• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*  Generic MTRR (Memory Type Range Register) driver.
2 
3     Copyright (C) 1997-2000  Richard Gooch
4     Copyright (c) 2002	     Patrick Mochel
5 
6     This library is free software; you can redistribute it and/or
7     modify it under the terms of the GNU Library General Public
8     License as published by the Free Software Foundation; either
9     version 2 of the License, or (at your option) any later version.
10 
11     This library is distributed in the hope that it will be useful,
12     but WITHOUT ANY WARRANTY; without even the implied warranty of
13     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14     Library General Public License for more details.
15 
16     You should have received a copy of the GNU Library General Public
17     License along with this library; if not, write to the Free
18     Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 
20     Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
21     The postal address is:
22       Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23 
24     Source: "Pentium Pro Family Developer's Manual, Volume 3:
25     Operating System Writer's Guide" (Intel document number 242692),
26     section 11.11.7
27 
28     This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29     on 6-7 March 2002.
30     Source: Intel Architecture Software Developers Manual, Volume 3:
31     System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33 
34 #define DEBUG
35 
36 #include <linux/types.h> /* FIXME: kvm_para.h needs this */
37 
38 #include <linux/stop_machine.h>
39 #include <linux/kvm_para.h>
40 #include <linux/uaccess.h>
41 #include <linux/export.h>
42 #include <linux/mutex.h>
43 #include <linux/init.h>
44 #include <linux/sort.h>
45 #include <linux/cpu.h>
46 #include <linux/pci.h>
47 #include <linux/smp.h>
48 #include <linux/syscore_ops.h>
49 
50 #include <asm/cpufeature.h>
51 #include <asm/e820/api.h>
52 #include <asm/mtrr.h>
53 #include <asm/msr.h>
54 #include <asm/pat.h>
55 
56 #include "mtrr.h"
57 
58 /* arch_phys_wc_add returns an MTRR register index plus this offset. */
59 #define MTRR_TO_PHYS_WC_OFFSET 1000
60 
61 u32 num_var_ranges;
62 static bool __mtrr_enabled;
63 
mtrr_enabled(void)64 static bool mtrr_enabled(void)
65 {
66 	return __mtrr_enabled;
67 }
68 
69 unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
70 static DEFINE_MUTEX(mtrr_mutex);
71 
72 u64 size_or_mask, size_and_mask;
73 static bool mtrr_aps_delayed_init;
74 
75 static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM] __ro_after_init;
76 
77 const struct mtrr_ops *mtrr_if;
78 
79 static void set_mtrr(unsigned int reg, unsigned long base,
80 		     unsigned long size, mtrr_type type);
81 
set_mtrr_ops(const struct mtrr_ops * ops)82 void __init set_mtrr_ops(const struct mtrr_ops *ops)
83 {
84 	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
85 		mtrr_ops[ops->vendor] = ops;
86 }
87 
88 /*  Returns non-zero if we have the write-combining memory type  */
have_wrcomb(void)89 static int have_wrcomb(void)
90 {
91 	struct pci_dev *dev;
92 
93 	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
94 	if (dev != NULL) {
95 		/*
96 		 * ServerWorks LE chipsets < rev 6 have problems with
97 		 * write-combining. Don't allow it and leave room for other
98 		 * chipsets to be tagged
99 		 */
100 		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
101 		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
102 		    dev->revision <= 5) {
103 			pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
104 			pci_dev_put(dev);
105 			return 0;
106 		}
107 		/*
108 		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
109 		 * write combining memory may resulting in data corruption
110 		 */
111 		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
112 		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
113 			pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
114 			pci_dev_put(dev);
115 			return 0;
116 		}
117 		pci_dev_put(dev);
118 	}
119 	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
120 }
121 
122 /*  This function returns the number of variable MTRRs  */
set_num_var_ranges(void)123 static void __init set_num_var_ranges(void)
124 {
125 	unsigned long config = 0, dummy;
126 
127 	if (use_intel())
128 		rdmsr(MSR_MTRRcap, config, dummy);
129 	else if (is_cpu(AMD))
130 		config = 2;
131 	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
132 		config = 8;
133 
134 	num_var_ranges = config & 0xff;
135 }
136 
init_table(void)137 static void __init init_table(void)
138 {
139 	int i, max;
140 
141 	max = num_var_ranges;
142 	for (i = 0; i < max; i++)
143 		mtrr_usage_table[i] = 1;
144 }
145 
146 struct set_mtrr_data {
147 	unsigned long	smp_base;
148 	unsigned long	smp_size;
149 	unsigned int	smp_reg;
150 	mtrr_type	smp_type;
151 };
152 
153 /**
154  * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
155  * by all the CPUs.
156  * @info: pointer to mtrr configuration data
157  *
158  * Returns nothing.
159  */
mtrr_rendezvous_handler(void * info)160 static int mtrr_rendezvous_handler(void *info)
161 {
162 	struct set_mtrr_data *data = info;
163 
164 	/*
165 	 * We use this same function to initialize the mtrrs during boot,
166 	 * resume, runtime cpu online and on an explicit request to set a
167 	 * specific MTRR.
168 	 *
169 	 * During boot or suspend, the state of the boot cpu's mtrrs has been
170 	 * saved, and we want to replicate that across all the cpus that come
171 	 * online (either at the end of boot or resume or during a runtime cpu
172 	 * online). If we're doing that, @reg is set to something special and on
173 	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
174 	 * started the boot/resume sequence, this might be a duplicate
175 	 * set_all()).
176 	 */
177 	if (data->smp_reg != ~0U) {
178 		mtrr_if->set(data->smp_reg, data->smp_base,
179 			     data->smp_size, data->smp_type);
180 	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
181 		mtrr_if->set_all();
182 	}
183 	return 0;
184 }
185 
types_compatible(mtrr_type type1,mtrr_type type2)186 static inline int types_compatible(mtrr_type type1, mtrr_type type2)
187 {
188 	return type1 == MTRR_TYPE_UNCACHABLE ||
189 	       type2 == MTRR_TYPE_UNCACHABLE ||
190 	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
191 	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
192 }
193 
194 /**
195  * set_mtrr - update mtrrs on all processors
196  * @reg:	mtrr in question
197  * @base:	mtrr base
198  * @size:	mtrr size
199  * @type:	mtrr type
200  *
201  * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
202  *
203  * 1. Queue work to do the following on all processors:
204  * 2. Disable Interrupts
205  * 3. Wait for all procs to do so
206  * 4. Enter no-fill cache mode
207  * 5. Flush caches
208  * 6. Clear PGE bit
209  * 7. Flush all TLBs
210  * 8. Disable all range registers
211  * 9. Update the MTRRs
212  * 10. Enable all range registers
213  * 11. Flush all TLBs and caches again
214  * 12. Enter normal cache mode and reenable caching
215  * 13. Set PGE
216  * 14. Wait for buddies to catch up
217  * 15. Enable interrupts.
218  *
219  * What does that mean for us? Well, stop_machine() will ensure that
220  * the rendezvous handler is started on each CPU. And in lockstep they
221  * do the state transition of disabling interrupts, updating MTRR's
222  * (the CPU vendors may each do it differently, so we call mtrr_if->set()
223  * callback and let them take care of it.) and enabling interrupts.
224  *
225  * Note that the mechanism is the same for UP systems, too; all the SMP stuff
226  * becomes nops.
227  */
228 static void
set_mtrr(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)229 set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
230 {
231 	struct set_mtrr_data data = { .smp_reg = reg,
232 				      .smp_base = base,
233 				      .smp_size = size,
234 				      .smp_type = type
235 				    };
236 
237 	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
238 }
239 
set_mtrr_cpuslocked(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)240 static void set_mtrr_cpuslocked(unsigned int reg, unsigned long base,
241 				unsigned long size, mtrr_type type)
242 {
243 	struct set_mtrr_data data = { .smp_reg = reg,
244 				      .smp_base = base,
245 				      .smp_size = size,
246 				      .smp_type = type
247 				    };
248 
249 	stop_machine_cpuslocked(mtrr_rendezvous_handler, &data, cpu_online_mask);
250 }
251 
set_mtrr_from_inactive_cpu(unsigned int reg,unsigned long base,unsigned long size,mtrr_type type)252 static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
253 				      unsigned long size, mtrr_type type)
254 {
255 	struct set_mtrr_data data = { .smp_reg = reg,
256 				      .smp_base = base,
257 				      .smp_size = size,
258 				      .smp_type = type
259 				    };
260 
261 	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
262 				       cpu_callout_mask);
263 }
264 
265 /**
266  * mtrr_add_page - Add a memory type region
267  * @base: Physical base address of region in pages (in units of 4 kB!)
268  * @size: Physical size of region in pages (4 kB)
269  * @type: Type of MTRR desired
270  * @increment: If this is true do usage counting on the region
271  *
272  * Memory type region registers control the caching on newer Intel and
273  * non Intel processors. This function allows drivers to request an
274  * MTRR is added. The details and hardware specifics of each processor's
275  * implementation are hidden from the caller, but nevertheless the
276  * caller should expect to need to provide a power of two size on an
277  * equivalent power of two boundary.
278  *
279  * If the region cannot be added either because all regions are in use
280  * or the CPU cannot support it a negative value is returned. On success
281  * the register number for this entry is returned, but should be treated
282  * as a cookie only.
283  *
284  * On a multiprocessor machine the changes are made to all processors.
285  * This is required on x86 by the Intel processors.
286  *
287  * The available types are
288  *
289  * %MTRR_TYPE_UNCACHABLE - No caching
290  *
291  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
292  *
293  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
294  *
295  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
296  *
297  * BUGS: Needs a quiet flag for the cases where drivers do not mind
298  * failures and do not wish system log messages to be sent.
299  */
mtrr_add_page(unsigned long base,unsigned long size,unsigned int type,bool increment)300 int mtrr_add_page(unsigned long base, unsigned long size,
301 		  unsigned int type, bool increment)
302 {
303 	unsigned long lbase, lsize;
304 	int i, replace, error;
305 	mtrr_type ltype;
306 
307 	if (!mtrr_enabled())
308 		return -ENXIO;
309 
310 	error = mtrr_if->validate_add_page(base, size, type);
311 	if (error)
312 		return error;
313 
314 	if (type >= MTRR_NUM_TYPES) {
315 		pr_warn("mtrr: type: %u invalid\n", type);
316 		return -EINVAL;
317 	}
318 
319 	/* If the type is WC, check that this processor supports it */
320 	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
321 		pr_warn("mtrr: your processor doesn't support write-combining\n");
322 		return -ENOSYS;
323 	}
324 
325 	if (!size) {
326 		pr_warn("mtrr: zero sized request\n");
327 		return -EINVAL;
328 	}
329 
330 	if ((base | (base + size - 1)) >>
331 	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
332 		pr_warn("mtrr: base or size exceeds the MTRR width\n");
333 		return -EINVAL;
334 	}
335 
336 	error = -EINVAL;
337 	replace = -1;
338 
339 	/* No CPU hotplug when we change MTRR entries */
340 	get_online_cpus();
341 
342 	/* Search for existing MTRR  */
343 	mutex_lock(&mtrr_mutex);
344 	for (i = 0; i < num_var_ranges; ++i) {
345 		mtrr_if->get(i, &lbase, &lsize, &ltype);
346 		if (!lsize || base > lbase + lsize - 1 ||
347 		    base + size - 1 < lbase)
348 			continue;
349 		/*
350 		 * At this point we know there is some kind of
351 		 * overlap/enclosure
352 		 */
353 		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
354 			if (base <= lbase &&
355 			    base + size - 1 >= lbase + lsize - 1) {
356 				/*  New region encloses an existing region  */
357 				if (type == ltype) {
358 					replace = replace == -1 ? i : -2;
359 					continue;
360 				} else if (types_compatible(type, ltype))
361 					continue;
362 			}
363 			pr_warn("mtrr: 0x%lx000,0x%lx000 overlaps existing"
364 				" 0x%lx000,0x%lx000\n", base, size, lbase,
365 				lsize);
366 			goto out;
367 		}
368 		/* New region is enclosed by an existing region */
369 		if (ltype != type) {
370 			if (types_compatible(type, ltype))
371 				continue;
372 			pr_warn("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
373 				base, size, mtrr_attrib_to_str(ltype),
374 				mtrr_attrib_to_str(type));
375 			goto out;
376 		}
377 		if (increment)
378 			++mtrr_usage_table[i];
379 		error = i;
380 		goto out;
381 	}
382 	/* Search for an empty MTRR */
383 	i = mtrr_if->get_free_region(base, size, replace);
384 	if (i >= 0) {
385 		set_mtrr_cpuslocked(i, base, size, type);
386 		if (likely(replace < 0)) {
387 			mtrr_usage_table[i] = 1;
388 		} else {
389 			mtrr_usage_table[i] = mtrr_usage_table[replace];
390 			if (increment)
391 				mtrr_usage_table[i]++;
392 			if (unlikely(replace != i)) {
393 				set_mtrr_cpuslocked(replace, 0, 0, 0);
394 				mtrr_usage_table[replace] = 0;
395 			}
396 		}
397 	} else {
398 		pr_info("mtrr: no more MTRRs available\n");
399 	}
400 	error = i;
401  out:
402 	mutex_unlock(&mtrr_mutex);
403 	put_online_cpus();
404 	return error;
405 }
406 
mtrr_check(unsigned long base,unsigned long size)407 static int mtrr_check(unsigned long base, unsigned long size)
408 {
409 	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
410 		pr_warn("mtrr: size and base must be multiples of 4 kiB\n");
411 		pr_debug("mtrr: size: 0x%lx  base: 0x%lx\n", size, base);
412 		dump_stack();
413 		return -1;
414 	}
415 	return 0;
416 }
417 
418 /**
419  * mtrr_add - Add a memory type region
420  * @base: Physical base address of region
421  * @size: Physical size of region
422  * @type: Type of MTRR desired
423  * @increment: If this is true do usage counting on the region
424  *
425  * Memory type region registers control the caching on newer Intel and
426  * non Intel processors. This function allows drivers to request an
427  * MTRR is added. The details and hardware specifics of each processor's
428  * implementation are hidden from the caller, but nevertheless the
429  * caller should expect to need to provide a power of two size on an
430  * equivalent power of two boundary.
431  *
432  * If the region cannot be added either because all regions are in use
433  * or the CPU cannot support it a negative value is returned. On success
434  * the register number for this entry is returned, but should be treated
435  * as a cookie only.
436  *
437  * On a multiprocessor machine the changes are made to all processors.
438  * This is required on x86 by the Intel processors.
439  *
440  * The available types are
441  *
442  * %MTRR_TYPE_UNCACHABLE - No caching
443  *
444  * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
445  *
446  * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
447  *
448  * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
449  *
450  * BUGS: Needs a quiet flag for the cases where drivers do not mind
451  * failures and do not wish system log messages to be sent.
452  */
mtrr_add(unsigned long base,unsigned long size,unsigned int type,bool increment)453 int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
454 	     bool increment)
455 {
456 	if (!mtrr_enabled())
457 		return -ENODEV;
458 	if (mtrr_check(base, size))
459 		return -EINVAL;
460 	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
461 			     increment);
462 }
463 
464 /**
465  * mtrr_del_page - delete a memory type region
466  * @reg: Register returned by mtrr_add
467  * @base: Physical base address
468  * @size: Size of region
469  *
470  * If register is supplied then base and size are ignored. This is
471  * how drivers should call it.
472  *
473  * Releases an MTRR region. If the usage count drops to zero the
474  * register is freed and the region returns to default state.
475  * On success the register is returned, on failure a negative error
476  * code.
477  */
mtrr_del_page(int reg,unsigned long base,unsigned long size)478 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
479 {
480 	int i, max;
481 	mtrr_type ltype;
482 	unsigned long lbase, lsize;
483 	int error = -EINVAL;
484 
485 	if (!mtrr_enabled())
486 		return -ENODEV;
487 
488 	max = num_var_ranges;
489 	/* No CPU hotplug when we change MTRR entries */
490 	get_online_cpus();
491 	mutex_lock(&mtrr_mutex);
492 	if (reg < 0) {
493 		/*  Search for existing MTRR  */
494 		for (i = 0; i < max; ++i) {
495 			mtrr_if->get(i, &lbase, &lsize, &ltype);
496 			if (lbase == base && lsize == size) {
497 				reg = i;
498 				break;
499 			}
500 		}
501 		if (reg < 0) {
502 			pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
503 				 base, size);
504 			goto out;
505 		}
506 	}
507 	if (reg >= max) {
508 		pr_warn("mtrr: register: %d too big\n", reg);
509 		goto out;
510 	}
511 	mtrr_if->get(reg, &lbase, &lsize, &ltype);
512 	if (lsize < 1) {
513 		pr_warn("mtrr: MTRR %d not used\n", reg);
514 		goto out;
515 	}
516 	if (mtrr_usage_table[reg] < 1) {
517 		pr_warn("mtrr: reg: %d has count=0\n", reg);
518 		goto out;
519 	}
520 	if (--mtrr_usage_table[reg] < 1)
521 		set_mtrr_cpuslocked(reg, 0, 0, 0);
522 	error = reg;
523  out:
524 	mutex_unlock(&mtrr_mutex);
525 	put_online_cpus();
526 	return error;
527 }
528 
529 /**
530  * mtrr_del - delete a memory type region
531  * @reg: Register returned by mtrr_add
532  * @base: Physical base address
533  * @size: Size of region
534  *
535  * If register is supplied then base and size are ignored. This is
536  * how drivers should call it.
537  *
538  * Releases an MTRR region. If the usage count drops to zero the
539  * register is freed and the region returns to default state.
540  * On success the register is returned, on failure a negative error
541  * code.
542  */
mtrr_del(int reg,unsigned long base,unsigned long size)543 int mtrr_del(int reg, unsigned long base, unsigned long size)
544 {
545 	if (!mtrr_enabled())
546 		return -ENODEV;
547 	if (mtrr_check(base, size))
548 		return -EINVAL;
549 	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
550 }
551 
552 /**
553  * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
554  * @base: Physical base address
555  * @size: Size of region
556  *
557  * If PAT is available, this does nothing.  If PAT is unavailable, it
558  * attempts to add a WC MTRR covering size bytes starting at base and
559  * logs an error if this fails.
560  *
561  * The called should provide a power of two size on an equivalent
562  * power of two boundary.
563  *
564  * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
565  * but drivers should not try to interpret that return value.
566  */
arch_phys_wc_add(unsigned long base,unsigned long size)567 int arch_phys_wc_add(unsigned long base, unsigned long size)
568 {
569 	int ret;
570 
571 	if (pat_enabled() || !mtrr_enabled())
572 		return 0;  /* Success!  (We don't need to do anything.) */
573 
574 	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
575 	if (ret < 0) {
576 		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
577 			(void *)base, (void *)(base + size - 1));
578 		return ret;
579 	}
580 	return ret + MTRR_TO_PHYS_WC_OFFSET;
581 }
582 EXPORT_SYMBOL(arch_phys_wc_add);
583 
584 /*
585  * arch_phys_wc_del - undoes arch_phys_wc_add
586  * @handle: Return value from arch_phys_wc_add
587  *
588  * This cleans up after mtrr_add_wc_if_needed.
589  *
590  * The API guarantees that mtrr_del_wc_if_needed(error code) and
591  * mtrr_del_wc_if_needed(0) do nothing.
592  */
arch_phys_wc_del(int handle)593 void arch_phys_wc_del(int handle)
594 {
595 	if (handle >= 1) {
596 		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
597 		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
598 	}
599 }
600 EXPORT_SYMBOL(arch_phys_wc_del);
601 
602 /*
603  * arch_phys_wc_index - translates arch_phys_wc_add's return value
604  * @handle: Return value from arch_phys_wc_add
605  *
606  * This will turn the return value from arch_phys_wc_add into an mtrr
607  * index suitable for debugging.
608  *
609  * Note: There is no legitimate use for this function, except possibly
610  * in printk line.  Alas there is an illegitimate use in some ancient
611  * drm ioctls.
612  */
arch_phys_wc_index(int handle)613 int arch_phys_wc_index(int handle)
614 {
615 	if (handle < MTRR_TO_PHYS_WC_OFFSET)
616 		return -1;
617 	else
618 		return handle - MTRR_TO_PHYS_WC_OFFSET;
619 }
620 EXPORT_SYMBOL_GPL(arch_phys_wc_index);
621 
622 /*
623  * HACK ALERT!
624  * These should be called implicitly, but we can't yet until all the initcall
625  * stuff is done...
626  */
init_ifs(void)627 static void __init init_ifs(void)
628 {
629 #ifndef CONFIG_X86_64
630 	amd_init_mtrr();
631 	cyrix_init_mtrr();
632 	centaur_init_mtrr();
633 #endif
634 }
635 
636 /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
637  * MTRR driver doesn't require this
638  */
639 struct mtrr_value {
640 	mtrr_type	ltype;
641 	unsigned long	lbase;
642 	unsigned long	lsize;
643 };
644 
645 static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
646 
mtrr_save(void)647 static int mtrr_save(void)
648 {
649 	int i;
650 
651 	for (i = 0; i < num_var_ranges; i++) {
652 		mtrr_if->get(i, &mtrr_value[i].lbase,
653 				&mtrr_value[i].lsize,
654 				&mtrr_value[i].ltype);
655 	}
656 	return 0;
657 }
658 
mtrr_restore(void)659 static void mtrr_restore(void)
660 {
661 	int i;
662 
663 	for (i = 0; i < num_var_ranges; i++) {
664 		if (mtrr_value[i].lsize) {
665 			set_mtrr(i, mtrr_value[i].lbase,
666 				    mtrr_value[i].lsize,
667 				    mtrr_value[i].ltype);
668 		}
669 	}
670 }
671 
672 
673 
674 static struct syscore_ops mtrr_syscore_ops = {
675 	.suspend	= mtrr_save,
676 	.resume		= mtrr_restore,
677 };
678 
679 int __initdata changed_by_mtrr_cleanup;
680 
681 #define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
682 /**
683  * mtrr_bp_init - initialize mtrrs on the boot CPU
684  *
685  * This needs to be called early; before any of the other CPUs are
686  * initialized (i.e. before smp_init()).
687  *
688  */
mtrr_bp_init(void)689 void __init mtrr_bp_init(void)
690 {
691 	u32 phys_addr;
692 
693 	init_ifs();
694 
695 	phys_addr = 32;
696 
697 	if (boot_cpu_has(X86_FEATURE_MTRR)) {
698 		mtrr_if = &generic_mtrr_ops;
699 		size_or_mask = SIZE_OR_MASK_BITS(36);
700 		size_and_mask = 0x00f00000;
701 		phys_addr = 36;
702 
703 		/*
704 		 * This is an AMD specific MSR, but we assume(hope?) that
705 		 * Intel will implement it too when they extend the address
706 		 * bus of the Xeon.
707 		 */
708 		if (cpuid_eax(0x80000000) >= 0x80000008) {
709 			phys_addr = cpuid_eax(0x80000008) & 0xff;
710 			/* CPUID workaround for Intel 0F33/0F34 CPU */
711 			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
712 			    boot_cpu_data.x86 == 0xF &&
713 			    boot_cpu_data.x86_model == 0x3 &&
714 			    (boot_cpu_data.x86_stepping == 0x3 ||
715 			     boot_cpu_data.x86_stepping == 0x4))
716 				phys_addr = 36;
717 
718 			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
719 			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
720 		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
721 			   boot_cpu_data.x86 == 6) {
722 			/*
723 			 * VIA C* family have Intel style MTRRs,
724 			 * but don't support PAE
725 			 */
726 			size_or_mask = SIZE_OR_MASK_BITS(32);
727 			size_and_mask = 0;
728 			phys_addr = 32;
729 		}
730 	} else {
731 		switch (boot_cpu_data.x86_vendor) {
732 		case X86_VENDOR_AMD:
733 			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
734 				/* Pre-Athlon (K6) AMD CPU MTRRs */
735 				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
736 				size_or_mask = SIZE_OR_MASK_BITS(32);
737 				size_and_mask = 0;
738 			}
739 			break;
740 		case X86_VENDOR_CENTAUR:
741 			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
742 				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
743 				size_or_mask = SIZE_OR_MASK_BITS(32);
744 				size_and_mask = 0;
745 			}
746 			break;
747 		case X86_VENDOR_CYRIX:
748 			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
749 				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
750 				size_or_mask = SIZE_OR_MASK_BITS(32);
751 				size_and_mask = 0;
752 			}
753 			break;
754 		default:
755 			break;
756 		}
757 	}
758 
759 	if (mtrr_if) {
760 		__mtrr_enabled = true;
761 		set_num_var_ranges();
762 		init_table();
763 		if (use_intel()) {
764 			/* BIOS may override */
765 			__mtrr_enabled = get_mtrr_state();
766 
767 			if (mtrr_enabled())
768 				mtrr_bp_pat_init();
769 
770 			if (mtrr_cleanup(phys_addr)) {
771 				changed_by_mtrr_cleanup = 1;
772 				mtrr_if->set_all();
773 			}
774 		}
775 	}
776 
777 	if (!mtrr_enabled()) {
778 		pr_info("MTRR: Disabled\n");
779 
780 		/*
781 		 * PAT initialization relies on MTRR's rendezvous handler.
782 		 * Skip PAT init until the handler can initialize both
783 		 * features independently.
784 		 */
785 		pat_disable("MTRRs disabled, skipping PAT initialization too.");
786 	}
787 }
788 
mtrr_ap_init(void)789 void mtrr_ap_init(void)
790 {
791 	if (!mtrr_enabled())
792 		return;
793 
794 	if (!use_intel() || mtrr_aps_delayed_init)
795 		return;
796 	/*
797 	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
798 	 * changed, but this routine will be called in cpu boot time,
799 	 * holding the lock breaks it.
800 	 *
801 	 * This routine is called in two cases:
802 	 *
803 	 *   1. very earily time of software resume, when there absolutely
804 	 *      isn't mtrr entry changes;
805 	 *
806 	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
807 	 *      lock to prevent mtrr entry changes
808 	 */
809 	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
810 }
811 
812 /**
813  * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
814  */
mtrr_save_state(void)815 void mtrr_save_state(void)
816 {
817 	int first_cpu;
818 
819 	if (!mtrr_enabled())
820 		return;
821 
822 	first_cpu = cpumask_first(cpu_online_mask);
823 	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
824 }
825 
set_mtrr_aps_delayed_init(void)826 void set_mtrr_aps_delayed_init(void)
827 {
828 	if (!mtrr_enabled())
829 		return;
830 	if (!use_intel())
831 		return;
832 
833 	mtrr_aps_delayed_init = true;
834 }
835 
836 /*
837  * Delayed MTRR initialization for all AP's
838  */
mtrr_aps_init(void)839 void mtrr_aps_init(void)
840 {
841 	if (!use_intel() || !mtrr_enabled())
842 		return;
843 
844 	/*
845 	 * Check if someone has requested the delay of AP MTRR initialization,
846 	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
847 	 * then we are done.
848 	 */
849 	if (!mtrr_aps_delayed_init)
850 		return;
851 
852 	set_mtrr(~0U, 0, 0, 0);
853 	mtrr_aps_delayed_init = false;
854 }
855 
mtrr_bp_restore(void)856 void mtrr_bp_restore(void)
857 {
858 	if (!use_intel() || !mtrr_enabled())
859 		return;
860 
861 	mtrr_if->set_all();
862 }
863 
mtrr_init_finialize(void)864 static int __init mtrr_init_finialize(void)
865 {
866 	if (!mtrr_enabled())
867 		return 0;
868 
869 	if (use_intel()) {
870 		if (!changed_by_mtrr_cleanup)
871 			mtrr_state_warn();
872 		return 0;
873 	}
874 
875 	/*
876 	 * The CPU has no MTRR and seems to not support SMP. They have
877 	 * specific drivers, we use a tricky method to support
878 	 * suspend/resume for them.
879 	 *
880 	 * TBD: is there any system with such CPU which supports
881 	 * suspend/resume? If no, we should remove the code.
882 	 */
883 	register_syscore_ops(&mtrr_syscore_ops);
884 
885 	return 0;
886 }
887 subsys_initcall(mtrr_init_finialize);
888