• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/tile/kernel/kprobes.c
3  * Kprobes on TILE-Gx
4  *
5  * Some portions copied from the MIPS version.
6  *
7  * Copyright (C) IBM Corporation, 2002, 2004
8  * Copyright 2006 Sony Corp.
9  * Copyright 2010 Cavium Networks
10  *
11  * Copyright 2012 Tilera Corporation. All Rights Reserved.
12  *
13  *   This program is free software; you can redistribute it and/or
14  *   modify it under the terms of the GNU General Public License
15  *   as published by the Free Software Foundation, version 2.
16  *
17  *   This program is distributed in the hope that it will be useful, but
18  *   WITHOUT ANY WARRANTY; without even the implied warranty of
19  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
20  *   NON INFRINGEMENT.  See the GNU General Public License for
21  *   more details.
22  */
23 
24 #include <linux/kprobes.h>
25 #include <linux/kdebug.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 
31 #include <arch/opcode.h>
32 
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 
36 tile_bundle_bits breakpoint_insn = TILEGX_BPT_BUNDLE;
37 tile_bundle_bits breakpoint2_insn = TILEGX_BPT_BUNDLE | DIE_SSTEPBP;
38 
39 /*
40  * Check whether instruction is branch or jump, or if executing it
41  * has different results depending on where it is executed (e.g. lnk).
42  */
insn_has_control(kprobe_opcode_t insn)43 static int __kprobes insn_has_control(kprobe_opcode_t insn)
44 {
45 	if (get_Mode(insn) != 0) {   /* Y-format bundle */
46 		if (get_Opcode_Y1(insn) != RRR_1_OPCODE_Y1 ||
47 		    get_RRROpcodeExtension_Y1(insn) != UNARY_RRR_1_OPCODE_Y1)
48 			return 0;
49 
50 		switch (get_UnaryOpcodeExtension_Y1(insn)) {
51 		case JALRP_UNARY_OPCODE_Y1:
52 		case JALR_UNARY_OPCODE_Y1:
53 		case JRP_UNARY_OPCODE_Y1:
54 		case JR_UNARY_OPCODE_Y1:
55 		case LNK_UNARY_OPCODE_Y1:
56 			return 1;
57 		default:
58 			return 0;
59 		}
60 	}
61 
62 	switch (get_Opcode_X1(insn)) {
63 	case BRANCH_OPCODE_X1:	/* branch instructions */
64 	case JUMP_OPCODE_X1:	/* jump instructions: j and jal */
65 		return 1;
66 
67 	case RRR_0_OPCODE_X1:   /* other jump instructions */
68 		if (get_RRROpcodeExtension_X1(insn) != UNARY_RRR_0_OPCODE_X1)
69 			return 0;
70 		switch (get_UnaryOpcodeExtension_X1(insn)) {
71 		case JALRP_UNARY_OPCODE_X1:
72 		case JALR_UNARY_OPCODE_X1:
73 		case JRP_UNARY_OPCODE_X1:
74 		case JR_UNARY_OPCODE_X1:
75 		case LNK_UNARY_OPCODE_X1:
76 			return 1;
77 		default:
78 			return 0;
79 		}
80 	default:
81 		return 0;
82 	}
83 }
84 
arch_prepare_kprobe(struct kprobe * p)85 int __kprobes arch_prepare_kprobe(struct kprobe *p)
86 {
87 	unsigned long addr = (unsigned long)p->addr;
88 
89 	if (addr & (sizeof(kprobe_opcode_t) - 1))
90 		return -EINVAL;
91 
92 	if (insn_has_control(*p->addr)) {
93 		pr_notice("Kprobes for control instructions are not supported\n");
94 		return -EINVAL;
95 	}
96 
97 	/* insn: must be on special executable page on tile. */
98 	p->ainsn.insn = get_insn_slot();
99 	if (!p->ainsn.insn)
100 		return -ENOMEM;
101 
102 	/*
103 	 * In the kprobe->ainsn.insn[] array we store the original
104 	 * instruction at index zero and a break trap instruction at
105 	 * index one.
106 	 */
107 	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
108 	p->ainsn.insn[1] = breakpoint2_insn;
109 	p->opcode = *p->addr;
110 
111 	return 0;
112 }
113 
arch_arm_kprobe(struct kprobe * p)114 void __kprobes arch_arm_kprobe(struct kprobe *p)
115 {
116 	unsigned long addr_wr;
117 
118 	/* Operate on writable kernel text mapping. */
119 	addr_wr = ktext_writable_addr(p->addr);
120 
121 	if (probe_kernel_write((void *)addr_wr, &breakpoint_insn,
122 		sizeof(breakpoint_insn)))
123 		pr_err("%s: failed to enable kprobe\n", __func__);
124 
125 	smp_wmb();
126 	flush_insn_slot(p);
127 }
128 
arch_disarm_kprobe(struct kprobe * kp)129 void __kprobes arch_disarm_kprobe(struct kprobe *kp)
130 {
131 	unsigned long addr_wr;
132 
133 	/* Operate on writable kernel text mapping. */
134 	addr_wr = ktext_writable_addr(kp->addr);
135 
136 	if (probe_kernel_write((void *)addr_wr, &kp->opcode,
137 		sizeof(kp->opcode)))
138 		pr_err("%s: failed to enable kprobe\n", __func__);
139 
140 	smp_wmb();
141 	flush_insn_slot(kp);
142 }
143 
arch_remove_kprobe(struct kprobe * p)144 void __kprobes arch_remove_kprobe(struct kprobe *p)
145 {
146 	if (p->ainsn.insn) {
147 		free_insn_slot(p->ainsn.insn, 0);
148 		p->ainsn.insn = NULL;
149 	}
150 }
151 
save_previous_kprobe(struct kprobe_ctlblk * kcb)152 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
153 {
154 	kcb->prev_kprobe.kp = kprobe_running();
155 	kcb->prev_kprobe.status = kcb->kprobe_status;
156 	kcb->prev_kprobe.saved_pc = kcb->kprobe_saved_pc;
157 }
158 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)159 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
160 {
161 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
162 	kcb->kprobe_status = kcb->prev_kprobe.status;
163 	kcb->kprobe_saved_pc = kcb->prev_kprobe.saved_pc;
164 }
165 
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)166 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
167 			struct kprobe_ctlblk *kcb)
168 {
169 	__this_cpu_write(current_kprobe, p);
170 	kcb->kprobe_saved_pc = regs->pc;
171 }
172 
prepare_singlestep(struct kprobe * p,struct pt_regs * regs)173 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
174 {
175 	/* Single step inline if the instruction is a break. */
176 	if (p->opcode == breakpoint_insn ||
177 	    p->opcode == breakpoint2_insn)
178 		regs->pc = (unsigned long)p->addr;
179 	else
180 		regs->pc = (unsigned long)&p->ainsn.insn[0];
181 }
182 
kprobe_handler(struct pt_regs * regs)183 static int __kprobes kprobe_handler(struct pt_regs *regs)
184 {
185 	struct kprobe *p;
186 	int ret = 0;
187 	kprobe_opcode_t *addr;
188 	struct kprobe_ctlblk *kcb;
189 
190 	addr = (kprobe_opcode_t *)regs->pc;
191 
192 	/*
193 	 * We don't want to be preempted for the entire
194 	 * duration of kprobe processing.
195 	 */
196 	preempt_disable();
197 	kcb = get_kprobe_ctlblk();
198 
199 	/* Check we're not actually recursing. */
200 	if (kprobe_running()) {
201 		p = get_kprobe(addr);
202 		if (p) {
203 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
204 			    p->ainsn.insn[0] == breakpoint_insn) {
205 				goto no_kprobe;
206 			}
207 			/*
208 			 * We have reentered the kprobe_handler(), since
209 			 * another probe was hit while within the handler.
210 			 * We here save the original kprobes variables and
211 			 * just single step on the instruction of the new probe
212 			 * without calling any user handlers.
213 			 */
214 			save_previous_kprobe(kcb);
215 			set_current_kprobe(p, regs, kcb);
216 			kprobes_inc_nmissed_count(p);
217 			prepare_singlestep(p, regs);
218 			kcb->kprobe_status = KPROBE_REENTER;
219 			return 1;
220 		} else {
221 			if (*addr != breakpoint_insn) {
222 				/*
223 				 * The breakpoint instruction was removed by
224 				 * another cpu right after we hit, no further
225 				 * handling of this interrupt is appropriate.
226 				 */
227 				ret = 1;
228 				goto no_kprobe;
229 			}
230 			p = __this_cpu_read(current_kprobe);
231 			if (p->break_handler && p->break_handler(p, regs))
232 				goto ss_probe;
233 		}
234 		goto no_kprobe;
235 	}
236 
237 	p = get_kprobe(addr);
238 	if (!p) {
239 		if (*addr != breakpoint_insn) {
240 			/*
241 			 * The breakpoint instruction was removed right
242 			 * after we hit it.  Another cpu has removed
243 			 * either a probepoint or a debugger breakpoint
244 			 * at this address.  In either case, no further
245 			 * handling of this interrupt is appropriate.
246 			 */
247 			ret = 1;
248 		}
249 		/* Not one of ours: let kernel handle it. */
250 		goto no_kprobe;
251 	}
252 
253 	set_current_kprobe(p, regs, kcb);
254 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
255 
256 	if (p->pre_handler && p->pre_handler(p, regs)) {
257 		/* Handler has already set things up, so skip ss setup. */
258 		return 1;
259 	}
260 
261 ss_probe:
262 	prepare_singlestep(p, regs);
263 	kcb->kprobe_status = KPROBE_HIT_SS;
264 	return 1;
265 
266 no_kprobe:
267 	preempt_enable_no_resched();
268 	return ret;
269 }
270 
271 /*
272  * Called after single-stepping.  p->addr is the address of the
273  * instruction that has been replaced by the breakpoint. To avoid the
274  * SMP problems that can occur when we temporarily put back the
275  * original opcode to single-step, we single-stepped a copy of the
276  * instruction.  The address of this copy is p->ainsn.insn.
277  *
278  * This function prepares to return from the post-single-step
279  * breakpoint trap.
280  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)281 static void __kprobes resume_execution(struct kprobe *p,
282 				       struct pt_regs *regs,
283 				       struct kprobe_ctlblk *kcb)
284 {
285 	unsigned long orig_pc = kcb->kprobe_saved_pc;
286 	regs->pc = orig_pc + 8;
287 }
288 
post_kprobe_handler(struct pt_regs * regs)289 static inline int post_kprobe_handler(struct pt_regs *regs)
290 {
291 	struct kprobe *cur = kprobe_running();
292 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
293 
294 	if (!cur)
295 		return 0;
296 
297 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
298 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
299 		cur->post_handler(cur, regs, 0);
300 	}
301 
302 	resume_execution(cur, regs, kcb);
303 
304 	/* Restore back the original saved kprobes variables and continue. */
305 	if (kcb->kprobe_status == KPROBE_REENTER) {
306 		restore_previous_kprobe(kcb);
307 		goto out;
308 	}
309 	reset_current_kprobe();
310 out:
311 	preempt_enable_no_resched();
312 
313 	return 1;
314 }
315 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)316 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
317 {
318 	struct kprobe *cur = kprobe_running();
319 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
320 
321 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
322 		return 1;
323 
324 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
325 		/*
326 		 * We are here because the instruction being single
327 		 * stepped caused a page fault. We reset the current
328 		 * kprobe and the ip points back to the probe address
329 		 * and allow the page fault handler to continue as a
330 		 * normal page fault.
331 		 */
332 		resume_execution(cur, regs, kcb);
333 		reset_current_kprobe();
334 		preempt_enable_no_resched();
335 	}
336 	return 0;
337 }
338 
339 /*
340  * Wrapper routine for handling exceptions.
341  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)342 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
343 				       unsigned long val, void *data)
344 {
345 	struct die_args *args = (struct die_args *)data;
346 	int ret = NOTIFY_DONE;
347 
348 	switch (val) {
349 	case DIE_BREAK:
350 		if (kprobe_handler(args->regs))
351 			ret = NOTIFY_STOP;
352 		break;
353 	case DIE_SSTEPBP:
354 		if (post_kprobe_handler(args->regs))
355 			ret = NOTIFY_STOP;
356 		break;
357 	case DIE_PAGE_FAULT:
358 		/* kprobe_running() needs smp_processor_id(). */
359 		preempt_disable();
360 
361 		if (kprobe_running()
362 		    && kprobe_fault_handler(args->regs, args->trapnr))
363 			ret = NOTIFY_STOP;
364 		preempt_enable();
365 		break;
366 	default:
367 		break;
368 	}
369 	return ret;
370 }
371 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)372 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
373 {
374 	struct jprobe *jp = container_of(p, struct jprobe, kp);
375 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376 
377 	kcb->jprobe_saved_regs = *regs;
378 	kcb->jprobe_saved_sp = regs->sp;
379 
380 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
381 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
382 
383 	regs->pc = (unsigned long)(jp->entry);
384 
385 	return 1;
386 }
387 
388 /* Defined in the inline asm below. */
389 void jprobe_return_end(void);
390 
jprobe_return(void)391 void __kprobes jprobe_return(void)
392 {
393 	asm volatile(
394 		"bpt\n\t"
395 		".globl jprobe_return_end\n"
396 		"jprobe_return_end:\n");
397 }
398 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)399 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
400 {
401 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
402 
403 	if (regs->pc >= (unsigned long)jprobe_return &&
404 	    regs->pc <= (unsigned long)jprobe_return_end) {
405 		*regs = kcb->jprobe_saved_regs;
406 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
407 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
408 		preempt_enable_no_resched();
409 
410 		return 1;
411 	}
412 	return 0;
413 }
414 
415 /*
416  * Function return probe trampoline:
417  * - init_kprobes() establishes a probepoint here
418  * - When the probed function returns, this probe causes the
419  *   handlers to fire
420  */
kretprobe_trampoline_holder(void)421 static void __used kretprobe_trampoline_holder(void)
422 {
423 	asm volatile(
424 		"nop\n\t"
425 		".global kretprobe_trampoline\n"
426 		"kretprobe_trampoline:\n\t"
427 		"nop\n\t"
428 		: : : "memory");
429 }
430 
431 void kretprobe_trampoline(void);
432 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)433 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
434 				      struct pt_regs *regs)
435 {
436 	ri->ret_addr = (kprobe_opcode_t *) regs->lr;
437 
438 	/* Replace the return addr with trampoline addr */
439 	regs->lr = (unsigned long)kretprobe_trampoline;
440 }
441 
442 /*
443  * Called when the probe at kretprobe trampoline is hit.
444  */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)445 static int __kprobes trampoline_probe_handler(struct kprobe *p,
446 						struct pt_regs *regs)
447 {
448 	struct kretprobe_instance *ri = NULL;
449 	struct hlist_head *head, empty_rp;
450 	struct hlist_node *tmp;
451 	unsigned long flags, orig_ret_address = 0;
452 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
453 
454 	INIT_HLIST_HEAD(&empty_rp);
455 	kretprobe_hash_lock(current, &head, &flags);
456 
457 	/*
458 	 * It is possible to have multiple instances associated with a given
459 	 * task either because multiple functions in the call path have
460 	 * a return probe installed on them, and/or more than one return
461 	 * return probe was registered for a target function.
462 	 *
463 	 * We can handle this because:
464 	 *     - instances are always inserted at the head of the list
465 	 *     - when multiple return probes are registered for the same
466 	 *       function, the first instance's ret_addr will point to the
467 	 *       real return address, and all the rest will point to
468 	 *       kretprobe_trampoline
469 	 */
470 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
471 		if (ri->task != current)
472 			/* another task is sharing our hash bucket */
473 			continue;
474 
475 		if (ri->rp && ri->rp->handler)
476 			ri->rp->handler(ri, regs);
477 
478 		orig_ret_address = (unsigned long)ri->ret_addr;
479 		recycle_rp_inst(ri, &empty_rp);
480 
481 		if (orig_ret_address != trampoline_address) {
482 			/*
483 			 * This is the real return address. Any other
484 			 * instances associated with this task are for
485 			 * other calls deeper on the call stack
486 			 */
487 			break;
488 		}
489 	}
490 
491 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
492 	instruction_pointer(regs) = orig_ret_address;
493 
494 	reset_current_kprobe();
495 	kretprobe_hash_unlock(current, &flags);
496 	preempt_enable_no_resched();
497 
498 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
499 		hlist_del(&ri->hlist);
500 		kfree(ri);
501 	}
502 	/*
503 	 * By returning a non-zero value, we are telling
504 	 * kprobe_handler() that we don't want the post_handler
505 	 * to run (and have re-enabled preemption)
506 	 */
507 	return 1;
508 }
509 
arch_trampoline_kprobe(struct kprobe * p)510 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
511 {
512 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
513 		return 1;
514 
515 	return 0;
516 }
517 
518 static struct kprobe trampoline_p = {
519 	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
520 	.pre_handler = trampoline_probe_handler
521 };
522 
arch_init_kprobes(void)523 int __init arch_init_kprobes(void)
524 {
525 	register_kprobe(&trampoline_p);
526 	return 0;
527 }
528