1 /*
2 * In-Memory Collection (IMC) Performance Monitor counter support.
3 *
4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5 * (C) 2017 Anju T Sudhakar, IBM Corporation.
6 * (C) 2017 Hemant K Shaw, IBM Corporation.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or later version.
12 */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20
21 /* Nest IMC data structures and variables */
22
23 /*
24 * Used to avoid races in counting the nest-pmu units during hotplug
25 * register and unregister
26 */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu **per_nest_pmu_arr;
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33
34 /* Core IMC data structures and variables */
35
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39
40 /* Thread IMC data structures and variables */
41
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
45
imc_event_to_pmu(struct perf_event * event)46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47 {
48 return container_of(event->pmu, struct imc_pmu, pmu);
49 }
50
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56 &format_attr_event.attr,
57 &format_attr_offset.attr,
58 &format_attr_rvalue.attr,
59 &format_attr_mode.attr,
60 NULL,
61 };
62
63 static struct attribute_group imc_format_group = {
64 .name = "format",
65 .attrs = imc_format_attrs,
66 };
67
68 /* Get the cpumask printed to a buffer "buf" */
imc_pmu_cpumask_get_attr(struct device * dev,struct device_attribute * attr,char * buf)69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70 struct device_attribute *attr,
71 char *buf)
72 {
73 struct pmu *pmu = dev_get_drvdata(dev);
74 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75 cpumask_t *active_mask;
76
77 switch(imc_pmu->domain){
78 case IMC_DOMAIN_NEST:
79 active_mask = &nest_imc_cpumask;
80 break;
81 case IMC_DOMAIN_CORE:
82 active_mask = &core_imc_cpumask;
83 break;
84 default:
85 return 0;
86 }
87
88 return cpumap_print_to_pagebuf(true, buf, active_mask);
89 }
90
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94 &dev_attr_cpumask.attr,
95 NULL,
96 };
97
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99 .attrs = imc_pmu_cpumask_attrs,
100 };
101
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
device_str_attr_create(const char * name,const char * str)103 static struct attribute *device_str_attr_create(const char *name, const char *str)
104 {
105 struct perf_pmu_events_attr *attr;
106
107 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108 if (!attr)
109 return NULL;
110 sysfs_attr_init(&attr->attr.attr);
111
112 attr->event_str = str;
113 attr->attr.attr.name = name;
114 attr->attr.attr.mode = 0444;
115 attr->attr.show = perf_event_sysfs_show;
116
117 return &attr->attr.attr;
118 }
119
imc_parse_event(struct device_node * np,const char * scale,const char * unit,const char * prefix,u32 base)120 struct imc_events *imc_parse_event(struct device_node *np, const char *scale,
121 const char *unit, const char *prefix, u32 base)
122 {
123 struct imc_events *event;
124 const char *s;
125 u32 reg;
126
127 event = kzalloc(sizeof(struct imc_events), GFP_KERNEL);
128 if (!event)
129 return NULL;
130
131 if (of_property_read_u32(np, "reg", ®))
132 goto error;
133 /* Add the base_reg value to the "reg" */
134 event->value = base + reg;
135
136 if (of_property_read_string(np, "event-name", &s))
137 goto error;
138
139 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
140 if (!event->name)
141 goto error;
142
143 if (of_property_read_string(np, "scale", &s))
144 s = scale;
145
146 if (s) {
147 event->scale = kstrdup(s, GFP_KERNEL);
148 if (!event->scale)
149 goto error;
150 }
151
152 if (of_property_read_string(np, "unit", &s))
153 s = unit;
154
155 if (s) {
156 event->unit = kstrdup(s, GFP_KERNEL);
157 if (!event->unit)
158 goto error;
159 }
160
161 return event;
162 error:
163 kfree(event->unit);
164 kfree(event->scale);
165 kfree(event->name);
166 kfree(event);
167
168 return NULL;
169 }
170
171 /*
172 * update_events_in_group: Update the "events" information in an attr_group
173 * and assign the attr_group to the pmu "pmu".
174 */
update_events_in_group(struct device_node * node,struct imc_pmu * pmu)175 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
176 {
177 struct attribute_group *attr_group;
178 struct attribute **attrs, *dev_str;
179 struct device_node *np, *pmu_events;
180 struct imc_events *ev;
181 u32 handle, base_reg;
182 int i=0, j=0, ct;
183 const char *prefix, *g_scale, *g_unit;
184 const char *ev_val_str, *ev_scale_str, *ev_unit_str;
185
186 if (!of_property_read_u32(node, "events", &handle))
187 pmu_events = of_find_node_by_phandle(handle);
188 else
189 return 0;
190
191 /* Did not find any node with a given phandle */
192 if (!pmu_events)
193 return 0;
194
195 /* Get a count of number of child nodes */
196 ct = of_get_child_count(pmu_events);
197
198 /* Get the event prefix */
199 if (of_property_read_string(node, "events-prefix", &prefix))
200 return 0;
201
202 /* Get a global unit and scale data if available */
203 if (of_property_read_string(node, "scale", &g_scale))
204 g_scale = NULL;
205
206 if (of_property_read_string(node, "unit", &g_unit))
207 g_unit = NULL;
208
209 /* "reg" property gives out the base offset of the counters data */
210 of_property_read_u32(node, "reg", &base_reg);
211
212 /* Allocate memory for the events */
213 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
214 if (!pmu->events)
215 return -ENOMEM;
216
217 ct = 0;
218 /* Parse the events and update the struct */
219 for_each_child_of_node(pmu_events, np) {
220 ev = imc_parse_event(np, g_scale, g_unit, prefix, base_reg);
221 if (ev)
222 pmu->events[ct++] = ev;
223 }
224
225 /* Allocate memory for attribute group */
226 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
227 if (!attr_group)
228 return -ENOMEM;
229
230 /*
231 * Allocate memory for attributes.
232 * Since we have count of events for this pmu, we also allocate
233 * memory for the scale and unit attribute for now.
234 * "ct" has the total event structs added from the events-parent node.
235 * So allocate three times the "ct" (this includes event, event_scale and
236 * event_unit).
237 */
238 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
239 if (!attrs) {
240 kfree(attr_group);
241 kfree(pmu->events);
242 return -ENOMEM;
243 }
244
245 attr_group->name = "events";
246 attr_group->attrs = attrs;
247 do {
248 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i]->value);
249 dev_str = device_str_attr_create(pmu->events[i]->name, ev_val_str);
250 if (!dev_str)
251 continue;
252
253 attrs[j++] = dev_str;
254 if (pmu->events[i]->scale) {
255 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale",pmu->events[i]->name);
256 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i]->scale);
257 if (!dev_str)
258 continue;
259
260 attrs[j++] = dev_str;
261 }
262
263 if (pmu->events[i]->unit) {
264 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit",pmu->events[i]->name);
265 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i]->unit);
266 if (!dev_str)
267 continue;
268
269 attrs[j++] = dev_str;
270 }
271 } while (++i < ct);
272
273 /* Save the event attribute */
274 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
275
276 kfree(pmu->events);
277 return 0;
278 }
279
280 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
get_nest_pmu_ref(int cpu)281 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
282 {
283 return per_cpu(local_nest_imc_refc, cpu);
284 }
285
nest_change_cpu_context(int old_cpu,int new_cpu)286 static void nest_change_cpu_context(int old_cpu, int new_cpu)
287 {
288 struct imc_pmu **pn = per_nest_pmu_arr;
289
290 if (old_cpu < 0 || new_cpu < 0)
291 return;
292
293 while (*pn) {
294 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
295 pn++;
296 }
297 }
298
ppc_nest_imc_cpu_offline(unsigned int cpu)299 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
300 {
301 int nid, target = -1;
302 const struct cpumask *l_cpumask;
303 struct imc_pmu_ref *ref;
304
305 /*
306 * Check in the designated list for this cpu. Dont bother
307 * if not one of them.
308 */
309 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
310 return 0;
311
312 /*
313 * Check whether nest_imc is registered. We could end up here if the
314 * cpuhotplug callback registration fails. i.e, callback invokes the
315 * offline path for all successfully registered nodes. At this stage,
316 * nest_imc pmu will not be registered and we should return here.
317 *
318 * We return with a zero since this is not an offline failure. And
319 * cpuhp_setup_state() returns the actual failure reason to the caller,
320 * which in turn will call the cleanup routine.
321 */
322 if (!nest_pmus)
323 return 0;
324
325 /*
326 * Now that this cpu is one of the designated,
327 * find a next cpu a) which is online and b) in same chip.
328 */
329 nid = cpu_to_node(cpu);
330 l_cpumask = cpumask_of_node(nid);
331 target = cpumask_any_but(l_cpumask, cpu);
332
333 /*
334 * Update the cpumask with the target cpu and
335 * migrate the context if needed
336 */
337 if (target >= 0 && target < nr_cpu_ids) {
338 cpumask_set_cpu(target, &nest_imc_cpumask);
339 nest_change_cpu_context(cpu, target);
340 } else {
341 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
342 get_hard_smp_processor_id(cpu));
343 /*
344 * If this is the last cpu in this chip then, skip the reference
345 * count mutex lock and make the reference count on this chip zero.
346 */
347 ref = get_nest_pmu_ref(cpu);
348 if (!ref)
349 return -EINVAL;
350
351 ref->refc = 0;
352 }
353 return 0;
354 }
355
ppc_nest_imc_cpu_online(unsigned int cpu)356 static int ppc_nest_imc_cpu_online(unsigned int cpu)
357 {
358 const struct cpumask *l_cpumask;
359 static struct cpumask tmp_mask;
360 int res;
361
362 /* Get the cpumask of this node */
363 l_cpumask = cpumask_of_node(cpu_to_node(cpu));
364
365 /*
366 * If this is not the first online CPU on this node, then
367 * just return.
368 */
369 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
370 return 0;
371
372 /*
373 * If this is the first online cpu on this node
374 * disable the nest counters by making an OPAL call.
375 */
376 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
377 get_hard_smp_processor_id(cpu));
378 if (res)
379 return res;
380
381 /* Make this CPU the designated target for counter collection */
382 cpumask_set_cpu(cpu, &nest_imc_cpumask);
383 return 0;
384 }
385
nest_pmu_cpumask_init(void)386 static int nest_pmu_cpumask_init(void)
387 {
388 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
389 "perf/powerpc/imc:online",
390 ppc_nest_imc_cpu_online,
391 ppc_nest_imc_cpu_offline);
392 }
393
nest_imc_counters_release(struct perf_event * event)394 static void nest_imc_counters_release(struct perf_event *event)
395 {
396 int rc, node_id;
397 struct imc_pmu_ref *ref;
398
399 if (event->cpu < 0)
400 return;
401
402 node_id = cpu_to_node(event->cpu);
403
404 /*
405 * See if we need to disable the nest PMU.
406 * If no events are currently in use, then we have to take a
407 * mutex to ensure that we don't race with another task doing
408 * enable or disable the nest counters.
409 */
410 ref = get_nest_pmu_ref(event->cpu);
411 if (!ref)
412 return;
413
414 /* Take the mutex lock for this node and then decrement the reference count */
415 mutex_lock(&ref->lock);
416 if (ref->refc == 0) {
417 /*
418 * The scenario where this is true is, when perf session is
419 * started, followed by offlining of all cpus in a given node.
420 *
421 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
422 * function set the ref->count to zero, if the cpu which is
423 * about to offline is the last cpu in a given node and make
424 * an OPAL call to disable the engine in that node.
425 *
426 */
427 mutex_unlock(&ref->lock);
428 return;
429 }
430 ref->refc--;
431 if (ref->refc == 0) {
432 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
433 get_hard_smp_processor_id(event->cpu));
434 if (rc) {
435 mutex_unlock(&ref->lock);
436 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
437 return;
438 }
439 } else if (ref->refc < 0) {
440 WARN(1, "nest-imc: Invalid event reference count\n");
441 ref->refc = 0;
442 }
443 mutex_unlock(&ref->lock);
444 }
445
nest_imc_event_init(struct perf_event * event)446 static int nest_imc_event_init(struct perf_event *event)
447 {
448 int chip_id, rc, node_id;
449 u32 l_config, config = event->attr.config;
450 struct imc_mem_info *pcni;
451 struct imc_pmu *pmu;
452 struct imc_pmu_ref *ref;
453 bool flag = false;
454
455 if (event->attr.type != event->pmu->type)
456 return -ENOENT;
457
458 /* Sampling not supported */
459 if (event->hw.sample_period)
460 return -EINVAL;
461
462 /* unsupported modes and filters */
463 if (event->attr.exclude_user ||
464 event->attr.exclude_kernel ||
465 event->attr.exclude_hv ||
466 event->attr.exclude_idle ||
467 event->attr.exclude_host ||
468 event->attr.exclude_guest)
469 return -EINVAL;
470
471 if (event->cpu < 0)
472 return -EINVAL;
473
474 pmu = imc_event_to_pmu(event);
475
476 /* Sanity check for config (event offset) */
477 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
478 return -EINVAL;
479
480 /*
481 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
482 * Get the base memory addresss for this cpu.
483 */
484 chip_id = cpu_to_chip_id(event->cpu);
485
486 /* Return, if chip_id is not valid */
487 if (chip_id < 0)
488 return -ENODEV;
489
490 pcni = pmu->mem_info;
491 do {
492 if (pcni->id == chip_id) {
493 flag = true;
494 break;
495 }
496 pcni++;
497 } while (pcni);
498
499 if (!flag)
500 return -ENODEV;
501
502 /*
503 * Add the event offset to the base address.
504 */
505 l_config = config & IMC_EVENT_OFFSET_MASK;
506 event->hw.event_base = (u64)pcni->vbase + l_config;
507 node_id = cpu_to_node(event->cpu);
508
509 /*
510 * Get the imc_pmu_ref struct for this node.
511 * Take the mutex lock and then increment the count of nest pmu events
512 * inited.
513 */
514 ref = get_nest_pmu_ref(event->cpu);
515 if (!ref)
516 return -EINVAL;
517
518 mutex_lock(&ref->lock);
519 if (ref->refc == 0) {
520 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
521 get_hard_smp_processor_id(event->cpu));
522 if (rc) {
523 mutex_unlock(&ref->lock);
524 pr_err("nest-imc: Unable to start the counters for node %d\n",
525 node_id);
526 return rc;
527 }
528 }
529 ++ref->refc;
530 mutex_unlock(&ref->lock);
531
532 event->destroy = nest_imc_counters_release;
533 return 0;
534 }
535
536 /*
537 * core_imc_mem_init : Initializes memory for the current core.
538 *
539 * Uses alloc_pages_node() and uses the returned address as an argument to
540 * an opal call to configure the pdbar. The address sent as an argument is
541 * converted to physical address before the opal call is made. This is the
542 * base address at which the core imc counters are populated.
543 */
core_imc_mem_init(int cpu,int size)544 static int core_imc_mem_init(int cpu, int size)
545 {
546 int nid, rc = 0, core_id = (cpu / threads_per_core);
547 struct imc_mem_info *mem_info;
548
549 /*
550 * alloc_pages_node() will allocate memory for core in the
551 * local node only.
552 */
553 nid = cpu_to_node(cpu);
554 mem_info = &core_imc_pmu->mem_info[core_id];
555 mem_info->id = core_id;
556
557 /* We need only vbase for core counters */
558 mem_info->vbase = page_address(alloc_pages_node(nid,
559 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
560 __GFP_NOWARN, get_order(size)));
561 if (!mem_info->vbase)
562 return -ENOMEM;
563
564 /* Init the mutex */
565 core_imc_refc[core_id].id = core_id;
566 mutex_init(&core_imc_refc[core_id].lock);
567
568 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
569 __pa((void *)mem_info->vbase),
570 get_hard_smp_processor_id(cpu));
571 if (rc) {
572 free_pages((u64)mem_info->vbase, get_order(size));
573 mem_info->vbase = NULL;
574 }
575
576 return rc;
577 }
578
is_core_imc_mem_inited(int cpu)579 static bool is_core_imc_mem_inited(int cpu)
580 {
581 struct imc_mem_info *mem_info;
582 int core_id = (cpu / threads_per_core);
583
584 mem_info = &core_imc_pmu->mem_info[core_id];
585 if (!mem_info->vbase)
586 return false;
587
588 return true;
589 }
590
ppc_core_imc_cpu_online(unsigned int cpu)591 static int ppc_core_imc_cpu_online(unsigned int cpu)
592 {
593 const struct cpumask *l_cpumask;
594 static struct cpumask tmp_mask;
595 int ret = 0;
596
597 /* Get the cpumask for this core */
598 l_cpumask = cpu_sibling_mask(cpu);
599
600 /* If a cpu for this core is already set, then, don't do anything */
601 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
602 return 0;
603
604 if (!is_core_imc_mem_inited(cpu)) {
605 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
606 if (ret) {
607 pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
608 return ret;
609 }
610 }
611
612 /* set the cpu in the mask */
613 cpumask_set_cpu(cpu, &core_imc_cpumask);
614 return 0;
615 }
616
ppc_core_imc_cpu_offline(unsigned int cpu)617 static int ppc_core_imc_cpu_offline(unsigned int cpu)
618 {
619 unsigned int ncpu, core_id;
620 struct imc_pmu_ref *ref;
621
622 /*
623 * clear this cpu out of the mask, if not present in the mask,
624 * don't bother doing anything.
625 */
626 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
627 return 0;
628
629 /*
630 * Check whether core_imc is registered. We could end up here
631 * if the cpuhotplug callback registration fails. i.e, callback
632 * invokes the offline path for all sucessfully registered cpus.
633 * At this stage, core_imc pmu will not be registered and we
634 * should return here.
635 *
636 * We return with a zero since this is not an offline failure.
637 * And cpuhp_setup_state() returns the actual failure reason
638 * to the caller, which inturn will call the cleanup routine.
639 */
640 if (!core_imc_pmu->pmu.event_init)
641 return 0;
642
643 /* Find any online cpu in that core except the current "cpu" */
644 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
645
646 if (ncpu >= 0 && ncpu < nr_cpu_ids) {
647 cpumask_set_cpu(ncpu, &core_imc_cpumask);
648 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
649 } else {
650 /*
651 * If this is the last cpu in this core then, skip taking refernce
652 * count mutex lock for this core and directly zero "refc" for
653 * this core.
654 */
655 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
656 get_hard_smp_processor_id(cpu));
657 core_id = cpu / threads_per_core;
658 ref = &core_imc_refc[core_id];
659 if (!ref)
660 return -EINVAL;
661
662 ref->refc = 0;
663 }
664 return 0;
665 }
666
core_imc_pmu_cpumask_init(void)667 static int core_imc_pmu_cpumask_init(void)
668 {
669 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
670 "perf/powerpc/imc_core:online",
671 ppc_core_imc_cpu_online,
672 ppc_core_imc_cpu_offline);
673 }
674
core_imc_counters_release(struct perf_event * event)675 static void core_imc_counters_release(struct perf_event *event)
676 {
677 int rc, core_id;
678 struct imc_pmu_ref *ref;
679
680 if (event->cpu < 0)
681 return;
682 /*
683 * See if we need to disable the IMC PMU.
684 * If no events are currently in use, then we have to take a
685 * mutex to ensure that we don't race with another task doing
686 * enable or disable the core counters.
687 */
688 core_id = event->cpu / threads_per_core;
689
690 /* Take the mutex lock and decrement the refernce count for this core */
691 ref = &core_imc_refc[core_id];
692 if (!ref)
693 return;
694
695 mutex_lock(&ref->lock);
696 if (ref->refc == 0) {
697 /*
698 * The scenario where this is true is, when perf session is
699 * started, followed by offlining of all cpus in a given core.
700 *
701 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
702 * function set the ref->count to zero, if the cpu which is
703 * about to offline is the last cpu in a given core and make
704 * an OPAL call to disable the engine in that core.
705 *
706 */
707 mutex_unlock(&ref->lock);
708 return;
709 }
710 ref->refc--;
711 if (ref->refc == 0) {
712 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
713 get_hard_smp_processor_id(event->cpu));
714 if (rc) {
715 mutex_unlock(&ref->lock);
716 pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
717 return;
718 }
719 } else if (ref->refc < 0) {
720 WARN(1, "core-imc: Invalid event reference count\n");
721 ref->refc = 0;
722 }
723 mutex_unlock(&ref->lock);
724 }
725
core_imc_event_init(struct perf_event * event)726 static int core_imc_event_init(struct perf_event *event)
727 {
728 int core_id, rc;
729 u64 config = event->attr.config;
730 struct imc_mem_info *pcmi;
731 struct imc_pmu *pmu;
732 struct imc_pmu_ref *ref;
733
734 if (event->attr.type != event->pmu->type)
735 return -ENOENT;
736
737 /* Sampling not supported */
738 if (event->hw.sample_period)
739 return -EINVAL;
740
741 /* unsupported modes and filters */
742 if (event->attr.exclude_user ||
743 event->attr.exclude_kernel ||
744 event->attr.exclude_hv ||
745 event->attr.exclude_idle ||
746 event->attr.exclude_host ||
747 event->attr.exclude_guest)
748 return -EINVAL;
749
750 if (event->cpu < 0)
751 return -EINVAL;
752
753 event->hw.idx = -1;
754 pmu = imc_event_to_pmu(event);
755
756 /* Sanity check for config (event offset) */
757 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
758 return -EINVAL;
759
760 if (!is_core_imc_mem_inited(event->cpu))
761 return -ENODEV;
762
763 core_id = event->cpu / threads_per_core;
764 pcmi = &core_imc_pmu->mem_info[core_id];
765 if ((!pcmi->vbase))
766 return -ENODEV;
767
768 /* Get the core_imc mutex for this core */
769 ref = &core_imc_refc[core_id];
770 if (!ref)
771 return -EINVAL;
772
773 /*
774 * Core pmu units are enabled only when it is used.
775 * See if this is triggered for the first time.
776 * If yes, take the mutex lock and enable the core counters.
777 * If not, just increment the count in core_imc_refc struct.
778 */
779 mutex_lock(&ref->lock);
780 if (ref->refc == 0) {
781 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
782 get_hard_smp_processor_id(event->cpu));
783 if (rc) {
784 mutex_unlock(&ref->lock);
785 pr_err("core-imc: Unable to start the counters for core %d\n",
786 core_id);
787 return rc;
788 }
789 }
790 ++ref->refc;
791 mutex_unlock(&ref->lock);
792
793 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
794 event->destroy = core_imc_counters_release;
795 return 0;
796 }
797
798 /*
799 * Allocates a page of memory for each of the online cpus, and write the
800 * physical base address of that page to the LDBAR for that cpu.
801 *
802 * LDBAR Register Layout:
803 *
804 * 0 4 8 12 16 20 24 28
805 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
806 * | | [ ] [ Counter Address [8:50]
807 * | * Mode |
808 * | * PB Scope
809 * * Enable/Disable
810 *
811 * 32 36 40 44 48 52 56 60
812 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
813 * Counter Address [8:50] ]
814 *
815 */
thread_imc_mem_alloc(int cpu_id,int size)816 static int thread_imc_mem_alloc(int cpu_id, int size)
817 {
818 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
819 int nid = cpu_to_node(cpu_id);
820
821 if (!local_mem) {
822 /*
823 * This case could happen only once at start, since we dont
824 * free the memory in cpu offline path.
825 */
826 local_mem = page_address(alloc_pages_node(nid,
827 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
828 __GFP_NOWARN, get_order(size)));
829 if (!local_mem)
830 return -ENOMEM;
831
832 per_cpu(thread_imc_mem, cpu_id) = local_mem;
833 }
834
835 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
836
837 mtspr(SPRN_LDBAR, ldbar_value);
838 return 0;
839 }
840
ppc_thread_imc_cpu_online(unsigned int cpu)841 static int ppc_thread_imc_cpu_online(unsigned int cpu)
842 {
843 return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
844 }
845
ppc_thread_imc_cpu_offline(unsigned int cpu)846 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
847 {
848 mtspr(SPRN_LDBAR, 0);
849 return 0;
850 }
851
thread_imc_cpu_init(void)852 static int thread_imc_cpu_init(void)
853 {
854 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
855 "perf/powerpc/imc_thread:online",
856 ppc_thread_imc_cpu_online,
857 ppc_thread_imc_cpu_offline);
858 }
859
thread_imc_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)860 void thread_imc_pmu_sched_task(struct perf_event_context *ctx,
861 bool sched_in)
862 {
863 int core_id;
864 struct imc_pmu_ref *ref;
865
866 if (!is_core_imc_mem_inited(smp_processor_id()))
867 return;
868
869 core_id = smp_processor_id() / threads_per_core;
870 /*
871 * imc pmus are enabled only when it is used.
872 * See if this is triggered for the first time.
873 * If yes, take the mutex lock and enable the counters.
874 * If not, just increment the count in ref count struct.
875 */
876 ref = &core_imc_refc[core_id];
877 if (!ref)
878 return;
879
880 if (sched_in) {
881 mutex_lock(&ref->lock);
882 if (ref->refc == 0) {
883 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
884 get_hard_smp_processor_id(smp_processor_id()))) {
885 mutex_unlock(&ref->lock);
886 pr_err("thread-imc: Unable to start the counter\
887 for core %d\n", core_id);
888 return;
889 }
890 }
891 ++ref->refc;
892 mutex_unlock(&ref->lock);
893 } else {
894 mutex_lock(&ref->lock);
895 ref->refc--;
896 if (ref->refc == 0) {
897 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
898 get_hard_smp_processor_id(smp_processor_id()))) {
899 mutex_unlock(&ref->lock);
900 pr_err("thread-imc: Unable to stop the counters\
901 for core %d\n", core_id);
902 return;
903 }
904 } else if (ref->refc < 0) {
905 ref->refc = 0;
906 }
907 mutex_unlock(&ref->lock);
908 }
909
910 return;
911 }
912
thread_imc_event_init(struct perf_event * event)913 static int thread_imc_event_init(struct perf_event *event)
914 {
915 u32 config = event->attr.config;
916 struct task_struct *target;
917 struct imc_pmu *pmu;
918
919 if (event->attr.type != event->pmu->type)
920 return -ENOENT;
921
922 /* Sampling not supported */
923 if (event->hw.sample_period)
924 return -EINVAL;
925
926 event->hw.idx = -1;
927 pmu = imc_event_to_pmu(event);
928
929 /* Sanity check for config offset */
930 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
931 return -EINVAL;
932
933 target = event->hw.target;
934 if (!target)
935 return -EINVAL;
936
937 event->pmu->task_ctx_nr = perf_sw_context;
938 return 0;
939 }
940
is_thread_imc_pmu(struct perf_event * event)941 static bool is_thread_imc_pmu(struct perf_event *event)
942 {
943 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
944 return true;
945
946 return false;
947 }
948
get_event_base_addr(struct perf_event * event)949 static u64 * get_event_base_addr(struct perf_event *event)
950 {
951 u64 addr;
952
953 if (is_thread_imc_pmu(event)) {
954 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
955 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
956 }
957
958 return (u64 *)event->hw.event_base;
959 }
960
thread_imc_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)961 static void thread_imc_pmu_start_txn(struct pmu *pmu,
962 unsigned int txn_flags)
963 {
964 if (txn_flags & ~PERF_PMU_TXN_ADD)
965 return;
966 perf_pmu_disable(pmu);
967 }
968
thread_imc_pmu_cancel_txn(struct pmu * pmu)969 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
970 {
971 perf_pmu_enable(pmu);
972 }
973
thread_imc_pmu_commit_txn(struct pmu * pmu)974 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
975 {
976 perf_pmu_enable(pmu);
977 return 0;
978 }
979
imc_read_counter(struct perf_event * event)980 static u64 imc_read_counter(struct perf_event *event)
981 {
982 u64 *addr, data;
983
984 /*
985 * In-Memory Collection (IMC) counters are free flowing counters.
986 * So we take a snapshot of the counter value on enable and save it
987 * to calculate the delta at later stage to present the event counter
988 * value.
989 */
990 addr = get_event_base_addr(event);
991 data = be64_to_cpu(READ_ONCE(*addr));
992 local64_set(&event->hw.prev_count, data);
993
994 return data;
995 }
996
imc_event_update(struct perf_event * event)997 static void imc_event_update(struct perf_event *event)
998 {
999 u64 counter_prev, counter_new, final_count;
1000
1001 counter_prev = local64_read(&event->hw.prev_count);
1002 counter_new = imc_read_counter(event);
1003 final_count = counter_new - counter_prev;
1004
1005 /* Update the delta to the event count */
1006 local64_add(final_count, &event->count);
1007 }
1008
imc_event_start(struct perf_event * event,int flags)1009 static void imc_event_start(struct perf_event *event, int flags)
1010 {
1011 /*
1012 * In Memory Counters are free flowing counters. HW or the microcode
1013 * keeps adding to the counter offset in memory. To get event
1014 * counter value, we snapshot the value here and we calculate
1015 * delta at later point.
1016 */
1017 imc_read_counter(event);
1018 }
1019
imc_event_stop(struct perf_event * event,int flags)1020 static void imc_event_stop(struct perf_event *event, int flags)
1021 {
1022 /*
1023 * Take a snapshot and calculate the delta and update
1024 * the event counter values.
1025 */
1026 imc_event_update(event);
1027 }
1028
imc_event_add(struct perf_event * event,int flags)1029 static int imc_event_add(struct perf_event *event, int flags)
1030 {
1031 if (flags & PERF_EF_START)
1032 imc_event_start(event, flags);
1033
1034 return 0;
1035 }
1036
thread_imc_event_add(struct perf_event * event,int flags)1037 static int thread_imc_event_add(struct perf_event *event, int flags)
1038 {
1039 if (flags & PERF_EF_START)
1040 imc_event_start(event, flags);
1041
1042 /* Enable the sched_task to start the engine */
1043 perf_sched_cb_inc(event->ctx->pmu);
1044 return 0;
1045 }
1046
thread_imc_event_del(struct perf_event * event,int flags)1047 static void thread_imc_event_del(struct perf_event *event, int flags)
1048 {
1049 /*
1050 * Take a snapshot and calculate the delta and update
1051 * the event counter values.
1052 */
1053 imc_event_update(event);
1054 perf_sched_cb_dec(event->ctx->pmu);
1055 }
1056
1057 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
update_pmu_ops(struct imc_pmu * pmu)1058 static int update_pmu_ops(struct imc_pmu *pmu)
1059 {
1060 pmu->pmu.task_ctx_nr = perf_invalid_context;
1061 pmu->pmu.add = imc_event_add;
1062 pmu->pmu.del = imc_event_stop;
1063 pmu->pmu.start = imc_event_start;
1064 pmu->pmu.stop = imc_event_stop;
1065 pmu->pmu.read = imc_event_update;
1066 pmu->pmu.attr_groups = pmu->attr_groups;
1067 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1068
1069 switch (pmu->domain) {
1070 case IMC_DOMAIN_NEST:
1071 pmu->pmu.event_init = nest_imc_event_init;
1072 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1073 break;
1074 case IMC_DOMAIN_CORE:
1075 pmu->pmu.event_init = core_imc_event_init;
1076 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1077 break;
1078 case IMC_DOMAIN_THREAD:
1079 pmu->pmu.event_init = thread_imc_event_init;
1080 pmu->pmu.sched_task = thread_imc_pmu_sched_task;
1081 pmu->pmu.add = thread_imc_event_add;
1082 pmu->pmu.del = thread_imc_event_del;
1083 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1084 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1085 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1086 break;
1087 default:
1088 break;
1089 }
1090
1091 return 0;
1092 }
1093
1094 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
init_nest_pmu_ref(void)1095 static int init_nest_pmu_ref(void)
1096 {
1097 int nid, i, cpu;
1098
1099 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1100 GFP_KERNEL);
1101
1102 if (!nest_imc_refc)
1103 return -ENOMEM;
1104
1105 i = 0;
1106 for_each_node(nid) {
1107 /*
1108 * Mutex lock to avoid races while tracking the number of
1109 * sessions using the chip's nest pmu units.
1110 */
1111 mutex_init(&nest_imc_refc[i].lock);
1112
1113 /*
1114 * Loop to init the "id" with the node_id. Variable "i" initialized to
1115 * 0 and will be used as index to the array. "i" will not go off the
1116 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1117 * nodes only.
1118 */
1119 nest_imc_refc[i++].id = nid;
1120 }
1121
1122 /*
1123 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1124 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1125 */
1126 for_each_possible_cpu(cpu) {
1127 nid = cpu_to_node(cpu);
1128 for (i = 0; i < num_possible_nodes(); i++) {
1129 if (nest_imc_refc[i].id == nid) {
1130 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1131 break;
1132 }
1133 }
1134 }
1135 return 0;
1136 }
1137
cleanup_all_core_imc_memory(void)1138 static void cleanup_all_core_imc_memory(void)
1139 {
1140 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1141 struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1142 int size = core_imc_pmu->counter_mem_size;
1143
1144 /* mem_info will never be NULL */
1145 for (i = 0; i < nr_cores; i++) {
1146 if (ptr[i].vbase)
1147 free_pages((u64)ptr->vbase, get_order(size));
1148 }
1149
1150 kfree(ptr);
1151 kfree(core_imc_refc);
1152 }
1153
thread_imc_ldbar_disable(void * dummy)1154 static void thread_imc_ldbar_disable(void *dummy)
1155 {
1156 /*
1157 * By Zeroing LDBAR, we disable thread-imc
1158 * updates.
1159 */
1160 mtspr(SPRN_LDBAR, 0);
1161 }
1162
thread_imc_disable(void)1163 void thread_imc_disable(void)
1164 {
1165 on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1166 }
1167
cleanup_all_thread_imc_memory(void)1168 static void cleanup_all_thread_imc_memory(void)
1169 {
1170 int i, order = get_order(thread_imc_mem_size);
1171
1172 for_each_online_cpu(i) {
1173 if (per_cpu(thread_imc_mem, i))
1174 free_pages((u64)per_cpu(thread_imc_mem, i), order);
1175
1176 }
1177 }
1178
1179 /*
1180 * Common function to unregister cpu hotplug callback and
1181 * free the memory.
1182 * TODO: Need to handle pmu unregistering, which will be
1183 * done in followup series.
1184 */
imc_common_cpuhp_mem_free(struct imc_pmu * pmu_ptr)1185 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1186 {
1187 if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1188 mutex_lock(&nest_init_lock);
1189 if (nest_pmus == 1) {
1190 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1191 kfree(nest_imc_refc);
1192 kfree(per_nest_pmu_arr);
1193 }
1194
1195 if (nest_pmus > 0)
1196 nest_pmus--;
1197 mutex_unlock(&nest_init_lock);
1198 }
1199
1200 /* Free core_imc memory */
1201 if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1202 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1203 cleanup_all_core_imc_memory();
1204 }
1205
1206 /* Free thread_imc memory */
1207 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1208 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1209 cleanup_all_thread_imc_memory();
1210 }
1211
1212 /* Only free the attr_groups which are dynamically allocated */
1213 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1214 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1215 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1216 kfree(pmu_ptr);
1217 return;
1218 }
1219
1220
1221 /*
1222 * imc_mem_init : Function to support memory allocation for core imc.
1223 */
imc_mem_init(struct imc_pmu * pmu_ptr,struct device_node * parent,int pmu_index)1224 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1225 int pmu_index)
1226 {
1227 const char *s;
1228 int nr_cores, cpu, res;
1229
1230 if (of_property_read_string(parent, "name", &s))
1231 return -ENODEV;
1232
1233 switch (pmu_ptr->domain) {
1234 case IMC_DOMAIN_NEST:
1235 /* Update the pmu name */
1236 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1237 if (!pmu_ptr->pmu.name)
1238 return -ENOMEM;
1239
1240 /* Needed for hotplug/migration */
1241 if (!per_nest_pmu_arr) {
1242 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1243 sizeof(struct imc_pmu *),
1244 GFP_KERNEL);
1245 if (!per_nest_pmu_arr)
1246 return -ENOMEM;
1247 }
1248 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1249 break;
1250 case IMC_DOMAIN_CORE:
1251 /* Update the pmu name */
1252 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1253 if (!pmu_ptr->pmu.name)
1254 return -ENOMEM;
1255
1256 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1257 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1258 GFP_KERNEL);
1259
1260 if (!pmu_ptr->mem_info)
1261 return -ENOMEM;
1262
1263 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1264 GFP_KERNEL);
1265
1266 if (!core_imc_refc)
1267 return -ENOMEM;
1268
1269 core_imc_pmu = pmu_ptr;
1270 break;
1271 case IMC_DOMAIN_THREAD:
1272 /* Update the pmu name */
1273 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1274 if (!pmu_ptr->pmu.name)
1275 return -ENOMEM;
1276
1277 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1278 for_each_online_cpu(cpu) {
1279 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1280 if (res)
1281 return res;
1282 }
1283
1284 thread_imc_pmu = pmu_ptr;
1285 break;
1286 default:
1287 return -EINVAL;
1288 }
1289
1290 return 0;
1291 }
1292
1293 /*
1294 * init_imc_pmu : Setup and register the IMC pmu device.
1295 *
1296 * @parent: Device tree unit node
1297 * @pmu_ptr: memory allocated for this pmu
1298 * @pmu_idx: Count of nest pmc registered
1299 *
1300 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1301 * Handles failure cases and accordingly frees memory.
1302 */
init_imc_pmu(struct device_node * parent,struct imc_pmu * pmu_ptr,int pmu_idx)1303 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1304 {
1305 int ret;
1306
1307 ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1308 if (ret)
1309 goto err_free;
1310
1311 switch (pmu_ptr->domain) {
1312 case IMC_DOMAIN_NEST:
1313 /*
1314 * Nest imc pmu need only one cpu per chip, we initialize the
1315 * cpumask for the first nest imc pmu and use the same for the
1316 * rest. To handle the cpuhotplug callback unregister, we track
1317 * the number of nest pmus in "nest_pmus".
1318 */
1319 mutex_lock(&nest_init_lock);
1320 if (nest_pmus == 0) {
1321 ret = init_nest_pmu_ref();
1322 if (ret) {
1323 mutex_unlock(&nest_init_lock);
1324 goto err_free;
1325 }
1326 /* Register for cpu hotplug notification. */
1327 ret = nest_pmu_cpumask_init();
1328 if (ret) {
1329 mutex_unlock(&nest_init_lock);
1330 kfree(nest_imc_refc);
1331 kfree(per_nest_pmu_arr);
1332 goto err_free;
1333 }
1334 }
1335 nest_pmus++;
1336 mutex_unlock(&nest_init_lock);
1337 break;
1338 case IMC_DOMAIN_CORE:
1339 ret = core_imc_pmu_cpumask_init();
1340 if (ret) {
1341 cleanup_all_core_imc_memory();
1342 return ret;
1343 }
1344
1345 break;
1346 case IMC_DOMAIN_THREAD:
1347 ret = thread_imc_cpu_init();
1348 if (ret) {
1349 cleanup_all_thread_imc_memory();
1350 return ret;
1351 }
1352
1353 break;
1354 default:
1355 return -1; /* Unknown domain */
1356 }
1357
1358 ret = update_events_in_group(parent, pmu_ptr);
1359 if (ret)
1360 goto err_free;
1361
1362 ret = update_pmu_ops(pmu_ptr);
1363 if (ret)
1364 goto err_free;
1365
1366 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1367 if (ret)
1368 goto err_free;
1369
1370 pr_info("%s performance monitor hardware support registered\n",
1371 pmu_ptr->pmu.name);
1372
1373 return 0;
1374
1375 err_free:
1376 imc_common_cpuhp_mem_free(pmu_ptr);
1377 return ret;
1378 }
1379