• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  IBM System z Huge TLB Page Support for Kernel.
4  *
5  *    Copyright IBM Corp. 2007,2020
6  *    Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
7  */
8 
9 #define KMSG_COMPONENT "hugetlb"
10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11 
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/sched/mm.h>
16 #include <linux/security.h>
17 
18 /*
19  * If the bit selected by single-bit bitmask "a" is set within "x", move
20  * it to the position indicated by single-bit bitmask "b".
21  */
22 #define move_set_bit(x, a, b)	(((x) & (a)) >> ilog2(a) << ilog2(b))
23 
__pte_to_rste(pte_t pte)24 static inline unsigned long __pte_to_rste(pte_t pte)
25 {
26 	unsigned long rste;
27 
28 	/*
29 	 * Convert encoding		  pte bits	pmd / pud bits
30 	 *				lIR.uswrdy.p	dy..R...I...wr
31 	 * empty			010.000000.0 -> 00..0...1...00
32 	 * prot-none, clean, old	111.000000.1 -> 00..1...1...00
33 	 * prot-none, clean, young	111.000001.1 -> 01..1...1...00
34 	 * prot-none, dirty, old	111.000010.1 -> 10..1...1...00
35 	 * prot-none, dirty, young	111.000011.1 -> 11..1...1...00
36 	 * read-only, clean, old	111.000100.1 -> 00..1...1...01
37 	 * read-only, clean, young	101.000101.1 -> 01..1...0...01
38 	 * read-only, dirty, old	111.000110.1 -> 10..1...1...01
39 	 * read-only, dirty, young	101.000111.1 -> 11..1...0...01
40 	 * read-write, clean, old	111.001100.1 -> 00..1...1...11
41 	 * read-write, clean, young	101.001101.1 -> 01..1...0...11
42 	 * read-write, dirty, old	110.001110.1 -> 10..0...1...11
43 	 * read-write, dirty, young	100.001111.1 -> 11..0...0...11
44 	 * HW-bits: R read-only, I invalid
45 	 * SW-bits: p present, y young, d dirty, r read, w write, s special,
46 	 *	    u unused, l large
47 	 */
48 	if (pte_present(pte)) {
49 		rste = pte_val(pte) & PAGE_MASK;
50 		rste |= move_set_bit(pte_val(pte), _PAGE_READ,
51 				     _SEGMENT_ENTRY_READ);
52 		rste |= move_set_bit(pte_val(pte), _PAGE_WRITE,
53 				     _SEGMENT_ENTRY_WRITE);
54 		rste |= move_set_bit(pte_val(pte), _PAGE_INVALID,
55 				     _SEGMENT_ENTRY_INVALID);
56 		rste |= move_set_bit(pte_val(pte), _PAGE_PROTECT,
57 				     _SEGMENT_ENTRY_PROTECT);
58 		rste |= move_set_bit(pte_val(pte), _PAGE_DIRTY,
59 				     _SEGMENT_ENTRY_DIRTY);
60 		rste |= move_set_bit(pte_val(pte), _PAGE_YOUNG,
61 				     _SEGMENT_ENTRY_YOUNG);
62 #ifdef CONFIG_MEM_SOFT_DIRTY
63 		rste |= move_set_bit(pte_val(pte), _PAGE_SOFT_DIRTY,
64 				     _SEGMENT_ENTRY_SOFT_DIRTY);
65 #endif
66 		rste |= move_set_bit(pte_val(pte), _PAGE_NOEXEC,
67 				     _SEGMENT_ENTRY_NOEXEC);
68 	} else
69 		rste = _SEGMENT_ENTRY_EMPTY;
70 	return rste;
71 }
72 
__rste_to_pte(unsigned long rste)73 static inline pte_t __rste_to_pte(unsigned long rste)
74 {
75 	int present;
76 	pte_t pte;
77 
78 	if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
79 		present = pud_present(__pud(rste));
80 	else
81 		present = pmd_present(__pmd(rste));
82 
83 	/*
84 	 * Convert encoding		pmd / pud bits	    pte bits
85 	 *				dy..R...I...wr	  lIR.uswrdy.p
86 	 * empty			00..0...1...00 -> 010.000000.0
87 	 * prot-none, clean, old	00..1...1...00 -> 111.000000.1
88 	 * prot-none, clean, young	01..1...1...00 -> 111.000001.1
89 	 * prot-none, dirty, old	10..1...1...00 -> 111.000010.1
90 	 * prot-none, dirty, young	11..1...1...00 -> 111.000011.1
91 	 * read-only, clean, old	00..1...1...01 -> 111.000100.1
92 	 * read-only, clean, young	01..1...0...01 -> 101.000101.1
93 	 * read-only, dirty, old	10..1...1...01 -> 111.000110.1
94 	 * read-only, dirty, young	11..1...0...01 -> 101.000111.1
95 	 * read-write, clean, old	00..1...1...11 -> 111.001100.1
96 	 * read-write, clean, young	01..1...0...11 -> 101.001101.1
97 	 * read-write, dirty, old	10..0...1...11 -> 110.001110.1
98 	 * read-write, dirty, young	11..0...0...11 -> 100.001111.1
99 	 * HW-bits: R read-only, I invalid
100 	 * SW-bits: p present, y young, d dirty, r read, w write, s special,
101 	 *	    u unused, l large
102 	 */
103 	if (present) {
104 		pte_val(pte) = rste & _SEGMENT_ENTRY_ORIGIN_LARGE;
105 		pte_val(pte) |= _PAGE_LARGE | _PAGE_PRESENT;
106 		pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_READ,
107 					     _PAGE_READ);
108 		pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_WRITE,
109 					     _PAGE_WRITE);
110 		pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_INVALID,
111 					     _PAGE_INVALID);
112 		pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_PROTECT,
113 					     _PAGE_PROTECT);
114 		pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_DIRTY,
115 					     _PAGE_DIRTY);
116 		pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_YOUNG,
117 					     _PAGE_YOUNG);
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119 		pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_SOFT_DIRTY,
120 					     _PAGE_DIRTY);
121 #endif
122 		pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_NOEXEC,
123 					     _PAGE_NOEXEC);
124 	} else
125 		pte_val(pte) = _PAGE_INVALID;
126 	return pte;
127 }
128 
set_huge_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)129 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
130 		     pte_t *ptep, pte_t pte)
131 {
132 	unsigned long rste;
133 
134 	rste = __pte_to_rste(pte);
135 	if (!MACHINE_HAS_NX)
136 		rste &= ~_SEGMENT_ENTRY_NOEXEC;
137 
138 	/* Set correct table type for 2G hugepages */
139 	if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
140 		rste |= _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE;
141 	else
142 		rste |= _SEGMENT_ENTRY_LARGE;
143 	pte_val(*ptep) = rste;
144 }
145 
huge_ptep_get(pte_t * ptep)146 pte_t huge_ptep_get(pte_t *ptep)
147 {
148 	return __rste_to_pte(pte_val(*ptep));
149 }
150 
huge_ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)151 pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
152 			      unsigned long addr, pte_t *ptep)
153 {
154 	pte_t pte = huge_ptep_get(ptep);
155 	pmd_t *pmdp = (pmd_t *) ptep;
156 	pud_t *pudp = (pud_t *) ptep;
157 
158 	if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
159 		pudp_xchg_direct(mm, addr, pudp, __pud(_REGION3_ENTRY_EMPTY));
160 	else
161 		pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
162 	return pte;
163 }
164 
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)165 pte_t *huge_pte_alloc(struct mm_struct *mm,
166 			unsigned long addr, unsigned long sz)
167 {
168 	pgd_t *pgdp;
169 	p4d_t *p4dp;
170 	pud_t *pudp;
171 	pmd_t *pmdp = NULL;
172 
173 	pgdp = pgd_offset(mm, addr);
174 	p4dp = p4d_alloc(mm, pgdp, addr);
175 	if (p4dp) {
176 		pudp = pud_alloc(mm, p4dp, addr);
177 		if (pudp) {
178 			if (sz == PUD_SIZE)
179 				return (pte_t *) pudp;
180 			else if (sz == PMD_SIZE)
181 				pmdp = pmd_alloc(mm, pudp, addr);
182 		}
183 	}
184 	return (pte_t *) pmdp;
185 }
186 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)187 pte_t *huge_pte_offset(struct mm_struct *mm,
188 		       unsigned long addr, unsigned long sz)
189 {
190 	pgd_t *pgdp;
191 	p4d_t *p4dp;
192 	pud_t *pudp;
193 	pmd_t *pmdp = NULL;
194 
195 	pgdp = pgd_offset(mm, addr);
196 	if (pgd_present(*pgdp)) {
197 		p4dp = p4d_offset(pgdp, addr);
198 		if (p4d_present(*p4dp)) {
199 			pudp = pud_offset(p4dp, addr);
200 			if (pud_present(*pudp)) {
201 				if (pud_large(*pudp))
202 					return (pte_t *) pudp;
203 				pmdp = pmd_offset(pudp, addr);
204 			}
205 		}
206 	}
207 	return (pte_t *) pmdp;
208 }
209 
pmd_huge(pmd_t pmd)210 int pmd_huge(pmd_t pmd)
211 {
212 	return pmd_large(pmd);
213 }
214 
pud_huge(pud_t pud)215 int pud_huge(pud_t pud)
216 {
217 	return pud_large(pud);
218 }
219 
220 struct page *
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)221 follow_huge_pud(struct mm_struct *mm, unsigned long address,
222 		pud_t *pud, int flags)
223 {
224 	if (flags & FOLL_GET)
225 		return NULL;
226 
227 	return pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
228 }
229 
setup_hugepagesz(char * opt)230 static __init int setup_hugepagesz(char *opt)
231 {
232 	unsigned long size;
233 	char *string = opt;
234 
235 	size = memparse(opt, &opt);
236 	if (MACHINE_HAS_EDAT1 && size == PMD_SIZE) {
237 		hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
238 	} else if (MACHINE_HAS_EDAT2 && size == PUD_SIZE) {
239 		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
240 	} else {
241 		hugetlb_bad_size();
242 		pr_err("hugepagesz= specifies an unsupported page size %s\n",
243 			string);
244 		return 0;
245 	}
246 	return 1;
247 }
248 __setup("hugepagesz=", setup_hugepagesz);
249 
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)250 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
251 		unsigned long addr, unsigned long len,
252 		unsigned long pgoff, unsigned long flags)
253 {
254 	struct hstate *h = hstate_file(file);
255 	struct vm_unmapped_area_info info;
256 
257 	info.flags = 0;
258 	info.length = len;
259 	info.low_limit = current->mm->mmap_base;
260 	info.high_limit = TASK_SIZE;
261 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
262 	info.align_offset = 0;
263 	return vm_unmapped_area(&info);
264 }
265 
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr0,unsigned long len,unsigned long pgoff,unsigned long flags)266 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
267 		unsigned long addr0, unsigned long len,
268 		unsigned long pgoff, unsigned long flags)
269 {
270 	struct hstate *h = hstate_file(file);
271 	struct vm_unmapped_area_info info;
272 	unsigned long addr;
273 
274 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
275 	info.length = len;
276 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
277 	info.high_limit = current->mm->mmap_base;
278 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
279 	info.align_offset = 0;
280 	addr = vm_unmapped_area(&info);
281 
282 	/*
283 	 * A failed mmap() very likely causes application failure,
284 	 * so fall back to the bottom-up function here. This scenario
285 	 * can happen with large stack limits and large mmap()
286 	 * allocations.
287 	 */
288 	if (addr & ~PAGE_MASK) {
289 		VM_BUG_ON(addr != -ENOMEM);
290 		info.flags = 0;
291 		info.low_limit = TASK_UNMAPPED_BASE;
292 		info.high_limit = TASK_SIZE;
293 		addr = vm_unmapped_area(&info);
294 	}
295 
296 	return addr;
297 }
298 
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)299 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
300 		unsigned long len, unsigned long pgoff, unsigned long flags)
301 {
302 	struct hstate *h = hstate_file(file);
303 	struct mm_struct *mm = current->mm;
304 	struct vm_area_struct *vma;
305 	int rc;
306 
307 	if (len & ~huge_page_mask(h))
308 		return -EINVAL;
309 	if (len > TASK_SIZE - mmap_min_addr)
310 		return -ENOMEM;
311 
312 	if (flags & MAP_FIXED) {
313 		if (prepare_hugepage_range(file, addr, len))
314 			return -EINVAL;
315 		goto check_asce_limit;
316 	}
317 
318 	if (addr) {
319 		addr = ALIGN(addr, huge_page_size(h));
320 		vma = find_vma(mm, addr);
321 		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
322 		    (!vma || addr + len <= vm_start_gap(vma)))
323 			goto check_asce_limit;
324 	}
325 
326 	if (mm->get_unmapped_area == arch_get_unmapped_area)
327 		addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
328 				pgoff, flags);
329 	else
330 		addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
331 				pgoff, flags);
332 	if (addr & ~PAGE_MASK)
333 		return addr;
334 
335 check_asce_limit:
336 	if (addr + len > current->mm->context.asce_limit &&
337 	    addr + len <= TASK_SIZE) {
338 		rc = crst_table_upgrade(mm, addr + len);
339 		if (rc)
340 			return (unsigned long) rc;
341 	}
342 	return addr;
343 }
344