• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/sched/task.h>
18 #include <linux/sched/task_stack.h>
19 #include <linux/preempt.h>
20 #include <linux/module.h>
21 #include <linux/fs.h>
22 #include <linux/kprobes.h>
23 #include <linux/elfcore.h>
24 #include <linux/tick.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/compat.h>
28 #include <linux/nmi.h>
29 #include <linux/syscalls.h>
30 #include <linux/kernel.h>
31 #include <linux/tracehook.h>
32 #include <linux/signal.h>
33 #include <linux/delay.h>
34 #include <linux/context_tracking.h>
35 #include <asm/stack.h>
36 #include <asm/switch_to.h>
37 #include <asm/homecache.h>
38 #include <asm/syscalls.h>
39 #include <asm/traps.h>
40 #include <asm/setup.h>
41 #include <linux/uaccess.h>
42 #ifdef CONFIG_HARDWALL
43 #include <asm/hardwall.h>
44 #endif
45 #include <arch/chip.h>
46 #include <arch/abi.h>
47 #include <arch/sim_def.h>
48 
49 /*
50  * Use the (x86) "idle=poll" option to prefer low latency when leaving the
51  * idle loop over low power while in the idle loop, e.g. if we have
52  * one thread per core and we want to get threads out of futex waits fast.
53  */
idle_setup(char * str)54 static int __init idle_setup(char *str)
55 {
56 	if (!str)
57 		return -EINVAL;
58 
59 	if (!strcmp(str, "poll")) {
60 		pr_info("using polling idle threads\n");
61 		cpu_idle_poll_ctrl(true);
62 		return 0;
63 	} else if (!strcmp(str, "halt")) {
64 		return 0;
65 	}
66 	return -1;
67 }
68 early_param("idle", idle_setup);
69 
arch_cpu_idle(void)70 void arch_cpu_idle(void)
71 {
72 	__this_cpu_write(irq_stat.idle_timestamp, jiffies);
73 	_cpu_idle();
74 }
75 
76 /*
77  * Release a thread_info structure
78  */
arch_release_thread_stack(unsigned long * stack)79 void arch_release_thread_stack(unsigned long *stack)
80 {
81 	struct thread_info *info = (void *)stack;
82 	struct single_step_state *step_state = info->step_state;
83 
84 	if (step_state) {
85 
86 		/*
87 		 * FIXME: we don't munmap step_state->buffer
88 		 * because the mm_struct for this process (info->task->mm)
89 		 * has already been zeroed in exit_mm().  Keeping a
90 		 * reference to it here seems like a bad move, so this
91 		 * means we can't munmap() the buffer, and therefore if we
92 		 * ptrace multiple threads in a process, we will slowly
93 		 * leak user memory.  (Note that as soon as the last
94 		 * thread in a process dies, we will reclaim all user
95 		 * memory including single-step buffers in the usual way.)
96 		 * We should either assign a kernel VA to this buffer
97 		 * somehow, or we should associate the buffer(s) with the
98 		 * mm itself so we can clean them up that way.
99 		 */
100 		kfree(step_state);
101 	}
102 }
103 
104 static void save_arch_state(struct thread_struct *t);
105 
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p)106 int copy_thread(unsigned long clone_flags, unsigned long sp,
107 		unsigned long arg, struct task_struct *p)
108 {
109 	struct pt_regs *childregs = task_pt_regs(p);
110 	unsigned long ksp;
111 	unsigned long *callee_regs;
112 
113 	/*
114 	 * Set up the stack and stack pointer appropriately for the
115 	 * new child to find itself woken up in __switch_to().
116 	 * The callee-saved registers must be on the stack to be read;
117 	 * the new task will then jump to assembly support to handle
118 	 * calling schedule_tail(), etc., and (for userspace tasks)
119 	 * returning to the context set up in the pt_regs.
120 	 */
121 	ksp = (unsigned long) childregs;
122 	ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
123 	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
124 	ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
125 	callee_regs = (unsigned long *)ksp;
126 	ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
127 	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
128 	p->thread.ksp = ksp;
129 
130 	/* Record the pid of the task that created this one. */
131 	p->thread.creator_pid = current->pid;
132 
133 	if (unlikely(p->flags & PF_KTHREAD)) {
134 		/* kernel thread */
135 		memset(childregs, 0, sizeof(struct pt_regs));
136 		memset(&callee_regs[2], 0,
137 		       (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
138 		callee_regs[0] = sp;   /* r30 = function */
139 		callee_regs[1] = arg;  /* r31 = arg */
140 		p->thread.pc = (unsigned long) ret_from_kernel_thread;
141 		return 0;
142 	}
143 
144 	/*
145 	 * Start new thread in ret_from_fork so it schedules properly
146 	 * and then return from interrupt like the parent.
147 	 */
148 	p->thread.pc = (unsigned long) ret_from_fork;
149 
150 	/*
151 	 * Do not clone step state from the parent; each thread
152 	 * must make its own lazily.
153 	 */
154 	task_thread_info(p)->step_state = NULL;
155 
156 #ifdef __tilegx__
157 	/*
158 	 * Do not clone unalign jit fixup from the parent; each thread
159 	 * must allocate its own on demand.
160 	 */
161 	task_thread_info(p)->unalign_jit_base = NULL;
162 #endif
163 
164 	/*
165 	 * Copy the registers onto the kernel stack so the
166 	 * return-from-interrupt code will reload it into registers.
167 	 */
168 	*childregs = *current_pt_regs();
169 	childregs->regs[0] = 0;         /* return value is zero */
170 	if (sp)
171 		childregs->sp = sp;  /* override with new user stack pointer */
172 	memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
173 	       CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
174 
175 	/* Save user stack top pointer so we can ID the stack vm area later. */
176 	p->thread.usp0 = childregs->sp;
177 
178 	/*
179 	 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
180 	 * which is passed in as arg #5 to sys_clone().
181 	 */
182 	if (clone_flags & CLONE_SETTLS)
183 		childregs->tp = childregs->regs[4];
184 
185 
186 #if CHIP_HAS_TILE_DMA()
187 	/*
188 	 * No DMA in the new thread.  We model this on the fact that
189 	 * fork() clears the pending signals, alarms, and aio for the child.
190 	 */
191 	memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
192 	memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
193 #endif
194 
195 	/* New thread has its miscellaneous processor state bits clear. */
196 	p->thread.proc_status = 0;
197 
198 #ifdef CONFIG_HARDWALL
199 	/* New thread does not own any networks. */
200 	memset(&p->thread.hardwall[0], 0,
201 	       sizeof(struct hardwall_task) * HARDWALL_TYPES);
202 #endif
203 
204 
205 	/*
206 	 * Start the new thread with the current architecture state
207 	 * (user interrupt masks, etc.).
208 	 */
209 	save_arch_state(&p->thread);
210 
211 	return 0;
212 }
213 
set_unalign_ctl(struct task_struct * tsk,unsigned int val)214 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
215 {
216 	task_thread_info(tsk)->align_ctl = val;
217 	return 0;
218 }
219 
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)220 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
221 {
222 	return put_user(task_thread_info(tsk)->align_ctl,
223 			(unsigned int __user *)adr);
224 }
225 
226 static struct task_struct corrupt_current = { .comm = "<corrupt>" };
227 
228 /*
229  * Return "current" if it looks plausible, or else a pointer to a dummy.
230  * This can be helpful if we are just trying to emit a clean panic.
231  */
validate_current(void)232 struct task_struct *validate_current(void)
233 {
234 	struct task_struct *tsk = current;
235 	if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
236 		     (high_memory && (void *)tsk > high_memory) ||
237 		     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
238 		pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
239 		tsk = &corrupt_current;
240 	}
241 	return tsk;
242 }
243 
244 /* Take and return the pointer to the previous task, for schedule_tail(). */
sim_notify_fork(struct task_struct * prev)245 struct task_struct *sim_notify_fork(struct task_struct *prev)
246 {
247 	struct task_struct *tsk = current;
248 	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
249 		     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
250 	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
251 		     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
252 	return prev;
253 }
254 
dump_task_regs(struct task_struct * tsk,elf_gregset_t * regs)255 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
256 {
257 	struct pt_regs *ptregs = task_pt_regs(tsk);
258 	elf_core_copy_regs(regs, ptregs);
259 	return 1;
260 }
261 
262 #if CHIP_HAS_TILE_DMA()
263 
264 /* Allow user processes to access the DMA SPRs */
grant_dma_mpls(void)265 void grant_dma_mpls(void)
266 {
267 #if CONFIG_KERNEL_PL == 2
268 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
269 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
270 #else
271 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
272 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
273 #endif
274 }
275 
276 /* Forbid user processes from accessing the DMA SPRs */
restrict_dma_mpls(void)277 void restrict_dma_mpls(void)
278 {
279 #if CONFIG_KERNEL_PL == 2
280 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
281 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
282 #else
283 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
284 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
285 #endif
286 }
287 
288 /* Pause the DMA engine, then save off its state registers. */
save_tile_dma_state(struct tile_dma_state * dma)289 static void save_tile_dma_state(struct tile_dma_state *dma)
290 {
291 	unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
292 	unsigned long post_suspend_state;
293 
294 	/* If we're running, suspend the engine. */
295 	if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
296 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
297 
298 	/*
299 	 * Wait for the engine to idle, then save regs.  Note that we
300 	 * want to record the "running" bit from before suspension,
301 	 * and the "done" bit from after, so that we can properly
302 	 * distinguish a case where the user suspended the engine from
303 	 * the case where the kernel suspended as part of the context
304 	 * swap.
305 	 */
306 	do {
307 		post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
308 	} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
309 
310 	dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
311 	dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
312 	dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
313 	dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
314 	dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
315 	dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
316 	dma->byte = __insn_mfspr(SPR_DMA_BYTE);
317 	dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
318 		(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
319 }
320 
321 /* Restart a DMA that was running before we were context-switched out. */
restore_tile_dma_state(struct thread_struct * t)322 static void restore_tile_dma_state(struct thread_struct *t)
323 {
324 	const struct tile_dma_state *dma = &t->tile_dma_state;
325 
326 	/*
327 	 * The only way to restore the done bit is to run a zero
328 	 * length transaction.
329 	 */
330 	if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
331 	    !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
332 		__insn_mtspr(SPR_DMA_BYTE, 0);
333 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
334 		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
335 		       SPR_DMA_STATUS__BUSY_MASK)
336 			;
337 	}
338 
339 	__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
340 	__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
341 	__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
342 	__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
343 	__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
344 	__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
345 	__insn_mtspr(SPR_DMA_BYTE, dma->byte);
346 
347 	/*
348 	 * Restart the engine if we were running and not done.
349 	 * Clear a pending async DMA fault that we were waiting on return
350 	 * to user space to execute, since we expect the DMA engine
351 	 * to regenerate those faults for us now.  Note that we don't
352 	 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
353 	 * harmless if set, and it covers both DMA and the SN processor.
354 	 */
355 	if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
356 		t->dma_async_tlb.fault_num = 0;
357 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
358 	}
359 }
360 
361 #endif
362 
save_arch_state(struct thread_struct * t)363 static void save_arch_state(struct thread_struct *t)
364 {
365 #if CHIP_HAS_SPLIT_INTR_MASK()
366 	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
367 		((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
368 #else
369 	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
370 #endif
371 	t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
372 	t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
373 	t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
374 	t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
375 	t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
376 	t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
377 	t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
378 	t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
379 #if !CHIP_HAS_FIXED_INTVEC_BASE()
380 	t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
381 #endif
382 	t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
383 #if CHIP_HAS_DSTREAM_PF()
384 	t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
385 #endif
386 }
387 
restore_arch_state(const struct thread_struct * t)388 static void restore_arch_state(const struct thread_struct *t)
389 {
390 #if CHIP_HAS_SPLIT_INTR_MASK()
391 	__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
392 	__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
393 #else
394 	__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
395 #endif
396 	__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
397 	__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
398 	__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
399 	__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
400 	__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
401 	__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
402 	__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
403 	__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
404 #if !CHIP_HAS_FIXED_INTVEC_BASE()
405 	__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
406 #endif
407 	__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
408 #if CHIP_HAS_DSTREAM_PF()
409 	__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
410 #endif
411 }
412 
413 
_prepare_arch_switch(struct task_struct * next)414 void _prepare_arch_switch(struct task_struct *next)
415 {
416 #if CHIP_HAS_TILE_DMA()
417 	struct tile_dma_state *dma = &current->thread.tile_dma_state;
418 	if (dma->enabled)
419 		save_tile_dma_state(dma);
420 #endif
421 }
422 
423 
_switch_to(struct task_struct * prev,struct task_struct * next)424 struct task_struct *__sched _switch_to(struct task_struct *prev,
425 				       struct task_struct *next)
426 {
427 	/* DMA state is already saved; save off other arch state. */
428 	save_arch_state(&prev->thread);
429 
430 #if CHIP_HAS_TILE_DMA()
431 	/*
432 	 * Restore DMA in new task if desired.
433 	 * Note that it is only safe to restart here since interrupts
434 	 * are disabled, so we can't take any DMATLB miss or access
435 	 * interrupts before we have finished switching stacks.
436 	 */
437 	if (next->thread.tile_dma_state.enabled) {
438 		restore_tile_dma_state(&next->thread);
439 		grant_dma_mpls();
440 	} else {
441 		restrict_dma_mpls();
442 	}
443 #endif
444 
445 	/* Restore other arch state. */
446 	restore_arch_state(&next->thread);
447 
448 #ifdef CONFIG_HARDWALL
449 	/* Enable or disable access to the network registers appropriately. */
450 	hardwall_switch_tasks(prev, next);
451 #endif
452 
453 	/* Notify the simulator of task exit. */
454 	if (unlikely(prev->state == TASK_DEAD))
455 		__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT |
456 			     (prev->pid << _SIM_CONTROL_OPERATOR_BITS));
457 
458 	/*
459 	 * Switch kernel SP, PC, and callee-saved registers.
460 	 * In the context of the new task, return the old task pointer
461 	 * (i.e. the task that actually called __switch_to).
462 	 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
463 	 */
464 	return __switch_to(prev, next, next_current_ksp0(next));
465 }
466 
467 /*
468  * This routine is called on return from interrupt if any of the
469  * TIF_ALLWORK_MASK flags are set in thread_info->flags.  It is
470  * entered with interrupts disabled so we don't miss an event that
471  * modified the thread_info flags.  We loop until all the tested flags
472  * are clear.  Note that the function is called on certain conditions
473  * that are not listed in the loop condition here (e.g. SINGLESTEP)
474  * which guarantees we will do those things once, and redo them if any
475  * of the other work items is re-done, but won't continue looping if
476  * all the other work is done.
477  */
prepare_exit_to_usermode(struct pt_regs * regs,u32 thread_info_flags)478 void prepare_exit_to_usermode(struct pt_regs *regs, u32 thread_info_flags)
479 {
480 	if (WARN_ON(!user_mode(regs)))
481 		return;
482 
483 	do {
484 		local_irq_enable();
485 
486 		if (thread_info_flags & _TIF_NEED_RESCHED)
487 			schedule();
488 
489 #if CHIP_HAS_TILE_DMA()
490 		if (thread_info_flags & _TIF_ASYNC_TLB)
491 			do_async_page_fault(regs);
492 #endif
493 
494 		if (thread_info_flags & _TIF_SIGPENDING)
495 			do_signal(regs);
496 
497 		if (thread_info_flags & _TIF_NOTIFY_RESUME) {
498 			clear_thread_flag(TIF_NOTIFY_RESUME);
499 			tracehook_notify_resume(regs);
500 		}
501 
502 		local_irq_disable();
503 		thread_info_flags = READ_ONCE(current_thread_info()->flags);
504 
505 	} while (thread_info_flags & _TIF_WORK_MASK);
506 
507 	if (thread_info_flags & _TIF_SINGLESTEP) {
508 		single_step_once(regs);
509 #ifndef __tilegx__
510 		/*
511 		 * FIXME: on tilepro, since we enable interrupts in
512 		 * this routine, it's possible that we miss a signal
513 		 * or other asynchronous event.
514 		 */
515 		local_irq_disable();
516 #endif
517 	}
518 
519 	user_enter();
520 }
521 
get_wchan(struct task_struct * p)522 unsigned long get_wchan(struct task_struct *p)
523 {
524 	struct KBacktraceIterator kbt;
525 
526 	if (!p || p == current || p->state == TASK_RUNNING)
527 		return 0;
528 
529 	for (KBacktraceIterator_init(&kbt, p, NULL);
530 	     !KBacktraceIterator_end(&kbt);
531 	     KBacktraceIterator_next(&kbt)) {
532 		if (!in_sched_functions(kbt.it.pc))
533 			return kbt.it.pc;
534 	}
535 
536 	return 0;
537 }
538 
539 /* Flush thread state. */
flush_thread(void)540 void flush_thread(void)
541 {
542 	/* Nothing */
543 }
544 
545 /*
546  * Free current thread data structures etc..
547  */
exit_thread(struct task_struct * tsk)548 void exit_thread(struct task_struct *tsk)
549 {
550 #ifdef CONFIG_HARDWALL
551 	/*
552 	 * Remove the task from the list of tasks that are associated
553 	 * with any live hardwalls.  (If the task that is exiting held
554 	 * the last reference to a hardwall fd, it would already have
555 	 * been released and deactivated at this point.)
556 	 */
557 	hardwall_deactivate_all(tsk);
558 #endif
559 }
560 
tile_show_regs(struct pt_regs * regs)561 void tile_show_regs(struct pt_regs *regs)
562 {
563 	int i;
564 #ifdef __tilegx__
565 	for (i = 0; i < 17; i++)
566 		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
567 		       i, regs->regs[i], i+18, regs->regs[i+18],
568 		       i+36, regs->regs[i+36]);
569 	pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
570 	       regs->regs[17], regs->regs[35], regs->tp);
571 	pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
572 #else
573 	for (i = 0; i < 13; i++)
574 		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
575 		       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
576 		       i, regs->regs[i], i+14, regs->regs[i+14],
577 		       i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
578 	pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
579 	       regs->regs[13], regs->tp, regs->sp, regs->lr);
580 #endif
581 	pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld flags:%s%s%s%s\n",
582 	       regs->pc, regs->ex1, regs->faultnum,
583 	       is_compat_task() ? " compat" : "",
584 	       (regs->flags & PT_FLAGS_DISABLE_IRQ) ? " noirq" : "",
585 	       !(regs->flags & PT_FLAGS_CALLER_SAVES) ? " nocallersave" : "",
586 	       (regs->flags & PT_FLAGS_RESTORE_REGS) ? " restoreregs" : "");
587 }
588 
show_regs(struct pt_regs * regs)589 void show_regs(struct pt_regs *regs)
590 {
591 	struct KBacktraceIterator kbt;
592 
593 	show_regs_print_info(KERN_DEFAULT);
594 	tile_show_regs(regs);
595 
596 	KBacktraceIterator_init(&kbt, NULL, regs);
597 	tile_show_stack(&kbt);
598 }
599 
600 #ifdef __tilegx__
nmi_raise_cpu_backtrace(struct cpumask * in_mask)601 void nmi_raise_cpu_backtrace(struct cpumask *in_mask)
602 {
603 	struct cpumask mask;
604 	HV_Coord tile;
605 	unsigned int timeout;
606 	int cpu;
607 	HV_NMI_Info info[NR_CPUS];
608 
609 	/* Tentatively dump stack on remote tiles via NMI. */
610 	timeout = 100;
611 	cpumask_copy(&mask, in_mask);
612 	while (!cpumask_empty(&mask) && timeout) {
613 		for_each_cpu(cpu, &mask) {
614 			tile.x = cpu_x(cpu);
615 			tile.y = cpu_y(cpu);
616 			info[cpu] = hv_send_nmi(tile, TILE_NMI_DUMP_STACK, 0);
617 			if (info[cpu].result == HV_NMI_RESULT_OK)
618 				cpumask_clear_cpu(cpu, &mask);
619 		}
620 
621 		mdelay(10);
622 		touch_softlockup_watchdog();
623 		timeout--;
624 	}
625 
626 	/* Warn about cpus stuck in ICS. */
627 	if (!cpumask_empty(&mask)) {
628 		for_each_cpu(cpu, &mask) {
629 
630 			/* Clear the bit as if nmi_cpu_backtrace() ran. */
631 			cpumask_clear_cpu(cpu, in_mask);
632 
633 			switch (info[cpu].result) {
634 			case HV_NMI_RESULT_FAIL_ICS:
635 				pr_warn("Skipping stack dump of cpu %d in ICS at pc %#llx\n",
636 					cpu, info[cpu].pc);
637 				break;
638 			case HV_NMI_RESULT_FAIL_HV:
639 				pr_warn("Skipping stack dump of cpu %d in hypervisor\n",
640 					cpu);
641 				break;
642 			case HV_ENOSYS:
643 				WARN_ONCE(1, "Hypervisor too old to allow remote stack dumps.\n");
644 				break;
645 			default:  /* should not happen */
646 				pr_warn("Skipping stack dump of cpu %d [%d,%#llx]\n",
647 					cpu, info[cpu].result, info[cpu].pc);
648 				break;
649 			}
650 		}
651 	}
652 }
653 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)654 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
655 {
656 	nmi_trigger_cpumask_backtrace(mask, exclude_self,
657 				      nmi_raise_cpu_backtrace);
658 }
659 #endif /* __tilegx_ */
660