1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_BITOPS_H
3 #define _ASM_X86_BITOPS_H
4
5 /*
6 * Copyright 1992, Linus Torvalds.
7 *
8 * Note: inlines with more than a single statement should be marked
9 * __always_inline to avoid problems with older gcc's inlining heuristics.
10 */
11
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15
16 #include <linux/compiler.h>
17 #include <asm/alternative.h>
18 #include <asm/rmwcc.h>
19 #include <asm/barrier.h>
20
21 #if BITS_PER_LONG == 32
22 # define _BITOPS_LONG_SHIFT 5
23 #elif BITS_PER_LONG == 64
24 # define _BITOPS_LONG_SHIFT 6
25 #else
26 # error "Unexpected BITS_PER_LONG"
27 #endif
28
29 #define BIT_64(n) (U64_C(1) << (n))
30
31 /*
32 * These have to be done with inline assembly: that way the bit-setting
33 * is guaranteed to be atomic. All bit operations return 0 if the bit
34 * was cleared before the operation and != 0 if it was not.
35 *
36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37 */
38
39 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
40 /* Technically wrong, but this avoids compilation errors on some gcc
41 versions. */
42 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
43 #else
44 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
45 #endif
46
47 #define ADDR BITOP_ADDR(addr)
48
49 /*
50 * We do the locked ops that don't return the old value as
51 * a mask operation on a byte.
52 */
53 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
54 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
55 #define CONST_MASK(nr) (1 << ((nr) & 7))
56
57 /**
58 * set_bit - Atomically set a bit in memory
59 * @nr: the bit to set
60 * @addr: the address to start counting from
61 *
62 * This function is atomic and may not be reordered. See __set_bit()
63 * if you do not require the atomic guarantees.
64 *
65 * Note: there are no guarantees that this function will not be reordered
66 * on non x86 architectures, so if you are writing portable code,
67 * make sure not to rely on its reordering guarantees.
68 *
69 * Note that @nr may be almost arbitrarily large; this function is not
70 * restricted to acting on a single-word quantity.
71 */
72 static __always_inline void
set_bit(long nr,volatile unsigned long * addr)73 set_bit(long nr, volatile unsigned long *addr)
74 {
75 if (IS_IMMEDIATE(nr)) {
76 asm volatile(LOCK_PREFIX "orb %1,%0"
77 : CONST_MASK_ADDR(nr, addr)
78 : "iq" ((u8)CONST_MASK(nr))
79 : "memory");
80 } else {
81 asm volatile(LOCK_PREFIX "bts %1,%0"
82 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
83 }
84 }
85
86 /**
87 * __set_bit - Set a bit in memory
88 * @nr: the bit to set
89 * @addr: the address to start counting from
90 *
91 * Unlike set_bit(), this function is non-atomic and may be reordered.
92 * If it's called on the same region of memory simultaneously, the effect
93 * may be that only one operation succeeds.
94 */
__set_bit(long nr,volatile unsigned long * addr)95 static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
96 {
97 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
98 }
99
100 /**
101 * clear_bit - Clears a bit in memory
102 * @nr: Bit to clear
103 * @addr: Address to start counting from
104 *
105 * clear_bit() is atomic and may not be reordered. However, it does
106 * not contain a memory barrier, so if it is used for locking purposes,
107 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
108 * in order to ensure changes are visible on other processors.
109 */
110 static __always_inline void
clear_bit(long nr,volatile unsigned long * addr)111 clear_bit(long nr, volatile unsigned long *addr)
112 {
113 if (IS_IMMEDIATE(nr)) {
114 asm volatile(LOCK_PREFIX "andb %1,%0"
115 : CONST_MASK_ADDR(nr, addr)
116 : "iq" ((u8)~CONST_MASK(nr)));
117 } else {
118 asm volatile(LOCK_PREFIX "btr %1,%0"
119 : BITOP_ADDR(addr)
120 : "Ir" (nr));
121 }
122 }
123
124 /*
125 * clear_bit_unlock - Clears a bit in memory
126 * @nr: Bit to clear
127 * @addr: Address to start counting from
128 *
129 * clear_bit() is atomic and implies release semantics before the memory
130 * operation. It can be used for an unlock.
131 */
clear_bit_unlock(long nr,volatile unsigned long * addr)132 static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
133 {
134 barrier();
135 clear_bit(nr, addr);
136 }
137
__clear_bit(long nr,volatile unsigned long * addr)138 static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
139 {
140 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
141 }
142
clear_bit_unlock_is_negative_byte(long nr,volatile unsigned long * addr)143 static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
144 {
145 bool negative;
146 asm volatile(LOCK_PREFIX "andb %2,%1"
147 CC_SET(s)
148 : CC_OUT(s) (negative), ADDR
149 : "ir" ((char) ~(1 << nr)) : "memory");
150 return negative;
151 }
152
153 // Let everybody know we have it
154 #define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
155
156 /*
157 * __clear_bit_unlock - Clears a bit in memory
158 * @nr: Bit to clear
159 * @addr: Address to start counting from
160 *
161 * __clear_bit() is non-atomic and implies release semantics before the memory
162 * operation. It can be used for an unlock if no other CPUs can concurrently
163 * modify other bits in the word.
164 *
165 * No memory barrier is required here, because x86 cannot reorder stores past
166 * older loads. Same principle as spin_unlock.
167 */
__clear_bit_unlock(long nr,volatile unsigned long * addr)168 static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
169 {
170 barrier();
171 __clear_bit(nr, addr);
172 }
173
174 /**
175 * __change_bit - Toggle a bit in memory
176 * @nr: the bit to change
177 * @addr: the address to start counting from
178 *
179 * Unlike change_bit(), this function is non-atomic and may be reordered.
180 * If it's called on the same region of memory simultaneously, the effect
181 * may be that only one operation succeeds.
182 */
__change_bit(long nr,volatile unsigned long * addr)183 static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
184 {
185 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
186 }
187
188 /**
189 * change_bit - Toggle a bit in memory
190 * @nr: Bit to change
191 * @addr: Address to start counting from
192 *
193 * change_bit() is atomic and may not be reordered.
194 * Note that @nr may be almost arbitrarily large; this function is not
195 * restricted to acting on a single-word quantity.
196 */
change_bit(long nr,volatile unsigned long * addr)197 static __always_inline void change_bit(long nr, volatile unsigned long *addr)
198 {
199 if (IS_IMMEDIATE(nr)) {
200 asm volatile(LOCK_PREFIX "xorb %1,%0"
201 : CONST_MASK_ADDR(nr, addr)
202 : "iq" ((u8)CONST_MASK(nr)));
203 } else {
204 asm volatile(LOCK_PREFIX "btc %1,%0"
205 : BITOP_ADDR(addr)
206 : "Ir" (nr));
207 }
208 }
209
210 /**
211 * test_and_set_bit - Set a bit and return its old value
212 * @nr: Bit to set
213 * @addr: Address to count from
214 *
215 * This operation is atomic and cannot be reordered.
216 * It also implies a memory barrier.
217 */
test_and_set_bit(long nr,volatile unsigned long * addr)218 static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
219 {
220 GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", c);
221 }
222
223 /**
224 * test_and_set_bit_lock - Set a bit and return its old value for lock
225 * @nr: Bit to set
226 * @addr: Address to count from
227 *
228 * This is the same as test_and_set_bit on x86.
229 */
230 static __always_inline bool
test_and_set_bit_lock(long nr,volatile unsigned long * addr)231 test_and_set_bit_lock(long nr, volatile unsigned long *addr)
232 {
233 return test_and_set_bit(nr, addr);
234 }
235
236 /**
237 * __test_and_set_bit - Set a bit and return its old value
238 * @nr: Bit to set
239 * @addr: Address to count from
240 *
241 * This operation is non-atomic and can be reordered.
242 * If two examples of this operation race, one can appear to succeed
243 * but actually fail. You must protect multiple accesses with a lock.
244 */
__test_and_set_bit(long nr,volatile unsigned long * addr)245 static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
246 {
247 bool oldbit;
248
249 asm("bts %2,%1"
250 CC_SET(c)
251 : CC_OUT(c) (oldbit), ADDR
252 : "Ir" (nr));
253 return oldbit;
254 }
255
256 /**
257 * test_and_clear_bit - Clear a bit and return its old value
258 * @nr: Bit to clear
259 * @addr: Address to count from
260 *
261 * This operation is atomic and cannot be reordered.
262 * It also implies a memory barrier.
263 */
test_and_clear_bit(long nr,volatile unsigned long * addr)264 static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
265 {
266 GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", c);
267 }
268
269 /**
270 * __test_and_clear_bit - Clear a bit and return its old value
271 * @nr: Bit to clear
272 * @addr: Address to count from
273 *
274 * This operation is non-atomic and can be reordered.
275 * If two examples of this operation race, one can appear to succeed
276 * but actually fail. You must protect multiple accesses with a lock.
277 *
278 * Note: the operation is performed atomically with respect to
279 * the local CPU, but not other CPUs. Portable code should not
280 * rely on this behaviour.
281 * KVM relies on this behaviour on x86 for modifying memory that is also
282 * accessed from a hypervisor on the same CPU if running in a VM: don't change
283 * this without also updating arch/x86/kernel/kvm.c
284 */
__test_and_clear_bit(long nr,volatile unsigned long * addr)285 static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
286 {
287 bool oldbit;
288
289 asm volatile("btr %2,%1"
290 CC_SET(c)
291 : CC_OUT(c) (oldbit), ADDR
292 : "Ir" (nr));
293 return oldbit;
294 }
295
296 /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(long nr,volatile unsigned long * addr)297 static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
298 {
299 bool oldbit;
300
301 asm volatile("btc %2,%1"
302 CC_SET(c)
303 : CC_OUT(c) (oldbit), ADDR
304 : "Ir" (nr) : "memory");
305
306 return oldbit;
307 }
308
309 /**
310 * test_and_change_bit - Change a bit and return its old value
311 * @nr: Bit to change
312 * @addr: Address to count from
313 *
314 * This operation is atomic and cannot be reordered.
315 * It also implies a memory barrier.
316 */
test_and_change_bit(long nr,volatile unsigned long * addr)317 static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
318 {
319 GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", c);
320 }
321
constant_test_bit(long nr,const volatile unsigned long * addr)322 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
323 {
324 return ((1UL << (nr & (BITS_PER_LONG-1))) &
325 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
326 }
327
variable_test_bit(long nr,volatile const unsigned long * addr)328 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
329 {
330 bool oldbit;
331
332 asm volatile("bt %2,%1"
333 CC_SET(c)
334 : CC_OUT(c) (oldbit)
335 : "m" (*(unsigned long *)addr), "Ir" (nr));
336
337 return oldbit;
338 }
339
340 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
341 /**
342 * test_bit - Determine whether a bit is set
343 * @nr: bit number to test
344 * @addr: Address to start counting from
345 */
346 static bool test_bit(int nr, const volatile unsigned long *addr);
347 #endif
348
349 #define test_bit(nr, addr) \
350 (__builtin_constant_p((nr)) \
351 ? constant_test_bit((nr), (addr)) \
352 : variable_test_bit((nr), (addr)))
353
354 /**
355 * __ffs - find first set bit in word
356 * @word: The word to search
357 *
358 * Undefined if no bit exists, so code should check against 0 first.
359 */
__ffs(unsigned long word)360 static __always_inline unsigned long __ffs(unsigned long word)
361 {
362 asm("rep; bsf %1,%0"
363 : "=r" (word)
364 : "rm" (word));
365 return word;
366 }
367
368 /**
369 * ffz - find first zero bit in word
370 * @word: The word to search
371 *
372 * Undefined if no zero exists, so code should check against ~0UL first.
373 */
ffz(unsigned long word)374 static __always_inline unsigned long ffz(unsigned long word)
375 {
376 asm("rep; bsf %1,%0"
377 : "=r" (word)
378 : "r" (~word));
379 return word;
380 }
381
382 /*
383 * __fls: find last set bit in word
384 * @word: The word to search
385 *
386 * Undefined if no set bit exists, so code should check against 0 first.
387 */
__fls(unsigned long word)388 static __always_inline unsigned long __fls(unsigned long word)
389 {
390 asm("bsr %1,%0"
391 : "=r" (word)
392 : "rm" (word));
393 return word;
394 }
395
396 #undef ADDR
397
398 #ifdef __KERNEL__
399 /**
400 * ffs - find first set bit in word
401 * @x: the word to search
402 *
403 * This is defined the same way as the libc and compiler builtin ffs
404 * routines, therefore differs in spirit from the other bitops.
405 *
406 * ffs(value) returns 0 if value is 0 or the position of the first
407 * set bit if value is nonzero. The first (least significant) bit
408 * is at position 1.
409 */
ffs(int x)410 static __always_inline int ffs(int x)
411 {
412 int r;
413
414 #ifdef CONFIG_X86_64
415 /*
416 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
417 * dest reg is undefined if x==0, but their CPU architect says its
418 * value is written to set it to the same as before, except that the
419 * top 32 bits will be cleared.
420 *
421 * We cannot do this on 32 bits because at the very least some
422 * 486 CPUs did not behave this way.
423 */
424 asm("bsfl %1,%0"
425 : "=r" (r)
426 : "rm" (x), "0" (-1));
427 #elif defined(CONFIG_X86_CMOV)
428 asm("bsfl %1,%0\n\t"
429 "cmovzl %2,%0"
430 : "=&r" (r) : "rm" (x), "r" (-1));
431 #else
432 asm("bsfl %1,%0\n\t"
433 "jnz 1f\n\t"
434 "movl $-1,%0\n"
435 "1:" : "=r" (r) : "rm" (x));
436 #endif
437 return r + 1;
438 }
439
440 /**
441 * fls - find last set bit in word
442 * @x: the word to search
443 *
444 * This is defined in a similar way as the libc and compiler builtin
445 * ffs, but returns the position of the most significant set bit.
446 *
447 * fls(value) returns 0 if value is 0 or the position of the last
448 * set bit if value is nonzero. The last (most significant) bit is
449 * at position 32.
450 */
fls(int x)451 static __always_inline int fls(int x)
452 {
453 int r;
454
455 #ifdef CONFIG_X86_64
456 /*
457 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
458 * dest reg is undefined if x==0, but their CPU architect says its
459 * value is written to set it to the same as before, except that the
460 * top 32 bits will be cleared.
461 *
462 * We cannot do this on 32 bits because at the very least some
463 * 486 CPUs did not behave this way.
464 */
465 asm("bsrl %1,%0"
466 : "=r" (r)
467 : "rm" (x), "0" (-1));
468 #elif defined(CONFIG_X86_CMOV)
469 asm("bsrl %1,%0\n\t"
470 "cmovzl %2,%0"
471 : "=&r" (r) : "rm" (x), "rm" (-1));
472 #else
473 asm("bsrl %1,%0\n\t"
474 "jnz 1f\n\t"
475 "movl $-1,%0\n"
476 "1:" : "=r" (r) : "rm" (x));
477 #endif
478 return r + 1;
479 }
480
481 /**
482 * fls64 - find last set bit in a 64-bit word
483 * @x: the word to search
484 *
485 * This is defined in a similar way as the libc and compiler builtin
486 * ffsll, but returns the position of the most significant set bit.
487 *
488 * fls64(value) returns 0 if value is 0 or the position of the last
489 * set bit if value is nonzero. The last (most significant) bit is
490 * at position 64.
491 */
492 #ifdef CONFIG_X86_64
fls64(__u64 x)493 static __always_inline int fls64(__u64 x)
494 {
495 int bitpos = -1;
496 /*
497 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
498 * dest reg is undefined if x==0, but their CPU architect says its
499 * value is written to set it to the same as before.
500 */
501 asm("bsrq %1,%q0"
502 : "+r" (bitpos)
503 : "rm" (x));
504 return bitpos + 1;
505 }
506 #else
507 #include <asm-generic/bitops/fls64.h>
508 #endif
509
510 #include <asm-generic/bitops/find.h>
511
512 #include <asm-generic/bitops/sched.h>
513
514 #include <asm/arch_hweight.h>
515
516 #include <asm-generic/bitops/const_hweight.h>
517
518 #include <asm-generic/bitops/le.h>
519
520 #include <asm-generic/bitops/ext2-atomic-setbit.h>
521
522 #endif /* __KERNEL__ */
523 #endif /* _ASM_X86_BITOPS_H */
524