1 /*
2 * Freescale General-purpose Timers Module
3 *
4 * Copyright (c) Freescale Semiconductor, Inc. 2006.
5 * Shlomi Gridish <gridish@freescale.com>
6 * Jerry Huang <Chang-Ming.Huang@freescale.com>
7 * Copyright (c) MontaVista Software, Inc. 2008.
8 * Anton Vorontsov <avorontsov@ru.mvista.com>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 #include <linux/spinlock.h>
25 #include <linux/bitops.h>
26 #include <linux/slab.h>
27 #include <linux/export.h>
28 #include <asm/fsl_gtm.h>
29
30 #define GTCFR_STP(x) ((x) & 1 ? 1 << 5 : 1 << 1)
31 #define GTCFR_RST(x) ((x) & 1 ? 1 << 4 : 1 << 0)
32
33 #define GTMDR_ICLK_MASK (3 << 1)
34 #define GTMDR_ICLK_ICAS (0 << 1)
35 #define GTMDR_ICLK_ICLK (1 << 1)
36 #define GTMDR_ICLK_SLGO (2 << 1)
37 #define GTMDR_FRR (1 << 3)
38 #define GTMDR_ORI (1 << 4)
39 #define GTMDR_SPS(x) ((x) << 8)
40
41 struct gtm_timers_regs {
42 u8 gtcfr1; /* Timer 1, Timer 2 global config register */
43 u8 res0[0x3];
44 u8 gtcfr2; /* Timer 3, timer 4 global config register */
45 u8 res1[0xB];
46 __be16 gtmdr1; /* Timer 1 mode register */
47 __be16 gtmdr2; /* Timer 2 mode register */
48 __be16 gtrfr1; /* Timer 1 reference register */
49 __be16 gtrfr2; /* Timer 2 reference register */
50 __be16 gtcpr1; /* Timer 1 capture register */
51 __be16 gtcpr2; /* Timer 2 capture register */
52 __be16 gtcnr1; /* Timer 1 counter */
53 __be16 gtcnr2; /* Timer 2 counter */
54 __be16 gtmdr3; /* Timer 3 mode register */
55 __be16 gtmdr4; /* Timer 4 mode register */
56 __be16 gtrfr3; /* Timer 3 reference register */
57 __be16 gtrfr4; /* Timer 4 reference register */
58 __be16 gtcpr3; /* Timer 3 capture register */
59 __be16 gtcpr4; /* Timer 4 capture register */
60 __be16 gtcnr3; /* Timer 3 counter */
61 __be16 gtcnr4; /* Timer 4 counter */
62 __be16 gtevr1; /* Timer 1 event register */
63 __be16 gtevr2; /* Timer 2 event register */
64 __be16 gtevr3; /* Timer 3 event register */
65 __be16 gtevr4; /* Timer 4 event register */
66 __be16 gtpsr1; /* Timer 1 prescale register */
67 __be16 gtpsr2; /* Timer 2 prescale register */
68 __be16 gtpsr3; /* Timer 3 prescale register */
69 __be16 gtpsr4; /* Timer 4 prescale register */
70 u8 res2[0x40];
71 } __attribute__ ((packed));
72
73 struct gtm {
74 unsigned int clock;
75 struct gtm_timers_regs __iomem *regs;
76 struct gtm_timer timers[4];
77 spinlock_t lock;
78 struct list_head list_node;
79 };
80
81 static LIST_HEAD(gtms);
82
83 /**
84 * gtm_get_timer - request GTM timer to use it with the rest of GTM API
85 * Context: non-IRQ
86 *
87 * This function reserves GTM timer for later use. It returns gtm_timer
88 * structure to use with the rest of GTM API, you should use timer->irq
89 * to manage timer interrupt.
90 */
gtm_get_timer16(void)91 struct gtm_timer *gtm_get_timer16(void)
92 {
93 struct gtm *gtm = NULL;
94 int i;
95
96 list_for_each_entry(gtm, >ms, list_node) {
97 spin_lock_irq(>m->lock);
98
99 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
100 if (!gtm->timers[i].requested) {
101 gtm->timers[i].requested = true;
102 spin_unlock_irq(>m->lock);
103 return >m->timers[i];
104 }
105 }
106
107 spin_unlock_irq(>m->lock);
108 }
109
110 if (gtm)
111 return ERR_PTR(-EBUSY);
112 return ERR_PTR(-ENODEV);
113 }
114 EXPORT_SYMBOL(gtm_get_timer16);
115
116 /**
117 * gtm_get_specific_timer - request specific GTM timer
118 * @gtm: specific GTM, pass here GTM's device_node->data
119 * @timer: specific timer number, Timer1 is 0.
120 * Context: non-IRQ
121 *
122 * This function reserves GTM timer for later use. It returns gtm_timer
123 * structure to use with the rest of GTM API, you should use timer->irq
124 * to manage timer interrupt.
125 */
gtm_get_specific_timer16(struct gtm * gtm,unsigned int timer)126 struct gtm_timer *gtm_get_specific_timer16(struct gtm *gtm,
127 unsigned int timer)
128 {
129 struct gtm_timer *ret = ERR_PTR(-EBUSY);
130
131 if (timer > 3)
132 return ERR_PTR(-EINVAL);
133
134 spin_lock_irq(>m->lock);
135
136 if (gtm->timers[timer].requested)
137 goto out;
138
139 ret = >m->timers[timer];
140 ret->requested = true;
141
142 out:
143 spin_unlock_irq(>m->lock);
144 return ret;
145 }
146 EXPORT_SYMBOL(gtm_get_specific_timer16);
147
148 /**
149 * gtm_put_timer16 - release 16 bits GTM timer
150 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
151 * Context: any
152 *
153 * This function releases GTM timer so others may request it.
154 */
gtm_put_timer16(struct gtm_timer * tmr)155 void gtm_put_timer16(struct gtm_timer *tmr)
156 {
157 gtm_stop_timer16(tmr);
158
159 spin_lock_irq(&tmr->gtm->lock);
160 tmr->requested = false;
161 spin_unlock_irq(&tmr->gtm->lock);
162 }
163 EXPORT_SYMBOL(gtm_put_timer16);
164
165 /*
166 * This is back-end for the exported functions, it's used to reset single
167 * timer in reference mode.
168 */
gtm_set_ref_timer16(struct gtm_timer * tmr,int frequency,int reference_value,bool free_run)169 static int gtm_set_ref_timer16(struct gtm_timer *tmr, int frequency,
170 int reference_value, bool free_run)
171 {
172 struct gtm *gtm = tmr->gtm;
173 int num = tmr - >m->timers[0];
174 unsigned int prescaler;
175 u8 iclk = GTMDR_ICLK_ICLK;
176 u8 psr;
177 u8 sps;
178 unsigned long flags;
179 int max_prescaler = 256 * 256 * 16;
180
181 /* CPM2 doesn't have primary prescaler */
182 if (!tmr->gtpsr)
183 max_prescaler /= 256;
184
185 prescaler = gtm->clock / frequency;
186 /*
187 * We have two 8 bit prescalers -- primary and secondary (psr, sps),
188 * plus "slow go" mode (clk / 16). So, total prescale value is
189 * 16 * (psr + 1) * (sps + 1). Though, for CPM2 GTMs we losing psr.
190 */
191 if (prescaler > max_prescaler)
192 return -EINVAL;
193
194 if (prescaler > max_prescaler / 16) {
195 iclk = GTMDR_ICLK_SLGO;
196 prescaler /= 16;
197 }
198
199 if (prescaler <= 256) {
200 psr = 0;
201 sps = prescaler - 1;
202 } else {
203 psr = 256 - 1;
204 sps = prescaler / 256 - 1;
205 }
206
207 spin_lock_irqsave(>m->lock, flags);
208
209 /*
210 * Properly reset timers: stop, reset, set up prescalers, reference
211 * value and clear event register.
212 */
213 clrsetbits_8(tmr->gtcfr, ~(GTCFR_STP(num) | GTCFR_RST(num)),
214 GTCFR_STP(num) | GTCFR_RST(num));
215
216 setbits8(tmr->gtcfr, GTCFR_STP(num));
217
218 if (tmr->gtpsr)
219 out_be16(tmr->gtpsr, psr);
220 clrsetbits_be16(tmr->gtmdr, 0xFFFF, iclk | GTMDR_SPS(sps) |
221 GTMDR_ORI | (free_run ? GTMDR_FRR : 0));
222 out_be16(tmr->gtcnr, 0);
223 out_be16(tmr->gtrfr, reference_value);
224 out_be16(tmr->gtevr, 0xFFFF);
225
226 /* Let it be. */
227 clrbits8(tmr->gtcfr, GTCFR_STP(num));
228
229 spin_unlock_irqrestore(>m->lock, flags);
230
231 return 0;
232 }
233
234 /**
235 * gtm_set_timer16 - (re)set 16 bit timer with arbitrary precision
236 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
237 * @usec: timer interval in microseconds
238 * @reload: if set, the timer will reset upon expiry rather than
239 * continue running free.
240 * Context: any
241 *
242 * This function (re)sets the GTM timer so that it counts up to the requested
243 * interval value, and fires the interrupt when the value is reached. This
244 * function will reduce the precision of the timer as needed in order for the
245 * requested timeout to fit in a 16-bit register.
246 */
gtm_set_timer16(struct gtm_timer * tmr,unsigned long usec,bool reload)247 int gtm_set_timer16(struct gtm_timer *tmr, unsigned long usec, bool reload)
248 {
249 /* quite obvious, frequency which is enough for µSec precision */
250 int freq = 1000000;
251 unsigned int bit;
252
253 bit = fls_long(usec);
254 if (bit > 15) {
255 freq >>= bit - 15;
256 usec >>= bit - 15;
257 }
258
259 if (!freq)
260 return -EINVAL;
261
262 return gtm_set_ref_timer16(tmr, freq, usec, reload);
263 }
264 EXPORT_SYMBOL(gtm_set_timer16);
265
266 /**
267 * gtm_set_exact_utimer16 - (re)set 16 bits timer
268 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
269 * @usec: timer interval in microseconds
270 * @reload: if set, the timer will reset upon expiry rather than
271 * continue running free.
272 * Context: any
273 *
274 * This function (re)sets GTM timer so that it counts up to the requested
275 * interval value, and fires the interrupt when the value is reached. If reload
276 * flag was set, timer will also reset itself upon reference value, otherwise
277 * it continues to increment.
278 *
279 * The _exact_ bit in the function name states that this function will not
280 * crop precision of the "usec" argument, thus usec is limited to 16 bits
281 * (single timer width).
282 */
gtm_set_exact_timer16(struct gtm_timer * tmr,u16 usec,bool reload)283 int gtm_set_exact_timer16(struct gtm_timer *tmr, u16 usec, bool reload)
284 {
285 /* quite obvious, frequency which is enough for µSec precision */
286 const int freq = 1000000;
287
288 /*
289 * We can lower the frequency (and probably power consumption) by
290 * dividing both frequency and usec by 2 until there is no remainder.
291 * But we won't bother with this unless savings are measured, so just
292 * run the timer as is.
293 */
294
295 return gtm_set_ref_timer16(tmr, freq, usec, reload);
296 }
297 EXPORT_SYMBOL(gtm_set_exact_timer16);
298
299 /**
300 * gtm_stop_timer16 - stop single timer
301 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
302 * Context: any
303 *
304 * This function simply stops the GTM timer.
305 */
gtm_stop_timer16(struct gtm_timer * tmr)306 void gtm_stop_timer16(struct gtm_timer *tmr)
307 {
308 struct gtm *gtm = tmr->gtm;
309 int num = tmr - >m->timers[0];
310 unsigned long flags;
311
312 spin_lock_irqsave(>m->lock, flags);
313
314 setbits8(tmr->gtcfr, GTCFR_STP(num));
315 out_be16(tmr->gtevr, 0xFFFF);
316
317 spin_unlock_irqrestore(>m->lock, flags);
318 }
319 EXPORT_SYMBOL(gtm_stop_timer16);
320
321 /**
322 * gtm_ack_timer16 - acknowledge timer event (free-run timers only)
323 * @tmr: pointer to the gtm_timer structure obtained from gtm_get_timer
324 * @events: events mask to ack
325 * Context: any
326 *
327 * Thus function used to acknowledge timer interrupt event, use it inside the
328 * interrupt handler.
329 */
gtm_ack_timer16(struct gtm_timer * tmr,u16 events)330 void gtm_ack_timer16(struct gtm_timer *tmr, u16 events)
331 {
332 out_be16(tmr->gtevr, events);
333 }
334 EXPORT_SYMBOL(gtm_ack_timer16);
335
gtm_set_shortcuts(struct device_node * np,struct gtm_timer * timers,struct gtm_timers_regs __iomem * regs)336 static void __init gtm_set_shortcuts(struct device_node *np,
337 struct gtm_timer *timers,
338 struct gtm_timers_regs __iomem *regs)
339 {
340 /*
341 * Yeah, I don't like this either, but timers' registers a bit messed,
342 * so we have to provide shortcuts to write timer independent code.
343 * Alternative option is to create gt*() accessors, but that will be
344 * even uglier and cryptic.
345 */
346 timers[0].gtcfr = ®s->gtcfr1;
347 timers[0].gtmdr = ®s->gtmdr1;
348 timers[0].gtcnr = ®s->gtcnr1;
349 timers[0].gtrfr = ®s->gtrfr1;
350 timers[0].gtevr = ®s->gtevr1;
351
352 timers[1].gtcfr = ®s->gtcfr1;
353 timers[1].gtmdr = ®s->gtmdr2;
354 timers[1].gtcnr = ®s->gtcnr2;
355 timers[1].gtrfr = ®s->gtrfr2;
356 timers[1].gtevr = ®s->gtevr2;
357
358 timers[2].gtcfr = ®s->gtcfr2;
359 timers[2].gtmdr = ®s->gtmdr3;
360 timers[2].gtcnr = ®s->gtcnr3;
361 timers[2].gtrfr = ®s->gtrfr3;
362 timers[2].gtevr = ®s->gtevr3;
363
364 timers[3].gtcfr = ®s->gtcfr2;
365 timers[3].gtmdr = ®s->gtmdr4;
366 timers[3].gtcnr = ®s->gtcnr4;
367 timers[3].gtrfr = ®s->gtrfr4;
368 timers[3].gtevr = ®s->gtevr4;
369
370 /* CPM2 doesn't have primary prescaler */
371 if (!of_device_is_compatible(np, "fsl,cpm2-gtm")) {
372 timers[0].gtpsr = ®s->gtpsr1;
373 timers[1].gtpsr = ®s->gtpsr2;
374 timers[2].gtpsr = ®s->gtpsr3;
375 timers[3].gtpsr = ®s->gtpsr4;
376 }
377 }
378
fsl_gtm_init(void)379 static int __init fsl_gtm_init(void)
380 {
381 struct device_node *np;
382
383 for_each_compatible_node(np, NULL, "fsl,gtm") {
384 int i;
385 struct gtm *gtm;
386 const u32 *clock;
387 int size;
388
389 gtm = kzalloc(sizeof(*gtm), GFP_KERNEL);
390 if (!gtm) {
391 pr_err("%pOF: unable to allocate memory\n",
392 np);
393 continue;
394 }
395
396 spin_lock_init(>m->lock);
397
398 clock = of_get_property(np, "clock-frequency", &size);
399 if (!clock || size != sizeof(*clock)) {
400 pr_err("%pOF: no clock-frequency\n", np);
401 goto err;
402 }
403 gtm->clock = *clock;
404
405 for (i = 0; i < ARRAY_SIZE(gtm->timers); i++) {
406 unsigned int irq;
407
408 irq = irq_of_parse_and_map(np, i);
409 if (!irq) {
410 pr_err("%pOF: not enough interrupts specified\n",
411 np);
412 goto err;
413 }
414 gtm->timers[i].irq = irq;
415 gtm->timers[i].gtm = gtm;
416 }
417
418 gtm->regs = of_iomap(np, 0);
419 if (!gtm->regs) {
420 pr_err("%pOF: unable to iomap registers\n",
421 np);
422 goto err;
423 }
424
425 gtm_set_shortcuts(np, gtm->timers, gtm->regs);
426 list_add(>m->list_node, >ms);
427
428 /* We don't want to lose the node and its ->data */
429 np->data = gtm;
430 of_node_get(np);
431
432 continue;
433 err:
434 kfree(gtm);
435 }
436 return 0;
437 }
438 arch_initcall(fsl_gtm_init);
439