1 /*
2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, <yu.liu@freescale.com>
5 *
6 * Description:
7 * This file is derived from arch/powerpc/kvm/44x.c,
8 * by Hollis Blanchard <hollisb@us.ibm.com>.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/kvm_host.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/module.h>
20 #include <linux/miscdevice.h>
21
22 #include <asm/reg.h>
23 #include <asm/cputable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/kvm_ppc.h>
26
27 #include "../mm/mmu_decl.h"
28 #include "booke.h"
29 #include "e500.h"
30
31 struct id {
32 unsigned long val;
33 struct id **pentry;
34 };
35
36 #define NUM_TIDS 256
37
38 /*
39 * This table provide mappings from:
40 * (guestAS,guestTID,guestPR) --> ID of physical cpu
41 * guestAS [0..1]
42 * guestTID [0..255]
43 * guestPR [0..1]
44 * ID [1..255]
45 * Each vcpu keeps one vcpu_id_table.
46 */
47 struct vcpu_id_table {
48 struct id id[2][NUM_TIDS][2];
49 };
50
51 /*
52 * This table provide reversed mappings of vcpu_id_table:
53 * ID --> address of vcpu_id_table item.
54 * Each physical core has one pcpu_id_table.
55 */
56 struct pcpu_id_table {
57 struct id *entry[NUM_TIDS];
58 };
59
60 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
61
62 /* This variable keeps last used shadow ID on local core.
63 * The valid range of shadow ID is [1..255] */
64 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
65
66 /*
67 * Allocate a free shadow id and setup a valid sid mapping in given entry.
68 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
69 *
70 * The caller must have preemption disabled, and keep it that way until
71 * it has finished with the returned shadow id (either written into the
72 * TLB or arch.shadow_pid, or discarded).
73 */
local_sid_setup_one(struct id * entry)74 static inline int local_sid_setup_one(struct id *entry)
75 {
76 unsigned long sid;
77 int ret = -1;
78
79 sid = __this_cpu_inc_return(pcpu_last_used_sid);
80 if (sid < NUM_TIDS) {
81 __this_cpu_write(pcpu_sids.entry[sid], entry);
82 entry->val = sid;
83 entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
84 ret = sid;
85 }
86
87 /*
88 * If sid == NUM_TIDS, we've run out of sids. We return -1, and
89 * the caller will invalidate everything and start over.
90 *
91 * sid > NUM_TIDS indicates a race, which we disable preemption to
92 * avoid.
93 */
94 WARN_ON(sid > NUM_TIDS);
95
96 return ret;
97 }
98
99 /*
100 * Check if given entry contain a valid shadow id mapping.
101 * An ID mapping is considered valid only if
102 * both vcpu and pcpu know this mapping.
103 *
104 * The caller must have preemption disabled, and keep it that way until
105 * it has finished with the returned shadow id (either written into the
106 * TLB or arch.shadow_pid, or discarded).
107 */
local_sid_lookup(struct id * entry)108 static inline int local_sid_lookup(struct id *entry)
109 {
110 if (entry && entry->val != 0 &&
111 __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
112 entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
113 return entry->val;
114 return -1;
115 }
116
117 /* Invalidate all id mappings on local core -- call with preempt disabled */
local_sid_destroy_all(void)118 static inline void local_sid_destroy_all(void)
119 {
120 __this_cpu_write(pcpu_last_used_sid, 0);
121 memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
122 }
123
kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 * vcpu_e500)124 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
125 {
126 vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
127 return vcpu_e500->idt;
128 }
129
kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 * vcpu_e500)130 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
131 {
132 kfree(vcpu_e500->idt);
133 vcpu_e500->idt = NULL;
134 }
135
136 /* Map guest pid to shadow.
137 * We use PID to keep shadow of current guest non-zero PID,
138 * and use PID1 to keep shadow of guest zero PID.
139 * So that guest tlbe with TID=0 can be accessed at any time */
kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 * vcpu_e500)140 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
141 {
142 preempt_disable();
143 vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
144 get_cur_as(&vcpu_e500->vcpu),
145 get_cur_pid(&vcpu_e500->vcpu),
146 get_cur_pr(&vcpu_e500->vcpu), 1);
147 vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
148 get_cur_as(&vcpu_e500->vcpu), 0,
149 get_cur_pr(&vcpu_e500->vcpu), 1);
150 preempt_enable();
151 }
152
153 /* Invalidate all mappings on vcpu */
kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 * vcpu_e500)154 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
155 {
156 memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
157
158 /* Update shadow pid when mappings are changed */
159 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
160 }
161
162 /* Invalidate one ID mapping on vcpu */
kvmppc_e500_id_table_reset_one(struct kvmppc_vcpu_e500 * vcpu_e500,int as,int pid,int pr)163 static inline void kvmppc_e500_id_table_reset_one(
164 struct kvmppc_vcpu_e500 *vcpu_e500,
165 int as, int pid, int pr)
166 {
167 struct vcpu_id_table *idt = vcpu_e500->idt;
168
169 BUG_ON(as >= 2);
170 BUG_ON(pid >= NUM_TIDS);
171 BUG_ON(pr >= 2);
172
173 idt->id[as][pid][pr].val = 0;
174 idt->id[as][pid][pr].pentry = NULL;
175
176 /* Update shadow pid when mappings are changed */
177 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
178 }
179
180 /*
181 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
182 * This function first lookup if a valid mapping exists,
183 * if not, then creates a new one.
184 *
185 * The caller must have preemption disabled, and keep it that way until
186 * it has finished with the returned shadow id (either written into the
187 * TLB or arch.shadow_pid, or discarded).
188 */
kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 * vcpu_e500,unsigned int as,unsigned int gid,unsigned int pr,int avoid_recursion)189 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
190 unsigned int as, unsigned int gid,
191 unsigned int pr, int avoid_recursion)
192 {
193 struct vcpu_id_table *idt = vcpu_e500->idt;
194 int sid;
195
196 BUG_ON(as >= 2);
197 BUG_ON(gid >= NUM_TIDS);
198 BUG_ON(pr >= 2);
199
200 sid = local_sid_lookup(&idt->id[as][gid][pr]);
201
202 while (sid <= 0) {
203 /* No mapping yet */
204 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
205 if (sid <= 0) {
206 _tlbil_all();
207 local_sid_destroy_all();
208 }
209
210 /* Update shadow pid when mappings are changed */
211 if (!avoid_recursion)
212 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
213 }
214
215 return sid;
216 }
217
kvmppc_e500_get_tlb_stid(struct kvm_vcpu * vcpu,struct kvm_book3e_206_tlb_entry * gtlbe)218 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
219 struct kvm_book3e_206_tlb_entry *gtlbe)
220 {
221 return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
222 get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
223 }
224
kvmppc_set_pid(struct kvm_vcpu * vcpu,u32 pid)225 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
226 {
227 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
228
229 if (vcpu->arch.pid != pid) {
230 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
231 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
232 }
233 }
234
235 /* gtlbe must not be mapped by more than one host tlbe */
kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 * vcpu_e500,struct kvm_book3e_206_tlb_entry * gtlbe)236 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
237 struct kvm_book3e_206_tlb_entry *gtlbe)
238 {
239 struct vcpu_id_table *idt = vcpu_e500->idt;
240 unsigned int pr, tid, ts;
241 int pid;
242 u32 val, eaddr;
243 unsigned long flags;
244
245 ts = get_tlb_ts(gtlbe);
246 tid = get_tlb_tid(gtlbe);
247
248 preempt_disable();
249
250 /* One guest ID may be mapped to two shadow IDs */
251 for (pr = 0; pr < 2; pr++) {
252 /*
253 * The shadow PID can have a valid mapping on at most one
254 * host CPU. In the common case, it will be valid on this
255 * CPU, in which case we do a local invalidation of the
256 * specific address.
257 *
258 * If the shadow PID is not valid on the current host CPU,
259 * we invalidate the entire shadow PID.
260 */
261 pid = local_sid_lookup(&idt->id[ts][tid][pr]);
262 if (pid <= 0) {
263 kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
264 continue;
265 }
266
267 /*
268 * The guest is invalidating a 4K entry which is in a PID
269 * that has a valid shadow mapping on this host CPU. We
270 * search host TLB to invalidate it's shadow TLB entry,
271 * similar to __tlbil_va except that we need to look in AS1.
272 */
273 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
274 eaddr = get_tlb_eaddr(gtlbe);
275
276 local_irq_save(flags);
277
278 mtspr(SPRN_MAS6, val);
279 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
280 val = mfspr(SPRN_MAS1);
281 if (val & MAS1_VALID) {
282 mtspr(SPRN_MAS1, val & ~MAS1_VALID);
283 asm volatile("tlbwe");
284 }
285
286 local_irq_restore(flags);
287 }
288
289 preempt_enable();
290 }
291
kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 * vcpu_e500)292 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
293 {
294 kvmppc_e500_id_table_reset_all(vcpu_e500);
295 }
296
kvmppc_mmu_msr_notify(struct kvm_vcpu * vcpu,u32 old_msr)297 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
298 {
299 /* Recalc shadow pid since MSR changes */
300 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
301 }
302
kvmppc_core_vcpu_load_e500(struct kvm_vcpu * vcpu,int cpu)303 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
304 {
305 kvmppc_booke_vcpu_load(vcpu, cpu);
306
307 /* Shadow PID may be expired on local core */
308 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
309 }
310
kvmppc_core_vcpu_put_e500(struct kvm_vcpu * vcpu)311 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
312 {
313 #ifdef CONFIG_SPE
314 if (vcpu->arch.shadow_msr & MSR_SPE)
315 kvmppc_vcpu_disable_spe(vcpu);
316 #endif
317
318 kvmppc_booke_vcpu_put(vcpu);
319 }
320
kvmppc_core_check_processor_compat(void)321 int kvmppc_core_check_processor_compat(void)
322 {
323 int r;
324
325 if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
326 r = 0;
327 else
328 r = -ENOTSUPP;
329
330 return r;
331 }
332
kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 * vcpu_e500)333 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
334 {
335 struct kvm_book3e_206_tlb_entry *tlbe;
336
337 /* Insert large initial mapping for guest. */
338 tlbe = get_entry(vcpu_e500, 1, 0);
339 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
340 tlbe->mas2 = 0;
341 tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
342
343 /* 4K map for serial output. Used by kernel wrapper. */
344 tlbe = get_entry(vcpu_e500, 1, 1);
345 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
346 tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
347 tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
348 }
349
kvmppc_core_vcpu_setup(struct kvm_vcpu * vcpu)350 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
351 {
352 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
353
354 kvmppc_e500_tlb_setup(vcpu_e500);
355
356 /* Registers init */
357 vcpu->arch.pvr = mfspr(SPRN_PVR);
358 vcpu_e500->svr = mfspr(SPRN_SVR);
359
360 vcpu->arch.cpu_type = KVM_CPU_E500V2;
361
362 return 0;
363 }
364
kvmppc_core_get_sregs_e500(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)365 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
366 struct kvm_sregs *sregs)
367 {
368 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
369
370 sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
371 KVM_SREGS_E_PM;
372 sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
373
374 sregs->u.e.impl.fsl.features = 0;
375 sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
376 sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
377 sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
378
379 sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
380 sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
381 sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
382 sregs->u.e.ivor_high[3] =
383 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
384
385 kvmppc_get_sregs_ivor(vcpu, sregs);
386 kvmppc_get_sregs_e500_tlb(vcpu, sregs);
387 return 0;
388 }
389
kvmppc_core_set_sregs_e500(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)390 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
391 struct kvm_sregs *sregs)
392 {
393 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
394 int ret;
395
396 if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
397 vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
398 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
399 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
400 }
401
402 ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
403 if (ret < 0)
404 return ret;
405
406 if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
407 return 0;
408
409 if (sregs->u.e.features & KVM_SREGS_E_SPE) {
410 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
411 sregs->u.e.ivor_high[0];
412 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
413 sregs->u.e.ivor_high[1];
414 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
415 sregs->u.e.ivor_high[2];
416 }
417
418 if (sregs->u.e.features & KVM_SREGS_E_PM) {
419 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
420 sregs->u.e.ivor_high[3];
421 }
422
423 return kvmppc_set_sregs_ivor(vcpu, sregs);
424 }
425
kvmppc_get_one_reg_e500(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)426 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
427 union kvmppc_one_reg *val)
428 {
429 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
430 return r;
431 }
432
kvmppc_set_one_reg_e500(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)433 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
434 union kvmppc_one_reg *val)
435 {
436 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
437 return r;
438 }
439
kvmppc_core_vcpu_create_e500(struct kvm * kvm,unsigned int id)440 static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
441 unsigned int id)
442 {
443 struct kvmppc_vcpu_e500 *vcpu_e500;
444 struct kvm_vcpu *vcpu;
445 int err;
446
447 vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
448 if (!vcpu_e500) {
449 err = -ENOMEM;
450 goto out;
451 }
452
453 vcpu = &vcpu_e500->vcpu;
454 err = kvm_vcpu_init(vcpu, kvm, id);
455 if (err)
456 goto free_vcpu;
457
458 if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) {
459 err = -ENOMEM;
460 goto uninit_vcpu;
461 }
462
463 err = kvmppc_e500_tlb_init(vcpu_e500);
464 if (err)
465 goto uninit_id;
466
467 vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
468 if (!vcpu->arch.shared) {
469 err = -ENOMEM;
470 goto uninit_tlb;
471 }
472
473 return vcpu;
474
475 uninit_tlb:
476 kvmppc_e500_tlb_uninit(vcpu_e500);
477 uninit_id:
478 kvmppc_e500_id_table_free(vcpu_e500);
479 uninit_vcpu:
480 kvm_vcpu_uninit(vcpu);
481 free_vcpu:
482 kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
483 out:
484 return ERR_PTR(err);
485 }
486
kvmppc_core_vcpu_free_e500(struct kvm_vcpu * vcpu)487 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
488 {
489 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
490
491 free_page((unsigned long)vcpu->arch.shared);
492 kvmppc_e500_tlb_uninit(vcpu_e500);
493 kvmppc_e500_id_table_free(vcpu_e500);
494 kvm_vcpu_uninit(vcpu);
495 kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
496 }
497
kvmppc_core_init_vm_e500(struct kvm * kvm)498 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
499 {
500 return 0;
501 }
502
kvmppc_core_destroy_vm_e500(struct kvm * kvm)503 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
504 {
505 }
506
507 static struct kvmppc_ops kvm_ops_e500 = {
508 .get_sregs = kvmppc_core_get_sregs_e500,
509 .set_sregs = kvmppc_core_set_sregs_e500,
510 .get_one_reg = kvmppc_get_one_reg_e500,
511 .set_one_reg = kvmppc_set_one_reg_e500,
512 .vcpu_load = kvmppc_core_vcpu_load_e500,
513 .vcpu_put = kvmppc_core_vcpu_put_e500,
514 .vcpu_create = kvmppc_core_vcpu_create_e500,
515 .vcpu_free = kvmppc_core_vcpu_free_e500,
516 .mmu_destroy = kvmppc_mmu_destroy_e500,
517 .init_vm = kvmppc_core_init_vm_e500,
518 .destroy_vm = kvmppc_core_destroy_vm_e500,
519 .emulate_op = kvmppc_core_emulate_op_e500,
520 .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
521 .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
522 };
523
kvmppc_e500_init(void)524 static int __init kvmppc_e500_init(void)
525 {
526 int r, i;
527 unsigned long ivor[3];
528 /* Process remaining handlers above the generic first 16 */
529 unsigned long *handler = &kvmppc_booke_handler_addr[16];
530 unsigned long handler_len;
531 unsigned long max_ivor = 0;
532
533 r = kvmppc_core_check_processor_compat();
534 if (r)
535 goto err_out;
536
537 r = kvmppc_booke_init();
538 if (r)
539 goto err_out;
540
541 /* copy extra E500 exception handlers */
542 ivor[0] = mfspr(SPRN_IVOR32);
543 ivor[1] = mfspr(SPRN_IVOR33);
544 ivor[2] = mfspr(SPRN_IVOR34);
545 for (i = 0; i < 3; i++) {
546 if (ivor[i] > ivor[max_ivor])
547 max_ivor = i;
548
549 handler_len = handler[i + 1] - handler[i];
550 memcpy((void *)kvmppc_booke_handlers + ivor[i],
551 (void *)handler[i], handler_len);
552 }
553 handler_len = handler[max_ivor + 1] - handler[max_ivor];
554 flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
555 ivor[max_ivor] + handler_len);
556
557 r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
558 if (r)
559 goto err_out;
560 kvm_ops_e500.owner = THIS_MODULE;
561 kvmppc_pr_ops = &kvm_ops_e500;
562
563 err_out:
564 return r;
565 }
566
kvmppc_e500_exit(void)567 static void __exit kvmppc_e500_exit(void)
568 {
569 kvmppc_pr_ops = NULL;
570 kvmppc_booke_exit();
571 }
572
573 module_init(kvmppc_e500_init);
574 module_exit(kvmppc_e500_exit);
575 MODULE_ALIAS_MISCDEV(KVM_MINOR);
576 MODULE_ALIAS("devname:kvm");
577