• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4 
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9 
10 #include <trace/events/tlb.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16 
17 extern atomic64_t last_mm_ctx_id;
18 
19 #ifndef CONFIG_PARAVIRT
paravirt_activate_mm(struct mm_struct * prev,struct mm_struct * next)20 static inline void paravirt_activate_mm(struct mm_struct *prev,
21 					struct mm_struct *next)
22 {
23 }
24 #endif	/* !CONFIG_PARAVIRT */
25 
26 #ifdef CONFIG_PERF_EVENTS
27 extern struct static_key rdpmc_always_available;
28 
load_mm_cr4(struct mm_struct * mm)29 static inline void load_mm_cr4(struct mm_struct *mm)
30 {
31 	if (static_key_false(&rdpmc_always_available) ||
32 	    atomic_read(&mm->context.perf_rdpmc_allowed))
33 		cr4_set_bits(X86_CR4_PCE);
34 	else
35 		cr4_clear_bits(X86_CR4_PCE);
36 }
37 #else
load_mm_cr4(struct mm_struct * mm)38 static inline void load_mm_cr4(struct mm_struct *mm) {}
39 #endif
40 
41 #ifdef CONFIG_MODIFY_LDT_SYSCALL
42 /*
43  * ldt_structs can be allocated, used, and freed, but they are never
44  * modified while live.
45  */
46 struct ldt_struct {
47 	/*
48 	 * Xen requires page-aligned LDTs with special permissions.  This is
49 	 * needed to prevent us from installing evil descriptors such as
50 	 * call gates.  On native, we could merge the ldt_struct and LDT
51 	 * allocations, but it's not worth trying to optimize.
52 	 */
53 	struct desc_struct	*entries;
54 	unsigned int		nr_entries;
55 
56 	/*
57 	 * If PTI is in use, then the entries array is not mapped while we're
58 	 * in user mode.  The whole array will be aliased at the addressed
59 	 * given by ldt_slot_va(slot).  We use two slots so that we can allocate
60 	 * and map, and enable a new LDT without invalidating the mapping
61 	 * of an older, still-in-use LDT.
62 	 *
63 	 * slot will be -1 if this LDT doesn't have an alias mapping.
64 	 */
65 	int			slot;
66 };
67 
68 /* This is a multiple of PAGE_SIZE. */
69 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
70 
ldt_slot_va(int slot)71 static inline void *ldt_slot_va(int slot)
72 {
73 #ifdef CONFIG_X86_64
74 	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
75 #else
76 	BUG();
77 	return (void *)fix_to_virt(FIX_HOLE);
78 #endif
79 }
80 
81 /*
82  * Used for LDT copy/destruction.
83  */
init_new_context_ldt(struct mm_struct * mm)84 static inline void init_new_context_ldt(struct mm_struct *mm)
85 {
86 	mm->context.ldt = NULL;
87 	init_rwsem(&mm->context.ldt_usr_sem);
88 }
89 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
90 void destroy_context_ldt(struct mm_struct *mm);
91 void ldt_arch_exit_mmap(struct mm_struct *mm);
92 #else	/* CONFIG_MODIFY_LDT_SYSCALL */
init_new_context_ldt(struct mm_struct * mm)93 static inline void init_new_context_ldt(struct mm_struct *mm) { }
ldt_dup_context(struct mm_struct * oldmm,struct mm_struct * mm)94 static inline int ldt_dup_context(struct mm_struct *oldmm,
95 				  struct mm_struct *mm)
96 {
97 	return 0;
98 }
destroy_context_ldt(struct mm_struct * mm)99 static inline void destroy_context_ldt(struct mm_struct *mm) { }
ldt_arch_exit_mmap(struct mm_struct * mm)100 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
101 #endif
102 
load_mm_ldt(struct mm_struct * mm)103 static inline void load_mm_ldt(struct mm_struct *mm)
104 {
105 #ifdef CONFIG_MODIFY_LDT_SYSCALL
106 	struct ldt_struct *ldt;
107 
108 	/* READ_ONCE synchronizes with smp_store_release */
109 	ldt = READ_ONCE(mm->context.ldt);
110 
111 	/*
112 	 * Any change to mm->context.ldt is followed by an IPI to all
113 	 * CPUs with the mm active.  The LDT will not be freed until
114 	 * after the IPI is handled by all such CPUs.  This means that,
115 	 * if the ldt_struct changes before we return, the values we see
116 	 * will be safe, and the new values will be loaded before we run
117 	 * any user code.
118 	 *
119 	 * NB: don't try to convert this to use RCU without extreme care.
120 	 * We would still need IRQs off, because we don't want to change
121 	 * the local LDT after an IPI loaded a newer value than the one
122 	 * that we can see.
123 	 */
124 
125 	if (unlikely(ldt)) {
126 		if (static_cpu_has(X86_FEATURE_PTI)) {
127 			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
128 				/*
129 				 * Whoops -- either the new LDT isn't mapped
130 				 * (if slot == -1) or is mapped into a bogus
131 				 * slot (if slot > 1).
132 				 */
133 				clear_LDT();
134 				return;
135 			}
136 
137 			/*
138 			 * If page table isolation is enabled, ldt->entries
139 			 * will not be mapped in the userspace pagetables.
140 			 * Tell the CPU to access the LDT through the alias
141 			 * at ldt_slot_va(ldt->slot).
142 			 */
143 			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
144 		} else {
145 			set_ldt(ldt->entries, ldt->nr_entries);
146 		}
147 	} else {
148 		clear_LDT();
149 	}
150 #else
151 	clear_LDT();
152 #endif
153 }
154 
switch_ldt(struct mm_struct * prev,struct mm_struct * next)155 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
156 {
157 #ifdef CONFIG_MODIFY_LDT_SYSCALL
158 	/*
159 	 * Load the LDT if either the old or new mm had an LDT.
160 	 *
161 	 * An mm will never go from having an LDT to not having an LDT.  Two
162 	 * mms never share an LDT, so we don't gain anything by checking to
163 	 * see whether the LDT changed.  There's also no guarantee that
164 	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
165 	 * then prev->context.ldt will also be non-NULL.
166 	 *
167 	 * If we really cared, we could optimize the case where prev == next
168 	 * and we're exiting lazy mode.  Most of the time, if this happens,
169 	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
170 	 * used by legacy code and emulators where we don't need this level of
171 	 * performance.
172 	 *
173 	 * This uses | instead of || because it generates better code.
174 	 */
175 	if (unlikely((unsigned long)prev->context.ldt |
176 		     (unsigned long)next->context.ldt))
177 		load_mm_ldt(next);
178 #endif
179 
180 	DEBUG_LOCKS_WARN_ON(preemptible());
181 }
182 
183 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
184 
185 /*
186  * Init a new mm.  Used on mm copies, like at fork()
187  * and on mm's that are brand-new, like at execve().
188  */
init_new_context(struct task_struct * tsk,struct mm_struct * mm)189 static inline int init_new_context(struct task_struct *tsk,
190 				   struct mm_struct *mm)
191 {
192 	mutex_init(&mm->context.lock);
193 
194 	mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
195 	atomic64_set(&mm->context.tlb_gen, 0);
196 
197 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
198 	if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
199 		/* pkey 0 is the default and allocated implicitly */
200 		mm->context.pkey_allocation_map = 0x1;
201 		/* -1 means unallocated or invalid */
202 		mm->context.execute_only_pkey = -1;
203 	}
204 #endif
205 	init_new_context_ldt(mm);
206 	return 0;
207 }
destroy_context(struct mm_struct * mm)208 static inline void destroy_context(struct mm_struct *mm)
209 {
210 	destroy_context_ldt(mm);
211 }
212 
213 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
214 		      struct task_struct *tsk);
215 
216 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
217 			       struct task_struct *tsk);
218 #define switch_mm_irqs_off switch_mm_irqs_off
219 
220 #define activate_mm(prev, next)			\
221 do {						\
222 	paravirt_activate_mm((prev), (next));	\
223 	switch_mm((prev), (next), NULL);	\
224 } while (0);
225 
226 #ifdef CONFIG_X86_32
227 #define deactivate_mm(tsk, mm)			\
228 do {						\
229 	lazy_load_gs(0);			\
230 } while (0)
231 #else
232 #define deactivate_mm(tsk, mm)			\
233 do {						\
234 	load_gs_index(0);			\
235 	loadsegment(fs, 0);			\
236 } while (0)
237 #endif
238 
arch_dup_pkeys(struct mm_struct * oldmm,struct mm_struct * mm)239 static inline void arch_dup_pkeys(struct mm_struct *oldmm,
240 				  struct mm_struct *mm)
241 {
242 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
243 	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
244 		return;
245 
246 	/* Duplicate the oldmm pkey state in mm: */
247 	mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map;
248 	mm->context.execute_only_pkey   = oldmm->context.execute_only_pkey;
249 #endif
250 }
251 
arch_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)252 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
253 {
254 	arch_dup_pkeys(oldmm, mm);
255 	paravirt_arch_dup_mmap(oldmm, mm);
256 	return ldt_dup_context(oldmm, mm);
257 }
258 
arch_exit_mmap(struct mm_struct * mm)259 static inline void arch_exit_mmap(struct mm_struct *mm)
260 {
261 	paravirt_arch_exit_mmap(mm);
262 	ldt_arch_exit_mmap(mm);
263 }
264 
265 #ifdef CONFIG_X86_64
is_64bit_mm(struct mm_struct * mm)266 static inline bool is_64bit_mm(struct mm_struct *mm)
267 {
268 	return	!IS_ENABLED(CONFIG_IA32_EMULATION) ||
269 		!(mm->context.ia32_compat == TIF_IA32);
270 }
271 #else
is_64bit_mm(struct mm_struct * mm)272 static inline bool is_64bit_mm(struct mm_struct *mm)
273 {
274 	return false;
275 }
276 #endif
277 
arch_bprm_mm_init(struct mm_struct * mm,struct vm_area_struct * vma)278 static inline void arch_bprm_mm_init(struct mm_struct *mm,
279 		struct vm_area_struct *vma)
280 {
281 	mpx_mm_init(mm);
282 }
283 
arch_unmap(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start,unsigned long end)284 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
285 			      unsigned long start, unsigned long end)
286 {
287 	/*
288 	 * mpx_notify_unmap() goes and reads a rarely-hot
289 	 * cacheline in the mm_struct.  That can be expensive
290 	 * enough to be seen in profiles.
291 	 *
292 	 * The mpx_notify_unmap() call and its contents have been
293 	 * observed to affect munmap() performance on hardware
294 	 * where MPX is not present.
295 	 *
296 	 * The unlikely() optimizes for the fast case: no MPX
297 	 * in the CPU, or no MPX use in the process.  Even if
298 	 * we get this wrong (in the unlikely event that MPX
299 	 * is widely enabled on some system) the overhead of
300 	 * MPX itself (reading bounds tables) is expected to
301 	 * overwhelm the overhead of getting this unlikely()
302 	 * consistently wrong.
303 	 */
304 	if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
305 		mpx_notify_unmap(mm, vma, start, end);
306 }
307 
308 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
vma_pkey(struct vm_area_struct * vma)309 static inline int vma_pkey(struct vm_area_struct *vma)
310 {
311 	unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 |
312 				      VM_PKEY_BIT2 | VM_PKEY_BIT3;
313 
314 	return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT;
315 }
316 #else
vma_pkey(struct vm_area_struct * vma)317 static inline int vma_pkey(struct vm_area_struct *vma)
318 {
319 	return 0;
320 }
321 #endif
322 
323 /*
324  * We only want to enforce protection keys on the current process
325  * because we effectively have no access to PKRU for other
326  * processes or any way to tell *which * PKRU in a threaded
327  * process we could use.
328  *
329  * So do not enforce things if the VMA is not from the current
330  * mm, or if we are in a kernel thread.
331  */
vma_is_foreign(struct vm_area_struct * vma)332 static inline bool vma_is_foreign(struct vm_area_struct *vma)
333 {
334 	if (!current->mm)
335 		return true;
336 	/*
337 	 * Should PKRU be enforced on the access to this VMA?  If
338 	 * the VMA is from another process, then PKRU has no
339 	 * relevance and should not be enforced.
340 	 */
341 	if (current->mm != vma->vm_mm)
342 		return true;
343 
344 	return false;
345 }
346 
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)347 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
348 		bool write, bool execute, bool foreign)
349 {
350 	/* pkeys never affect instruction fetches */
351 	if (execute)
352 		return true;
353 	/* allow access if the VMA is not one from this process */
354 	if (foreign || vma_is_foreign(vma))
355 		return true;
356 	return __pkru_allows_pkey(vma_pkey(vma), write);
357 }
358 
359 /*
360  * This can be used from process context to figure out what the value of
361  * CR3 is without needing to do a (slow) __read_cr3().
362  *
363  * It's intended to be used for code like KVM that sneakily changes CR3
364  * and needs to restore it.  It needs to be used very carefully.
365  */
__get_current_cr3_fast(void)366 static inline unsigned long __get_current_cr3_fast(void)
367 {
368 	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
369 		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
370 
371 	/* For now, be very restrictive about when this can be called. */
372 	VM_WARN_ON(in_nmi() || preemptible());
373 
374 	VM_BUG_ON(cr3 != __read_cr3());
375 	return cr3;
376 }
377 
378 #endif /* _ASM_X86_MMU_CONTEXT_H */
379