• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 */
14
15#include <arch/chip.h>
16
17
18/*
19 * This file shares the implementation of the userspace memcpy and
20 * the kernel's memcpy, copy_to_user and copy_from_user.
21 */
22
23#include <linux/linkage.h>
24
25#define IS_MEMCPY	  0
26#define IS_COPY_FROM_USER  1
27#define IS_COPY_TO_USER   -1
28
29	.section .text.memcpy_common, "ax"
30	.align 64
31
32/* Use this to preface each bundle that can cause an exception so
33 * the kernel can clean up properly. The special cleanup code should
34 * not use these, since it knows what it is doing.
35 */
36#define EX \
37	.pushsection __ex_table, "a"; \
38	.align 4; \
39	.word 9f, memcpy_common_fixup; \
40	.popsection; \
41	9
42
43
44/* raw_copy_from_user takes the kernel target address in r0,
45 * the user source in r1, and the bytes to copy in r2.
46 * It returns the number of uncopiable bytes (hopefully zero) in r0.
47 */
48ENTRY(raw_copy_from_user)
49.type raw_copy_from_user, @function
50	FEEDBACK_ENTER_EXPLICIT(raw_copy_from_user, \
51	  .text.memcpy_common, \
52	  .Lend_memcpy_common - raw_copy_from_user)
53	{ movei r29, IS_COPY_FROM_USER; j memcpy_common }
54	.size raw_copy_from_user, . - raw_copy_from_user
55
56/* raw_copy_to_user takes the user target address in r0,
57 * the kernel source in r1, and the bytes to copy in r2.
58 * It returns the number of uncopiable bytes (hopefully zero) in r0.
59 */
60ENTRY(raw_copy_to_user)
61.type raw_copy_to_user, @function
62	FEEDBACK_REENTER(raw_copy_from_user)
63	{ movei r29, IS_COPY_TO_USER; j memcpy_common }
64	.size raw_copy_to_user, . - raw_copy_to_user
65
66ENTRY(memcpy)
67.type memcpy, @function
68	FEEDBACK_REENTER(raw_copy_from_user)
69	{ movei r29, IS_MEMCPY }
70	.size memcpy, . - memcpy
71	/* Fall through */
72
73	.type memcpy_common, @function
74memcpy_common:
75	/* On entry, r29 holds one of the IS_* macro values from above. */
76
77
78	/* r0 is the dest, r1 is the source, r2 is the size. */
79
80	/* Save aside original dest so we can return it at the end. */
81	{ sw sp, lr; move r23, r0; or r4, r0, r1 }
82
83	/* Check for an empty size. */
84	{ bz r2, .Ldone; andi r4, r4, 3 }
85
86	/* Save aside original values in case of a fault. */
87	{ move r24, r1; move r25, r2 }
88	move r27, lr
89
90	/* Check for an unaligned source or dest. */
91	{ bnz r4, .Lcopy_unaligned_maybe_many; addli r4, r2, -256 }
92
93.Lcheck_aligned_copy_size:
94	/* If we are copying < 256 bytes, branch to simple case. */
95	{ blzt r4, .Lcopy_8_check; slti_u r8, r2, 8 }
96
97	/* Copying >= 256 bytes, so jump to complex prefetching loop. */
98	{ andi r6, r1, 63; j .Lcopy_many }
99
100/*
101 *
102 * Aligned 4 byte at a time copy loop
103 *
104 */
105
106.Lcopy_8_loop:
107	/* Copy two words at a time to hide load latency. */
108EX:	{ lw r3, r1; addi r1, r1, 4; slti_u r8, r2, 16 }
109EX:	{ lw r4, r1; addi r1, r1, 4 }
110EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
111EX:	{ sw r0, r4; addi r0, r0, 4; addi r2, r2, -4 }
112.Lcopy_8_check:
113	{ bzt r8, .Lcopy_8_loop; slti_u r4, r2, 4 }
114
115	/* Copy odd leftover word, if any. */
116	{ bnzt r4, .Lcheck_odd_stragglers }
117EX:	{ lw r3, r1; addi r1, r1, 4 }
118EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
119
120.Lcheck_odd_stragglers:
121	{ bnz r2, .Lcopy_unaligned_few }
122
123.Ldone:
124	/* For memcpy return original dest address, else zero. */
125	{ mz r0, r29, r23; jrp lr }
126
127
128/*
129 *
130 * Prefetching multiple cache line copy handler (for large transfers).
131 *
132 */
133
134	/* Copy words until r1 is cache-line-aligned. */
135.Lalign_loop:
136EX:	{ lw r3, r1; addi r1, r1, 4 }
137	{ andi r6, r1, 63 }
138EX:	{ sw r0, r3; addi r0, r0, 4; addi r2, r2, -4 }
139.Lcopy_many:
140	{ bnzt r6, .Lalign_loop; addi r9, r0, 63 }
141
142	{ addi r3, r1, 60; andi r9, r9, -64 }
143
144	/* No need to prefetch dst, we'll just do the wh64
145	 * right before we copy a line.
146	 */
147EX:	{ lw r5, r3; addi r3, r3, 64; movei r4, 1 }
148	/* Intentionally stall for a few cycles to leave L2 cache alone. */
149	{ bnzt zero, .; move r27, lr }
150EX:	{ lw r6, r3; addi r3, r3, 64 }
151	/* Intentionally stall for a few cycles to leave L2 cache alone. */
152	{ bnzt zero, . }
153EX:	{ lw r7, r3; addi r3, r3, 64 }
154	/* Intentionally stall for a few cycles to leave L2 cache alone. */
155	{ bz zero, .Lbig_loop2 }
156
157	/* On entry to this loop:
158	 * - r0 points to the start of dst line 0
159	 * - r1 points to start of src line 0
160	 * - r2 >= (256 - 60), only the first time the loop trips.
161	 * - r3 contains r1 + 128 + 60    [pointer to end of source line 2]
162	 *   This is our prefetch address. When we get near the end
163	 *   rather than prefetching off the end this is changed to point
164	 *   to some "safe" recently loaded address.
165	 * - r5 contains *(r1 + 60)       [i.e. last word of source line 0]
166	 * - r6 contains *(r1 + 64 + 60)  [i.e. last word of source line 1]
167	 * - r9 contains ((r0 + 63) & -64)
168	 *     [start of next dst cache line.]
169	 */
170
171.Lbig_loop:
172	{ jal .Lcopy_line2; add r15, r1, r2 }
173
174.Lbig_loop2:
175	/* Copy line 0, first stalling until r5 is ready. */
176EX:	{ move r12, r5; lw r16, r1 }
177	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
178	/* Prefetch several lines ahead. */
179EX:	{ lw r5, r3; addi r3, r3, 64 }
180	{ jal .Lcopy_line }
181
182	/* Copy line 1, first stalling until r6 is ready. */
183EX:	{ move r12, r6; lw r16, r1 }
184	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
185	/* Prefetch several lines ahead. */
186EX:	{ lw r6, r3; addi r3, r3, 64 }
187	{ jal .Lcopy_line }
188
189	/* Copy line 2, first stalling until r7 is ready. */
190EX:	{ move r12, r7; lw r16, r1 }
191	{ bz r4, .Lcopy_8_check; slti_u r8, r2, 8 }
192	/* Prefetch several lines ahead. */
193EX:	{ lw r7, r3; addi r3, r3, 64 }
194	/* Use up a caches-busy cycle by jumping back to the top of the
195	 * loop. Might as well get it out of the way now.
196	 */
197	{ j .Lbig_loop }
198
199
200	/* On entry:
201	 * - r0 points to the destination line.
202	 * - r1 points to the source line.
203	 * - r3 is the next prefetch address.
204	 * - r9 holds the last address used for wh64.
205	 * - r12 = WORD_15
206	 * - r16 = WORD_0.
207	 * - r17 == r1 + 16.
208	 * - r27 holds saved lr to restore.
209	 *
210	 * On exit:
211	 * - r0 is incremented by 64.
212	 * - r1 is incremented by 64, unless that would point to a word
213	 *   beyond the end of the source array, in which case it is redirected
214	 *   to point to an arbitrary word already in the cache.
215	 * - r2 is decremented by 64.
216	 * - r3 is unchanged, unless it points to a word beyond the
217	 *   end of the source array, in which case it is redirected
218	 *   to point to an arbitrary word already in the cache.
219	 *   Redirecting is OK since if we are that close to the end
220	 *   of the array we will not come back to this subroutine
221	 *   and use the contents of the prefetched address.
222	 * - r4 is nonzero iff r2 >= 64.
223	 * - r9 is incremented by 64, unless it points beyond the
224	 *   end of the last full destination cache line, in which
225	 *   case it is redirected to a "safe address" that can be
226	 *   clobbered (sp - 64)
227	 * - lr contains the value in r27.
228	 */
229
230/* r26 unused */
231
232.Lcopy_line:
233	/* TODO: when r3 goes past the end, we would like to redirect it
234	 * to prefetch the last partial cache line (if any) just once, for the
235	 * benefit of the final cleanup loop. But we don't want to
236	 * prefetch that line more than once, or subsequent prefetches
237	 * will go into the RTF. But then .Lbig_loop should unconditionally
238	 * branch to top of loop to execute final prefetch, and its
239	 * nop should become a conditional branch.
240	 */
241
242	/* We need two non-memory cycles here to cover the resources
243	 * used by the loads initiated by the caller.
244	 */
245	{ add r15, r1, r2 }
246.Lcopy_line2:
247	{ slt_u r13, r3, r15; addi r17, r1, 16 }
248
249	/* NOTE: this will stall for one cycle as L1 is busy. */
250
251	/* Fill second L1D line. */
252EX:	{ lw r17, r17; addi r1, r1, 48; mvz r3, r13, r1 } /* r17 = WORD_4 */
253
254	/* Prepare destination line for writing. */
255EX:	{ wh64 r9; addi r9, r9, 64 }
256	/* Load seven words that are L1D hits to cover wh64 L2 usage. */
257
258	/* Load the three remaining words from the last L1D line, which
259	 * we know has already filled the L1D.
260	 */
261EX:	{ lw r4, r1;  addi r1, r1, 4;   addi r20, r1, 16 }   /* r4 = WORD_12 */
262EX:	{ lw r8, r1;  addi r1, r1, 4;   slt_u r13, r20, r15 }/* r8 = WORD_13 */
263EX:	{ lw r11, r1; addi r1, r1, -52; mvz r20, r13, r1 }  /* r11 = WORD_14 */
264
265	/* Load the three remaining words from the first L1D line, first
266	 * stalling until it has filled by "looking at" r16.
267	 */
268EX:	{ lw r13, r1; addi r1, r1, 4; move zero, r16 }   /* r13 = WORD_1 */
269EX:	{ lw r14, r1; addi r1, r1, 4 }                   /* r14 = WORD_2 */
270EX:	{ lw r15, r1; addi r1, r1, 8; addi r10, r0, 60 } /* r15 = WORD_3 */
271
272	/* Load second word from the second L1D line, first
273	 * stalling until it has filled by "looking at" r17.
274	 */
275EX:	{ lw r19, r1; addi r1, r1, 4; move zero, r17 }  /* r19 = WORD_5 */
276
277	/* Store last word to the destination line, potentially dirtying it
278	 * for the first time, which keeps the L2 busy for two cycles.
279	 */
280EX:	{ sw r10, r12 }                                 /* store(WORD_15) */
281
282	/* Use two L1D hits to cover the sw L2 access above. */
283EX:	{ lw r10, r1; addi r1, r1, 4 }                  /* r10 = WORD_6 */
284EX:	{ lw r12, r1; addi r1, r1, 4 }                  /* r12 = WORD_7 */
285
286	/* Fill third L1D line. */
287EX:	{ lw r18, r1; addi r1, r1, 4 }                  /* r18 = WORD_8 */
288
289	/* Store first L1D line. */
290EX:	{ sw r0, r16; addi r0, r0, 4; add r16, r0, r2 } /* store(WORD_0) */
291EX:	{ sw r0, r13; addi r0, r0, 4; andi r16, r16, -64 } /* store(WORD_1) */
292EX:	{ sw r0, r14; addi r0, r0, 4; slt_u r16, r9, r16 } /* store(WORD_2) */
293EX:	{ sw r0, r15; addi r0, r0, 4; addi r13, sp, -64 } /* store(WORD_3) */
294	/* Store second L1D line. */
295EX:	{ sw r0, r17; addi r0, r0, 4; mvz r9, r16, r13 }/* store(WORD_4) */
296EX:	{ sw r0, r19; addi r0, r0, 4 }                  /* store(WORD_5) */
297EX:	{ sw r0, r10; addi r0, r0, 4 }                  /* store(WORD_6) */
298EX:	{ sw r0, r12; addi r0, r0, 4 }                  /* store(WORD_7) */
299
300EX:	{ lw r13, r1; addi r1, r1, 4; move zero, r18 }  /* r13 = WORD_9 */
301EX:	{ lw r14, r1; addi r1, r1, 4 }                  /* r14 = WORD_10 */
302EX:	{ lw r15, r1; move r1, r20   }                  /* r15 = WORD_11 */
303
304	/* Store third L1D line. */
305EX:	{ sw r0, r18; addi r0, r0, 4 }                  /* store(WORD_8) */
306EX:	{ sw r0, r13; addi r0, r0, 4 }                  /* store(WORD_9) */
307EX:	{ sw r0, r14; addi r0, r0, 4 }                  /* store(WORD_10) */
308EX:	{ sw r0, r15; addi r0, r0, 4 }                  /* store(WORD_11) */
309
310	/* Store rest of fourth L1D line. */
311EX:	{ sw r0, r4;  addi r0, r0, 4 }                  /* store(WORD_12) */
312	{
313EX:	sw r0, r8                                       /* store(WORD_13) */
314	addi r0, r0, 4
315	/* Will r2 be > 64 after we subtract 64 below? */
316	shri r4, r2, 7
317	}
318	{
319EX:	sw r0, r11                                      /* store(WORD_14) */
320	addi r0, r0, 8
321	/* Record 64 bytes successfully copied. */
322	addi r2, r2, -64
323	}
324
325	{ jrp lr; move lr, r27 }
326
327	/* Convey to the backtrace library that the stack frame is size
328	 * zero, and the real return address is on the stack rather than
329	 * in 'lr'.
330	 */
331	{ info 8 }
332
333	.align 64
334.Lcopy_unaligned_maybe_many:
335	/* Skip the setup overhead if we aren't copying many bytes. */
336	{ slti_u r8, r2, 20; sub r4, zero, r0 }
337	{ bnzt r8, .Lcopy_unaligned_few; andi r4, r4, 3 }
338	{ bz r4, .Ldest_is_word_aligned; add r18, r1, r2 }
339
340/*
341 *
342 * unaligned 4 byte at a time copy handler.
343 *
344 */
345
346	/* Copy single bytes until r0 == 0 mod 4, so we can store words. */
347.Lalign_dest_loop:
348EX:	{ lb_u r3, r1; addi r1, r1, 1; addi r4, r4, -1 }
349EX:	{ sb r0, r3;   addi r0, r0, 1; addi r2, r2, -1 }
350	{ bnzt r4, .Lalign_dest_loop; andi r3, r1, 3 }
351
352	/* If source and dest are now *both* aligned, do an aligned copy. */
353	{ bz r3, .Lcheck_aligned_copy_size; addli r4, r2, -256 }
354
355.Ldest_is_word_aligned:
356
357EX:	{ andi r8, r0, 63; lwadd_na r6, r1, 4}
358	{ slti_u r9, r2, 64; bz r8, .Ldest_is_L2_line_aligned }
359
360	/* This copies unaligned words until either there are fewer
361	 * than 4 bytes left to copy, or until the destination pointer
362	 * is cache-aligned, whichever comes first.
363	 *
364	 * On entry:
365	 * - r0 is the next store address.
366	 * - r1 points 4 bytes past the load address corresponding to r0.
367	 * - r2 >= 4
368	 * - r6 is the next aligned word loaded.
369	 */
370.Lcopy_unaligned_src_words:
371EX:	{ lwadd_na r7, r1, 4; slti_u r8, r2, 4 + 4 }
372	/* stall */
373	{ dword_align r6, r7, r1; slti_u r9, r2, 64 + 4 }
374EX:	{ swadd r0, r6, 4; addi r2, r2, -4 }
375	{ bnz r8, .Lcleanup_unaligned_words; andi r8, r0, 63 }
376	{ bnzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
377
378	/* On entry:
379	 * - r0 is the next store address.
380	 * - r1 points 4 bytes past the load address corresponding to r0.
381	 * - r2 >= 4 (# of bytes left to store).
382	 * - r6 is the next aligned src word value.
383	 * - r9 = (r2 < 64U).
384	 * - r18 points one byte past the end of source memory.
385	 */
386.Ldest_is_L2_line_aligned:
387
388	{
389	/* Not a full cache line remains. */
390	bnz r9, .Lcleanup_unaligned_words
391	move r7, r6
392	}
393
394	/* r2 >= 64 */
395
396	/* Kick off two prefetches, but don't go past the end. */
397	{ addi r3, r1, 63 - 4; addi r8, r1, 64 + 63 - 4 }
398	{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
399	{ mvz r3, r8, r1; addi r8, r3, 64 }
400	{ prefetch r3; move r3, r8; slt_u r8, r8, r18 }
401	{ mvz r3, r8, r1; movei r17, 0 }
402
403.Lcopy_unaligned_line:
404	/* Prefetch another line. */
405	{ prefetch r3; addi r15, r1, 60; addi r3, r3, 64 }
406	/* Fire off a load of the last word we are about to copy. */
407EX:	{ lw_na r15, r15; slt_u r8, r3, r18 }
408
409EX:	{ mvz r3, r8, r1; wh64 r0 }
410
411	/* This loop runs twice.
412	 *
413	 * On entry:
414	 * - r17 is even before the first iteration, and odd before
415	 *   the second.  It is incremented inside the loop.  Encountering
416	 *   an even value at the end of the loop makes it stop.
417	 */
418.Lcopy_half_an_unaligned_line:
419EX:	{
420	/* Stall until the last byte is ready. In the steady state this
421	 * guarantees all words to load below will be in the L2 cache, which
422	 * avoids shunting the loads to the RTF.
423	 */
424	move zero, r15
425	lwadd_na r7, r1, 16
426	}
427EX:	{ lwadd_na r11, r1, 12 }
428EX:	{ lwadd_na r14, r1, -24 }
429EX:	{ lwadd_na r8, r1, 4 }
430EX:	{ lwadd_na r9, r1, 4 }
431EX:	{
432	lwadd_na r10, r1, 8
433	/* r16 = (r2 < 64), after we subtract 32 from r2 below. */
434	slti_u r16, r2, 64 + 32
435	}
436EX:	{ lwadd_na r12, r1, 4; addi r17, r17, 1 }
437EX:	{ lwadd_na r13, r1, 8; dword_align r6, r7, r1 }
438EX:	{ swadd r0, r6,  4; dword_align r7,  r8,  r1 }
439EX:	{ swadd r0, r7,  4; dword_align r8,  r9,  r1 }
440EX:	{ swadd r0, r8,  4; dword_align r9,  r10, r1 }
441EX:	{ swadd r0, r9,  4; dword_align r10, r11, r1 }
442EX:	{ swadd r0, r10, 4; dword_align r11, r12, r1 }
443EX:	{ swadd r0, r11, 4; dword_align r12, r13, r1 }
444EX:	{ swadd r0, r12, 4; dword_align r13, r14, r1 }
445EX:	{ swadd r0, r13, 4; addi r2, r2, -32 }
446	{ move r6, r14; bbst r17, .Lcopy_half_an_unaligned_line }
447
448	{ bzt r16, .Lcopy_unaligned_line; move r7, r6 }
449
450	/* On entry:
451	 * - r0 is the next store address.
452	 * - r1 points 4 bytes past the load address corresponding to r0.
453	 * - r2 >= 0 (# of bytes left to store).
454	 * - r7 is the next aligned src word value.
455	 */
456.Lcleanup_unaligned_words:
457	/* Handle any trailing bytes. */
458	{ bz r2, .Lcopy_unaligned_done; slti_u r8, r2, 4 }
459	{ bzt r8, .Lcopy_unaligned_src_words; move r6, r7 }
460
461	/* Move r1 back to the point where it corresponds to r0. */
462	{ addi r1, r1, -4 }
463
464	/* Fall through */
465
466/*
467 *
468 * 1 byte at a time copy handler.
469 *
470 */
471
472.Lcopy_unaligned_few:
473EX:	{ lb_u r3, r1; addi r1, r1, 1 }
474EX:	{ sb r0, r3;   addi r0, r0, 1; addi r2, r2, -1 }
475	{ bnzt r2, .Lcopy_unaligned_few }
476
477.Lcopy_unaligned_done:
478
479	/* For memcpy return original dest address, else zero. */
480	{ mz r0, r29, r23; jrp lr }
481
482.Lend_memcpy_common:
483	.size memcpy_common, .Lend_memcpy_common - memcpy_common
484
485	.section .fixup,"ax"
486memcpy_common_fixup:
487	.type memcpy_common_fixup, @function
488
489	/* Skip any bytes we already successfully copied.
490	 * r2 (num remaining) is correct, but r0 (dst) and r1 (src)
491	 * may not be quite right because of unrolling and prefetching.
492	 * So we need to recompute their values as the address just
493	 * after the last byte we are sure was successfully loaded and
494	 * then stored.
495	 */
496
497	/* Determine how many bytes we successfully copied. */
498	{ sub r3, r25, r2 }
499
500	/* Add this to the original r0 and r1 to get their new values. */
501	{ add r0, r23, r3; add r1, r24, r3 }
502
503	{ bzt r29, memcpy_fixup_loop }
504	{ blzt r29, copy_to_user_fixup_loop }
505
506copy_from_user_fixup_loop:
507	/* Try copying the rest one byte at a time, expecting a load fault. */
508.Lcfu:	{ lb_u r3, r1; addi r1, r1, 1 }
509	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
510	{ bnzt r2, copy_from_user_fixup_loop }
511
512.Lcopy_from_user_fixup_zero_remainder:
513	move lr, r27
514	{ move r0, r2; jrp lr }
515
516copy_to_user_fixup_loop:
517	/* Try copying the rest one byte at a time, expecting a store fault. */
518	{ lb_u r3, r1; addi r1, r1, 1 }
519.Lctu:	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
520	{ bnzt r2, copy_to_user_fixup_loop }
521.Lcopy_to_user_fixup_done:
522	move lr, r27
523	{ move r0, r2; jrp lr }
524
525memcpy_fixup_loop:
526	/* Try copying the rest one byte at a time. We expect a disastrous
527	 * fault to happen since we are in fixup code, but let it happen.
528	 */
529	{ lb_u r3, r1; addi r1, r1, 1 }
530	{ sb r0, r3; addi r0, r0, 1; addi r2, r2, -1 }
531	{ bnzt r2, memcpy_fixup_loop }
532	/* This should be unreachable, we should have faulted again.
533	 * But be paranoid and handle it in case some interrupt changed
534	 * the TLB or something.
535	 */
536	move lr, r27
537	{ move r0, r23; jrp lr }
538
539	.size memcpy_common_fixup, . - memcpy_common_fixup
540
541	.section __ex_table,"a"
542	.align 4
543	.word .Lcfu, .Lcopy_from_user_fixup_zero_remainder
544	.word .Lctu, .Lcopy_to_user_fixup_done
545