• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file contains the routines for handling the MMU on those
3  * PowerPC implementations where the MMU is not using the hash
4  * table, such as 8xx, 4xx, BookE's etc...
5  *
6  * Copyright 2008 Ben Herrenschmidt <benh@kernel.crashing.org>
7  *                IBM Corp.
8  *
9  *  Derived from previous arch/powerpc/mm/mmu_context.c
10  *  and arch/powerpc/include/asm/mmu_context.h
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  *
17  * TODO:
18  *
19  *   - The global context lock will not scale very well
20  *   - The maps should be dynamically allocated to allow for processors
21  *     that support more PID bits at runtime
22  *   - Implement flush_tlb_mm() by making the context stale and picking
23  *     a new one
24  *   - More aggressively clear stale map bits and maybe find some way to
25  *     also clear mm->cpu_vm_mask bits when processes are migrated
26  */
27 
28 //#define DEBUG_MAP_CONSISTENCY
29 //#define DEBUG_CLAMP_LAST_CONTEXT   31
30 //#define DEBUG_HARDER
31 
32 /* We don't use DEBUG because it tends to be compiled in always nowadays
33  * and this would generate way too much output
34  */
35 #ifdef DEBUG_HARDER
36 #define pr_hard(args...)	printk(KERN_DEBUG args)
37 #define pr_hardcont(args...)	printk(KERN_CONT args)
38 #else
39 #define pr_hard(args...)	do { } while(0)
40 #define pr_hardcont(args...)	do { } while(0)
41 #endif
42 
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/init.h>
46 #include <linux/spinlock.h>
47 #include <linux/bootmem.h>
48 #include <linux/notifier.h>
49 #include <linux/cpu.h>
50 #include <linux/slab.h>
51 
52 #include <asm/mmu_context.h>
53 #include <asm/tlbflush.h>
54 
55 #include "mmu_decl.h"
56 
57 static unsigned int first_context, last_context;
58 static unsigned int next_context, nr_free_contexts;
59 static unsigned long *context_map;
60 static unsigned long *stale_map[NR_CPUS];
61 static struct mm_struct **context_mm;
62 static DEFINE_RAW_SPINLOCK(context_lock);
63 static bool no_selective_tlbil;
64 
65 #define CTX_MAP_SIZE	\
66 	(sizeof(unsigned long) * (last_context / BITS_PER_LONG + 1))
67 
68 
69 /* Steal a context from a task that has one at the moment.
70  *
71  * This is used when we are running out of available PID numbers
72  * on the processors.
73  *
74  * This isn't an LRU system, it just frees up each context in
75  * turn (sort-of pseudo-random replacement :).  This would be the
76  * place to implement an LRU scheme if anyone was motivated to do it.
77  *  -- paulus
78  *
79  * For context stealing, we use a slightly different approach for
80  * SMP and UP. Basically, the UP one is simpler and doesn't use
81  * the stale map as we can just flush the local CPU
82  *  -- benh
83  */
84 #ifdef CONFIG_SMP
steal_context_smp(unsigned int id)85 static unsigned int steal_context_smp(unsigned int id)
86 {
87 	struct mm_struct *mm;
88 	unsigned int cpu, max, i;
89 
90 	max = last_context - first_context;
91 
92 	/* Attempt to free next_context first and then loop until we manage */
93 	while (max--) {
94 		/* Pick up the victim mm */
95 		mm = context_mm[id];
96 
97 		/* We have a candidate victim, check if it's active, on SMP
98 		 * we cannot steal active contexts
99 		 */
100 		if (mm->context.active) {
101 			id++;
102 			if (id > last_context)
103 				id = first_context;
104 			continue;
105 		}
106 		pr_hardcont(" | steal %d from 0x%p", id, mm);
107 
108 		/* Mark this mm has having no context anymore */
109 		mm->context.id = MMU_NO_CONTEXT;
110 
111 		/* Mark it stale on all CPUs that used this mm. For threaded
112 		 * implementations, we set it on all threads on each core
113 		 * represented in the mask. A future implementation will use
114 		 * a core map instead but this will do for now.
115 		 */
116 		for_each_cpu(cpu, mm_cpumask(mm)) {
117 			for (i = cpu_first_thread_sibling(cpu);
118 			     i <= cpu_last_thread_sibling(cpu); i++) {
119 				if (stale_map[i])
120 					__set_bit(id, stale_map[i]);
121 			}
122 			cpu = i - 1;
123 		}
124 		return id;
125 	}
126 
127 	/* This will happen if you have more CPUs than available contexts,
128 	 * all we can do here is wait a bit and try again
129 	 */
130 	raw_spin_unlock(&context_lock);
131 	cpu_relax();
132 	raw_spin_lock(&context_lock);
133 
134 	/* This will cause the caller to try again */
135 	return MMU_NO_CONTEXT;
136 }
137 #endif  /* CONFIG_SMP */
138 
steal_all_contexts(void)139 static unsigned int steal_all_contexts(void)
140 {
141 	struct mm_struct *mm;
142 	int cpu = smp_processor_id();
143 	unsigned int id;
144 
145 	for (id = first_context; id <= last_context; id++) {
146 		/* Pick up the victim mm */
147 		mm = context_mm[id];
148 
149 		pr_hardcont(" | steal %d from 0x%p", id, mm);
150 
151 		/* Mark this mm as having no context anymore */
152 		mm->context.id = MMU_NO_CONTEXT;
153 		if (id != first_context) {
154 			context_mm[id] = NULL;
155 			__clear_bit(id, context_map);
156 #ifdef DEBUG_MAP_CONSISTENCY
157 			mm->context.active = 0;
158 #endif
159 		}
160 		__clear_bit(id, stale_map[cpu]);
161 	}
162 
163 	/* Flush the TLB for all contexts (not to be used on SMP) */
164 	_tlbil_all();
165 
166 	nr_free_contexts = last_context - first_context;
167 
168 	return first_context;
169 }
170 
171 /* Note that this will also be called on SMP if all other CPUs are
172  * offlined, which means that it may be called for cpu != 0. For
173  * this to work, we somewhat assume that CPUs that are onlined
174  * come up with a fully clean TLB (or are cleaned when offlined)
175  */
steal_context_up(unsigned int id)176 static unsigned int steal_context_up(unsigned int id)
177 {
178 	struct mm_struct *mm;
179 	int cpu = smp_processor_id();
180 
181 	/* Pick up the victim mm */
182 	mm = context_mm[id];
183 
184 	pr_hardcont(" | steal %d from 0x%p", id, mm);
185 
186 	/* Flush the TLB for that context */
187 	local_flush_tlb_mm(mm);
188 
189 	/* Mark this mm has having no context anymore */
190 	mm->context.id = MMU_NO_CONTEXT;
191 
192 	/* XXX This clear should ultimately be part of local_flush_tlb_mm */
193 	__clear_bit(id, stale_map[cpu]);
194 
195 	return id;
196 }
197 
198 #ifdef DEBUG_MAP_CONSISTENCY
context_check_map(void)199 static void context_check_map(void)
200 {
201 	unsigned int id, nrf, nact;
202 
203 	nrf = nact = 0;
204 	for (id = first_context; id <= last_context; id++) {
205 		int used = test_bit(id, context_map);
206 		if (!used)
207 			nrf++;
208 		if (used != (context_mm[id] != NULL))
209 			pr_err("MMU: Context %d is %s and MM is %p !\n",
210 			       id, used ? "used" : "free", context_mm[id]);
211 		if (context_mm[id] != NULL)
212 			nact += context_mm[id]->context.active;
213 	}
214 	if (nrf != nr_free_contexts) {
215 		pr_err("MMU: Free context count out of sync ! (%d vs %d)\n",
216 		       nr_free_contexts, nrf);
217 		nr_free_contexts = nrf;
218 	}
219 	if (nact > num_online_cpus())
220 		pr_err("MMU: More active contexts than CPUs ! (%d vs %d)\n",
221 		       nact, num_online_cpus());
222 	if (first_context > 0 && !test_bit(0, context_map))
223 		pr_err("MMU: Context 0 has been freed !!!\n");
224 }
225 #else
context_check_map(void)226 static void context_check_map(void) { }
227 #endif
228 
switch_mmu_context(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)229 void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next,
230 			struct task_struct *tsk)
231 {
232 	unsigned int i, id, cpu = smp_processor_id();
233 	unsigned long *map;
234 
235 	/* No lockless fast path .. yet */
236 	raw_spin_lock(&context_lock);
237 
238 	pr_hard("[%d] activating context for mm @%p, active=%d, id=%d",
239 		cpu, next, next->context.active, next->context.id);
240 
241 #ifdef CONFIG_SMP
242 	/* Mark us active and the previous one not anymore */
243 	next->context.active++;
244 	if (prev) {
245 		pr_hardcont(" (old=0x%p a=%d)", prev, prev->context.active);
246 		WARN_ON(prev->context.active < 1);
247 		prev->context.active--;
248 	}
249 
250  again:
251 #endif /* CONFIG_SMP */
252 
253 	/* If we already have a valid assigned context, skip all that */
254 	id = next->context.id;
255 	if (likely(id != MMU_NO_CONTEXT)) {
256 #ifdef DEBUG_MAP_CONSISTENCY
257 		if (context_mm[id] != next)
258 			pr_err("MMU: mm 0x%p has id %d but context_mm[%d] says 0x%p\n",
259 			       next, id, id, context_mm[id]);
260 #endif
261 		goto ctxt_ok;
262 	}
263 
264 	/* We really don't have a context, let's try to acquire one */
265 	id = next_context;
266 	if (id > last_context)
267 		id = first_context;
268 	map = context_map;
269 
270 	/* No more free contexts, let's try to steal one */
271 	if (nr_free_contexts == 0) {
272 #ifdef CONFIG_SMP
273 		if (num_online_cpus() > 1) {
274 			id = steal_context_smp(id);
275 			if (id == MMU_NO_CONTEXT)
276 				goto again;
277 			goto stolen;
278 		}
279 #endif /* CONFIG_SMP */
280 		if (no_selective_tlbil)
281 			id = steal_all_contexts();
282 		else
283 			id = steal_context_up(id);
284 		goto stolen;
285 	}
286 	nr_free_contexts--;
287 
288 	/* We know there's at least one free context, try to find it */
289 	while (__test_and_set_bit(id, map)) {
290 		id = find_next_zero_bit(map, last_context+1, id);
291 		if (id > last_context)
292 			id = first_context;
293 	}
294  stolen:
295 	next_context = id + 1;
296 	context_mm[id] = next;
297 	next->context.id = id;
298 	pr_hardcont(" | new id=%d,nrf=%d", id, nr_free_contexts);
299 
300 	context_check_map();
301  ctxt_ok:
302 
303 	/* If that context got marked stale on this CPU, then flush the
304 	 * local TLB for it and unmark it before we use it
305 	 */
306 	if (test_bit(id, stale_map[cpu])) {
307 		pr_hardcont(" | stale flush %d [%d..%d]",
308 			    id, cpu_first_thread_sibling(cpu),
309 			    cpu_last_thread_sibling(cpu));
310 
311 		local_flush_tlb_mm(next);
312 
313 		/* XXX This clear should ultimately be part of local_flush_tlb_mm */
314 		for (i = cpu_first_thread_sibling(cpu);
315 		     i <= cpu_last_thread_sibling(cpu); i++) {
316 			if (stale_map[i])
317 				__clear_bit(id, stale_map[i]);
318 		}
319 	}
320 
321 	/* Flick the MMU and release lock */
322 	pr_hardcont(" -> %d\n", id);
323 	set_context(id, next->pgd);
324 	raw_spin_unlock(&context_lock);
325 }
326 
327 /*
328  * Set up the context for a new address space.
329  */
init_new_context(struct task_struct * t,struct mm_struct * mm)330 int init_new_context(struct task_struct *t, struct mm_struct *mm)
331 {
332 	pr_hard("initing context for mm @%p\n", mm);
333 
334 #ifdef	CONFIG_PPC_MM_SLICES
335 	if (!mm->context.addr_limit)
336 		mm->context.addr_limit = DEFAULT_MAP_WINDOW;
337 
338 	/*
339 	 * We have MMU_NO_CONTEXT set to be ~0. Hence check
340 	 * explicitly against context.id == 0. This ensures that we properly
341 	 * initialize context slice details for newly allocated mm's (which will
342 	 * have id == 0) and don't alter context slice inherited via fork (which
343 	 * will have id != 0).
344 	 */
345 	if (mm->context.id == 0)
346 		slice_set_user_psize(mm, mmu_virtual_psize);
347 #endif
348 	mm->context.id = MMU_NO_CONTEXT;
349 	mm->context.active = 0;
350 	return 0;
351 }
352 
353 /*
354  * We're finished using the context for an address space.
355  */
destroy_context(struct mm_struct * mm)356 void destroy_context(struct mm_struct *mm)
357 {
358 	unsigned long flags;
359 	unsigned int id;
360 
361 	if (mm->context.id == MMU_NO_CONTEXT)
362 		return;
363 
364 	WARN_ON(mm->context.active != 0);
365 
366 	raw_spin_lock_irqsave(&context_lock, flags);
367 	id = mm->context.id;
368 	if (id != MMU_NO_CONTEXT) {
369 		__clear_bit(id, context_map);
370 		mm->context.id = MMU_NO_CONTEXT;
371 #ifdef DEBUG_MAP_CONSISTENCY
372 		mm->context.active = 0;
373 #endif
374 		context_mm[id] = NULL;
375 		nr_free_contexts++;
376 	}
377 	raw_spin_unlock_irqrestore(&context_lock, flags);
378 }
379 
380 #ifdef CONFIG_SMP
mmu_ctx_cpu_prepare(unsigned int cpu)381 static int mmu_ctx_cpu_prepare(unsigned int cpu)
382 {
383 	/* We don't touch CPU 0 map, it's allocated at aboot and kept
384 	 * around forever
385 	 */
386 	if (cpu == boot_cpuid)
387 		return 0;
388 
389 	pr_devel("MMU: Allocating stale context map for CPU %d\n", cpu);
390 	stale_map[cpu] = kzalloc(CTX_MAP_SIZE, GFP_KERNEL);
391 	return 0;
392 }
393 
mmu_ctx_cpu_dead(unsigned int cpu)394 static int mmu_ctx_cpu_dead(unsigned int cpu)
395 {
396 #ifdef CONFIG_HOTPLUG_CPU
397 	if (cpu == boot_cpuid)
398 		return 0;
399 
400 	pr_devel("MMU: Freeing stale context map for CPU %d\n", cpu);
401 	kfree(stale_map[cpu]);
402 	stale_map[cpu] = NULL;
403 
404 	/* We also clear the cpu_vm_mask bits of CPUs going away */
405 	clear_tasks_mm_cpumask(cpu);
406 #endif
407 	return 0;
408 }
409 
410 #endif /* CONFIG_SMP */
411 
412 /*
413  * Initialize the context management stuff.
414  */
mmu_context_init(void)415 void __init mmu_context_init(void)
416 {
417 	/* Mark init_mm as being active on all possible CPUs since
418 	 * we'll get called with prev == init_mm the first time
419 	 * we schedule on a given CPU
420 	 */
421 	init_mm.context.active = NR_CPUS;
422 
423 	/*
424 	 *   The MPC8xx has only 16 contexts.  We rotate through them on each
425 	 * task switch.  A better way would be to keep track of tasks that
426 	 * own contexts, and implement an LRU usage.  That way very active
427 	 * tasks don't always have to pay the TLB reload overhead.  The
428 	 * kernel pages are mapped shared, so the kernel can run on behalf
429 	 * of any task that makes a kernel entry.  Shared does not mean they
430 	 * are not protected, just that the ASID comparison is not performed.
431 	 *      -- Dan
432 	 *
433 	 * The IBM4xx has 256 contexts, so we can just rotate through these
434 	 * as a way of "switching" contexts.  If the TID of the TLB is zero,
435 	 * the PID/TID comparison is disabled, so we can use a TID of zero
436 	 * to represent all kernel pages as shared among all contexts.
437 	 * 	-- Dan
438 	 *
439 	 * The IBM 47x core supports 16-bit PIDs, thus 65535 contexts. We
440 	 * should normally never have to steal though the facility is
441 	 * present if needed.
442 	 *      -- BenH
443 	 */
444 	if (mmu_has_feature(MMU_FTR_TYPE_8xx)) {
445 		first_context = 1;
446 		last_context = 16;
447 		no_selective_tlbil = true;
448 	} else if (mmu_has_feature(MMU_FTR_TYPE_47x)) {
449 		first_context = 1;
450 		last_context = 65535;
451 		no_selective_tlbil = false;
452 	} else {
453 		first_context = 1;
454 		last_context = 255;
455 		no_selective_tlbil = false;
456 	}
457 
458 #ifdef DEBUG_CLAMP_LAST_CONTEXT
459 	last_context = DEBUG_CLAMP_LAST_CONTEXT;
460 #endif
461 	/*
462 	 * Allocate the maps used by context management
463 	 */
464 	context_map = memblock_virt_alloc(CTX_MAP_SIZE, 0);
465 	context_mm = memblock_virt_alloc(sizeof(void *) * (last_context + 1), 0);
466 #ifndef CONFIG_SMP
467 	stale_map[0] = memblock_virt_alloc(CTX_MAP_SIZE, 0);
468 #else
469 	stale_map[boot_cpuid] = memblock_virt_alloc(CTX_MAP_SIZE, 0);
470 
471 	cpuhp_setup_state_nocalls(CPUHP_POWERPC_MMU_CTX_PREPARE,
472 				  "powerpc/mmu/ctx:prepare",
473 				  mmu_ctx_cpu_prepare, mmu_ctx_cpu_dead);
474 #endif
475 
476 	printk(KERN_INFO
477 	       "MMU: Allocated %zu bytes of context maps for %d contexts\n",
478 	       2 * CTX_MAP_SIZE + (sizeof(void *) * (last_context + 1)),
479 	       last_context - first_context + 1);
480 
481 	/*
482 	 * Some processors have too few contexts to reserve one for
483 	 * init_mm, and require using context 0 for a normal task.
484 	 * Other processors reserve the use of context zero for the kernel.
485 	 * This code assumes first_context < 32.
486 	 */
487 	context_map[0] = (1 << first_context) - 1;
488 	next_context = first_context;
489 	nr_free_contexts = last_context - first_context + 1;
490 }
491 
492