1 // SPDX-License-Identifier: GPL-2.0
2 /* arch/sparc64/kernel/process.c
3 *
4 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9 /*
10 * This file handles the architecture-dependent parts of process handling..
11 */
12
13 #include <stdarg.h>
14
15 #include <linux/errno.h>
16 #include <linux/export.h>
17 #include <linux/sched.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/fs.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/delay.h>
30 #include <linux/compat.h>
31 #include <linux/tick.h>
32 #include <linux/init.h>
33 #include <linux/cpu.h>
34 #include <linux/perf_event.h>
35 #include <linux/elfcore.h>
36 #include <linux/sysrq.h>
37 #include <linux/nmi.h>
38 #include <linux/context_tracking.h>
39 #include <linux/signal.h>
40
41 #include <linux/uaccess.h>
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46 #include <asm/pstate.h>
47 #include <asm/elf.h>
48 #include <asm/fpumacro.h>
49 #include <asm/head.h>
50 #include <asm/cpudata.h>
51 #include <asm/mmu_context.h>
52 #include <asm/unistd.h>
53 #include <asm/hypervisor.h>
54 #include <asm/syscalls.h>
55 #include <asm/irq_regs.h>
56 #include <asm/smp.h>
57 #include <asm/pcr.h>
58
59 #include "kstack.h"
60
61 /* Idle loop support on sparc64. */
arch_cpu_idle(void)62 void arch_cpu_idle(void)
63 {
64 if (tlb_type != hypervisor) {
65 touch_nmi_watchdog();
66 local_irq_enable();
67 } else {
68 unsigned long pstate;
69
70 local_irq_enable();
71
72 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
73 * the cpu sleep hypervisor call.
74 */
75 __asm__ __volatile__(
76 "rdpr %%pstate, %0\n\t"
77 "andn %0, %1, %0\n\t"
78 "wrpr %0, %%g0, %%pstate"
79 : "=&r" (pstate)
80 : "i" (PSTATE_IE));
81
82 if (!need_resched() && !cpu_is_offline(smp_processor_id())) {
83 sun4v_cpu_yield();
84 /* If resumed by cpu_poke then we need to explicitly
85 * call scheduler_ipi().
86 */
87 scheduler_poke();
88 }
89
90 /* Re-enable interrupts. */
91 __asm__ __volatile__(
92 "rdpr %%pstate, %0\n\t"
93 "or %0, %1, %0\n\t"
94 "wrpr %0, %%g0, %%pstate"
95 : "=&r" (pstate)
96 : "i" (PSTATE_IE));
97 }
98 }
99
100 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)101 void arch_cpu_idle_dead(void)
102 {
103 sched_preempt_enable_no_resched();
104 cpu_play_dead();
105 }
106 #endif
107
108 #ifdef CONFIG_COMPAT
show_regwindow32(struct pt_regs * regs)109 static void show_regwindow32(struct pt_regs *regs)
110 {
111 struct reg_window32 __user *rw;
112 struct reg_window32 r_w;
113 mm_segment_t old_fs;
114
115 __asm__ __volatile__ ("flushw");
116 rw = compat_ptr((unsigned int)regs->u_regs[14]);
117 old_fs = get_fs();
118 set_fs (USER_DS);
119 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
120 set_fs (old_fs);
121 return;
122 }
123
124 set_fs (old_fs);
125 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
126 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
127 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
128 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
129 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
130 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
131 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
132 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
133 }
134 #else
135 #define show_regwindow32(regs) do { } while (0)
136 #endif
137
show_regwindow(struct pt_regs * regs)138 static void show_regwindow(struct pt_regs *regs)
139 {
140 struct reg_window __user *rw;
141 struct reg_window *rwk;
142 struct reg_window r_w;
143 mm_segment_t old_fs;
144
145 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
146 __asm__ __volatile__ ("flushw");
147 rw = (struct reg_window __user *)
148 (regs->u_regs[14] + STACK_BIAS);
149 rwk = (struct reg_window *)
150 (regs->u_regs[14] + STACK_BIAS);
151 if (!(regs->tstate & TSTATE_PRIV)) {
152 old_fs = get_fs();
153 set_fs (USER_DS);
154 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
155 set_fs (old_fs);
156 return;
157 }
158 rwk = &r_w;
159 set_fs (old_fs);
160 }
161 } else {
162 show_regwindow32(regs);
163 return;
164 }
165 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
166 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
167 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
168 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
169 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
170 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
171 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
172 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
173 if (regs->tstate & TSTATE_PRIV)
174 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
175 }
176
show_regs(struct pt_regs * regs)177 void show_regs(struct pt_regs *regs)
178 {
179 show_regs_print_info(KERN_DEFAULT);
180
181 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
182 regs->tpc, regs->tnpc, regs->y, print_tainted());
183 printk("TPC: <%pS>\n", (void *) regs->tpc);
184 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
185 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
186 regs->u_regs[3]);
187 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
188 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
189 regs->u_regs[7]);
190 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
191 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
192 regs->u_regs[11]);
193 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
194 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
195 regs->u_regs[15]);
196 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
197 show_regwindow(regs);
198 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
199 }
200
201 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
202 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
203
__global_reg_self(struct thread_info * tp,struct pt_regs * regs,int this_cpu)204 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
205 int this_cpu)
206 {
207 struct global_reg_snapshot *rp;
208
209 flushw_all();
210
211 rp = &global_cpu_snapshot[this_cpu].reg;
212
213 rp->tstate = regs->tstate;
214 rp->tpc = regs->tpc;
215 rp->tnpc = regs->tnpc;
216 rp->o7 = regs->u_regs[UREG_I7];
217
218 if (regs->tstate & TSTATE_PRIV) {
219 struct reg_window *rw;
220
221 rw = (struct reg_window *)
222 (regs->u_regs[UREG_FP] + STACK_BIAS);
223 if (kstack_valid(tp, (unsigned long) rw)) {
224 rp->i7 = rw->ins[7];
225 rw = (struct reg_window *)
226 (rw->ins[6] + STACK_BIAS);
227 if (kstack_valid(tp, (unsigned long) rw))
228 rp->rpc = rw->ins[7];
229 }
230 } else {
231 rp->i7 = 0;
232 rp->rpc = 0;
233 }
234 rp->thread = tp;
235 }
236
237 /* In order to avoid hangs we do not try to synchronize with the
238 * global register dump client cpus. The last store they make is to
239 * the thread pointer, so do a short poll waiting for that to become
240 * non-NULL.
241 */
__global_reg_poll(struct global_reg_snapshot * gp)242 static void __global_reg_poll(struct global_reg_snapshot *gp)
243 {
244 int limit = 0;
245
246 while (!gp->thread && ++limit < 100) {
247 barrier();
248 udelay(1);
249 }
250 }
251
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)252 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
253 {
254 struct thread_info *tp = current_thread_info();
255 struct pt_regs *regs = get_irq_regs();
256 unsigned long flags;
257 int this_cpu, cpu;
258
259 if (!regs)
260 regs = tp->kregs;
261
262 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
263
264 this_cpu = raw_smp_processor_id();
265
266 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
267
268 if (cpumask_test_cpu(this_cpu, mask) && !exclude_self)
269 __global_reg_self(tp, regs, this_cpu);
270
271 smp_fetch_global_regs();
272
273 for_each_cpu(cpu, mask) {
274 struct global_reg_snapshot *gp;
275
276 if (exclude_self && cpu == this_cpu)
277 continue;
278
279 gp = &global_cpu_snapshot[cpu].reg;
280
281 __global_reg_poll(gp);
282
283 tp = gp->thread;
284 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
285 (cpu == this_cpu ? '*' : ' '), cpu,
286 gp->tstate, gp->tpc, gp->tnpc,
287 ((tp && tp->task) ? tp->task->comm : "NULL"),
288 ((tp && tp->task) ? tp->task->pid : -1));
289
290 if (gp->tstate & TSTATE_PRIV) {
291 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
292 (void *) gp->tpc,
293 (void *) gp->o7,
294 (void *) gp->i7,
295 (void *) gp->rpc);
296 } else {
297 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
298 gp->tpc, gp->o7, gp->i7, gp->rpc);
299 }
300
301 touch_nmi_watchdog();
302 }
303
304 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
305
306 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
307 }
308
309 #ifdef CONFIG_MAGIC_SYSRQ
310
sysrq_handle_globreg(int key)311 static void sysrq_handle_globreg(int key)
312 {
313 trigger_all_cpu_backtrace();
314 }
315
316 static struct sysrq_key_op sparc_globalreg_op = {
317 .handler = sysrq_handle_globreg,
318 .help_msg = "global-regs(y)",
319 .action_msg = "Show Global CPU Regs",
320 };
321
__global_pmu_self(int this_cpu)322 static void __global_pmu_self(int this_cpu)
323 {
324 struct global_pmu_snapshot *pp;
325 int i, num;
326
327 if (!pcr_ops)
328 return;
329
330 pp = &global_cpu_snapshot[this_cpu].pmu;
331
332 num = 1;
333 if (tlb_type == hypervisor &&
334 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
335 num = 4;
336
337 for (i = 0; i < num; i++) {
338 pp->pcr[i] = pcr_ops->read_pcr(i);
339 pp->pic[i] = pcr_ops->read_pic(i);
340 }
341 }
342
__global_pmu_poll(struct global_pmu_snapshot * pp)343 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
344 {
345 int limit = 0;
346
347 while (!pp->pcr[0] && ++limit < 100) {
348 barrier();
349 udelay(1);
350 }
351 }
352
pmu_snapshot_all_cpus(void)353 static void pmu_snapshot_all_cpus(void)
354 {
355 unsigned long flags;
356 int this_cpu, cpu;
357
358 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
359
360 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
361
362 this_cpu = raw_smp_processor_id();
363
364 __global_pmu_self(this_cpu);
365
366 smp_fetch_global_pmu();
367
368 for_each_online_cpu(cpu) {
369 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
370
371 __global_pmu_poll(pp);
372
373 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
374 (cpu == this_cpu ? '*' : ' '), cpu,
375 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
376 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
377
378 touch_nmi_watchdog();
379 }
380
381 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
382
383 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
384 }
385
sysrq_handle_globpmu(int key)386 static void sysrq_handle_globpmu(int key)
387 {
388 pmu_snapshot_all_cpus();
389 }
390
391 static struct sysrq_key_op sparc_globalpmu_op = {
392 .handler = sysrq_handle_globpmu,
393 .help_msg = "global-pmu(x)",
394 .action_msg = "Show Global PMU Regs",
395 };
396
sparc_sysrq_init(void)397 static int __init sparc_sysrq_init(void)
398 {
399 int ret = register_sysrq_key('y', &sparc_globalreg_op);
400
401 if (!ret)
402 ret = register_sysrq_key('x', &sparc_globalpmu_op);
403 return ret;
404 }
405
406 core_initcall(sparc_sysrq_init);
407
408 #endif
409
410 /* Free current thread data structures etc.. */
exit_thread(struct task_struct * tsk)411 void exit_thread(struct task_struct *tsk)
412 {
413 struct thread_info *t = task_thread_info(tsk);
414
415 if (t->utraps) {
416 if (t->utraps[0] < 2)
417 kfree (t->utraps);
418 else
419 t->utraps[0]--;
420 }
421 }
422
flush_thread(void)423 void flush_thread(void)
424 {
425 struct thread_info *t = current_thread_info();
426 struct mm_struct *mm;
427
428 mm = t->task->mm;
429 if (mm)
430 tsb_context_switch(mm);
431
432 set_thread_wsaved(0);
433
434 /* Clear FPU register state. */
435 t->fpsaved[0] = 0;
436 }
437
438 /* It's a bit more tricky when 64-bit tasks are involved... */
clone_stackframe(unsigned long csp,unsigned long psp)439 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
440 {
441 bool stack_64bit = test_thread_64bit_stack(psp);
442 unsigned long fp, distance, rval;
443
444 if (stack_64bit) {
445 csp += STACK_BIAS;
446 psp += STACK_BIAS;
447 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
448 fp += STACK_BIAS;
449 if (test_thread_flag(TIF_32BIT))
450 fp &= 0xffffffff;
451 } else
452 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
453
454 /* Now align the stack as this is mandatory in the Sparc ABI
455 * due to how register windows work. This hides the
456 * restriction from thread libraries etc.
457 */
458 csp &= ~15UL;
459
460 distance = fp - psp;
461 rval = (csp - distance);
462 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
463 rval = 0;
464 else if (!stack_64bit) {
465 if (put_user(((u32)csp),
466 &(((struct reg_window32 __user *)rval)->ins[6])))
467 rval = 0;
468 } else {
469 if (put_user(((u64)csp - STACK_BIAS),
470 &(((struct reg_window __user *)rval)->ins[6])))
471 rval = 0;
472 else
473 rval = rval - STACK_BIAS;
474 }
475
476 return rval;
477 }
478
479 /* Standard stuff. */
shift_window_buffer(int first_win,int last_win,struct thread_info * t)480 static inline void shift_window_buffer(int first_win, int last_win,
481 struct thread_info *t)
482 {
483 int i;
484
485 for (i = first_win; i < last_win; i++) {
486 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
487 memcpy(&t->reg_window[i], &t->reg_window[i+1],
488 sizeof(struct reg_window));
489 }
490 }
491
synchronize_user_stack(void)492 void synchronize_user_stack(void)
493 {
494 struct thread_info *t = current_thread_info();
495 unsigned long window;
496
497 flush_user_windows();
498 if ((window = get_thread_wsaved()) != 0) {
499 window -= 1;
500 do {
501 struct reg_window *rwin = &t->reg_window[window];
502 int winsize = sizeof(struct reg_window);
503 unsigned long sp;
504
505 sp = t->rwbuf_stkptrs[window];
506
507 if (test_thread_64bit_stack(sp))
508 sp += STACK_BIAS;
509 else
510 winsize = sizeof(struct reg_window32);
511
512 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
513 shift_window_buffer(window, get_thread_wsaved() - 1, t);
514 set_thread_wsaved(get_thread_wsaved() - 1);
515 }
516 } while (window--);
517 }
518 }
519
stack_unaligned(unsigned long sp)520 static void stack_unaligned(unsigned long sp)
521 {
522 siginfo_t info;
523
524 info.si_signo = SIGBUS;
525 info.si_errno = 0;
526 info.si_code = BUS_ADRALN;
527 info.si_addr = (void __user *) sp;
528 info.si_trapno = 0;
529 force_sig_info(SIGBUS, &info, current);
530 }
531
532 static const char uwfault32[] = KERN_INFO \
533 "%s[%d]: bad register window fault: SP %08lx (orig_sp %08lx) TPC %08lx O7 %08lx\n";
534 static const char uwfault64[] = KERN_INFO \
535 "%s[%d]: bad register window fault: SP %016lx (orig_sp %016lx) TPC %08lx O7 %016lx\n";
536
fault_in_user_windows(struct pt_regs * regs)537 void fault_in_user_windows(struct pt_regs *regs)
538 {
539 struct thread_info *t = current_thread_info();
540 unsigned long window;
541
542 flush_user_windows();
543 window = get_thread_wsaved();
544
545 if (likely(window != 0)) {
546 window -= 1;
547 do {
548 struct reg_window *rwin = &t->reg_window[window];
549 int winsize = sizeof(struct reg_window);
550 unsigned long sp, orig_sp;
551
552 orig_sp = sp = t->rwbuf_stkptrs[window];
553
554 if (test_thread_64bit_stack(sp))
555 sp += STACK_BIAS;
556 else
557 winsize = sizeof(struct reg_window32);
558
559 if (unlikely(sp & 0x7UL))
560 stack_unaligned(sp);
561
562 if (unlikely(copy_to_user((char __user *)sp,
563 rwin, winsize))) {
564 if (show_unhandled_signals)
565 printk_ratelimited(is_compat_task() ?
566 uwfault32 : uwfault64,
567 current->comm, current->pid,
568 sp, orig_sp,
569 regs->tpc,
570 regs->u_regs[UREG_I7]);
571 goto barf;
572 }
573 } while (window--);
574 }
575 set_thread_wsaved(0);
576 return;
577
578 barf:
579 set_thread_wsaved(window + 1);
580 force_sig(SIGSEGV, current);
581 }
582
sparc_do_fork(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size)583 asmlinkage long sparc_do_fork(unsigned long clone_flags,
584 unsigned long stack_start,
585 struct pt_regs *regs,
586 unsigned long stack_size)
587 {
588 int __user *parent_tid_ptr, *child_tid_ptr;
589 unsigned long orig_i1 = regs->u_regs[UREG_I1];
590 long ret;
591
592 #ifdef CONFIG_COMPAT
593 if (test_thread_flag(TIF_32BIT)) {
594 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
595 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
596 } else
597 #endif
598 {
599 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
600 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
601 }
602
603 ret = do_fork(clone_flags, stack_start, stack_size,
604 parent_tid_ptr, child_tid_ptr);
605
606 /* If we get an error and potentially restart the system
607 * call, we're screwed because copy_thread() clobbered
608 * the parent's %o1. So detect that case and restore it
609 * here.
610 */
611 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
612 regs->u_regs[UREG_I1] = orig_i1;
613
614 return ret;
615 }
616
617 /* Copy a Sparc thread. The fork() return value conventions
618 * under SunOS are nothing short of bletcherous:
619 * Parent --> %o0 == childs pid, %o1 == 0
620 * Child --> %o0 == parents pid, %o1 == 1
621 */
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p)622 int copy_thread(unsigned long clone_flags, unsigned long sp,
623 unsigned long arg, struct task_struct *p)
624 {
625 struct thread_info *t = task_thread_info(p);
626 struct pt_regs *regs = current_pt_regs();
627 struct sparc_stackf *parent_sf;
628 unsigned long child_stack_sz;
629 char *child_trap_frame;
630
631 /* Calculate offset to stack_frame & pt_regs */
632 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
633 child_trap_frame = (task_stack_page(p) +
634 (THREAD_SIZE - child_stack_sz));
635
636 t->new_child = 1;
637 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
638 t->kregs = (struct pt_regs *) (child_trap_frame +
639 sizeof(struct sparc_stackf));
640 t->fpsaved[0] = 0;
641
642 if (unlikely(p->flags & PF_KTHREAD)) {
643 memset(child_trap_frame, 0, child_stack_sz);
644 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
645 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
646 t->current_ds = ASI_P;
647 t->kregs->u_regs[UREG_G1] = sp; /* function */
648 t->kregs->u_regs[UREG_G2] = arg;
649 return 0;
650 }
651
652 parent_sf = ((struct sparc_stackf *) regs) - 1;
653 memcpy(child_trap_frame, parent_sf, child_stack_sz);
654 if (t->flags & _TIF_32BIT) {
655 sp &= 0x00000000ffffffffUL;
656 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
657 }
658 t->kregs->u_regs[UREG_FP] = sp;
659 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
660 (regs->tstate + 1) & TSTATE_CWP;
661 t->current_ds = ASI_AIUS;
662 if (sp != regs->u_regs[UREG_FP]) {
663 unsigned long csp;
664
665 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
666 if (!csp)
667 return -EFAULT;
668 t->kregs->u_regs[UREG_FP] = csp;
669 }
670 if (t->utraps)
671 t->utraps[0]++;
672
673 /* Set the return value for the child. */
674 t->kregs->u_regs[UREG_I0] = current->pid;
675 t->kregs->u_regs[UREG_I1] = 1;
676
677 /* Set the second return value for the parent. */
678 regs->u_regs[UREG_I1] = 0;
679
680 if (clone_flags & CLONE_SETTLS)
681 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
682
683 return 0;
684 }
685
686 typedef struct {
687 union {
688 unsigned int pr_regs[32];
689 unsigned long pr_dregs[16];
690 } pr_fr;
691 unsigned int __unused;
692 unsigned int pr_fsr;
693 unsigned char pr_qcnt;
694 unsigned char pr_q_entrysize;
695 unsigned char pr_en;
696 unsigned int pr_q[64];
697 } elf_fpregset_t32;
698
699 /*
700 * fill in the fpu structure for a core dump.
701 */
dump_fpu(struct pt_regs * regs,elf_fpregset_t * fpregs)702 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
703 {
704 unsigned long *kfpregs = current_thread_info()->fpregs;
705 unsigned long fprs = current_thread_info()->fpsaved[0];
706
707 if (test_thread_flag(TIF_32BIT)) {
708 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
709
710 if (fprs & FPRS_DL)
711 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
712 sizeof(unsigned int) * 32);
713 else
714 memset(&fpregs32->pr_fr.pr_regs[0], 0,
715 sizeof(unsigned int) * 32);
716 fpregs32->pr_qcnt = 0;
717 fpregs32->pr_q_entrysize = 8;
718 memset(&fpregs32->pr_q[0], 0,
719 (sizeof(unsigned int) * 64));
720 if (fprs & FPRS_FEF) {
721 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
722 fpregs32->pr_en = 1;
723 } else {
724 fpregs32->pr_fsr = 0;
725 fpregs32->pr_en = 0;
726 }
727 } else {
728 if(fprs & FPRS_DL)
729 memcpy(&fpregs->pr_regs[0], kfpregs,
730 sizeof(unsigned int) * 32);
731 else
732 memset(&fpregs->pr_regs[0], 0,
733 sizeof(unsigned int) * 32);
734 if(fprs & FPRS_DU)
735 memcpy(&fpregs->pr_regs[16], kfpregs+16,
736 sizeof(unsigned int) * 32);
737 else
738 memset(&fpregs->pr_regs[16], 0,
739 sizeof(unsigned int) * 32);
740 if(fprs & FPRS_FEF) {
741 fpregs->pr_fsr = current_thread_info()->xfsr[0];
742 fpregs->pr_gsr = current_thread_info()->gsr[0];
743 } else {
744 fpregs->pr_fsr = fpregs->pr_gsr = 0;
745 }
746 fpregs->pr_fprs = fprs;
747 }
748 return 1;
749 }
750 EXPORT_SYMBOL(dump_fpu);
751
get_wchan(struct task_struct * task)752 unsigned long get_wchan(struct task_struct *task)
753 {
754 unsigned long pc, fp, bias = 0;
755 struct thread_info *tp;
756 struct reg_window *rw;
757 unsigned long ret = 0;
758 int count = 0;
759
760 if (!task || task == current ||
761 task->state == TASK_RUNNING)
762 goto out;
763
764 tp = task_thread_info(task);
765 bias = STACK_BIAS;
766 fp = task_thread_info(task)->ksp + bias;
767
768 do {
769 if (!kstack_valid(tp, fp))
770 break;
771 rw = (struct reg_window *) fp;
772 pc = rw->ins[7];
773 if (!in_sched_functions(pc)) {
774 ret = pc;
775 goto out;
776 }
777 fp = rw->ins[6] + bias;
778 } while (++count < 16);
779
780 out:
781 return ret;
782 }
783