
3256 	 */
3257 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3258 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3259 	    (current->thread.regs->msr & MSR_TM)) {
3260 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3261 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3262 			run->fail_entry.hardware_entry_failure_reason = 0;
3263 			return -EINVAL;
3264 		}
3265 		/* Enable TM so we can read the TM SPRs */
3266 		mtmsr(mfmsr() | MSR_TM);
3267 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3268 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3269 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3270 		current->thread.regs->msr &= ~MSR_TM;
3271 	}
3272 #endif
3273 
3274 	kvmppc_core_prepare_to_enter(vcpu);
3275 
3276 	/* No need to go into the guest when all we'll do is come back out */
3277 	if (signal_pending(current)) {
3278 		run->exit_reason = KVM_EXIT_INTR;
3279 		return -EINTR;
3280 	}
3281 
3282 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
3283 	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
3284 	smp_mb();
3285 
3286 	flush_all_to_thread(current);
3287 
3288 	/* Save userspace EBB and other register values */
3289 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3290 		ebb_regs[0] = mfspr(SPRN_EBBHR);
3291 		ebb_regs[1] = mfspr(SPRN_EBBRR);
3292 		ebb_regs[2] = mfspr(SPRN_BESCR);
3293 		user_tar = mfspr(SPRN_TAR);
3294 	}
3295 	user_vrsave = mfspr(SPRN_VRSAVE);
3296 
3297 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3298 	vcpu->arch.pgdir = current->mm->pgd;
3299 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3300 
3301 	do {
3302 		r = kvmppc_run_vcpu(run, vcpu);
3303 
3304 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3305 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3306 			trace_kvm_hcall_enter(vcpu);
3307 			r = kvmppc_pseries_do_hcall(vcpu);
3308 			trace_kvm_hcall_exit(vcpu, r);
3309 			kvmppc_core_prepare_to_enter(vcpu);
3310 		} else if (r == RESUME_PAGE_FAULT) {
3311 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3312 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
3313 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3314 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3315 		} else if (r == RESUME_PASSTHROUGH) {
3316 			if (WARN_ON(xive_enabled()))
3317 				r = H_SUCCESS;
3318 			else
3319 				r = kvmppc_xics_rm_complete(vcpu, 0);
3320 		}
3321 	} while (is_kvmppc_resume_guest(r));
3322 
3323 	/* Restore userspace EBB and other register values */
3324 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3325 		mtspr(SPRN_EBBHR, ebb_regs[0]);
3326 		mtspr(SPRN_EBBRR, ebb_regs[1]);
3327 		mtspr(SPRN_BESCR, ebb_regs[2]);
3328 		mtspr(SPRN_TAR, user_tar);
3329 		mtspr(SPRN_FSCR, current->thread.fscr);
3330 	}
3331 	mtspr(SPRN_VRSAVE, user_vrsave);
3332 
3333 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3334 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
3335 	return r;
3336 }
3337 
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int linux_psize)3338 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3339 				     int linux_psize)
3340 {
3341 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
3342 
3343 	if (!def->shift)
3344 		return;
3345 	(*sps)->page_shift = def->shift;
3346 	(*sps)->slb_enc = def->sllp;
3347 	(*sps)->enc[0].page_shift = def->shift;
3348 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
3349 	/*
3350 	 * Add 16MB MPSS support if host supports it
3351 	 */
3352 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
3353 		(*sps)->enc[1].page_shift = 24;
3354 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
3355 	}
3356 	(*sps)++;
3357 }
3358 
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)3359 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3360 					 struct kvm_ppc_smmu_info *info)
3361 {
3362 	struct kvm_ppc_one_seg_page_size *sps;
3363 
3364 	/*
3365 	 * Since we don't yet support HPT guests on a radix host,
3366 	 * return an error if the host uses radix.
3367 	 */
3368 	if (radix_enabled())
3369 		return -EINVAL;
3370 
3371 	/*
3372 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3373 	 * POWER7 doesn't support keys for instruction accesses,
3374 	 * POWER8 and POWER9 do.
3375 	 */
3376 	info->data_keys = 32;
3377 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3378 
3379 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
3380 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3381 		info->flags |= KVM_PPC_1T_SEGMENTS;
3382 	info->slb_size = mmu_slb_size;
3383 
3384 	/* We only support these sizes for now, and no muti-size segments */
3385 	sps = &info->sps[0];
3386 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3387 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3388 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3389 
3390 	return 0;
3391 }
3392 
3393 /*
3394  * Get (and clear) the dirty memory log for a memory slot.
3395  */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)3396 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3397 					 struct kvm_dirty_log *log)
3398 {
3399 	struct kvm_memslots *slots;
3400 	struct kvm_memory_slot *memslot;
3401 	int i, r;
3402 	unsigned long n;
3403 	unsigned long *buf;
3404 	struct kvm_vcpu *vcpu;
3405 
3406 	mutex_lock(&kvm->slots_lock);
3407 
3408 	r = -EINVAL;
3409 	if (log->slot >= KVM_USER_MEM_SLOTS)
3410 		goto out;
3411 
3412 	slots = kvm_memslots(kvm);
3413 	memslot = id_to_memslot(slots, log->slot);
3414 	r = -ENOENT;
3415 	if (!memslot->dirty_bitmap)
3416 		goto out;
3417 
3418 	/*
3419 	 * Use second half of bitmap area because radix accumulates
3420 	 * bits in the first half.
3421 	 */
3422 	n = kvm_dirty_bitmap_bytes(memslot);
3423 	buf = memslot->dirty_bitmap + n / sizeof(long);
3424 	memset(buf, 0, n);
3425 
3426 	if (kvm_is_radix(kvm))
3427 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3428 	else
3429 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3430 	if (r)
3431 		goto out;
3432 
3433 	/* Harvest dirty bits from VPA and DTL updates */
3434 	/* Note: we never modify the SLB shadow buffer areas */
3435 	kvm_for_each_vcpu(i, vcpu, kvm) {
3436 		spin_lock(&vcpu->arch.vpa_update_lock);
3437 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3438 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3439 		spin_unlock(&vcpu->arch.vpa_update_lock);
3440 	}
3441 
3442 	r = -EFAULT;
3443 	if (copy_to_user(log->dirty_bitmap, buf, n))
3444 		goto out;
3445 
3446 	r = 0;
3447 out:
3448 	mutex_unlock(&kvm->slots_lock);
3449 	return r;
3450 }
3451 
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * free,struct kvm_memory_slot * dont)3452 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3453 					struct kvm_memory_slot *dont)
3454 {
3455 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3456 		vfree(free->arch.rmap);
3457 		free->arch.rmap = NULL;
3458 	}
3459 }
3460 
kvmppc_core_create_memslot_hv(struct kvm_memory_slot * slot,unsigned long npages)3461 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3462 					 unsigned long npages)
3463 {
3464 	/*
3465 	 * For now, if radix_enabled() then we only support radix guests,
3466 	 * and in that case we don't need the rmap array.
3467 	 */
3468 	if (radix_enabled()) {
3469 		slot->arch.rmap = NULL;
3470 		return 0;
3471 	}
3472 
3473 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3474 	if (!slot->arch.rmap)
3475 		return -ENOMEM;
3476 
3477 	return 0;
3478 }
3479 
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem)3480 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3481 					struct kvm_memory_slot *memslot,
3482 					const struct kvm_userspace_memory_region *mem)
3483 {
3484 	return 0;
3485 }
3486 
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new)3487 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3488 				const struct kvm_userspace_memory_region *mem,
3489 				const struct kvm_memory_slot *old,
3490 				const struct kvm_memory_slot *new)
3491 {
3492 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3493 	struct kvm_memslots *slots;
3494 	struct kvm_memory_slot *memslot;
3495 
3496 	/*
3497 	 * If we are making a new memslot, it might make
3498 	 * some address that was previously cached as emulated
3499 	 * MMIO be no longer emulated MMIO, so invalidate
3500 	 * all the caches of emulated MMIO translations.
3501 	 */
3502 	if (npages)
3503 		atomic64_inc(&kvm->arch.mmio_update);
3504 
3505 	if (npages && old->npages && !kvm_is_radix(kvm)) {
3506 		/*
3507 		 * If modifying a memslot, reset all the rmap dirty bits.
3508 		 * If this is a new memslot, we don't need to do anything
3509 		 * since the rmap array starts out as all zeroes,
3510 		 * i.e. no pages are dirty.
3511 		 */
3512 		slots = kvm_memslots(kvm);
3513 		memslot = id_to_memslot(slots, mem->slot);
3514 		kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3515 	}
3516 }
3517 
3518 /*
3519  * Update LPCR values in kvm->arch and in vcores.
3520  * Caller must hold kvm->lock.
3521  */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)3522 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3523 {
3524 	long int i;
3525 	u32 cores_done = 0;
3526 
3527 	if ((kvm->arch.lpcr & mask) == lpcr)
3528 		return;
3529 
3530 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3531 
3532 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3533 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3534 		if (!vc)
3535 			continue;
3536 		spin_lock(&vc->lock);
3537 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3538 		spin_unlock(&vc->lock);
3539 		if (++cores_done >= kvm->arch.online_vcores)
3540 			break;
3541 	}
3542 }
3543 
kvmppc_mmu_destroy_hv(struct kvm_vcpu * vcpu)3544 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3545 {
3546 	return;
3547 }
3548 
kvmppc_setup_partition_table(struct kvm * kvm)3549 static void kvmppc_setup_partition_table(struct kvm *kvm)
3550 {
3551 	unsigned long dw0, dw1;
3552 
3553 	if (!kvm_is_radix(kvm)) {
3554 		/* PS field - page size for VRMA */
3555 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3556 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3557 		/* HTABSIZE and HTABORG fields */
3558 		dw0 |= kvm->arch.sdr1;
3559 
3560 		/* Second dword as set by userspace */
3561 		dw1 = kvm->arch.process_table;
3562 	} else {
3563 		dw0 = PATB_HR | radix__get_tree_size() |
3564 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3565 		dw1 = PATB_GR | kvm->arch.process_table;
3566 	}
3567 
3568 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3569 }
3570 
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)3571 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3572 {
3573 	int err = 0;
3574 	struct kvm *kvm = vcpu->kvm;
3575 	unsigned long hva;
3576 	struct kvm_memory_slot *memslot;
3577 	struct vm_area_struct *vma;
3578 	unsigned long lpcr = 0, senc;
3579 	unsigned long psize, porder;
3580 	int srcu_idx;
3581 
3582 	mutex_lock(&kvm->lock);
3583 	if (kvm->arch.hpte_setup_done)
3584 		goto out;	/* another vcpu beat us to it */
3585 
3586 	/* Allocate hashed page table (if not done already) and reset it */
3587 	if (!kvm->arch.hpt.virt) {
3588 		int order = KVM_DEFAULT_HPT_ORDER;
3589 		struct kvm_hpt_info info;
3590 
3591 		err = kvmppc_allocate_hpt(&info, order);
3592 		/* If we get here, it means userspace didn't specify a
3593 		 * size explicitly.  So, try successively smaller
3594 		 * sizes if the default failed. */
3595 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3596 			err  = kvmppc_allocate_hpt(&info, order);
3597 
3598 		if (err < 0) {
3599 			pr_err("KVM: Couldn't alloc HPT\n");
3600 			goto out;
3601 		}
3602 
3603 		kvmppc_set_hpt(kvm, &info);
3604 	}
3605 
3606 	/* Look up the memslot for guest physical address 0 */
3607 	srcu_idx = srcu_read_lock(&kvm->srcu);
3608 	memslot = gfn_to_memslot(kvm, 0);
3609 
3610 	/* We must have some memory at 0 by now */
3611 	err = -EINVAL;
3612 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3613 		goto out_srcu;
3614 
3615 	/* Look up the VMA for the start of this memory slot */
3616 	hva = memslot->userspace_addr;
3617 	down_read(&current->mm->mmap_sem);
3618 	vma = find_vma(current->mm, hva);
3619 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3620 		goto up_out;
3621 
3622 	psize = vma_kernel_pagesize(vma);
3623 
3624 	up_read(&current->mm->mmap_sem);
3625 
3626 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3627 	if (psize >= 0x1000000)
3628 		psize = 0x1000000;
3629 	else if (psize >= 0x10000)
3630 		psize = 0x10000;
3631 	else
3632 		psize = 0x1000;
3633 	porder = __ilog2(psize);
3634 
3635 	senc = slb_pgsize_encoding(psize);
3636 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3637 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3638 	/* Create HPTEs in the hash page table for the VRMA */
3639 	kvmppc_map_vrma(vcpu, memslot, porder);
3640 
3641 	/* Update VRMASD field in the LPCR */
3642 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3643 		/* the -4 is to account for senc values starting at 0x10 */
3644 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3645 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3646 	} else {
3647 		kvmppc_setup_partition_table(kvm);
3648 	}
3649 
3650 	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3651 	smp_wmb();
3652 	kvm->arch.hpte_setup_done = 1;
3653 	err = 0;
3654  out_srcu:
3655 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3656  out:
3657 	mutex_unlock(&kvm->lock);
3658 	return err;
3659 
3660  up_out:
3661 	up_read(&current->mm->mmap_sem);
3662 	goto out_srcu;
3663 }
3664 
3665 #ifdef CONFIG_KVM_XICS
3666 /*
3667  * Allocate a per-core structure for managing state about which cores are
3668  * running in the host versus the guest and for exchanging data between
3669  * real mode KVM and CPU running in the host.
3670  * This is only done for the first VM.
3671  * The allocated structure stays even if all VMs have stopped.
3672  * It is only freed when the kvm-hv module is unloaded.
3673  * It's OK for this routine to fail, we just don't support host
3674  * core operations like redirecting H_IPI wakeups.
3675  */
kvmppc_alloc_host_rm_ops(void)3676 void kvmppc_alloc_host_rm_ops(void)
3677 {
3678 	struct kvmppc_host_rm_ops *ops;
3679 	unsigned long l_ops;
3680 	int cpu, core;
3681 	int size;
3682 
3683 	/* Not the first time here ? */
3684 	if (kvmppc_host_rm_ops_hv != NULL)
3685 		return;
3686 
3687 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3688 	if (!ops)
3689 		return;
3690 
3691 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3692 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3693 
3694 	if (!ops->rm_core) {
3695 		kfree(ops);
3696 		return;
3697 	}
3698 
3699 	cpus_read_lock();
3700 
3701 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3702 		if (!cpu_online(cpu))
3703 			continue;
3704 
3705 		core = cpu >> threads_shift;
3706 		ops->rm_core[core].rm_state.in_host = 1;
3707 	}
3708 
3709 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3710 
3711 	/*
3712 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3713 	 * to other CPUs before we assign it to the global variable.
3714 	 * Do an atomic assignment (no locks used here), but if someone
3715 	 * beats us to it, just free our copy and return.
3716 	 */
3717 	smp_wmb();
3718 	l_ops = (unsigned long) ops;
3719 
3720 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3721 		cpus_read_unlock();
3722 		kfree(ops->rm_core);
3723 		kfree(ops);
3724 		return;
3725 	}
3726 
3727 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3728 					     "ppc/kvm_book3s:prepare",
3729 					     kvmppc_set_host_core,
3730 					     kvmppc_clear_host_core);
3731 	cpus_read_unlock();
3732 }
3733 
kvmppc_free_host_rm_ops(void)3734 void kvmppc_free_host_rm_ops(void)
3735 {
3736 	if (kvmppc_host_rm_ops_hv) {
3737 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3738 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3739 		kfree(kvmppc_host_rm_ops_hv);
3740 		kvmppc_host_rm_ops_hv = NULL;
3741 	}
3742 }
3743 #endif
3744 
kvmppc_core_init_vm_hv(struct kvm * kvm)3745 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3746 {
3747 	unsigned long lpcr, lpid;
3748 	char buf[32];
3749 	int ret;
3750 
3751 	/* Allocate the guest's logical partition ID */
3752 
3753 	lpid = kvmppc_alloc_lpid();
3754 	if ((long)lpid < 0)
3755 		return -ENOMEM;
3756 	kvm->arch.lpid = lpid;
3757 
3758 	kvmppc_alloc_host_rm_ops();
3759 
3760 	/*
3761 	 * Since we don't flush the TLB when tearing down a VM,
3762 	 * and this lpid might have previously been used,
3763 	 * make sure we flush on each core before running the new VM.
3764 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3765 	 * does this flush for us.
3766 	 */
3767 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3768 		cpumask_setall(&kvm->arch.need_tlb_flush);
3769 
3770 	/* Start out with the default set of hcalls enabled */
3771 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3772 	       sizeof(kvm->arch.enabled_hcalls));
3773 
3774 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3775 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3776 
3777 	/* Init LPCR for virtual RMA mode */
3778 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3779 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3780 	lpcr &= LPCR_PECE | LPCR_LPES;
3781 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3782 		LPCR_VPM0 | LPCR_VPM1;
3783 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3784 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3785 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3786 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3787 		lpcr |= LPCR_ONL;
3788 	/*
3789 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3790 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3791 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3792 	 * be unnecessary but better safe than sorry in case we re-enable
3793 	 * EE in HV mode with this LPCR still set)
3794 	 */
3795 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3796 		lpcr &= ~LPCR_VPM0;
3797 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3798 
3799 		/*
3800 		 * If xive is enabled, we route 0x500 interrupts directly
3801 		 * to the guest.
3802 		 */
3803 		if (xive_enabled())
3804 			lpcr |= LPCR_LPES;
3805 	}
3806 
3807 	/*
3808 	 * For now, if the host uses radix, the guest must be radix.
3809 	 */
3810 	if (radix_enabled()) {
3811 		kvm->arch.radix = 1;
3812 		lpcr &= ~LPCR_VPM1;
3813 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3814 		ret = kvmppc_init_vm_radix(kvm);
3815 		if (ret) {
3816 			kvmppc_free_lpid(kvm->arch.lpid);
3817 			return ret;
3818 		}
3819 		kvmppc_setup_partition_table(kvm);
3820 	}
3821 
3822 	kvm->arch.lpcr = lpcr;
3823 
3824 	/* Initialization for future HPT resizes */
3825 	kvm->arch.resize_hpt = NULL;
3826 
3827 	/*
3828 	 * Work out how many sets the TLB has, for the use of
3829 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3830 	 */
3831 	if (kvm_is_radix(kvm))
3832 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
3833 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3834 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3835 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3836 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3837 	else
3838 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3839 
3840 	/*
3841 	 * Track that we now have a HV mode VM active. This blocks secondary
3842 	 * CPU threads from coming online.
3843 	 * On POWER9, we only need to do this for HPT guests on a radix
3844 	 * host, which is not yet supported.
3845 	 */
3846 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3847 		kvm_hv_vm_activated();
3848 
3849 	/*
3850 	 * Initialize smt_mode depending on processor.
3851 	 * POWER8 and earlier have to use "strict" threading, where
3852 	 * all vCPUs in a vcore have to run on the same (sub)core,
3853 	 * whereas on POWER9 the threads can each run a different
3854 	 * guest.
3855 	 */
3856 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3857 		kvm->arch.smt_mode = threads_per_subcore;
3858 	else
3859 		kvm->arch.smt_mode = 1;
3860 	kvm->arch.emul_smt_mode = 1;
3861 
3862 	/*
3863 	 * Create a debugfs directory for the VM
3864 	 */
3865 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3866 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3867 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3868 		kvmppc_mmu_debugfs_init(kvm);
3869 
3870 	return 0;
3871 }
3872 
kvmppc_free_vcores(struct kvm * kvm)3873 static void kvmppc_free_vcores(struct kvm *kvm)
3874 {
3875 	long int i;
3876 
3877 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3878 		kfree(kvm->arch.vcores[i]);
3879 	kvm->arch.online_vcores = 0;
3880 }
3881 
kvmppc_core_destroy_vm_hv(struct kvm * kvm)3882 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3883 {
3884 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3885 
3886 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3887 		kvm_hv_vm_deactivated();
3888 
3889 	kvmppc_free_vcores(kvm);
3890 
3891 	kvmppc_free_lpid(kvm->arch.lpid);
3892 
3893 	if (kvm_is_radix(kvm))
3894 		kvmppc_free_radix(kvm);
3895 	else
3896 		kvmppc_free_hpt(&kvm->arch.hpt);
3897 
3898 	kvmppc_free_pimap(kvm);
3899 }
3900 
3901 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int inst,int * advance)3902 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3903 				     unsigned int inst, int *advance)
3904 {
3905 	return EMULATE_FAIL;
3906 }
3907 
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)3908 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3909 					ulong spr_val)
3910 {
3911 	return EMULATE_FAIL;
3912 }
3913 
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)3914 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3915 					ulong *spr_val)
3916 {
3917 	return EMULATE_FAIL;
3918 }
3919 
kvmppc_core_check_processor_compat_hv(void)3920 static int kvmppc_core_check_processor_compat_hv(void)
3921 {
3922 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3923 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3924 		return -EIO;
3925 
3926 	return 0;
3927 }
3928 
3929 #ifdef CONFIG_KVM_XICS
3930 
kvmppc_free_pimap(struct kvm * kvm)3931 void kvmppc_free_pimap(struct kvm *kvm)
3932 {
3933 	kfree(kvm->arch.pimap);
3934 }
3935 
kvmppc_alloc_pimap(void)3936 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3937 {
3938 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3939 }
3940 
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)3941 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3942 {
3943 	struct irq_desc *desc;
3944 	struct kvmppc_irq_map *irq_map;
3945 	struct kvmppc_passthru_irqmap *pimap;
3946 	struct irq_chip *chip;
3947 	int i, rc = 0;
3948 
3949 	if (!kvm_irq_bypass)
3950 		return 1;
3951 
3952 	desc = irq_to_desc(host_irq);
3953 	if (!desc)
3954 		return -EIO;
3955 
3956 	mutex_lock(&kvm->lock);
3957 
3958 	pimap = kvm->arch.pimap;
3959 	if (pimap == NULL) {
3960 		/* First call, allocate structure to hold IRQ map */
3961 		pimap = kvmppc_alloc_pimap();
3962 		if (pimap == NULL) {
3963 			mutex_unlock(&kvm->lock);
3964 			return -ENOMEM;
3965 		}
3966 		kvm->arch.pimap = pimap;
3967 	}
3968 
3969 	/*
3970 	 * For now, we only support interrupts for which the EOI operation
3971 	 * is an OPAL call followed by a write to XIRR, since that's
3972 	 * what our real-mode EOI code does, or a XIVE interrupt
3973 	 */
3974 	chip = irq_data_get_irq_chip(&desc->irq_data);
3975 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3976 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3977 			host_irq, guest_gsi);
3978 		mutex_unlock(&kvm->lock);
3979 		return -ENOENT;
3980 	}
3981 
3982 	/*
3983 	 * See if we already have an entry for this guest IRQ number.
3984 	 * If it's mapped to a hardware IRQ number, that's an error,
3985 	 * otherwise re-use this entry.
3986 	 */
3987 	for (i = 0; i < pimap->n_mapped; i++) {
3988 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
3989 			if (pimap->mapped[i].r_hwirq) {
3990 				mutex_unlock(&kvm->lock);
3991 				return -EINVAL;
3992 			}
3993 			break;
3994 		}
3995 	}
3996 
3997 	if (i == KVMPPC_PIRQ_MAPPED) {
3998 		mutex_unlock(&kvm->lock);
3999 		return -EAGAIN;		/* table is full */
4000 	}
4001 
4002 	irq_map = &pimap->mapped[i];
4003 
4004 	irq_map->v_hwirq = guest_gsi;
4005 	irq_map->desc = desc;
4006 
4007 	/*
4008 	 * Order the above two stores before the next to serialize with
4009 	 * the KVM real mode handler.
4010 	 */
4011 	smp_wmb();
4012 	irq_map->r_hwirq = desc->irq_data.hwirq;
4013 
4014 	if (i == pimap->n_mapped)
4015 		pimap->n_mapped++;
4016 
4017 	if (xive_enabled())
4018 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4019 	else
4020 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4021 	if (rc)
4022 		irq_map->r_hwirq = 0;
4023 
4024 	mutex_unlock(&kvm->lock);
4025 
4026 	return 0;
4027 }
4028 
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)4029 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4030 {
4031 	struct irq_desc *desc;
4032 	struct kvmppc_passthru_irqmap *pimap;
4033 	int i, rc = 0;
4034 
4035 	if (!kvm_irq_bypass)
4036 		return 0;
4037 
4038 	desc = irq_to_desc(host_irq);
4039 	if (!desc)
4040 		return -EIO;
4041 
4042 	mutex_lock(&kvm->lock);
4043 	if (!kvm->arch.pimap)
4044 		goto unlock;
4045 
4046 	pimap = kvm->arch.pimap;
4047 
4048 	for (i = 0; i < pimap->n_mapped; i++) {
4049 		if (guest_gsi == pimap->mapped[i].v_hwirq)
4050 			break;
4051 	}
4052 
4053 	if (i == pimap->n_mapped) {
4054 		mutex_unlock(&kvm->lock);
4055 		return -ENODEV;
4056 	}
4057 
4058 	if (xive_enabled())
4059 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4060 	else
4061 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4062 
4063 	/* invalidate the entry (what do do on error from the above ?) */
4064 	pimap->mapped[i].r_hwirq = 0;
4065 
4066 	/*
4067 	 * We don't free this structure even when the count goes to
4068 	 * zero. The structure is freed when we destroy the VM.
4069 	 */
4070  unlock:
4071 	mutex_unlock(&kvm->lock);
4072 	return rc;
4073 }
4074 
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)4075 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4076 					     struct irq_bypass_producer *prod)
4077 {
4078 	int ret = 0;
4079 	struct kvm_kernel_irqfd *irqfd =
4080 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4081 
4082 	irqfd->producer = prod;
4083 
4084 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4085 	if (ret)
4086 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4087 			prod->irq, irqfd->gsi, ret);
4088 
4089 	return ret;
4090 }
4091 
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)4092 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4093 					      struct irq_bypass_producer *prod)
4094 {
4095 	int ret;
4096 	struct kvm_kernel_irqfd *irqfd =
4097 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4098 
4099 	irqfd->producer = NULL;
4100 
4101 	/*
4102 	 * When producer of consumer is unregistered, we change back to
4103 	 * default external interrupt handling mode - KVM real mode
4104 	 * will switch back to host.
4105 	 */
4106 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4107 	if (ret)
4108 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4109 			prod->irq, irqfd->gsi, ret);
4110 }
4111 #endif
4112 
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)4113 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4114 				 unsigned int ioctl, unsigned long arg)
4115 {
4116 	struct kvm *kvm __maybe_unused = filp->private_data;
4117 	void __user *argp = (void __user *)arg;
4118 	long r;
4119 
4120 	switch (ioctl) {
4121 
4122 	case KVM_PPC_ALLOCATE_HTAB: {
4123 		u32 htab_order;
4124 
4125 		r = -EFAULT;
4126 		if (get_user(htab_order, (u32 __user *)argp))
4127 			break;
4128 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4129 		if (r)
4130 			break;
4131 		r = 0;
4132 		break;
4133 	}
4134 
4135 	case KVM_PPC_GET_HTAB_FD: {
4136 		struct kvm_get_htab_fd ghf;
4137 
4138 		r = -EFAULT;
4139 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
4140 			break;
4141 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4142 		break;
4143 	}
4144 
4145 	case KVM_PPC_RESIZE_HPT_PREPARE: {
4146 		struct kvm_ppc_resize_hpt rhpt;
4147 
4148 		r = -EFAULT;
4149 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4150 			break;
4151 
4152 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4153 		break;
4154 	}
4155 
4156 	case KVM_PPC_RESIZE_HPT_COMMIT: {
4157 		struct kvm_ppc_resize_hpt rhpt;
4158 
4159 		r = -EFAULT;
4160 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4161 			break;
4162 
4163 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4164 		break;
4165 	}
4166 
4167 	default:
4168 		r = -ENOTTY;
4169 	}
4170 
4171 	return r;
4172 }
4173 
4174 /*
4175  * List of hcall numbers to enable by default.
4176  * For compatibility with old userspace, we enable by default
4177  * all hcalls that were implemented before the hcall-enabling
4178  * facility was added.  Note this list should not include H_RTAS.
4179  */
4180 static unsigned int default_hcall_list[] = {
4181 	H_REMOVE,
4182 	H_ENTER,
4183 	H_READ,
4184 	H_PROTECT,
4185 	H_BULK_REMOVE,
4186 	H_GET_TCE,
4187 	H_PUT_TCE,
4188 	H_SET_DABR,
4189 	H_SET_XDABR,
4190 	H_CEDE,
4191 	H_PROD,
4192 	H_CONFER,
4193 	H_REGISTER_VPA,
4194 #ifdef CONFIG_KVM_XICS
4195 	H_EOI,
4196 	H_CPPR,
4197 	H_IPI,
4198 	H_IPOLL,
4199 	H_XIRR,
4200 	H_XIRR_X,
4201 #endif
4202 	0
4203 };
4204 
init_default_hcalls(void)4205 static void init_default_hcalls(void)
4206 {
4207 	int i;
4208 	unsigned int hcall;
4209 
4210 	for (i = 0; default_hcall_list[i]; ++i) {
4211 		hcall = default_hcall_list[i];
4212 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4213 		__set_bit(hcall / 4, default_enabled_hcalls);
4214 	}
4215 }
4216 
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)4217 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4218 {
4219 	unsigned long lpcr;
4220 	int radix;
4221 
4222 	/* If not on a POWER9, reject it */
4223 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4224 		return -ENODEV;
4225 
4226 	/* If any unknown flags set, reject it */
4227 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4228 		return -EINVAL;
4229 
4230 	/* We can't change a guest to/from radix yet */
4231 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4232 	if (radix != kvm_is_radix(kvm))
4233 		return -EINVAL;
4234 
4235 	/* GR (guest radix) bit in process_table field must match */
4236 	if (!!(cfg->process_table & PATB_GR) != radix)
4237 		return -EINVAL;
4238 
4239 	/* Process table size field must be reasonable, i.e. <= 24 */
4240 	if ((cfg->process_table & PRTS_MASK) > 24)
4241 		return -EINVAL;
4242 
4243 	mutex_lock(&kvm->lock);
4244 	kvm->arch.process_table = cfg->process_table;
4245 	kvmppc_setup_partition_table(kvm);
4246 
4247 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4248 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4249 	mutex_unlock(&kvm->lock);
4250 
4251 	return 0;
4252 }
4253 
4254 static struct kvmppc_ops kvm_ops_hv = {
4255 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4256 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4257 	.get_one_reg = kvmppc_get_one_reg_hv,
4258 	.set_one_reg = kvmppc_set_one_reg_hv,
4259 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
4260 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
4261 	.set_msr     = kvmppc_set_msr_hv,
4262 	.vcpu_run    = kvmppc_vcpu_run_hv,
4263 	.vcpu_create = kvmppc_core_vcpu_create_hv,
4264 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
4265 	.check_requests = kvmppc_core_check_requests_hv,
4266 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4267 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
4268 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4269 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4270 	.unmap_hva = kvm_unmap_hva_hv,
4271 	.unmap_hva_range = kvm_unmap_hva_range_hv,
4272 	.age_hva  = kvm_age_hva_hv,
4273 	.test_age_hva = kvm_test_age_hva_hv,
4274 	.set_spte_hva = kvm_set_spte_hva_hv,
4275 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
4276 	.free_memslot = kvmppc_core_free_memslot_hv,
4277 	.create_memslot = kvmppc_core_create_memslot_hv,
4278 	.init_vm =  kvmppc_core_init_vm_hv,
4279 	.destroy_vm = kvmppc_core_destroy_vm_hv,
4280 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4281 	.emulate_op = kvmppc_core_emulate_op_hv,
4282 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4283 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4284 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4285 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4286 	.hcall_implemented = kvmppc_hcall_impl_hv,
4287 #ifdef CONFIG_KVM_XICS
4288 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4289 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4290 #endif
4291 	.configure_mmu = kvmhv_configure_mmu,
4292 	.get_rmmu_info = kvmhv_get_rmmu_info,
4293 	.set_smt_mode = kvmhv_set_smt_mode,
4294 };
4295 
kvm_init_subcore_bitmap(void)4296 static int kvm_init_subcore_bitmap(void)
4297 {
4298 	int i, j;
4299 	int nr_cores = cpu_nr_cores();
4300 	struct sibling_subcore_state *sibling_subcore_state;
4301 
4302 	for (i = 0; i < nr_cores; i++) {
4303 		int first_cpu = i * threads_per_core;
4304 		int node = cpu_to_node(first_cpu);
4305 
4306 		/* Ignore if it is already allocated. */
4307 		if (paca[first_cpu].sibling_subcore_state)
4308 			continue;
4309 
4310 		sibling_subcore_state =
4311 			kmalloc_node(sizeof(struct sibling_subcore_state),
4312 							GFP_KERNEL, node);
4313 		if (!sibling_subcore_state)
4314 			return -ENOMEM;
4315 
4316 		memset(sibling_subcore_state, 0,
4317 				sizeof(struct sibling_subcore_state));
4318 
4319 		for (j = 0; j < threads_per_core; j++) {
4320 			int cpu = first_cpu + j;
4321 
4322 			paca[cpu].sibling_subcore_state = sibling_subcore_state;
4323 		}
4324 	}
4325 	return 0;
4326 }
4327 
kvmppc_radix_possible(void)4328 static int kvmppc_radix_possible(void)
4329 {
4330 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4331 }
4332 
kvmppc_book3s_init_hv(void)4333 static int kvmppc_book3s_init_hv(void)
4334 {
4335 	int r;
4336 	/*
4337 	 * FIXME!! Do we need to check on all cpus ?
4338 	 */
4339 	r = kvmppc_core_check_processor_compat_hv();
4340 	if (r < 0)
4341 		return -ENODEV;
4342 
4343 	r = kvm_init_subcore_bitmap();
4344 	if (r)
4345 		return r;
4346 
4347 	/*
4348 	 * We need a way of accessing the XICS interrupt controller,
4349 	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4350 	 * indirectly, via OPAL.
4351 	 */
4352 #ifdef CONFIG_SMP
4353 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4354 		struct device_node *np;
4355 
4356 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4357 		if (!np) {
4358 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4359 			return -ENODEV;
4360 		}
4361 		/* presence of intc confirmed - node can be dropped again */
4362 		of_node_put(np);
4363 	}
4364 #endif
4365 
4366 	kvm_ops_hv.owner = THIS_MODULE;
4367 	kvmppc_hv_ops = &kvm_ops_hv;
4368 
4369 	init_default_hcalls();
4370 
4371 	init_vcore_lists();
4372 
4373 	r = kvmppc_mmu_hv_init();
4374 	if (r)
4375 		return r;
4376 
4377 	if (kvmppc_radix_possible())
4378 		r = kvmppc_radix_init();
4379 	return r;
4380 }
4381 
kvmppc_book3s_exit_hv(void)4382 static void kvmppc_book3s_exit_hv(void)
4383 {
4384 	kvmppc_free_host_rm_ops();
4385 	if (kvmppc_radix_possible())
4386 		kvmppc_radix_exit();
4387 	kvmppc_hv_ops = NULL;
4388 }
4389 
4390 module_init(kvmppc_book3s_init_hv);
4391 module_exit(kvmppc_book3s_exit_hv);
4392 MODULE_LICENSE("GPL");
4393 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4394 MODULE_ALIAS("devname:kvm");
4395 
4396