• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  arch/sparc64/mm/init.c
4  *
5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7  */
8 
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/memblock.h>
29 #include <linux/mmzone.h>
30 #include <linux/gfp.h>
31 
32 #include <asm/head.h>
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/iommu.h>
38 #include <asm/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlbflush.h>
42 #include <asm/dma.h>
43 #include <asm/starfire.h>
44 #include <asm/tlb.h>
45 #include <asm/spitfire.h>
46 #include <asm/sections.h>
47 #include <asm/tsb.h>
48 #include <asm/hypervisor.h>
49 #include <asm/prom.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
52 #include <asm/setup.h>
53 #include <asm/irq.h>
54 
55 #include "init_64.h"
56 
57 unsigned long kern_linear_pte_xor[4] __read_mostly;
58 static unsigned long page_cache4v_flag;
59 
60 /* A bitmap, two bits for every 256MB of physical memory.  These two
61  * bits determine what page size we use for kernel linear
62  * translations.  They form an index into kern_linear_pte_xor[].  The
63  * value in the indexed slot is XOR'd with the TLB miss virtual
64  * address to form the resulting TTE.  The mapping is:
65  *
66  *	0	==>	4MB
67  *	1	==>	256MB
68  *	2	==>	2GB
69  *	3	==>	16GB
70  *
71  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
72  * support 2GB pages, and hopefully future cpus will support the 16GB
73  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
74  * if these larger page sizes are not supported by the cpu.
75  *
76  * It would be nice to determine this from the machine description
77  * 'cpu' properties, but we need to have this table setup before the
78  * MDESC is initialized.
79  */
80 
81 #ifndef CONFIG_DEBUG_PAGEALLOC
82 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
83  * Space is allocated for this right after the trap table in
84  * arch/sparc64/kernel/head.S
85  */
86 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
87 #endif
88 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
89 
90 static unsigned long cpu_pgsz_mask;
91 
92 #define MAX_BANKS	1024
93 
94 static struct linux_prom64_registers pavail[MAX_BANKS];
95 static int pavail_ents;
96 
97 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
98 
cmp_p64(const void * a,const void * b)99 static int cmp_p64(const void *a, const void *b)
100 {
101 	const struct linux_prom64_registers *x = a, *y = b;
102 
103 	if (x->phys_addr > y->phys_addr)
104 		return 1;
105 	if (x->phys_addr < y->phys_addr)
106 		return -1;
107 	return 0;
108 }
109 
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)110 static void __init read_obp_memory(const char *property,
111 				   struct linux_prom64_registers *regs,
112 				   int *num_ents)
113 {
114 	phandle node = prom_finddevice("/memory");
115 	int prop_size = prom_getproplen(node, property);
116 	int ents, ret, i;
117 
118 	ents = prop_size / sizeof(struct linux_prom64_registers);
119 	if (ents > MAX_BANKS) {
120 		prom_printf("The machine has more %s property entries than "
121 			    "this kernel can support (%d).\n",
122 			    property, MAX_BANKS);
123 		prom_halt();
124 	}
125 
126 	ret = prom_getproperty(node, property, (char *) regs, prop_size);
127 	if (ret == -1) {
128 		prom_printf("Couldn't get %s property from /memory.\n",
129 				property);
130 		prom_halt();
131 	}
132 
133 	/* Sanitize what we got from the firmware, by page aligning
134 	 * everything.
135 	 */
136 	for (i = 0; i < ents; i++) {
137 		unsigned long base, size;
138 
139 		base = regs[i].phys_addr;
140 		size = regs[i].reg_size;
141 
142 		size &= PAGE_MASK;
143 		if (base & ~PAGE_MASK) {
144 			unsigned long new_base = PAGE_ALIGN(base);
145 
146 			size -= new_base - base;
147 			if ((long) size < 0L)
148 				size = 0UL;
149 			base = new_base;
150 		}
151 		if (size == 0UL) {
152 			/* If it is empty, simply get rid of it.
153 			 * This simplifies the logic of the other
154 			 * functions that process these arrays.
155 			 */
156 			memmove(&regs[i], &regs[i + 1],
157 				(ents - i - 1) * sizeof(regs[0]));
158 			i--;
159 			ents--;
160 			continue;
161 		}
162 		regs[i].phys_addr = base;
163 		regs[i].reg_size = size;
164 	}
165 
166 	*num_ents = ents;
167 
168 	sort(regs, ents, sizeof(struct linux_prom64_registers),
169 	     cmp_p64, NULL);
170 }
171 
172 /* Kernel physical address base and size in bytes.  */
173 unsigned long kern_base __read_mostly;
174 unsigned long kern_size __read_mostly;
175 
176 /* Initial ramdisk setup */
177 extern unsigned long sparc_ramdisk_image64;
178 extern unsigned int sparc_ramdisk_image;
179 extern unsigned int sparc_ramdisk_size;
180 
181 struct page *mem_map_zero __read_mostly;
182 EXPORT_SYMBOL(mem_map_zero);
183 
184 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
185 
186 unsigned long sparc64_kern_pri_context __read_mostly;
187 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
188 unsigned long sparc64_kern_sec_context __read_mostly;
189 
190 int num_kernel_image_mappings;
191 
192 #ifdef CONFIG_DEBUG_DCFLUSH
193 atomic_t dcpage_flushes = ATOMIC_INIT(0);
194 #ifdef CONFIG_SMP
195 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
196 #endif
197 #endif
198 
flush_dcache_page_impl(struct page * page)199 inline void flush_dcache_page_impl(struct page *page)
200 {
201 	BUG_ON(tlb_type == hypervisor);
202 #ifdef CONFIG_DEBUG_DCFLUSH
203 	atomic_inc(&dcpage_flushes);
204 #endif
205 
206 #ifdef DCACHE_ALIASING_POSSIBLE
207 	__flush_dcache_page(page_address(page),
208 			    ((tlb_type == spitfire) &&
209 			     page_mapping(page) != NULL));
210 #else
211 	if (page_mapping(page) != NULL &&
212 	    tlb_type == spitfire)
213 		__flush_icache_page(__pa(page_address(page)));
214 #endif
215 }
216 
217 #define PG_dcache_dirty		PG_arch_1
218 #define PG_dcache_cpu_shift	32UL
219 #define PG_dcache_cpu_mask	\
220 	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
221 
222 #define dcache_dirty_cpu(page) \
223 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
224 
set_dcache_dirty(struct page * page,int this_cpu)225 static inline void set_dcache_dirty(struct page *page, int this_cpu)
226 {
227 	unsigned long mask = this_cpu;
228 	unsigned long non_cpu_bits;
229 
230 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
231 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
232 
233 	__asm__ __volatile__("1:\n\t"
234 			     "ldx	[%2], %%g7\n\t"
235 			     "and	%%g7, %1, %%g1\n\t"
236 			     "or	%%g1, %0, %%g1\n\t"
237 			     "casx	[%2], %%g7, %%g1\n\t"
238 			     "cmp	%%g7, %%g1\n\t"
239 			     "bne,pn	%%xcc, 1b\n\t"
240 			     " nop"
241 			     : /* no outputs */
242 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
243 			     : "g1", "g7");
244 }
245 
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)246 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
247 {
248 	unsigned long mask = (1UL << PG_dcache_dirty);
249 
250 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
251 			     "1:\n\t"
252 			     "ldx	[%2], %%g7\n\t"
253 			     "srlx	%%g7, %4, %%g1\n\t"
254 			     "and	%%g1, %3, %%g1\n\t"
255 			     "cmp	%%g1, %0\n\t"
256 			     "bne,pn	%%icc, 2f\n\t"
257 			     " andn	%%g7, %1, %%g1\n\t"
258 			     "casx	[%2], %%g7, %%g1\n\t"
259 			     "cmp	%%g7, %%g1\n\t"
260 			     "bne,pn	%%xcc, 1b\n\t"
261 			     " nop\n"
262 			     "2:"
263 			     : /* no outputs */
264 			     : "r" (cpu), "r" (mask), "r" (&page->flags),
265 			       "i" (PG_dcache_cpu_mask),
266 			       "i" (PG_dcache_cpu_shift)
267 			     : "g1", "g7");
268 }
269 
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)270 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
271 {
272 	unsigned long tsb_addr = (unsigned long) ent;
273 
274 	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
275 		tsb_addr = __pa(tsb_addr);
276 
277 	__tsb_insert(tsb_addr, tag, pte);
278 }
279 
280 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
281 
flush_dcache(unsigned long pfn)282 static void flush_dcache(unsigned long pfn)
283 {
284 	struct page *page;
285 
286 	page = pfn_to_page(pfn);
287 	if (page) {
288 		unsigned long pg_flags;
289 
290 		pg_flags = page->flags;
291 		if (pg_flags & (1UL << PG_dcache_dirty)) {
292 			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
293 				   PG_dcache_cpu_mask);
294 			int this_cpu = get_cpu();
295 
296 			/* This is just to optimize away some function calls
297 			 * in the SMP case.
298 			 */
299 			if (cpu == this_cpu)
300 				flush_dcache_page_impl(page);
301 			else
302 				smp_flush_dcache_page_impl(page, cpu);
303 
304 			clear_dcache_dirty_cpu(page, cpu);
305 
306 			put_cpu();
307 		}
308 	}
309 }
310 
311 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)312 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
313 				    unsigned long tsb_hash_shift, unsigned long address,
314 				    unsigned long tte)
315 {
316 	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
317 	unsigned long tag;
318 
319 	if (unlikely(!tsb))
320 		return;
321 
322 	tsb += ((address >> tsb_hash_shift) &
323 		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
324 	tag = (address >> 22UL);
325 	tsb_insert(tsb, tag, tte);
326 }
327 
328 #ifdef CONFIG_HUGETLB_PAGE
add_huge_page_size(unsigned long size)329 static void __init add_huge_page_size(unsigned long size)
330 {
331 	unsigned int order;
332 
333 	if (size_to_hstate(size))
334 		return;
335 
336 	order = ilog2(size) - PAGE_SHIFT;
337 	hugetlb_add_hstate(order);
338 }
339 
hugetlbpage_init(void)340 static int __init hugetlbpage_init(void)
341 {
342 	add_huge_page_size(1UL << HPAGE_64K_SHIFT);
343 	add_huge_page_size(1UL << HPAGE_SHIFT);
344 	add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
345 	add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
346 
347 	return 0;
348 }
349 
350 arch_initcall(hugetlbpage_init);
351 
pud_huge_patch(void)352 static void __init pud_huge_patch(void)
353 {
354 	struct pud_huge_patch_entry *p;
355 	unsigned long addr;
356 
357 	p = &__pud_huge_patch;
358 	addr = p->addr;
359 	*(unsigned int *)addr = p->insn;
360 
361 	__asm__ __volatile__("flush %0" : : "r" (addr));
362 }
363 
setup_hugepagesz(char * string)364 static int __init setup_hugepagesz(char *string)
365 {
366 	unsigned long long hugepage_size;
367 	unsigned int hugepage_shift;
368 	unsigned short hv_pgsz_idx;
369 	unsigned int hv_pgsz_mask;
370 	int rc = 0;
371 
372 	hugepage_size = memparse(string, &string);
373 	hugepage_shift = ilog2(hugepage_size);
374 
375 	switch (hugepage_shift) {
376 	case HPAGE_16GB_SHIFT:
377 		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
378 		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
379 		pud_huge_patch();
380 		break;
381 	case HPAGE_2GB_SHIFT:
382 		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
383 		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
384 		break;
385 	case HPAGE_256MB_SHIFT:
386 		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
387 		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
388 		break;
389 	case HPAGE_SHIFT:
390 		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
391 		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
392 		break;
393 	case HPAGE_64K_SHIFT:
394 		hv_pgsz_mask = HV_PGSZ_MASK_64K;
395 		hv_pgsz_idx = HV_PGSZ_IDX_64K;
396 		break;
397 	default:
398 		hv_pgsz_mask = 0;
399 	}
400 
401 	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
402 		hugetlb_bad_size();
403 		pr_err("hugepagesz=%llu not supported by MMU.\n",
404 			hugepage_size);
405 		goto out;
406 	}
407 
408 	add_huge_page_size(hugepage_size);
409 	rc = 1;
410 
411 out:
412 	return rc;
413 }
414 __setup("hugepagesz=", setup_hugepagesz);
415 #endif	/* CONFIG_HUGETLB_PAGE */
416 
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)417 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
418 {
419 	struct mm_struct *mm;
420 	unsigned long flags;
421 	bool is_huge_tsb;
422 	pte_t pte = *ptep;
423 
424 	if (tlb_type != hypervisor) {
425 		unsigned long pfn = pte_pfn(pte);
426 
427 		if (pfn_valid(pfn))
428 			flush_dcache(pfn);
429 	}
430 
431 	mm = vma->vm_mm;
432 
433 	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
434 	if (!pte_accessible(mm, pte))
435 		return;
436 
437 	spin_lock_irqsave(&mm->context.lock, flags);
438 
439 	is_huge_tsb = false;
440 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
441 	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
442 		unsigned long hugepage_size = PAGE_SIZE;
443 
444 		if (is_vm_hugetlb_page(vma))
445 			hugepage_size = huge_page_size(hstate_vma(vma));
446 
447 		if (hugepage_size >= PUD_SIZE) {
448 			unsigned long mask = 0x1ffc00000UL;
449 
450 			/* Transfer bits [32:22] from address to resolve
451 			 * at 4M granularity.
452 			 */
453 			pte_val(pte) &= ~mask;
454 			pte_val(pte) |= (address & mask);
455 		} else if (hugepage_size >= PMD_SIZE) {
456 			/* We are fabricating 8MB pages using 4MB
457 			 * real hw pages.
458 			 */
459 			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
460 		}
461 
462 		if (hugepage_size >= PMD_SIZE) {
463 			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
464 				REAL_HPAGE_SHIFT, address, pte_val(pte));
465 			is_huge_tsb = true;
466 		}
467 	}
468 #endif
469 	if (!is_huge_tsb)
470 		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
471 					address, pte_val(pte));
472 
473 	spin_unlock_irqrestore(&mm->context.lock, flags);
474 }
475 
flush_dcache_page(struct page * page)476 void flush_dcache_page(struct page *page)
477 {
478 	struct address_space *mapping;
479 	int this_cpu;
480 
481 	if (tlb_type == hypervisor)
482 		return;
483 
484 	/* Do not bother with the expensive D-cache flush if it
485 	 * is merely the zero page.  The 'bigcore' testcase in GDB
486 	 * causes this case to run millions of times.
487 	 */
488 	if (page == ZERO_PAGE(0))
489 		return;
490 
491 	this_cpu = get_cpu();
492 
493 	mapping = page_mapping(page);
494 	if (mapping && !mapping_mapped(mapping)) {
495 		int dirty = test_bit(PG_dcache_dirty, &page->flags);
496 		if (dirty) {
497 			int dirty_cpu = dcache_dirty_cpu(page);
498 
499 			if (dirty_cpu == this_cpu)
500 				goto out;
501 			smp_flush_dcache_page_impl(page, dirty_cpu);
502 		}
503 		set_dcache_dirty(page, this_cpu);
504 	} else {
505 		/* We could delay the flush for the !page_mapping
506 		 * case too.  But that case is for exec env/arg
507 		 * pages and those are %99 certainly going to get
508 		 * faulted into the tlb (and thus flushed) anyways.
509 		 */
510 		flush_dcache_page_impl(page);
511 	}
512 
513 out:
514 	put_cpu();
515 }
516 EXPORT_SYMBOL(flush_dcache_page);
517 
flush_icache_range(unsigned long start,unsigned long end)518 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
519 {
520 	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
521 	if (tlb_type == spitfire) {
522 		unsigned long kaddr;
523 
524 		/* This code only runs on Spitfire cpus so this is
525 		 * why we can assume _PAGE_PADDR_4U.
526 		 */
527 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
528 			unsigned long paddr, mask = _PAGE_PADDR_4U;
529 
530 			if (kaddr >= PAGE_OFFSET)
531 				paddr = kaddr & mask;
532 			else {
533 				pgd_t *pgdp = pgd_offset_k(kaddr);
534 				pud_t *pudp = pud_offset(pgdp, kaddr);
535 				pmd_t *pmdp = pmd_offset(pudp, kaddr);
536 				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
537 
538 				paddr = pte_val(*ptep) & mask;
539 			}
540 			__flush_icache_page(paddr);
541 		}
542 	}
543 }
544 EXPORT_SYMBOL(flush_icache_range);
545 
mmu_info(struct seq_file * m)546 void mmu_info(struct seq_file *m)
547 {
548 	static const char *pgsz_strings[] = {
549 		"8K", "64K", "512K", "4MB", "32MB",
550 		"256MB", "2GB", "16GB",
551 	};
552 	int i, printed;
553 
554 	if (tlb_type == cheetah)
555 		seq_printf(m, "MMU Type\t: Cheetah\n");
556 	else if (tlb_type == cheetah_plus)
557 		seq_printf(m, "MMU Type\t: Cheetah+\n");
558 	else if (tlb_type == spitfire)
559 		seq_printf(m, "MMU Type\t: Spitfire\n");
560 	else if (tlb_type == hypervisor)
561 		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
562 	else
563 		seq_printf(m, "MMU Type\t: ???\n");
564 
565 	seq_printf(m, "MMU PGSZs\t: ");
566 	printed = 0;
567 	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
568 		if (cpu_pgsz_mask & (1UL << i)) {
569 			seq_printf(m, "%s%s",
570 				   printed ? "," : "", pgsz_strings[i]);
571 			printed++;
572 		}
573 	}
574 	seq_putc(m, '\n');
575 
576 #ifdef CONFIG_DEBUG_DCFLUSH
577 	seq_printf(m, "DCPageFlushes\t: %d\n",
578 		   atomic_read(&dcpage_flushes));
579 #ifdef CONFIG_SMP
580 	seq_printf(m, "DCPageFlushesXC\t: %d\n",
581 		   atomic_read(&dcpage_flushes_xcall));
582 #endif /* CONFIG_SMP */
583 #endif /* CONFIG_DEBUG_DCFLUSH */
584 }
585 
586 struct linux_prom_translation prom_trans[512] __read_mostly;
587 unsigned int prom_trans_ents __read_mostly;
588 
589 unsigned long kern_locked_tte_data;
590 
591 /* The obp translations are saved based on 8k pagesize, since obp can
592  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
593  * HI_OBP_ADDRESS range are handled in ktlb.S.
594  */
in_obp_range(unsigned long vaddr)595 static inline int in_obp_range(unsigned long vaddr)
596 {
597 	return (vaddr >= LOW_OBP_ADDRESS &&
598 		vaddr < HI_OBP_ADDRESS);
599 }
600 
cmp_ptrans(const void * a,const void * b)601 static int cmp_ptrans(const void *a, const void *b)
602 {
603 	const struct linux_prom_translation *x = a, *y = b;
604 
605 	if (x->virt > y->virt)
606 		return 1;
607 	if (x->virt < y->virt)
608 		return -1;
609 	return 0;
610 }
611 
612 /* Read OBP translations property into 'prom_trans[]'.  */
read_obp_translations(void)613 static void __init read_obp_translations(void)
614 {
615 	int n, node, ents, first, last, i;
616 
617 	node = prom_finddevice("/virtual-memory");
618 	n = prom_getproplen(node, "translations");
619 	if (unlikely(n == 0 || n == -1)) {
620 		prom_printf("prom_mappings: Couldn't get size.\n");
621 		prom_halt();
622 	}
623 	if (unlikely(n > sizeof(prom_trans))) {
624 		prom_printf("prom_mappings: Size %d is too big.\n", n);
625 		prom_halt();
626 	}
627 
628 	if ((n = prom_getproperty(node, "translations",
629 				  (char *)&prom_trans[0],
630 				  sizeof(prom_trans))) == -1) {
631 		prom_printf("prom_mappings: Couldn't get property.\n");
632 		prom_halt();
633 	}
634 
635 	n = n / sizeof(struct linux_prom_translation);
636 
637 	ents = n;
638 
639 	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
640 	     cmp_ptrans, NULL);
641 
642 	/* Now kick out all the non-OBP entries.  */
643 	for (i = 0; i < ents; i++) {
644 		if (in_obp_range(prom_trans[i].virt))
645 			break;
646 	}
647 	first = i;
648 	for (; i < ents; i++) {
649 		if (!in_obp_range(prom_trans[i].virt))
650 			break;
651 	}
652 	last = i;
653 
654 	for (i = 0; i < (last - first); i++) {
655 		struct linux_prom_translation *src = &prom_trans[i + first];
656 		struct linux_prom_translation *dest = &prom_trans[i];
657 
658 		*dest = *src;
659 	}
660 	for (; i < ents; i++) {
661 		struct linux_prom_translation *dest = &prom_trans[i];
662 		dest->virt = dest->size = dest->data = 0x0UL;
663 	}
664 
665 	prom_trans_ents = last - first;
666 
667 	if (tlb_type == spitfire) {
668 		/* Clear diag TTE bits. */
669 		for (i = 0; i < prom_trans_ents; i++)
670 			prom_trans[i].data &= ~0x0003fe0000000000UL;
671 	}
672 
673 	/* Force execute bit on.  */
674 	for (i = 0; i < prom_trans_ents; i++)
675 		prom_trans[i].data |= (tlb_type == hypervisor ?
676 				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
677 }
678 
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)679 static void __init hypervisor_tlb_lock(unsigned long vaddr,
680 				       unsigned long pte,
681 				       unsigned long mmu)
682 {
683 	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
684 
685 	if (ret != 0) {
686 		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
687 			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
688 		prom_halt();
689 	}
690 }
691 
692 static unsigned long kern_large_tte(unsigned long paddr);
693 
remap_kernel(void)694 static void __init remap_kernel(void)
695 {
696 	unsigned long phys_page, tte_vaddr, tte_data;
697 	int i, tlb_ent = sparc64_highest_locked_tlbent();
698 
699 	tte_vaddr = (unsigned long) KERNBASE;
700 	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
701 	tte_data = kern_large_tte(phys_page);
702 
703 	kern_locked_tte_data = tte_data;
704 
705 	/* Now lock us into the TLBs via Hypervisor or OBP. */
706 	if (tlb_type == hypervisor) {
707 		for (i = 0; i < num_kernel_image_mappings; i++) {
708 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
709 			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
710 			tte_vaddr += 0x400000;
711 			tte_data += 0x400000;
712 		}
713 	} else {
714 		for (i = 0; i < num_kernel_image_mappings; i++) {
715 			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
716 			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
717 			tte_vaddr += 0x400000;
718 			tte_data += 0x400000;
719 		}
720 		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
721 	}
722 	if (tlb_type == cheetah_plus) {
723 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
724 					    CTX_CHEETAH_PLUS_NUC);
725 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
726 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
727 	}
728 }
729 
730 
inherit_prom_mappings(void)731 static void __init inherit_prom_mappings(void)
732 {
733 	/* Now fixup OBP's idea about where we really are mapped. */
734 	printk("Remapping the kernel... ");
735 	remap_kernel();
736 	printk("done.\n");
737 }
738 
prom_world(int enter)739 void prom_world(int enter)
740 {
741 	if (!enter)
742 		set_fs(get_fs());
743 
744 	__asm__ __volatile__("flushw");
745 }
746 
__flush_dcache_range(unsigned long start,unsigned long end)747 void __flush_dcache_range(unsigned long start, unsigned long end)
748 {
749 	unsigned long va;
750 
751 	if (tlb_type == spitfire) {
752 		int n = 0;
753 
754 		for (va = start; va < end; va += 32) {
755 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
756 			if (++n >= 512)
757 				break;
758 		}
759 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
760 		start = __pa(start);
761 		end = __pa(end);
762 		for (va = start; va < end; va += 32)
763 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
764 					     "membar #Sync"
765 					     : /* no outputs */
766 					     : "r" (va),
767 					       "i" (ASI_DCACHE_INVALIDATE));
768 	}
769 }
770 EXPORT_SYMBOL(__flush_dcache_range);
771 
772 /* get_new_mmu_context() uses "cache + 1".  */
773 DEFINE_SPINLOCK(ctx_alloc_lock);
774 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
775 #define MAX_CTX_NR	(1UL << CTX_NR_BITS)
776 #define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
777 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
778 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
779 
mmu_context_wrap(void)780 static void mmu_context_wrap(void)
781 {
782 	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
783 	unsigned long new_ver, new_ctx, old_ctx;
784 	struct mm_struct *mm;
785 	int cpu;
786 
787 	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
788 
789 	/* Reserve kernel context */
790 	set_bit(0, mmu_context_bmap);
791 
792 	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
793 	if (unlikely(new_ver == 0))
794 		new_ver = CTX_FIRST_VERSION;
795 	tlb_context_cache = new_ver;
796 
797 	/*
798 	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
799 	 * are going to go through get_new_mmu_context() path.
800 	 */
801 	mb();
802 
803 	/*
804 	 * Updated versions to current on those CPUs that had valid secondary
805 	 * contexts
806 	 */
807 	for_each_online_cpu(cpu) {
808 		/*
809 		 * If a new mm is stored after we took this mm from the array,
810 		 * it will go into get_new_mmu_context() path, because we
811 		 * already bumped the version in tlb_context_cache.
812 		 */
813 		mm = per_cpu(per_cpu_secondary_mm, cpu);
814 
815 		if (unlikely(!mm || mm == &init_mm))
816 			continue;
817 
818 		old_ctx = mm->context.sparc64_ctx_val;
819 		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
820 			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
821 			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
822 			mm->context.sparc64_ctx_val = new_ctx;
823 		}
824 	}
825 }
826 
827 /* Caller does TLB context flushing on local CPU if necessary.
828  * The caller also ensures that CTX_VALID(mm->context) is false.
829  *
830  * We must be careful about boundary cases so that we never
831  * let the user have CTX 0 (nucleus) or we ever use a CTX
832  * version of zero (and thus NO_CONTEXT would not be caught
833  * by version mis-match tests in mmu_context.h).
834  *
835  * Always invoked with interrupts disabled.
836  */
get_new_mmu_context(struct mm_struct * mm)837 void get_new_mmu_context(struct mm_struct *mm)
838 {
839 	unsigned long ctx, new_ctx;
840 	unsigned long orig_pgsz_bits;
841 
842 	spin_lock(&ctx_alloc_lock);
843 retry:
844 	/* wrap might have happened, test again if our context became valid */
845 	if (unlikely(CTX_VALID(mm->context)))
846 		goto out;
847 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
848 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
849 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
850 	if (new_ctx >= (1 << CTX_NR_BITS)) {
851 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
852 		if (new_ctx >= ctx) {
853 			mmu_context_wrap();
854 			goto retry;
855 		}
856 	}
857 	if (mm->context.sparc64_ctx_val)
858 		cpumask_clear(mm_cpumask(mm));
859 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
860 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
861 	tlb_context_cache = new_ctx;
862 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
863 out:
864 	spin_unlock(&ctx_alloc_lock);
865 }
866 
867 static int numa_enabled = 1;
868 static int numa_debug;
869 
early_numa(char * p)870 static int __init early_numa(char *p)
871 {
872 	if (!p)
873 		return 0;
874 
875 	if (strstr(p, "off"))
876 		numa_enabled = 0;
877 
878 	if (strstr(p, "debug"))
879 		numa_debug = 1;
880 
881 	return 0;
882 }
883 early_param("numa", early_numa);
884 
885 #define numadbg(f, a...) \
886 do {	if (numa_debug) \
887 		printk(KERN_INFO f, ## a); \
888 } while (0)
889 
find_ramdisk(unsigned long phys_base)890 static void __init find_ramdisk(unsigned long phys_base)
891 {
892 #ifdef CONFIG_BLK_DEV_INITRD
893 	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
894 		unsigned long ramdisk_image;
895 
896 		/* Older versions of the bootloader only supported a
897 		 * 32-bit physical address for the ramdisk image
898 		 * location, stored at sparc_ramdisk_image.  Newer
899 		 * SILO versions set sparc_ramdisk_image to zero and
900 		 * provide a full 64-bit physical address at
901 		 * sparc_ramdisk_image64.
902 		 */
903 		ramdisk_image = sparc_ramdisk_image;
904 		if (!ramdisk_image)
905 			ramdisk_image = sparc_ramdisk_image64;
906 
907 		/* Another bootloader quirk.  The bootloader normalizes
908 		 * the physical address to KERNBASE, so we have to
909 		 * factor that back out and add in the lowest valid
910 		 * physical page address to get the true physical address.
911 		 */
912 		ramdisk_image -= KERNBASE;
913 		ramdisk_image += phys_base;
914 
915 		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
916 			ramdisk_image, sparc_ramdisk_size);
917 
918 		initrd_start = ramdisk_image;
919 		initrd_end = ramdisk_image + sparc_ramdisk_size;
920 
921 		memblock_reserve(initrd_start, sparc_ramdisk_size);
922 
923 		initrd_start += PAGE_OFFSET;
924 		initrd_end += PAGE_OFFSET;
925 	}
926 #endif
927 }
928 
929 struct node_mem_mask {
930 	unsigned long mask;
931 	unsigned long match;
932 };
933 static struct node_mem_mask node_masks[MAX_NUMNODES];
934 static int num_node_masks;
935 
936 #ifdef CONFIG_NEED_MULTIPLE_NODES
937 
938 struct mdesc_mlgroup {
939 	u64	node;
940 	u64	latency;
941 	u64	match;
942 	u64	mask;
943 };
944 
945 static struct mdesc_mlgroup *mlgroups;
946 static int num_mlgroups;
947 
948 int numa_cpu_lookup_table[NR_CPUS];
949 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
950 
951 struct mdesc_mblock {
952 	u64	base;
953 	u64	size;
954 	u64	offset; /* RA-to-PA */
955 };
956 static struct mdesc_mblock *mblocks;
957 static int num_mblocks;
958 
addr_to_mblock(unsigned long addr)959 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
960 {
961 	struct mdesc_mblock *m = NULL;
962 	int i;
963 
964 	for (i = 0; i < num_mblocks; i++) {
965 		m = &mblocks[i];
966 
967 		if (addr >= m->base &&
968 		    addr < (m->base + m->size)) {
969 			break;
970 		}
971 	}
972 
973 	return m;
974 }
975 
memblock_nid_range_sun4u(u64 start,u64 end,int * nid)976 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
977 {
978 	int prev_nid, new_nid;
979 
980 	prev_nid = -1;
981 	for ( ; start < end; start += PAGE_SIZE) {
982 		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
983 			struct node_mem_mask *p = &node_masks[new_nid];
984 
985 			if ((start & p->mask) == p->match) {
986 				if (prev_nid == -1)
987 					prev_nid = new_nid;
988 				break;
989 			}
990 		}
991 
992 		if (new_nid == num_node_masks) {
993 			prev_nid = 0;
994 			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
995 				  start);
996 			break;
997 		}
998 
999 		if (prev_nid != new_nid)
1000 			break;
1001 	}
1002 	*nid = prev_nid;
1003 
1004 	return start > end ? end : start;
1005 }
1006 
memblock_nid_range(u64 start,u64 end,int * nid)1007 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
1008 {
1009 	u64 ret_end, pa_start, m_mask, m_match, m_end;
1010 	struct mdesc_mblock *mblock;
1011 	int _nid, i;
1012 
1013 	if (tlb_type != hypervisor)
1014 		return memblock_nid_range_sun4u(start, end, nid);
1015 
1016 	mblock = addr_to_mblock(start);
1017 	if (!mblock) {
1018 		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1019 			  start);
1020 
1021 		_nid = 0;
1022 		ret_end = end;
1023 		goto done;
1024 	}
1025 
1026 	pa_start = start + mblock->offset;
1027 	m_match = 0;
1028 	m_mask = 0;
1029 
1030 	for (_nid = 0; _nid < num_node_masks; _nid++) {
1031 		struct node_mem_mask *const m = &node_masks[_nid];
1032 
1033 		if ((pa_start & m->mask) == m->match) {
1034 			m_match = m->match;
1035 			m_mask = m->mask;
1036 			break;
1037 		}
1038 	}
1039 
1040 	if (num_node_masks == _nid) {
1041 		/* We could not find NUMA group, so default to 0, but lets
1042 		 * search for latency group, so we could calculate the correct
1043 		 * end address that we return
1044 		 */
1045 		_nid = 0;
1046 
1047 		for (i = 0; i < num_mlgroups; i++) {
1048 			struct mdesc_mlgroup *const m = &mlgroups[i];
1049 
1050 			if ((pa_start & m->mask) == m->match) {
1051 				m_match = m->match;
1052 				m_mask = m->mask;
1053 				break;
1054 			}
1055 		}
1056 
1057 		if (i == num_mlgroups) {
1058 			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1059 				  start);
1060 
1061 			ret_end = end;
1062 			goto done;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * Each latency group has match and mask, and each memory block has an
1068 	 * offset.  An address belongs to a latency group if its address matches
1069 	 * the following formula: ((addr + offset) & mask) == match
1070 	 * It is, however, slow to check every single page if it matches a
1071 	 * particular latency group. As optimization we calculate end value by
1072 	 * using bit arithmetics.
1073 	 */
1074 	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1075 	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1076 	ret_end = m_end > end ? end : m_end;
1077 
1078 done:
1079 	*nid = _nid;
1080 	return ret_end;
1081 }
1082 #endif
1083 
1084 /* This must be invoked after performing all of the necessary
1085  * memblock_set_node() calls for 'nid'.  We need to be able to get
1086  * correct data from get_pfn_range_for_nid().
1087  */
allocate_node_data(int nid)1088 static void __init allocate_node_data(int nid)
1089 {
1090 	struct pglist_data *p;
1091 	unsigned long start_pfn, end_pfn;
1092 #ifdef CONFIG_NEED_MULTIPLE_NODES
1093 	unsigned long paddr;
1094 
1095 	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1096 	if (!paddr) {
1097 		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1098 		prom_halt();
1099 	}
1100 	NODE_DATA(nid) = __va(paddr);
1101 	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1102 
1103 	NODE_DATA(nid)->node_id = nid;
1104 #endif
1105 
1106 	p = NODE_DATA(nid);
1107 
1108 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1109 	p->node_start_pfn = start_pfn;
1110 	p->node_spanned_pages = end_pfn - start_pfn;
1111 }
1112 
init_node_masks_nonnuma(void)1113 static void init_node_masks_nonnuma(void)
1114 {
1115 #ifdef CONFIG_NEED_MULTIPLE_NODES
1116 	int i;
1117 #endif
1118 
1119 	numadbg("Initializing tables for non-numa.\n");
1120 
1121 	node_masks[0].mask = 0;
1122 	node_masks[0].match = 0;
1123 	num_node_masks = 1;
1124 
1125 #ifdef CONFIG_NEED_MULTIPLE_NODES
1126 	for (i = 0; i < NR_CPUS; i++)
1127 		numa_cpu_lookup_table[i] = 0;
1128 
1129 	cpumask_setall(&numa_cpumask_lookup_table[0]);
1130 #endif
1131 }
1132 
1133 #ifdef CONFIG_NEED_MULTIPLE_NODES
1134 struct pglist_data *node_data[MAX_NUMNODES];
1135 
1136 EXPORT_SYMBOL(numa_cpu_lookup_table);
1137 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1138 EXPORT_SYMBOL(node_data);
1139 
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)1140 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1141 				   u32 cfg_handle)
1142 {
1143 	u64 arc;
1144 
1145 	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1146 		u64 target = mdesc_arc_target(md, arc);
1147 		const u64 *val;
1148 
1149 		val = mdesc_get_property(md, target,
1150 					 "cfg-handle", NULL);
1151 		if (val && *val == cfg_handle)
1152 			return 0;
1153 	}
1154 	return -ENODEV;
1155 }
1156 
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)1157 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1158 				    u32 cfg_handle)
1159 {
1160 	u64 arc, candidate, best_latency = ~(u64)0;
1161 
1162 	candidate = MDESC_NODE_NULL;
1163 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1164 		u64 target = mdesc_arc_target(md, arc);
1165 		const char *name = mdesc_node_name(md, target);
1166 		const u64 *val;
1167 
1168 		if (strcmp(name, "pio-latency-group"))
1169 			continue;
1170 
1171 		val = mdesc_get_property(md, target, "latency", NULL);
1172 		if (!val)
1173 			continue;
1174 
1175 		if (*val < best_latency) {
1176 			candidate = target;
1177 			best_latency = *val;
1178 		}
1179 	}
1180 
1181 	if (candidate == MDESC_NODE_NULL)
1182 		return -ENODEV;
1183 
1184 	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1185 }
1186 
of_node_to_nid(struct device_node * dp)1187 int of_node_to_nid(struct device_node *dp)
1188 {
1189 	const struct linux_prom64_registers *regs;
1190 	struct mdesc_handle *md;
1191 	u32 cfg_handle;
1192 	int count, nid;
1193 	u64 grp;
1194 
1195 	/* This is the right thing to do on currently supported
1196 	 * SUN4U NUMA platforms as well, as the PCI controller does
1197 	 * not sit behind any particular memory controller.
1198 	 */
1199 	if (!mlgroups)
1200 		return -1;
1201 
1202 	regs = of_get_property(dp, "reg", NULL);
1203 	if (!regs)
1204 		return -1;
1205 
1206 	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1207 
1208 	md = mdesc_grab();
1209 
1210 	count = 0;
1211 	nid = -1;
1212 	mdesc_for_each_node_by_name(md, grp, "group") {
1213 		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1214 			nid = count;
1215 			break;
1216 		}
1217 		count++;
1218 	}
1219 
1220 	mdesc_release(md);
1221 
1222 	return nid;
1223 }
1224 
add_node_ranges(void)1225 static void __init add_node_ranges(void)
1226 {
1227 	struct memblock_region *reg;
1228 	unsigned long prev_max;
1229 
1230 memblock_resized:
1231 	prev_max = memblock.memory.max;
1232 
1233 	for_each_memblock(memory, reg) {
1234 		unsigned long size = reg->size;
1235 		unsigned long start, end;
1236 
1237 		start = reg->base;
1238 		end = start + size;
1239 		while (start < end) {
1240 			unsigned long this_end;
1241 			int nid;
1242 
1243 			this_end = memblock_nid_range(start, end, &nid);
1244 
1245 			numadbg("Setting memblock NUMA node nid[%d] "
1246 				"start[%lx] end[%lx]\n",
1247 				nid, start, this_end);
1248 
1249 			memblock_set_node(start, this_end - start,
1250 					  &memblock.memory, nid);
1251 			if (memblock.memory.max != prev_max)
1252 				goto memblock_resized;
1253 			start = this_end;
1254 		}
1255 	}
1256 }
1257 
grab_mlgroups(struct mdesc_handle * md)1258 static int __init grab_mlgroups(struct mdesc_handle *md)
1259 {
1260 	unsigned long paddr;
1261 	int count = 0;
1262 	u64 node;
1263 
1264 	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1265 		count++;
1266 	if (!count)
1267 		return -ENOENT;
1268 
1269 	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1270 			  SMP_CACHE_BYTES);
1271 	if (!paddr)
1272 		return -ENOMEM;
1273 
1274 	mlgroups = __va(paddr);
1275 	num_mlgroups = count;
1276 
1277 	count = 0;
1278 	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1279 		struct mdesc_mlgroup *m = &mlgroups[count++];
1280 		const u64 *val;
1281 
1282 		m->node = node;
1283 
1284 		val = mdesc_get_property(md, node, "latency", NULL);
1285 		m->latency = *val;
1286 		val = mdesc_get_property(md, node, "address-match", NULL);
1287 		m->match = *val;
1288 		val = mdesc_get_property(md, node, "address-mask", NULL);
1289 		m->mask = *val;
1290 
1291 		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1292 			"match[%llx] mask[%llx]\n",
1293 			count - 1, m->node, m->latency, m->match, m->mask);
1294 	}
1295 
1296 	return 0;
1297 }
1298 
grab_mblocks(struct mdesc_handle * md)1299 static int __init grab_mblocks(struct mdesc_handle *md)
1300 {
1301 	unsigned long paddr;
1302 	int count = 0;
1303 	u64 node;
1304 
1305 	mdesc_for_each_node_by_name(md, node, "mblock")
1306 		count++;
1307 	if (!count)
1308 		return -ENOENT;
1309 
1310 	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1311 			  SMP_CACHE_BYTES);
1312 	if (!paddr)
1313 		return -ENOMEM;
1314 
1315 	mblocks = __va(paddr);
1316 	num_mblocks = count;
1317 
1318 	count = 0;
1319 	mdesc_for_each_node_by_name(md, node, "mblock") {
1320 		struct mdesc_mblock *m = &mblocks[count++];
1321 		const u64 *val;
1322 
1323 		val = mdesc_get_property(md, node, "base", NULL);
1324 		m->base = *val;
1325 		val = mdesc_get_property(md, node, "size", NULL);
1326 		m->size = *val;
1327 		val = mdesc_get_property(md, node,
1328 					 "address-congruence-offset", NULL);
1329 
1330 		/* The address-congruence-offset property is optional.
1331 		 * Explicity zero it be identifty this.
1332 		 */
1333 		if (val)
1334 			m->offset = *val;
1335 		else
1336 			m->offset = 0UL;
1337 
1338 		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1339 			count - 1, m->base, m->size, m->offset);
1340 	}
1341 
1342 	return 0;
1343 }
1344 
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1345 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1346 					       u64 grp, cpumask_t *mask)
1347 {
1348 	u64 arc;
1349 
1350 	cpumask_clear(mask);
1351 
1352 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1353 		u64 target = mdesc_arc_target(md, arc);
1354 		const char *name = mdesc_node_name(md, target);
1355 		const u64 *id;
1356 
1357 		if (strcmp(name, "cpu"))
1358 			continue;
1359 		id = mdesc_get_property(md, target, "id", NULL);
1360 		if (*id < nr_cpu_ids)
1361 			cpumask_set_cpu(*id, mask);
1362 	}
1363 }
1364 
find_mlgroup(u64 node)1365 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < num_mlgroups; i++) {
1370 		struct mdesc_mlgroup *m = &mlgroups[i];
1371 		if (m->node == node)
1372 			return m;
1373 	}
1374 	return NULL;
1375 }
1376 
__node_distance(int from,int to)1377 int __node_distance(int from, int to)
1378 {
1379 	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1380 		pr_warn("Returning default NUMA distance value for %d->%d\n",
1381 			from, to);
1382 		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1383 	}
1384 	return numa_latency[from][to];
1385 }
1386 EXPORT_SYMBOL(__node_distance);
1387 
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup * grp)1388 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1389 {
1390 	int i;
1391 
1392 	for (i = 0; i < MAX_NUMNODES; i++) {
1393 		struct node_mem_mask *n = &node_masks[i];
1394 
1395 		if ((grp->mask == n->mask) && (grp->match == n->match))
1396 			break;
1397 	}
1398 	return i;
1399 }
1400 
find_numa_latencies_for_group(struct mdesc_handle * md,u64 grp,int index)1401 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1402 						 u64 grp, int index)
1403 {
1404 	u64 arc;
1405 
1406 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1407 		int tnode;
1408 		u64 target = mdesc_arc_target(md, arc);
1409 		struct mdesc_mlgroup *m = find_mlgroup(target);
1410 
1411 		if (!m)
1412 			continue;
1413 		tnode = find_best_numa_node_for_mlgroup(m);
1414 		if (tnode == MAX_NUMNODES)
1415 			continue;
1416 		numa_latency[index][tnode] = m->latency;
1417 	}
1418 }
1419 
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1420 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1421 				      int index)
1422 {
1423 	struct mdesc_mlgroup *candidate = NULL;
1424 	u64 arc, best_latency = ~(u64)0;
1425 	struct node_mem_mask *n;
1426 
1427 	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1428 		u64 target = mdesc_arc_target(md, arc);
1429 		struct mdesc_mlgroup *m = find_mlgroup(target);
1430 		if (!m)
1431 			continue;
1432 		if (m->latency < best_latency) {
1433 			candidate = m;
1434 			best_latency = m->latency;
1435 		}
1436 	}
1437 	if (!candidate)
1438 		return -ENOENT;
1439 
1440 	if (num_node_masks != index) {
1441 		printk(KERN_ERR "Inconsistent NUMA state, "
1442 		       "index[%d] != num_node_masks[%d]\n",
1443 		       index, num_node_masks);
1444 		return -EINVAL;
1445 	}
1446 
1447 	n = &node_masks[num_node_masks++];
1448 
1449 	n->mask = candidate->mask;
1450 	n->match = candidate->match;
1451 
1452 	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1453 		index, n->mask, n->match, candidate->latency);
1454 
1455 	return 0;
1456 }
1457 
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1458 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1459 					 int index)
1460 {
1461 	cpumask_t mask;
1462 	int cpu;
1463 
1464 	numa_parse_mdesc_group_cpus(md, grp, &mask);
1465 
1466 	for_each_cpu(cpu, &mask)
1467 		numa_cpu_lookup_table[cpu] = index;
1468 	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1469 
1470 	if (numa_debug) {
1471 		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1472 		for_each_cpu(cpu, &mask)
1473 			printk("%d ", cpu);
1474 		printk("]\n");
1475 	}
1476 
1477 	return numa_attach_mlgroup(md, grp, index);
1478 }
1479 
numa_parse_mdesc(void)1480 static int __init numa_parse_mdesc(void)
1481 {
1482 	struct mdesc_handle *md = mdesc_grab();
1483 	int i, j, err, count;
1484 	u64 node;
1485 
1486 	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1487 	if (node == MDESC_NODE_NULL) {
1488 		mdesc_release(md);
1489 		return -ENOENT;
1490 	}
1491 
1492 	err = grab_mblocks(md);
1493 	if (err < 0)
1494 		goto out;
1495 
1496 	err = grab_mlgroups(md);
1497 	if (err < 0)
1498 		goto out;
1499 
1500 	count = 0;
1501 	mdesc_for_each_node_by_name(md, node, "group") {
1502 		err = numa_parse_mdesc_group(md, node, count);
1503 		if (err < 0)
1504 			break;
1505 		count++;
1506 	}
1507 
1508 	count = 0;
1509 	mdesc_for_each_node_by_name(md, node, "group") {
1510 		find_numa_latencies_for_group(md, node, count);
1511 		count++;
1512 	}
1513 
1514 	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1515 	for (i = 0; i < MAX_NUMNODES; i++) {
1516 		u64 self_latency = numa_latency[i][i];
1517 
1518 		for (j = 0; j < MAX_NUMNODES; j++) {
1519 			numa_latency[i][j] =
1520 				(numa_latency[i][j] * LOCAL_DISTANCE) /
1521 				self_latency;
1522 		}
1523 	}
1524 
1525 	add_node_ranges();
1526 
1527 	for (i = 0; i < num_node_masks; i++) {
1528 		allocate_node_data(i);
1529 		node_set_online(i);
1530 	}
1531 
1532 	err = 0;
1533 out:
1534 	mdesc_release(md);
1535 	return err;
1536 }
1537 
numa_parse_jbus(void)1538 static int __init numa_parse_jbus(void)
1539 {
1540 	unsigned long cpu, index;
1541 
1542 	/* NUMA node id is encoded in bits 36 and higher, and there is
1543 	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1544 	 */
1545 	index = 0;
1546 	for_each_present_cpu(cpu) {
1547 		numa_cpu_lookup_table[cpu] = index;
1548 		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1549 		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1550 		node_masks[index].match = cpu << 36UL;
1551 
1552 		index++;
1553 	}
1554 	num_node_masks = index;
1555 
1556 	add_node_ranges();
1557 
1558 	for (index = 0; index < num_node_masks; index++) {
1559 		allocate_node_data(index);
1560 		node_set_online(index);
1561 	}
1562 
1563 	return 0;
1564 }
1565 
numa_parse_sun4u(void)1566 static int __init numa_parse_sun4u(void)
1567 {
1568 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1569 		unsigned long ver;
1570 
1571 		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1572 		if ((ver >> 32UL) == __JALAPENO_ID ||
1573 		    (ver >> 32UL) == __SERRANO_ID)
1574 			return numa_parse_jbus();
1575 	}
1576 	return -1;
1577 }
1578 
bootmem_init_numa(void)1579 static int __init bootmem_init_numa(void)
1580 {
1581 	int i, j;
1582 	int err = -1;
1583 
1584 	numadbg("bootmem_init_numa()\n");
1585 
1586 	/* Some sane defaults for numa latency values */
1587 	for (i = 0; i < MAX_NUMNODES; i++) {
1588 		for (j = 0; j < MAX_NUMNODES; j++)
1589 			numa_latency[i][j] = (i == j) ?
1590 				LOCAL_DISTANCE : REMOTE_DISTANCE;
1591 	}
1592 
1593 	if (numa_enabled) {
1594 		if (tlb_type == hypervisor)
1595 			err = numa_parse_mdesc();
1596 		else
1597 			err = numa_parse_sun4u();
1598 	}
1599 	return err;
1600 }
1601 
1602 #else
1603 
bootmem_init_numa(void)1604 static int bootmem_init_numa(void)
1605 {
1606 	return -1;
1607 }
1608 
1609 #endif
1610 
bootmem_init_nonnuma(void)1611 static void __init bootmem_init_nonnuma(void)
1612 {
1613 	unsigned long top_of_ram = memblock_end_of_DRAM();
1614 	unsigned long total_ram = memblock_phys_mem_size();
1615 
1616 	numadbg("bootmem_init_nonnuma()\n");
1617 
1618 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1619 	       top_of_ram, total_ram);
1620 	printk(KERN_INFO "Memory hole size: %ldMB\n",
1621 	       (top_of_ram - total_ram) >> 20);
1622 
1623 	init_node_masks_nonnuma();
1624 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1625 	allocate_node_data(0);
1626 	node_set_online(0);
1627 }
1628 
bootmem_init(unsigned long phys_base)1629 static unsigned long __init bootmem_init(unsigned long phys_base)
1630 {
1631 	unsigned long end_pfn;
1632 
1633 	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1634 	max_pfn = max_low_pfn = end_pfn;
1635 	min_low_pfn = (phys_base >> PAGE_SHIFT);
1636 
1637 	if (bootmem_init_numa() < 0)
1638 		bootmem_init_nonnuma();
1639 
1640 	/* Dump memblock with node info. */
1641 	memblock_dump_all();
1642 
1643 	/* XXX cpu notifier XXX */
1644 
1645 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1646 	sparse_init();
1647 
1648 	return end_pfn;
1649 }
1650 
1651 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1652 static int pall_ents __initdata;
1653 
1654 static unsigned long max_phys_bits = 40;
1655 
kern_addr_valid(unsigned long addr)1656 bool kern_addr_valid(unsigned long addr)
1657 {
1658 	pgd_t *pgd;
1659 	pud_t *pud;
1660 	pmd_t *pmd;
1661 	pte_t *pte;
1662 
1663 	if ((long)addr < 0L) {
1664 		unsigned long pa = __pa(addr);
1665 
1666 		if ((pa >> max_phys_bits) != 0UL)
1667 			return false;
1668 
1669 		return pfn_valid(pa >> PAGE_SHIFT);
1670 	}
1671 
1672 	if (addr >= (unsigned long) KERNBASE &&
1673 	    addr < (unsigned long)&_end)
1674 		return true;
1675 
1676 	pgd = pgd_offset_k(addr);
1677 	if (pgd_none(*pgd))
1678 		return 0;
1679 
1680 	pud = pud_offset(pgd, addr);
1681 	if (pud_none(*pud))
1682 		return 0;
1683 
1684 	if (pud_large(*pud))
1685 		return pfn_valid(pud_pfn(*pud));
1686 
1687 	pmd = pmd_offset(pud, addr);
1688 	if (pmd_none(*pmd))
1689 		return 0;
1690 
1691 	if (pmd_large(*pmd))
1692 		return pfn_valid(pmd_pfn(*pmd));
1693 
1694 	pte = pte_offset_kernel(pmd, addr);
1695 	if (pte_none(*pte))
1696 		return 0;
1697 
1698 	return pfn_valid(pte_pfn(*pte));
1699 }
1700 EXPORT_SYMBOL(kern_addr_valid);
1701 
kernel_map_hugepud(unsigned long vstart,unsigned long vend,pud_t * pud)1702 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1703 					      unsigned long vend,
1704 					      pud_t *pud)
1705 {
1706 	const unsigned long mask16gb = (1UL << 34) - 1UL;
1707 	u64 pte_val = vstart;
1708 
1709 	/* Each PUD is 8GB */
1710 	if ((vstart & mask16gb) ||
1711 	    (vend - vstart <= mask16gb)) {
1712 		pte_val ^= kern_linear_pte_xor[2];
1713 		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1714 
1715 		return vstart + PUD_SIZE;
1716 	}
1717 
1718 	pte_val ^= kern_linear_pte_xor[3];
1719 	pte_val |= _PAGE_PUD_HUGE;
1720 
1721 	vend = vstart + mask16gb + 1UL;
1722 	while (vstart < vend) {
1723 		pud_val(*pud) = pte_val;
1724 
1725 		pte_val += PUD_SIZE;
1726 		vstart += PUD_SIZE;
1727 		pud++;
1728 	}
1729 	return vstart;
1730 }
1731 
kernel_can_map_hugepud(unsigned long vstart,unsigned long vend,bool guard)1732 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1733 				   bool guard)
1734 {
1735 	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1736 		return true;
1737 
1738 	return false;
1739 }
1740 
kernel_map_hugepmd(unsigned long vstart,unsigned long vend,pmd_t * pmd)1741 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1742 					      unsigned long vend,
1743 					      pmd_t *pmd)
1744 {
1745 	const unsigned long mask256mb = (1UL << 28) - 1UL;
1746 	const unsigned long mask2gb = (1UL << 31) - 1UL;
1747 	u64 pte_val = vstart;
1748 
1749 	/* Each PMD is 8MB */
1750 	if ((vstart & mask256mb) ||
1751 	    (vend - vstart <= mask256mb)) {
1752 		pte_val ^= kern_linear_pte_xor[0];
1753 		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1754 
1755 		return vstart + PMD_SIZE;
1756 	}
1757 
1758 	if ((vstart & mask2gb) ||
1759 	    (vend - vstart <= mask2gb)) {
1760 		pte_val ^= kern_linear_pte_xor[1];
1761 		pte_val |= _PAGE_PMD_HUGE;
1762 		vend = vstart + mask256mb + 1UL;
1763 	} else {
1764 		pte_val ^= kern_linear_pte_xor[2];
1765 		pte_val |= _PAGE_PMD_HUGE;
1766 		vend = vstart + mask2gb + 1UL;
1767 	}
1768 
1769 	while (vstart < vend) {
1770 		pmd_val(*pmd) = pte_val;
1771 
1772 		pte_val += PMD_SIZE;
1773 		vstart += PMD_SIZE;
1774 		pmd++;
1775 	}
1776 
1777 	return vstart;
1778 }
1779 
kernel_can_map_hugepmd(unsigned long vstart,unsigned long vend,bool guard)1780 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1781 				   bool guard)
1782 {
1783 	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1784 		return true;
1785 
1786 	return false;
1787 }
1788 
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot,bool use_huge)1789 static unsigned long __ref kernel_map_range(unsigned long pstart,
1790 					    unsigned long pend, pgprot_t prot,
1791 					    bool use_huge)
1792 {
1793 	unsigned long vstart = PAGE_OFFSET + pstart;
1794 	unsigned long vend = PAGE_OFFSET + pend;
1795 	unsigned long alloc_bytes = 0UL;
1796 
1797 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1798 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1799 			    vstart, vend);
1800 		prom_halt();
1801 	}
1802 
1803 	while (vstart < vend) {
1804 		unsigned long this_end, paddr = __pa(vstart);
1805 		pgd_t *pgd = pgd_offset_k(vstart);
1806 		pud_t *pud;
1807 		pmd_t *pmd;
1808 		pte_t *pte;
1809 
1810 		if (pgd_none(*pgd)) {
1811 			pud_t *new;
1812 
1813 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1814 			alloc_bytes += PAGE_SIZE;
1815 			pgd_populate(&init_mm, pgd, new);
1816 		}
1817 		pud = pud_offset(pgd, vstart);
1818 		if (pud_none(*pud)) {
1819 			pmd_t *new;
1820 
1821 			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1822 				vstart = kernel_map_hugepud(vstart, vend, pud);
1823 				continue;
1824 			}
1825 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1826 			alloc_bytes += PAGE_SIZE;
1827 			pud_populate(&init_mm, pud, new);
1828 		}
1829 
1830 		pmd = pmd_offset(pud, vstart);
1831 		if (pmd_none(*pmd)) {
1832 			pte_t *new;
1833 
1834 			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1835 				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1836 				continue;
1837 			}
1838 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1839 			alloc_bytes += PAGE_SIZE;
1840 			pmd_populate_kernel(&init_mm, pmd, new);
1841 		}
1842 
1843 		pte = pte_offset_kernel(pmd, vstart);
1844 		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1845 		if (this_end > vend)
1846 			this_end = vend;
1847 
1848 		while (vstart < this_end) {
1849 			pte_val(*pte) = (paddr | pgprot_val(prot));
1850 
1851 			vstart += PAGE_SIZE;
1852 			paddr += PAGE_SIZE;
1853 			pte++;
1854 		}
1855 	}
1856 
1857 	return alloc_bytes;
1858 }
1859 
flush_all_kernel_tsbs(void)1860 static void __init flush_all_kernel_tsbs(void)
1861 {
1862 	int i;
1863 
1864 	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1865 		struct tsb *ent = &swapper_tsb[i];
1866 
1867 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1868 	}
1869 #ifndef CONFIG_DEBUG_PAGEALLOC
1870 	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1871 		struct tsb *ent = &swapper_4m_tsb[i];
1872 
1873 		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1874 	}
1875 #endif
1876 }
1877 
1878 extern unsigned int kvmap_linear_patch[1];
1879 
kernel_physical_mapping_init(void)1880 static void __init kernel_physical_mapping_init(void)
1881 {
1882 	unsigned long i, mem_alloced = 0UL;
1883 	bool use_huge = true;
1884 
1885 #ifdef CONFIG_DEBUG_PAGEALLOC
1886 	use_huge = false;
1887 #endif
1888 	for (i = 0; i < pall_ents; i++) {
1889 		unsigned long phys_start, phys_end;
1890 
1891 		phys_start = pall[i].phys_addr;
1892 		phys_end = phys_start + pall[i].reg_size;
1893 
1894 		mem_alloced += kernel_map_range(phys_start, phys_end,
1895 						PAGE_KERNEL, use_huge);
1896 	}
1897 
1898 	printk("Allocated %ld bytes for kernel page tables.\n",
1899 	       mem_alloced);
1900 
1901 	kvmap_linear_patch[0] = 0x01000000; /* nop */
1902 	flushi(&kvmap_linear_patch[0]);
1903 
1904 	flush_all_kernel_tsbs();
1905 
1906 	__flush_tlb_all();
1907 }
1908 
1909 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)1910 void __kernel_map_pages(struct page *page, int numpages, int enable)
1911 {
1912 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1913 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1914 
1915 	kernel_map_range(phys_start, phys_end,
1916 			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1917 
1918 	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1919 			       PAGE_OFFSET + phys_end);
1920 
1921 	/* we should perform an IPI and flush all tlbs,
1922 	 * but that can deadlock->flush only current cpu.
1923 	 */
1924 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1925 				 PAGE_OFFSET + phys_end);
1926 }
1927 #endif
1928 
find_ecache_flush_span(unsigned long size)1929 unsigned long __init find_ecache_flush_span(unsigned long size)
1930 {
1931 	int i;
1932 
1933 	for (i = 0; i < pavail_ents; i++) {
1934 		if (pavail[i].reg_size >= size)
1935 			return pavail[i].phys_addr;
1936 	}
1937 
1938 	return ~0UL;
1939 }
1940 
1941 unsigned long PAGE_OFFSET;
1942 EXPORT_SYMBOL(PAGE_OFFSET);
1943 
1944 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1945 EXPORT_SYMBOL(VMALLOC_END);
1946 
1947 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1948 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1949 
setup_page_offset(void)1950 static void __init setup_page_offset(void)
1951 {
1952 	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1953 		/* Cheetah/Panther support a full 64-bit virtual
1954 		 * address, so we can use all that our page tables
1955 		 * support.
1956 		 */
1957 		sparc64_va_hole_top =    0xfff0000000000000UL;
1958 		sparc64_va_hole_bottom = 0x0010000000000000UL;
1959 
1960 		max_phys_bits = 42;
1961 	} else if (tlb_type == hypervisor) {
1962 		switch (sun4v_chip_type) {
1963 		case SUN4V_CHIP_NIAGARA1:
1964 		case SUN4V_CHIP_NIAGARA2:
1965 			/* T1 and T2 support 48-bit virtual addresses.  */
1966 			sparc64_va_hole_top =    0xffff800000000000UL;
1967 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1968 
1969 			max_phys_bits = 39;
1970 			break;
1971 		case SUN4V_CHIP_NIAGARA3:
1972 			/* T3 supports 48-bit virtual addresses.  */
1973 			sparc64_va_hole_top =    0xffff800000000000UL;
1974 			sparc64_va_hole_bottom = 0x0000800000000000UL;
1975 
1976 			max_phys_bits = 43;
1977 			break;
1978 		case SUN4V_CHIP_NIAGARA4:
1979 		case SUN4V_CHIP_NIAGARA5:
1980 		case SUN4V_CHIP_SPARC64X:
1981 		case SUN4V_CHIP_SPARC_M6:
1982 			/* T4 and later support 52-bit virtual addresses.  */
1983 			sparc64_va_hole_top =    0xfff8000000000000UL;
1984 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1985 			max_phys_bits = 47;
1986 			break;
1987 		case SUN4V_CHIP_SPARC_M7:
1988 		case SUN4V_CHIP_SPARC_SN:
1989 			/* M7 and later support 52-bit virtual addresses.  */
1990 			sparc64_va_hole_top =    0xfff8000000000000UL;
1991 			sparc64_va_hole_bottom = 0x0008000000000000UL;
1992 			max_phys_bits = 49;
1993 			break;
1994 		case SUN4V_CHIP_SPARC_M8:
1995 		default:
1996 			/* M8 and later support 54-bit virtual addresses.
1997 			 * However, restricting M8 and above VA bits to 53
1998 			 * as 4-level page table cannot support more than
1999 			 * 53 VA bits.
2000 			 */
2001 			sparc64_va_hole_top =    0xfff0000000000000UL;
2002 			sparc64_va_hole_bottom = 0x0010000000000000UL;
2003 			max_phys_bits = 51;
2004 			break;
2005 		}
2006 	}
2007 
2008 	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2009 		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2010 			    max_phys_bits);
2011 		prom_halt();
2012 	}
2013 
2014 	PAGE_OFFSET = sparc64_va_hole_top;
2015 	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2016 		       (sparc64_va_hole_bottom >> 2));
2017 
2018 	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2019 		PAGE_OFFSET, max_phys_bits);
2020 	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2021 		VMALLOC_START, VMALLOC_END);
2022 	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2023 		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2024 }
2025 
tsb_phys_patch(void)2026 static void __init tsb_phys_patch(void)
2027 {
2028 	struct tsb_ldquad_phys_patch_entry *pquad;
2029 	struct tsb_phys_patch_entry *p;
2030 
2031 	pquad = &__tsb_ldquad_phys_patch;
2032 	while (pquad < &__tsb_ldquad_phys_patch_end) {
2033 		unsigned long addr = pquad->addr;
2034 
2035 		if (tlb_type == hypervisor)
2036 			*(unsigned int *) addr = pquad->sun4v_insn;
2037 		else
2038 			*(unsigned int *) addr = pquad->sun4u_insn;
2039 		wmb();
2040 		__asm__ __volatile__("flush	%0"
2041 				     : /* no outputs */
2042 				     : "r" (addr));
2043 
2044 		pquad++;
2045 	}
2046 
2047 	p = &__tsb_phys_patch;
2048 	while (p < &__tsb_phys_patch_end) {
2049 		unsigned long addr = p->addr;
2050 
2051 		*(unsigned int *) addr = p->insn;
2052 		wmb();
2053 		__asm__ __volatile__("flush	%0"
2054 				     : /* no outputs */
2055 				     : "r" (addr));
2056 
2057 		p++;
2058 	}
2059 }
2060 
2061 /* Don't mark as init, we give this to the Hypervisor.  */
2062 #ifndef CONFIG_DEBUG_PAGEALLOC
2063 #define NUM_KTSB_DESCR	2
2064 #else
2065 #define NUM_KTSB_DESCR	1
2066 #endif
2067 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2068 
2069 /* The swapper TSBs are loaded with a base sequence of:
2070  *
2071  *	sethi	%uhi(SYMBOL), REG1
2072  *	sethi	%hi(SYMBOL), REG2
2073  *	or	REG1, %ulo(SYMBOL), REG1
2074  *	or	REG2, %lo(SYMBOL), REG2
2075  *	sllx	REG1, 32, REG1
2076  *	or	REG1, REG2, REG1
2077  *
2078  * When we use physical addressing for the TSB accesses, we patch the
2079  * first four instructions in the above sequence.
2080  */
2081 
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)2082 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2083 {
2084 	unsigned long high_bits, low_bits;
2085 
2086 	high_bits = (pa >> 32) & 0xffffffff;
2087 	low_bits = (pa >> 0) & 0xffffffff;
2088 
2089 	while (start < end) {
2090 		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2091 
2092 		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2093 		__asm__ __volatile__("flush	%0" : : "r" (ia));
2094 
2095 		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2096 		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2097 
2098 		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2099 		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2100 
2101 		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2102 		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2103 
2104 		start++;
2105 	}
2106 }
2107 
ktsb_phys_patch(void)2108 static void ktsb_phys_patch(void)
2109 {
2110 	extern unsigned int __swapper_tsb_phys_patch;
2111 	extern unsigned int __swapper_tsb_phys_patch_end;
2112 	unsigned long ktsb_pa;
2113 
2114 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2115 	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2116 			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2117 #ifndef CONFIG_DEBUG_PAGEALLOC
2118 	{
2119 	extern unsigned int __swapper_4m_tsb_phys_patch;
2120 	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2121 	ktsb_pa = (kern_base +
2122 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2123 	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2124 			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2125 	}
2126 #endif
2127 }
2128 
sun4v_ktsb_init(void)2129 static void __init sun4v_ktsb_init(void)
2130 {
2131 	unsigned long ktsb_pa;
2132 
2133 	/* First KTSB for PAGE_SIZE mappings.  */
2134 	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2135 
2136 	switch (PAGE_SIZE) {
2137 	case 8 * 1024:
2138 	default:
2139 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2140 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2141 		break;
2142 
2143 	case 64 * 1024:
2144 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2145 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2146 		break;
2147 
2148 	case 512 * 1024:
2149 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2150 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2151 		break;
2152 
2153 	case 4 * 1024 * 1024:
2154 		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2155 		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2156 		break;
2157 	}
2158 
2159 	ktsb_descr[0].assoc = 1;
2160 	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2161 	ktsb_descr[0].ctx_idx = 0;
2162 	ktsb_descr[0].tsb_base = ktsb_pa;
2163 	ktsb_descr[0].resv = 0;
2164 
2165 #ifndef CONFIG_DEBUG_PAGEALLOC
2166 	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2167 	ktsb_pa = (kern_base +
2168 		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2169 
2170 	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2171 	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2172 				    HV_PGSZ_MASK_256MB |
2173 				    HV_PGSZ_MASK_2GB |
2174 				    HV_PGSZ_MASK_16GB) &
2175 				   cpu_pgsz_mask);
2176 	ktsb_descr[1].assoc = 1;
2177 	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2178 	ktsb_descr[1].ctx_idx = 0;
2179 	ktsb_descr[1].tsb_base = ktsb_pa;
2180 	ktsb_descr[1].resv = 0;
2181 #endif
2182 }
2183 
sun4v_ktsb_register(void)2184 void sun4v_ktsb_register(void)
2185 {
2186 	unsigned long pa, ret;
2187 
2188 	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2189 
2190 	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2191 	if (ret != 0) {
2192 		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2193 			    "errors with %lx\n", pa, ret);
2194 		prom_halt();
2195 	}
2196 }
2197 
sun4u_linear_pte_xor_finalize(void)2198 static void __init sun4u_linear_pte_xor_finalize(void)
2199 {
2200 #ifndef CONFIG_DEBUG_PAGEALLOC
2201 	/* This is where we would add Panther support for
2202 	 * 32MB and 256MB pages.
2203 	 */
2204 #endif
2205 }
2206 
sun4v_linear_pte_xor_finalize(void)2207 static void __init sun4v_linear_pte_xor_finalize(void)
2208 {
2209 	unsigned long pagecv_flag;
2210 
2211 	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2212 	 * enables MCD error. Do not set bit 9 on M7 processor.
2213 	 */
2214 	switch (sun4v_chip_type) {
2215 	case SUN4V_CHIP_SPARC_M7:
2216 	case SUN4V_CHIP_SPARC_M8:
2217 	case SUN4V_CHIP_SPARC_SN:
2218 		pagecv_flag = 0x00;
2219 		break;
2220 	default:
2221 		pagecv_flag = _PAGE_CV_4V;
2222 		break;
2223 	}
2224 #ifndef CONFIG_DEBUG_PAGEALLOC
2225 	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2226 		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2227 			PAGE_OFFSET;
2228 		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2229 					   _PAGE_P_4V | _PAGE_W_4V);
2230 	} else {
2231 		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2232 	}
2233 
2234 	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2235 		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2236 			PAGE_OFFSET;
2237 		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2238 					   _PAGE_P_4V | _PAGE_W_4V);
2239 	} else {
2240 		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2241 	}
2242 
2243 	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2244 		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2245 			PAGE_OFFSET;
2246 		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2247 					   _PAGE_P_4V | _PAGE_W_4V);
2248 	} else {
2249 		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2250 	}
2251 #endif
2252 }
2253 
2254 /* paging_init() sets up the page tables */
2255 
2256 static unsigned long last_valid_pfn;
2257 
2258 static void sun4u_pgprot_init(void);
2259 static void sun4v_pgprot_init(void);
2260 
available_memory(void)2261 static phys_addr_t __init available_memory(void)
2262 {
2263 	phys_addr_t available = 0ULL;
2264 	phys_addr_t pa_start, pa_end;
2265 	u64 i;
2266 
2267 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2268 				&pa_end, NULL)
2269 		available = available + (pa_end  - pa_start);
2270 
2271 	return available;
2272 }
2273 
2274 #define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2275 #define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2276 #define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2277 #define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2278 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2279 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2280 
2281 /* We need to exclude reserved regions. This exclusion will include
2282  * vmlinux and initrd. To be more precise the initrd size could be used to
2283  * compute a new lower limit because it is freed later during initialization.
2284  */
reduce_memory(phys_addr_t limit_ram)2285 static void __init reduce_memory(phys_addr_t limit_ram)
2286 {
2287 	phys_addr_t avail_ram = available_memory();
2288 	phys_addr_t pa_start, pa_end;
2289 	u64 i;
2290 
2291 	if (limit_ram >= avail_ram)
2292 		return;
2293 
2294 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2295 				&pa_end, NULL) {
2296 		phys_addr_t region_size = pa_end - pa_start;
2297 		phys_addr_t clip_start = pa_start;
2298 
2299 		avail_ram = avail_ram - region_size;
2300 		/* Are we consuming too much? */
2301 		if (avail_ram < limit_ram) {
2302 			phys_addr_t give_back = limit_ram - avail_ram;
2303 
2304 			region_size = region_size - give_back;
2305 			clip_start = clip_start + give_back;
2306 		}
2307 
2308 		memblock_remove(clip_start, region_size);
2309 
2310 		if (avail_ram <= limit_ram)
2311 			break;
2312 		i = 0UL;
2313 	}
2314 }
2315 
paging_init(void)2316 void __init paging_init(void)
2317 {
2318 	unsigned long end_pfn, shift, phys_base;
2319 	unsigned long real_end, i;
2320 
2321 	setup_page_offset();
2322 
2323 	/* These build time checkes make sure that the dcache_dirty_cpu()
2324 	 * page->flags usage will work.
2325 	 *
2326 	 * When a page gets marked as dcache-dirty, we store the
2327 	 * cpu number starting at bit 32 in the page->flags.  Also,
2328 	 * functions like clear_dcache_dirty_cpu use the cpu mask
2329 	 * in 13-bit signed-immediate instruction fields.
2330 	 */
2331 
2332 	/*
2333 	 * Page flags must not reach into upper 32 bits that are used
2334 	 * for the cpu number
2335 	 */
2336 	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2337 
2338 	/*
2339 	 * The bit fields placed in the high range must not reach below
2340 	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2341 	 * at the 32 bit boundary.
2342 	 */
2343 	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2344 		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2345 
2346 	BUILD_BUG_ON(NR_CPUS > 4096);
2347 
2348 	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2349 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2350 
2351 	/* Invalidate both kernel TSBs.  */
2352 	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2353 #ifndef CONFIG_DEBUG_PAGEALLOC
2354 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2355 #endif
2356 
2357 	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2358 	 * bit on M7 processor. This is a conflicting usage of the same
2359 	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2360 	 * Detection error on all pages and this will lead to problems
2361 	 * later. Kernel does not run with MCD enabled and hence rest
2362 	 * of the required steps to fully configure memory corruption
2363 	 * detection are not taken. We need to ensure TTE.mcde is not
2364 	 * set on M7 processor. Compute the value of cacheability
2365 	 * flag for use later taking this into consideration.
2366 	 */
2367 	switch (sun4v_chip_type) {
2368 	case SUN4V_CHIP_SPARC_M7:
2369 	case SUN4V_CHIP_SPARC_M8:
2370 	case SUN4V_CHIP_SPARC_SN:
2371 		page_cache4v_flag = _PAGE_CP_4V;
2372 		break;
2373 	default:
2374 		page_cache4v_flag = _PAGE_CACHE_4V;
2375 		break;
2376 	}
2377 
2378 	if (tlb_type == hypervisor)
2379 		sun4v_pgprot_init();
2380 	else
2381 		sun4u_pgprot_init();
2382 
2383 	if (tlb_type == cheetah_plus ||
2384 	    tlb_type == hypervisor) {
2385 		tsb_phys_patch();
2386 		ktsb_phys_patch();
2387 	}
2388 
2389 	if (tlb_type == hypervisor)
2390 		sun4v_patch_tlb_handlers();
2391 
2392 	/* Find available physical memory...
2393 	 *
2394 	 * Read it twice in order to work around a bug in openfirmware.
2395 	 * The call to grab this table itself can cause openfirmware to
2396 	 * allocate memory, which in turn can take away some space from
2397 	 * the list of available memory.  Reading it twice makes sure
2398 	 * we really do get the final value.
2399 	 */
2400 	read_obp_translations();
2401 	read_obp_memory("reg", &pall[0], &pall_ents);
2402 	read_obp_memory("available", &pavail[0], &pavail_ents);
2403 	read_obp_memory("available", &pavail[0], &pavail_ents);
2404 
2405 	phys_base = 0xffffffffffffffffUL;
2406 	for (i = 0; i < pavail_ents; i++) {
2407 		phys_base = min(phys_base, pavail[i].phys_addr);
2408 		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2409 	}
2410 
2411 	memblock_reserve(kern_base, kern_size);
2412 
2413 	find_ramdisk(phys_base);
2414 
2415 	if (cmdline_memory_size)
2416 		reduce_memory(cmdline_memory_size);
2417 
2418 	memblock_allow_resize();
2419 	memblock_dump_all();
2420 
2421 	set_bit(0, mmu_context_bmap);
2422 
2423 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2424 
2425 	real_end = (unsigned long)_end;
2426 	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2427 	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2428 	       num_kernel_image_mappings);
2429 
2430 	/* Set kernel pgd to upper alias so physical page computations
2431 	 * work.
2432 	 */
2433 	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2434 
2435 	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2436 
2437 	inherit_prom_mappings();
2438 
2439 	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2440 	setup_tba();
2441 
2442 	__flush_tlb_all();
2443 
2444 	prom_build_devicetree();
2445 	of_populate_present_mask();
2446 #ifndef CONFIG_SMP
2447 	of_fill_in_cpu_data();
2448 #endif
2449 
2450 	if (tlb_type == hypervisor) {
2451 		sun4v_mdesc_init();
2452 		mdesc_populate_present_mask(cpu_all_mask);
2453 #ifndef CONFIG_SMP
2454 		mdesc_fill_in_cpu_data(cpu_all_mask);
2455 #endif
2456 		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2457 
2458 		sun4v_linear_pte_xor_finalize();
2459 
2460 		sun4v_ktsb_init();
2461 		sun4v_ktsb_register();
2462 	} else {
2463 		unsigned long impl, ver;
2464 
2465 		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2466 				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2467 
2468 		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2469 		impl = ((ver >> 32) & 0xffff);
2470 		if (impl == PANTHER_IMPL)
2471 			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2472 					  HV_PGSZ_MASK_256MB);
2473 
2474 		sun4u_linear_pte_xor_finalize();
2475 	}
2476 
2477 	/* Flush the TLBs and the 4M TSB so that the updated linear
2478 	 * pte XOR settings are realized for all mappings.
2479 	 */
2480 	__flush_tlb_all();
2481 #ifndef CONFIG_DEBUG_PAGEALLOC
2482 	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2483 #endif
2484 	__flush_tlb_all();
2485 
2486 	/* Setup bootmem... */
2487 	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2488 
2489 	kernel_physical_mapping_init();
2490 
2491 	{
2492 		unsigned long max_zone_pfns[MAX_NR_ZONES];
2493 
2494 		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2495 
2496 		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2497 
2498 		free_area_init_nodes(max_zone_pfns);
2499 	}
2500 
2501 	printk("Booting Linux...\n");
2502 }
2503 
page_in_phys_avail(unsigned long paddr)2504 int page_in_phys_avail(unsigned long paddr)
2505 {
2506 	int i;
2507 
2508 	paddr &= PAGE_MASK;
2509 
2510 	for (i = 0; i < pavail_ents; i++) {
2511 		unsigned long start, end;
2512 
2513 		start = pavail[i].phys_addr;
2514 		end = start + pavail[i].reg_size;
2515 
2516 		if (paddr >= start && paddr < end)
2517 			return 1;
2518 	}
2519 	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2520 		return 1;
2521 #ifdef CONFIG_BLK_DEV_INITRD
2522 	if (paddr >= __pa(initrd_start) &&
2523 	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2524 		return 1;
2525 #endif
2526 
2527 	return 0;
2528 }
2529 
register_page_bootmem_info(void)2530 static void __init register_page_bootmem_info(void)
2531 {
2532 #ifdef CONFIG_NEED_MULTIPLE_NODES
2533 	int i;
2534 
2535 	for_each_online_node(i)
2536 		if (NODE_DATA(i)->node_spanned_pages)
2537 			register_page_bootmem_info_node(NODE_DATA(i));
2538 #endif
2539 }
mem_init(void)2540 void __init mem_init(void)
2541 {
2542 	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2543 
2544 	free_all_bootmem();
2545 
2546 	/*
2547 	 * Must be done after boot memory is put on freelist, because here we
2548 	 * might set fields in deferred struct pages that have not yet been
2549 	 * initialized, and free_all_bootmem() initializes all the reserved
2550 	 * deferred pages for us.
2551 	 */
2552 	register_page_bootmem_info();
2553 
2554 	/*
2555 	 * Set up the zero page, mark it reserved, so that page count
2556 	 * is not manipulated when freeing the page from user ptes.
2557 	 */
2558 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2559 	if (mem_map_zero == NULL) {
2560 		prom_printf("paging_init: Cannot alloc zero page.\n");
2561 		prom_halt();
2562 	}
2563 	mark_page_reserved(mem_map_zero);
2564 
2565 	mem_init_print_info(NULL);
2566 
2567 	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2568 		cheetah_ecache_flush_init();
2569 }
2570 
free_initmem(void)2571 void free_initmem(void)
2572 {
2573 	unsigned long addr, initend;
2574 	int do_free = 1;
2575 
2576 	/* If the physical memory maps were trimmed by kernel command
2577 	 * line options, don't even try freeing this initmem stuff up.
2578 	 * The kernel image could have been in the trimmed out region
2579 	 * and if so the freeing below will free invalid page structs.
2580 	 */
2581 	if (cmdline_memory_size)
2582 		do_free = 0;
2583 
2584 	/*
2585 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2586 	 */
2587 	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2588 	initend = (unsigned long)(__init_end) & PAGE_MASK;
2589 	for (; addr < initend; addr += PAGE_SIZE) {
2590 		unsigned long page;
2591 
2592 		page = (addr +
2593 			((unsigned long) __va(kern_base)) -
2594 			((unsigned long) KERNBASE));
2595 		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2596 
2597 		if (do_free)
2598 			free_reserved_page(virt_to_page(page));
2599 	}
2600 }
2601 
2602 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)2603 void free_initrd_mem(unsigned long start, unsigned long end)
2604 {
2605 	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2606 			   "initrd");
2607 }
2608 #endif
2609 
2610 pgprot_t PAGE_KERNEL __read_mostly;
2611 EXPORT_SYMBOL(PAGE_KERNEL);
2612 
2613 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2614 pgprot_t PAGE_COPY __read_mostly;
2615 
2616 pgprot_t PAGE_SHARED __read_mostly;
2617 EXPORT_SYMBOL(PAGE_SHARED);
2618 
2619 unsigned long pg_iobits __read_mostly;
2620 
2621 unsigned long _PAGE_IE __read_mostly;
2622 EXPORT_SYMBOL(_PAGE_IE);
2623 
2624 unsigned long _PAGE_E __read_mostly;
2625 EXPORT_SYMBOL(_PAGE_E);
2626 
2627 unsigned long _PAGE_CACHE __read_mostly;
2628 EXPORT_SYMBOL(_PAGE_CACHE);
2629 
2630 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(unsigned long vstart,unsigned long vend,int node)2631 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2632 			       int node)
2633 {
2634 	unsigned long pte_base;
2635 
2636 	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2637 		    _PAGE_CP_4U | _PAGE_CV_4U |
2638 		    _PAGE_P_4U | _PAGE_W_4U);
2639 	if (tlb_type == hypervisor)
2640 		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2641 			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2642 
2643 	pte_base |= _PAGE_PMD_HUGE;
2644 
2645 	vstart = vstart & PMD_MASK;
2646 	vend = ALIGN(vend, PMD_SIZE);
2647 	for (; vstart < vend; vstart += PMD_SIZE) {
2648 		pgd_t *pgd = pgd_offset_k(vstart);
2649 		unsigned long pte;
2650 		pud_t *pud;
2651 		pmd_t *pmd;
2652 
2653 		if (pgd_none(*pgd)) {
2654 			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2655 
2656 			if (!new)
2657 				return -ENOMEM;
2658 			pgd_populate(&init_mm, pgd, new);
2659 		}
2660 
2661 		pud = pud_offset(pgd, vstart);
2662 		if (pud_none(*pud)) {
2663 			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2664 
2665 			if (!new)
2666 				return -ENOMEM;
2667 			pud_populate(&init_mm, pud, new);
2668 		}
2669 
2670 		pmd = pmd_offset(pud, vstart);
2671 
2672 		pte = pmd_val(*pmd);
2673 		if (!(pte & _PAGE_VALID)) {
2674 			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2675 
2676 			if (!block)
2677 				return -ENOMEM;
2678 
2679 			pmd_val(*pmd) = pte_base | __pa(block);
2680 		}
2681 	}
2682 
2683 	return 0;
2684 }
2685 
vmemmap_free(unsigned long start,unsigned long end)2686 void vmemmap_free(unsigned long start, unsigned long end)
2687 {
2688 }
2689 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2690 
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2691 static void prot_init_common(unsigned long page_none,
2692 			     unsigned long page_shared,
2693 			     unsigned long page_copy,
2694 			     unsigned long page_readonly,
2695 			     unsigned long page_exec_bit)
2696 {
2697 	PAGE_COPY = __pgprot(page_copy);
2698 	PAGE_SHARED = __pgprot(page_shared);
2699 
2700 	protection_map[0x0] = __pgprot(page_none);
2701 	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2702 	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2703 	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2704 	protection_map[0x4] = __pgprot(page_readonly);
2705 	protection_map[0x5] = __pgprot(page_readonly);
2706 	protection_map[0x6] = __pgprot(page_copy);
2707 	protection_map[0x7] = __pgprot(page_copy);
2708 	protection_map[0x8] = __pgprot(page_none);
2709 	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2710 	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2711 	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2712 	protection_map[0xc] = __pgprot(page_readonly);
2713 	protection_map[0xd] = __pgprot(page_readonly);
2714 	protection_map[0xe] = __pgprot(page_shared);
2715 	protection_map[0xf] = __pgprot(page_shared);
2716 }
2717 
sun4u_pgprot_init(void)2718 static void __init sun4u_pgprot_init(void)
2719 {
2720 	unsigned long page_none, page_shared, page_copy, page_readonly;
2721 	unsigned long page_exec_bit;
2722 	int i;
2723 
2724 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2725 				_PAGE_CACHE_4U | _PAGE_P_4U |
2726 				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2727 				_PAGE_EXEC_4U);
2728 	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2729 				       _PAGE_CACHE_4U | _PAGE_P_4U |
2730 				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2731 				       _PAGE_EXEC_4U | _PAGE_L_4U);
2732 
2733 	_PAGE_IE = _PAGE_IE_4U;
2734 	_PAGE_E = _PAGE_E_4U;
2735 	_PAGE_CACHE = _PAGE_CACHE_4U;
2736 
2737 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2738 		     __ACCESS_BITS_4U | _PAGE_E_4U);
2739 
2740 #ifdef CONFIG_DEBUG_PAGEALLOC
2741 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2742 #else
2743 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2744 		PAGE_OFFSET;
2745 #endif
2746 	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2747 				   _PAGE_P_4U | _PAGE_W_4U);
2748 
2749 	for (i = 1; i < 4; i++)
2750 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2751 
2752 	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2753 			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2754 			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2755 
2756 
2757 	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2758 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2759 		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2760 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2761 		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2762 	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2763 			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2764 
2765 	page_exec_bit = _PAGE_EXEC_4U;
2766 
2767 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2768 			 page_exec_bit);
2769 }
2770 
sun4v_pgprot_init(void)2771 static void __init sun4v_pgprot_init(void)
2772 {
2773 	unsigned long page_none, page_shared, page_copy, page_readonly;
2774 	unsigned long page_exec_bit;
2775 	int i;
2776 
2777 	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2778 				page_cache4v_flag | _PAGE_P_4V |
2779 				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2780 				_PAGE_EXEC_4V);
2781 	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2782 
2783 	_PAGE_IE = _PAGE_IE_4V;
2784 	_PAGE_E = _PAGE_E_4V;
2785 	_PAGE_CACHE = page_cache4v_flag;
2786 
2787 #ifdef CONFIG_DEBUG_PAGEALLOC
2788 	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2789 #else
2790 	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2791 		PAGE_OFFSET;
2792 #endif
2793 	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2794 				   _PAGE_W_4V);
2795 
2796 	for (i = 1; i < 4; i++)
2797 		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2798 
2799 	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2800 		     __ACCESS_BITS_4V | _PAGE_E_4V);
2801 
2802 	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2803 			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2804 			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2805 			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2806 
2807 	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2808 	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2809 		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2810 	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2811 		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2812 	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2813 			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2814 
2815 	page_exec_bit = _PAGE_EXEC_4V;
2816 
2817 	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2818 			 page_exec_bit);
2819 }
2820 
pte_sz_bits(unsigned long sz)2821 unsigned long pte_sz_bits(unsigned long sz)
2822 {
2823 	if (tlb_type == hypervisor) {
2824 		switch (sz) {
2825 		case 8 * 1024:
2826 		default:
2827 			return _PAGE_SZ8K_4V;
2828 		case 64 * 1024:
2829 			return _PAGE_SZ64K_4V;
2830 		case 512 * 1024:
2831 			return _PAGE_SZ512K_4V;
2832 		case 4 * 1024 * 1024:
2833 			return _PAGE_SZ4MB_4V;
2834 		}
2835 	} else {
2836 		switch (sz) {
2837 		case 8 * 1024:
2838 		default:
2839 			return _PAGE_SZ8K_4U;
2840 		case 64 * 1024:
2841 			return _PAGE_SZ64K_4U;
2842 		case 512 * 1024:
2843 			return _PAGE_SZ512K_4U;
2844 		case 4 * 1024 * 1024:
2845 			return _PAGE_SZ4MB_4U;
2846 		}
2847 	}
2848 }
2849 
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2850 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2851 {
2852 	pte_t pte;
2853 
2854 	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2855 	pte_val(pte) |= (((unsigned long)space) << 32);
2856 	pte_val(pte) |= pte_sz_bits(page_size);
2857 
2858 	return pte;
2859 }
2860 
kern_large_tte(unsigned long paddr)2861 static unsigned long kern_large_tte(unsigned long paddr)
2862 {
2863 	unsigned long val;
2864 
2865 	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2866 	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2867 	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2868 	if (tlb_type == hypervisor)
2869 		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2870 		       page_cache4v_flag | _PAGE_P_4V |
2871 		       _PAGE_EXEC_4V | _PAGE_W_4V);
2872 
2873 	return val | paddr;
2874 }
2875 
2876 /* If not locked, zap it. */
__flush_tlb_all(void)2877 void __flush_tlb_all(void)
2878 {
2879 	unsigned long pstate;
2880 	int i;
2881 
2882 	__asm__ __volatile__("flushw\n\t"
2883 			     "rdpr	%%pstate, %0\n\t"
2884 			     "wrpr	%0, %1, %%pstate"
2885 			     : "=r" (pstate)
2886 			     : "i" (PSTATE_IE));
2887 	if (tlb_type == hypervisor) {
2888 		sun4v_mmu_demap_all();
2889 	} else if (tlb_type == spitfire) {
2890 		for (i = 0; i < 64; i++) {
2891 			/* Spitfire Errata #32 workaround */
2892 			/* NOTE: Always runs on spitfire, so no
2893 			 *       cheetah+ page size encodings.
2894 			 */
2895 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2896 					     "flush	%%g6"
2897 					     : /* No outputs */
2898 					     : "r" (0),
2899 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2900 
2901 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2902 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2903 						     "membar #Sync"
2904 						     : /* no outputs */
2905 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2906 				spitfire_put_dtlb_data(i, 0x0UL);
2907 			}
2908 
2909 			/* Spitfire Errata #32 workaround */
2910 			/* NOTE: Always runs on spitfire, so no
2911 			 *       cheetah+ page size encodings.
2912 			 */
2913 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2914 					     "flush	%%g6"
2915 					     : /* No outputs */
2916 					     : "r" (0),
2917 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2918 
2919 			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2920 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2921 						     "membar #Sync"
2922 						     : /* no outputs */
2923 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2924 				spitfire_put_itlb_data(i, 0x0UL);
2925 			}
2926 		}
2927 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2928 		cheetah_flush_dtlb_all();
2929 		cheetah_flush_itlb_all();
2930 	}
2931 	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2932 			     : : "r" (pstate));
2933 }
2934 
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)2935 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2936 			    unsigned long address)
2937 {
2938 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2939 	pte_t *pte = NULL;
2940 
2941 	if (page)
2942 		pte = (pte_t *) page_address(page);
2943 
2944 	return pte;
2945 }
2946 
pte_alloc_one(struct mm_struct * mm,unsigned long address)2947 pgtable_t pte_alloc_one(struct mm_struct *mm,
2948 			unsigned long address)
2949 {
2950 	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2951 	if (!page)
2952 		return NULL;
2953 	if (!pgtable_page_ctor(page)) {
2954 		free_hot_cold_page(page, 0);
2955 		return NULL;
2956 	}
2957 	return (pte_t *) page_address(page);
2958 }
2959 
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2960 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2961 {
2962 	free_page((unsigned long)pte);
2963 }
2964 
__pte_free(pgtable_t pte)2965 static void __pte_free(pgtable_t pte)
2966 {
2967 	struct page *page = virt_to_page(pte);
2968 
2969 	pgtable_page_dtor(page);
2970 	__free_page(page);
2971 }
2972 
pte_free(struct mm_struct * mm,pgtable_t pte)2973 void pte_free(struct mm_struct *mm, pgtable_t pte)
2974 {
2975 	__pte_free(pte);
2976 }
2977 
pgtable_free(void * table,bool is_page)2978 void pgtable_free(void *table, bool is_page)
2979 {
2980 	if (is_page)
2981 		__pte_free(table);
2982 	else
2983 		kmem_cache_free(pgtable_cache, table);
2984 }
2985 
2986 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2987 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2988 			  pmd_t *pmd)
2989 {
2990 	unsigned long pte, flags;
2991 	struct mm_struct *mm;
2992 	pmd_t entry = *pmd;
2993 
2994 	if (!pmd_large(entry) || !pmd_young(entry))
2995 		return;
2996 
2997 	pte = pmd_val(entry);
2998 
2999 	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
3000 	if (!(pte & _PAGE_VALID))
3001 		return;
3002 
3003 	/* We are fabricating 8MB pages using 4MB real hw pages.  */
3004 	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
3005 
3006 	mm = vma->vm_mm;
3007 
3008 	spin_lock_irqsave(&mm->context.lock, flags);
3009 
3010 	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
3011 		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
3012 					addr, pte);
3013 
3014 	spin_unlock_irqrestore(&mm->context.lock, flags);
3015 }
3016 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3017 
3018 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)3019 static void context_reload(void *__data)
3020 {
3021 	struct mm_struct *mm = __data;
3022 
3023 	if (mm == current->mm)
3024 		load_secondary_context(mm);
3025 }
3026 
hugetlb_setup(struct pt_regs * regs)3027 void hugetlb_setup(struct pt_regs *regs)
3028 {
3029 	struct mm_struct *mm = current->mm;
3030 	struct tsb_config *tp;
3031 
3032 	if (faulthandler_disabled() || !mm) {
3033 		const struct exception_table_entry *entry;
3034 
3035 		entry = search_exception_tables(regs->tpc);
3036 		if (entry) {
3037 			regs->tpc = entry->fixup;
3038 			regs->tnpc = regs->tpc + 4;
3039 			return;
3040 		}
3041 		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3042 		die_if_kernel("HugeTSB in atomic", regs);
3043 	}
3044 
3045 	tp = &mm->context.tsb_block[MM_TSB_HUGE];
3046 	if (likely(tp->tsb == NULL))
3047 		tsb_grow(mm, MM_TSB_HUGE, 0);
3048 
3049 	tsb_context_switch(mm);
3050 	smp_tsb_sync(mm);
3051 
3052 	/* On UltraSPARC-III+ and later, configure the second half of
3053 	 * the Data-TLB for huge pages.
3054 	 */
3055 	if (tlb_type == cheetah_plus) {
3056 		bool need_context_reload = false;
3057 		unsigned long ctx;
3058 
3059 		spin_lock_irq(&ctx_alloc_lock);
3060 		ctx = mm->context.sparc64_ctx_val;
3061 		ctx &= ~CTX_PGSZ_MASK;
3062 		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3063 		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3064 
3065 		if (ctx != mm->context.sparc64_ctx_val) {
3066 			/* When changing the page size fields, we
3067 			 * must perform a context flush so that no
3068 			 * stale entries match.  This flush must
3069 			 * occur with the original context register
3070 			 * settings.
3071 			 */
3072 			do_flush_tlb_mm(mm);
3073 
3074 			/* Reload the context register of all processors
3075 			 * also executing in this address space.
3076 			 */
3077 			mm->context.sparc64_ctx_val = ctx;
3078 			need_context_reload = true;
3079 		}
3080 		spin_unlock_irq(&ctx_alloc_lock);
3081 
3082 		if (need_context_reload)
3083 			on_each_cpu(context_reload, mm, 0);
3084 	}
3085 }
3086 #endif
3087 
3088 static struct resource code_resource = {
3089 	.name	= "Kernel code",
3090 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3091 };
3092 
3093 static struct resource data_resource = {
3094 	.name	= "Kernel data",
3095 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3096 };
3097 
3098 static struct resource bss_resource = {
3099 	.name	= "Kernel bss",
3100 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3101 };
3102 
compute_kern_paddr(void * addr)3103 static inline resource_size_t compute_kern_paddr(void *addr)
3104 {
3105 	return (resource_size_t) (addr - KERNBASE + kern_base);
3106 }
3107 
kernel_lds_init(void)3108 static void __init kernel_lds_init(void)
3109 {
3110 	code_resource.start = compute_kern_paddr(_text);
3111 	code_resource.end   = compute_kern_paddr(_etext - 1);
3112 	data_resource.start = compute_kern_paddr(_etext);
3113 	data_resource.end   = compute_kern_paddr(_edata - 1);
3114 	bss_resource.start  = compute_kern_paddr(__bss_start);
3115 	bss_resource.end    = compute_kern_paddr(_end - 1);
3116 }
3117 
report_memory(void)3118 static int __init report_memory(void)
3119 {
3120 	int i;
3121 	struct resource *res;
3122 
3123 	kernel_lds_init();
3124 
3125 	for (i = 0; i < pavail_ents; i++) {
3126 		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3127 
3128 		if (!res) {
3129 			pr_warn("Failed to allocate source.\n");
3130 			break;
3131 		}
3132 
3133 		res->name = "System RAM";
3134 		res->start = pavail[i].phys_addr;
3135 		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3136 		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3137 
3138 		if (insert_resource(&iomem_resource, res) < 0) {
3139 			pr_warn("Resource insertion failed.\n");
3140 			break;
3141 		}
3142 
3143 		insert_resource(res, &code_resource);
3144 		insert_resource(res, &data_resource);
3145 		insert_resource(res, &bss_resource);
3146 	}
3147 
3148 	return 0;
3149 }
3150 arch_initcall(report_memory);
3151 
3152 #ifdef CONFIG_SMP
3153 #define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3154 #else
3155 #define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3156 #endif
3157 
flush_tlb_kernel_range(unsigned long start,unsigned long end)3158 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3159 {
3160 	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3161 		if (start < LOW_OBP_ADDRESS) {
3162 			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3163 			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3164 		}
3165 		if (end > HI_OBP_ADDRESS) {
3166 			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3167 			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3168 		}
3169 	} else {
3170 		flush_tsb_kernel_range(start, end);
3171 		do_flush_tlb_kernel_range(start, end);
3172 	}
3173 }
3174