• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  *		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  *		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  *		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  *		unified x86 kprobes code.
41  */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
56 
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
59 #include <asm/desc.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
63 #include <asm/insn.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
66 #include <asm/sections.h>
67 
68 #include "common.h"
69 
70 void jprobe_return_end(void);
71 
72 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
73 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
74 
75 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
76 
77 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
78 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
79 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
80 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
81 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
82 	 << (row % 32))
83 	/*
84 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
85 	 * Groups, and some special opcodes can not boost.
86 	 * This is non-const and volatile to keep gcc from statically
87 	 * optimizing it out, as variable_test_bit makes gcc think only
88 	 * *(unsigned long*) is used.
89 	 */
90 static volatile u32 twobyte_is_boostable[256 / 32] = {
91 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
92 	/*      ----------------------------------------------          */
93 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
94 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
95 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
96 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
97 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
98 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
99 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
100 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
101 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
102 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
103 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
104 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
105 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
106 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
107 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
108 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
109 	/*      -----------------------------------------------         */
110 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
111 };
112 #undef W
113 
114 struct kretprobe_blackpoint kretprobe_blacklist[] = {
115 	{"__switch_to", }, /* This function switches only current task, but
116 			      doesn't switch kernel stack.*/
117 	{NULL, NULL}	/* Terminator */
118 };
119 
120 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
121 
122 static nokprobe_inline void
__synthesize_relative_insn(void * from,void * to,u8 op)123 __synthesize_relative_insn(void *from, void *to, u8 op)
124 {
125 	struct __arch_relative_insn {
126 		u8 op;
127 		s32 raddr;
128 	} __packed *insn;
129 
130 	insn = (struct __arch_relative_insn *)from;
131 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
132 	insn->op = op;
133 }
134 
135 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * from,void * to)136 void synthesize_reljump(void *from, void *to)
137 {
138 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
139 }
140 NOKPROBE_SYMBOL(synthesize_reljump);
141 
142 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * from,void * to)143 void synthesize_relcall(void *from, void *to)
144 {
145 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
146 }
147 NOKPROBE_SYMBOL(synthesize_relcall);
148 
149 /*
150  * Skip the prefixes of the instruction.
151  */
skip_prefixes(kprobe_opcode_t * insn)152 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
153 {
154 	insn_attr_t attr;
155 
156 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
157 	while (inat_is_legacy_prefix(attr)) {
158 		insn++;
159 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
160 	}
161 #ifdef CONFIG_X86_64
162 	if (inat_is_rex_prefix(attr))
163 		insn++;
164 #endif
165 	return insn;
166 }
167 NOKPROBE_SYMBOL(skip_prefixes);
168 
169 /*
170  * Returns non-zero if INSN is boostable.
171  * RIP relative instructions are adjusted at copying time in 64 bits mode
172  */
can_boost(struct insn * insn,void * addr)173 int can_boost(struct insn *insn, void *addr)
174 {
175 	kprobe_opcode_t opcode;
176 
177 	if (search_exception_tables((unsigned long)addr))
178 		return 0;	/* Page fault may occur on this address. */
179 
180 	/* 2nd-byte opcode */
181 	if (insn->opcode.nbytes == 2)
182 		return test_bit(insn->opcode.bytes[1],
183 				(unsigned long *)twobyte_is_boostable);
184 
185 	if (insn->opcode.nbytes != 1)
186 		return 0;
187 
188 	/* Can't boost Address-size override prefix */
189 	if (unlikely(inat_is_address_size_prefix(insn->attr)))
190 		return 0;
191 
192 	opcode = insn->opcode.bytes[0];
193 
194 	switch (opcode & 0xf0) {
195 	case 0x60:
196 		/* can't boost "bound" */
197 		return (opcode != 0x62);
198 	case 0x70:
199 		return 0; /* can't boost conditional jump */
200 	case 0x90:
201 		return opcode != 0x9a;	/* can't boost call far */
202 	case 0xc0:
203 		/* can't boost software-interruptions */
204 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
205 	case 0xd0:
206 		/* can boost AA* and XLAT */
207 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
208 	case 0xe0:
209 		/* can boost in/out and absolute jmps */
210 		return ((opcode & 0x04) || opcode == 0xea);
211 	case 0xf0:
212 		/* clear and set flags are boostable */
213 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
214 	default:
215 		/* CS override prefix and call are not boostable */
216 		return (opcode != 0x2e && opcode != 0x9a);
217 	}
218 }
219 
220 static unsigned long
__recover_probed_insn(kprobe_opcode_t * buf,unsigned long addr)221 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
222 {
223 	struct kprobe *kp;
224 	unsigned long faddr;
225 
226 	kp = get_kprobe((void *)addr);
227 	faddr = ftrace_location(addr);
228 	/*
229 	 * Addresses inside the ftrace location are refused by
230 	 * arch_check_ftrace_location(). Something went terribly wrong
231 	 * if such an address is checked here.
232 	 */
233 	if (WARN_ON(faddr && faddr != addr))
234 		return 0UL;
235 	/*
236 	 * Use the current code if it is not modified by Kprobe
237 	 * and it cannot be modified by ftrace.
238 	 */
239 	if (!kp && !faddr)
240 		return addr;
241 
242 	/*
243 	 * Basically, kp->ainsn.insn has an original instruction.
244 	 * However, RIP-relative instruction can not do single-stepping
245 	 * at different place, __copy_instruction() tweaks the displacement of
246 	 * that instruction. In that case, we can't recover the instruction
247 	 * from the kp->ainsn.insn.
248 	 *
249 	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
250 	 * of the first byte of the probed instruction, which is overwritten
251 	 * by int3. And the instruction at kp->addr is not modified by kprobes
252 	 * except for the first byte, we can recover the original instruction
253 	 * from it and kp->opcode.
254 	 *
255 	 * In case of Kprobes using ftrace, we do not have a copy of
256 	 * the original instruction. In fact, the ftrace location might
257 	 * be modified at anytime and even could be in an inconsistent state.
258 	 * Fortunately, we know that the original code is the ideal 5-byte
259 	 * long NOP.
260 	 */
261 	if (probe_kernel_read(buf, (void *)addr,
262 		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
263 		return 0UL;
264 
265 	if (faddr)
266 		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
267 	else
268 		buf[0] = kp->opcode;
269 	return (unsigned long)buf;
270 }
271 
272 /*
273  * Recover the probed instruction at addr for further analysis.
274  * Caller must lock kprobes by kprobe_mutex, or disable preemption
275  * for preventing to release referencing kprobes.
276  * Returns zero if the instruction can not get recovered (or access failed).
277  */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)278 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
279 {
280 	unsigned long __addr;
281 
282 	__addr = __recover_optprobed_insn(buf, addr);
283 	if (__addr != addr)
284 		return __addr;
285 
286 	return __recover_probed_insn(buf, addr);
287 }
288 
289 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)290 static int can_probe(unsigned long paddr)
291 {
292 	unsigned long addr, __addr, offset = 0;
293 	struct insn insn;
294 	kprobe_opcode_t buf[MAX_INSN_SIZE];
295 
296 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
297 		return 0;
298 
299 	/* Decode instructions */
300 	addr = paddr - offset;
301 	while (addr < paddr) {
302 		/*
303 		 * Check if the instruction has been modified by another
304 		 * kprobe, in which case we replace the breakpoint by the
305 		 * original instruction in our buffer.
306 		 * Also, jump optimization will change the breakpoint to
307 		 * relative-jump. Since the relative-jump itself is
308 		 * normally used, we just go through if there is no kprobe.
309 		 */
310 		__addr = recover_probed_instruction(buf, addr);
311 		if (!__addr)
312 			return 0;
313 		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
314 		insn_get_length(&insn);
315 
316 		/*
317 		 * Another debugging subsystem might insert this breakpoint.
318 		 * In that case, we can't recover it.
319 		 */
320 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
321 			return 0;
322 		addr += insn.length;
323 	}
324 
325 	return (addr == paddr);
326 }
327 
328 /*
329  * Returns non-zero if opcode modifies the interrupt flag.
330  */
is_IF_modifier(kprobe_opcode_t * insn)331 static int is_IF_modifier(kprobe_opcode_t *insn)
332 {
333 	/* Skip prefixes */
334 	insn = skip_prefixes(insn);
335 
336 	switch (*insn) {
337 	case 0xfa:		/* cli */
338 	case 0xfb:		/* sti */
339 	case 0xcf:		/* iret/iretd */
340 	case 0x9d:		/* popf/popfd */
341 		return 1;
342 	}
343 
344 	return 0;
345 }
346 
347 /*
348  * Copy an instruction with recovering modified instruction by kprobes
349  * and adjust the displacement if the instruction uses the %rip-relative
350  * addressing mode.
351  * This returns the length of copied instruction, or 0 if it has an error.
352  */
__copy_instruction(u8 * dest,u8 * src,struct insn * insn)353 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn)
354 {
355 	kprobe_opcode_t buf[MAX_INSN_SIZE];
356 	unsigned long recovered_insn =
357 		recover_probed_instruction(buf, (unsigned long)src);
358 
359 	if (!recovered_insn || !insn)
360 		return 0;
361 
362 	/* This can access kernel text if given address is not recovered */
363 	if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
364 		return 0;
365 
366 	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
367 	insn_get_length(insn);
368 
369 	/* Another subsystem puts a breakpoint, failed to recover */
370 	if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
371 		return 0;
372 
373 	/* We should not singlestep on the exception masking instructions */
374 	if (insn_masking_exception(insn))
375 		return 0;
376 
377 #ifdef CONFIG_X86_64
378 	/* Only x86_64 has RIP relative instructions */
379 	if (insn_rip_relative(insn)) {
380 		s64 newdisp;
381 		u8 *disp;
382 		/*
383 		 * The copied instruction uses the %rip-relative addressing
384 		 * mode.  Adjust the displacement for the difference between
385 		 * the original location of this instruction and the location
386 		 * of the copy that will actually be run.  The tricky bit here
387 		 * is making sure that the sign extension happens correctly in
388 		 * this calculation, since we need a signed 32-bit result to
389 		 * be sign-extended to 64 bits when it's added to the %rip
390 		 * value and yield the same 64-bit result that the sign-
391 		 * extension of the original signed 32-bit displacement would
392 		 * have given.
393 		 */
394 		newdisp = (u8 *) src + (s64) insn->displacement.value
395 			  - (u8 *) dest;
396 		if ((s64) (s32) newdisp != newdisp) {
397 			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
398 			return 0;
399 		}
400 		disp = (u8 *) dest + insn_offset_displacement(insn);
401 		*(s32 *) disp = (s32) newdisp;
402 	}
403 #endif
404 	return insn->length;
405 }
406 
407 /* Prepare reljump right after instruction to boost */
prepare_boost(struct kprobe * p,struct insn * insn)408 static void prepare_boost(struct kprobe *p, struct insn *insn)
409 {
410 	if (can_boost(insn, p->addr) &&
411 	    MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) {
412 		/*
413 		 * These instructions can be executed directly if it
414 		 * jumps back to correct address.
415 		 */
416 		synthesize_reljump(p->ainsn.insn + insn->length,
417 				   p->addr + insn->length);
418 		p->ainsn.boostable = true;
419 	} else {
420 		p->ainsn.boostable = false;
421 	}
422 }
423 
424 /* Recover page to RW mode before releasing it */
free_insn_page(void * page)425 void free_insn_page(void *page)
426 {
427 	set_memory_nx((unsigned long)page & PAGE_MASK, 1);
428 	set_memory_rw((unsigned long)page & PAGE_MASK, 1);
429 	module_memfree(page);
430 }
431 
arch_copy_kprobe(struct kprobe * p)432 static int arch_copy_kprobe(struct kprobe *p)
433 {
434 	struct insn insn;
435 	int len;
436 
437 	set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
438 
439 	/* Copy an instruction with recovering if other optprobe modifies it.*/
440 	len = __copy_instruction(p->ainsn.insn, p->addr, &insn);
441 	if (!len)
442 		return -EINVAL;
443 
444 	/*
445 	 * __copy_instruction can modify the displacement of the instruction,
446 	 * but it doesn't affect boostable check.
447 	 */
448 	prepare_boost(p, &insn);
449 
450 	set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
451 
452 	/* Check whether the instruction modifies Interrupt Flag or not */
453 	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
454 
455 	/* Also, displacement change doesn't affect the first byte */
456 	p->opcode = p->ainsn.insn[0];
457 
458 	return 0;
459 }
460 
arch_prepare_kprobe(struct kprobe * p)461 int arch_prepare_kprobe(struct kprobe *p)
462 {
463 	int ret;
464 
465 	if (alternatives_text_reserved(p->addr, p->addr))
466 		return -EINVAL;
467 
468 	if (!can_probe((unsigned long)p->addr))
469 		return -EILSEQ;
470 	/* insn: must be on special executable page on x86. */
471 	p->ainsn.insn = get_insn_slot();
472 	if (!p->ainsn.insn)
473 		return -ENOMEM;
474 
475 	ret = arch_copy_kprobe(p);
476 	if (ret) {
477 		free_insn_slot(p->ainsn.insn, 0);
478 		p->ainsn.insn = NULL;
479 	}
480 
481 	return ret;
482 }
483 
arch_arm_kprobe(struct kprobe * p)484 void arch_arm_kprobe(struct kprobe *p)
485 {
486 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
487 }
488 
arch_disarm_kprobe(struct kprobe * p)489 void arch_disarm_kprobe(struct kprobe *p)
490 {
491 	text_poke(p->addr, &p->opcode, 1);
492 }
493 
arch_remove_kprobe(struct kprobe * p)494 void arch_remove_kprobe(struct kprobe *p)
495 {
496 	if (p->ainsn.insn) {
497 		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
498 		p->ainsn.insn = NULL;
499 	}
500 }
501 
502 static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk * kcb)503 save_previous_kprobe(struct kprobe_ctlblk *kcb)
504 {
505 	kcb->prev_kprobe.kp = kprobe_running();
506 	kcb->prev_kprobe.status = kcb->kprobe_status;
507 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
508 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
509 }
510 
511 static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk * kcb)512 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
513 {
514 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
515 	kcb->kprobe_status = kcb->prev_kprobe.status;
516 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
517 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
518 }
519 
520 static nokprobe_inline void
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)521 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
522 		   struct kprobe_ctlblk *kcb)
523 {
524 	__this_cpu_write(current_kprobe, p);
525 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
526 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
527 	if (p->ainsn.if_modifier)
528 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
529 }
530 
clear_btf(void)531 static nokprobe_inline void clear_btf(void)
532 {
533 	if (test_thread_flag(TIF_BLOCKSTEP)) {
534 		unsigned long debugctl = get_debugctlmsr();
535 
536 		debugctl &= ~DEBUGCTLMSR_BTF;
537 		update_debugctlmsr(debugctl);
538 	}
539 }
540 
restore_btf(void)541 static nokprobe_inline void restore_btf(void)
542 {
543 	if (test_thread_flag(TIF_BLOCKSTEP)) {
544 		unsigned long debugctl = get_debugctlmsr();
545 
546 		debugctl |= DEBUGCTLMSR_BTF;
547 		update_debugctlmsr(debugctl);
548 	}
549 }
550 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)551 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
552 {
553 	unsigned long *sara = stack_addr(regs);
554 
555 	ri->ret_addr = (kprobe_opcode_t *) *sara;
556 	ri->fp = sara;
557 
558 	/* Replace the return addr with trampoline addr */
559 	*sara = (unsigned long) &kretprobe_trampoline;
560 }
561 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
562 
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)563 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
564 			     struct kprobe_ctlblk *kcb, int reenter)
565 {
566 	if (setup_detour_execution(p, regs, reenter))
567 		return;
568 
569 #if !defined(CONFIG_PREEMPT)
570 	if (p->ainsn.boostable && !p->post_handler) {
571 		/* Boost up -- we can execute copied instructions directly */
572 		if (!reenter)
573 			reset_current_kprobe();
574 		/*
575 		 * Reentering boosted probe doesn't reset current_kprobe,
576 		 * nor set current_kprobe, because it doesn't use single
577 		 * stepping.
578 		 */
579 		regs->ip = (unsigned long)p->ainsn.insn;
580 		preempt_enable_no_resched();
581 		return;
582 	}
583 #endif
584 	if (reenter) {
585 		save_previous_kprobe(kcb);
586 		set_current_kprobe(p, regs, kcb);
587 		kcb->kprobe_status = KPROBE_REENTER;
588 	} else
589 		kcb->kprobe_status = KPROBE_HIT_SS;
590 	/* Prepare real single stepping */
591 	clear_btf();
592 	regs->flags |= X86_EFLAGS_TF;
593 	regs->flags &= ~X86_EFLAGS_IF;
594 	/* single step inline if the instruction is an int3 */
595 	if (p->opcode == BREAKPOINT_INSTRUCTION)
596 		regs->ip = (unsigned long)p->addr;
597 	else
598 		regs->ip = (unsigned long)p->ainsn.insn;
599 }
600 NOKPROBE_SYMBOL(setup_singlestep);
601 
602 /*
603  * We have reentered the kprobe_handler(), since another probe was hit while
604  * within the handler. We save the original kprobes variables and just single
605  * step on the instruction of the new probe without calling any user handlers.
606  */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)607 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
608 			  struct kprobe_ctlblk *kcb)
609 {
610 	switch (kcb->kprobe_status) {
611 	case KPROBE_HIT_SSDONE:
612 	case KPROBE_HIT_ACTIVE:
613 	case KPROBE_HIT_SS:
614 		kprobes_inc_nmissed_count(p);
615 		setup_singlestep(p, regs, kcb, 1);
616 		break;
617 	case KPROBE_REENTER:
618 		/* A probe has been hit in the codepath leading up to, or just
619 		 * after, single-stepping of a probed instruction. This entire
620 		 * codepath should strictly reside in .kprobes.text section.
621 		 * Raise a BUG or we'll continue in an endless reentering loop
622 		 * and eventually a stack overflow.
623 		 */
624 		pr_err("Unrecoverable kprobe detected.\n");
625 		dump_kprobe(p);
626 		BUG();
627 	default:
628 		/* impossible cases */
629 		WARN_ON(1);
630 		return 0;
631 	}
632 
633 	return 1;
634 }
635 NOKPROBE_SYMBOL(reenter_kprobe);
636 
637 /*
638  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
639  * remain disabled throughout this function.
640  */
kprobe_int3_handler(struct pt_regs * regs)641 int kprobe_int3_handler(struct pt_regs *regs)
642 {
643 	kprobe_opcode_t *addr;
644 	struct kprobe *p;
645 	struct kprobe_ctlblk *kcb;
646 
647 	if (user_mode(regs))
648 		return 0;
649 
650 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
651 	/*
652 	 * We don't want to be preempted for the entire
653 	 * duration of kprobe processing. We conditionally
654 	 * re-enable preemption at the end of this function,
655 	 * and also in reenter_kprobe() and setup_singlestep().
656 	 */
657 	preempt_disable();
658 
659 	kcb = get_kprobe_ctlblk();
660 	p = get_kprobe(addr);
661 
662 	if (p) {
663 		if (kprobe_running()) {
664 			if (reenter_kprobe(p, regs, kcb))
665 				return 1;
666 		} else {
667 			set_current_kprobe(p, regs, kcb);
668 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
669 
670 			/*
671 			 * If we have no pre-handler or it returned 0, we
672 			 * continue with normal processing.  If we have a
673 			 * pre-handler and it returned non-zero, it prepped
674 			 * for calling the break_handler below on re-entry
675 			 * for jprobe processing, so get out doing nothing
676 			 * more here.
677 			 */
678 			if (!p->pre_handler || !p->pre_handler(p, regs))
679 				setup_singlestep(p, regs, kcb, 0);
680 			return 1;
681 		}
682 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
683 		/*
684 		 * The breakpoint instruction was removed right
685 		 * after we hit it.  Another cpu has removed
686 		 * either a probepoint or a debugger breakpoint
687 		 * at this address.  In either case, no further
688 		 * handling of this interrupt is appropriate.
689 		 * Back up over the (now missing) int3 and run
690 		 * the original instruction.
691 		 */
692 		regs->ip = (unsigned long)addr;
693 		preempt_enable_no_resched();
694 		return 1;
695 	} else if (kprobe_running()) {
696 		p = __this_cpu_read(current_kprobe);
697 		if (p->break_handler && p->break_handler(p, regs)) {
698 			if (!skip_singlestep(p, regs, kcb))
699 				setup_singlestep(p, regs, kcb, 0);
700 			return 1;
701 		}
702 	} /* else: not a kprobe fault; let the kernel handle it */
703 
704 	preempt_enable_no_resched();
705 	return 0;
706 }
707 NOKPROBE_SYMBOL(kprobe_int3_handler);
708 
709 /*
710  * When a retprobed function returns, this code saves registers and
711  * calls trampoline_handler() runs, which calls the kretprobe's handler.
712  */
713 asm(
714 	".global kretprobe_trampoline\n"
715 	".type kretprobe_trampoline, @function\n"
716 	"kretprobe_trampoline:\n"
717 #ifdef CONFIG_X86_64
718 	/* We don't bother saving the ss register */
719 	"	pushq %rsp\n"
720 	"	pushfq\n"
721 	SAVE_REGS_STRING
722 	"	movq %rsp, %rdi\n"
723 	"	call trampoline_handler\n"
724 	/* Replace saved sp with true return address. */
725 	"	movq %rax, 152(%rsp)\n"
726 	RESTORE_REGS_STRING
727 	"	popfq\n"
728 #else
729 	"	pushf\n"
730 	SAVE_REGS_STRING
731 	"	movl %esp, %eax\n"
732 	"	call trampoline_handler\n"
733 	/* Move flags to cs */
734 	"	movl 56(%esp), %edx\n"
735 	"	movl %edx, 52(%esp)\n"
736 	/* Replace saved flags with true return address. */
737 	"	movl %eax, 56(%esp)\n"
738 	RESTORE_REGS_STRING
739 	"	popf\n"
740 #endif
741 	"	ret\n"
742 	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
743 );
744 NOKPROBE_SYMBOL(kretprobe_trampoline);
745 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
746 
747 static struct kprobe kretprobe_kprobe = {
748 	.addr = (void *)kretprobe_trampoline,
749 };
750 
751 /*
752  * Called from kretprobe_trampoline
753  */
trampoline_handler(struct pt_regs * regs)754 __visible __used void *trampoline_handler(struct pt_regs *regs)
755 {
756 	struct kprobe_ctlblk *kcb;
757 	struct kretprobe_instance *ri = NULL;
758 	struct hlist_head *head, empty_rp;
759 	struct hlist_node *tmp;
760 	unsigned long flags, orig_ret_address = 0;
761 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
762 	kprobe_opcode_t *correct_ret_addr = NULL;
763 	void *frame_pointer;
764 	bool skipped = false;
765 
766 	preempt_disable();
767 
768 	/*
769 	 * Set a dummy kprobe for avoiding kretprobe recursion.
770 	 * Since kretprobe never run in kprobe handler, kprobe must not
771 	 * be running at this point.
772 	 */
773 	kcb = get_kprobe_ctlblk();
774 	__this_cpu_write(current_kprobe, &kretprobe_kprobe);
775 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
776 
777 	INIT_HLIST_HEAD(&empty_rp);
778 	kretprobe_hash_lock(current, &head, &flags);
779 	/* fixup registers */
780 #ifdef CONFIG_X86_64
781 	regs->cs = __KERNEL_CS;
782 	/* On x86-64, we use pt_regs->sp for return address holder. */
783 	frame_pointer = &regs->sp;
784 #else
785 	regs->cs = __KERNEL_CS | get_kernel_rpl();
786 	regs->gs = 0;
787 	/* On x86-32, we use pt_regs->flags for return address holder. */
788 	frame_pointer = &regs->flags;
789 #endif
790 	regs->ip = trampoline_address;
791 	regs->orig_ax = ~0UL;
792 
793 	/*
794 	 * It is possible to have multiple instances associated with a given
795 	 * task either because multiple functions in the call path have
796 	 * return probes installed on them, and/or more than one
797 	 * return probe was registered for a target function.
798 	 *
799 	 * We can handle this because:
800 	 *     - instances are always pushed into the head of the list
801 	 *     - when multiple return probes are registered for the same
802 	 *	 function, the (chronologically) first instance's ret_addr
803 	 *	 will be the real return address, and all the rest will
804 	 *	 point to kretprobe_trampoline.
805 	 */
806 	hlist_for_each_entry(ri, head, hlist) {
807 		if (ri->task != current)
808 			/* another task is sharing our hash bucket */
809 			continue;
810 		/*
811 		 * Return probes must be pushed on this hash list correct
812 		 * order (same as return order) so that it can be poped
813 		 * correctly. However, if we find it is pushed it incorrect
814 		 * order, this means we find a function which should not be
815 		 * probed, because the wrong order entry is pushed on the
816 		 * path of processing other kretprobe itself.
817 		 */
818 		if (ri->fp != frame_pointer) {
819 			if (!skipped)
820 				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
821 			skipped = true;
822 			continue;
823 		}
824 
825 		orig_ret_address = (unsigned long)ri->ret_addr;
826 		if (skipped)
827 			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
828 				ri->rp->kp.addr);
829 
830 		if (orig_ret_address != trampoline_address)
831 			/*
832 			 * This is the real return address. Any other
833 			 * instances associated with this task are for
834 			 * other calls deeper on the call stack
835 			 */
836 			break;
837 	}
838 
839 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
840 
841 	correct_ret_addr = ri->ret_addr;
842 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
843 		if (ri->task != current)
844 			/* another task is sharing our hash bucket */
845 			continue;
846 		if (ri->fp != frame_pointer)
847 			continue;
848 
849 		orig_ret_address = (unsigned long)ri->ret_addr;
850 		if (ri->rp && ri->rp->handler) {
851 			__this_cpu_write(current_kprobe, &ri->rp->kp);
852 			ri->ret_addr = correct_ret_addr;
853 			ri->rp->handler(ri, regs);
854 			__this_cpu_write(current_kprobe, &kretprobe_kprobe);
855 		}
856 
857 		recycle_rp_inst(ri, &empty_rp);
858 
859 		if (orig_ret_address != trampoline_address)
860 			/*
861 			 * This is the real return address. Any other
862 			 * instances associated with this task are for
863 			 * other calls deeper on the call stack
864 			 */
865 			break;
866 	}
867 
868 	kretprobe_hash_unlock(current, &flags);
869 
870 	__this_cpu_write(current_kprobe, NULL);
871 	preempt_enable();
872 
873 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
874 		hlist_del(&ri->hlist);
875 		kfree(ri);
876 	}
877 	return (void *)orig_ret_address;
878 }
879 NOKPROBE_SYMBOL(trampoline_handler);
880 
881 /*
882  * Called after single-stepping.  p->addr is the address of the
883  * instruction whose first byte has been replaced by the "int 3"
884  * instruction.  To avoid the SMP problems that can occur when we
885  * temporarily put back the original opcode to single-step, we
886  * single-stepped a copy of the instruction.  The address of this
887  * copy is p->ainsn.insn.
888  *
889  * This function prepares to return from the post-single-step
890  * interrupt.  We have to fix up the stack as follows:
891  *
892  * 0) Except in the case of absolute or indirect jump or call instructions,
893  * the new ip is relative to the copied instruction.  We need to make
894  * it relative to the original instruction.
895  *
896  * 1) If the single-stepped instruction was pushfl, then the TF and IF
897  * flags are set in the just-pushed flags, and may need to be cleared.
898  *
899  * 2) If the single-stepped instruction was a call, the return address
900  * that is atop the stack is the address following the copied instruction.
901  * We need to make it the address following the original instruction.
902  *
903  * If this is the first time we've single-stepped the instruction at
904  * this probepoint, and the instruction is boostable, boost it: add a
905  * jump instruction after the copied instruction, that jumps to the next
906  * instruction after the probepoint.
907  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)908 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
909 			     struct kprobe_ctlblk *kcb)
910 {
911 	unsigned long *tos = stack_addr(regs);
912 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
913 	unsigned long orig_ip = (unsigned long)p->addr;
914 	kprobe_opcode_t *insn = p->ainsn.insn;
915 
916 	/* Skip prefixes */
917 	insn = skip_prefixes(insn);
918 
919 	regs->flags &= ~X86_EFLAGS_TF;
920 	switch (*insn) {
921 	case 0x9c:	/* pushfl */
922 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
923 		*tos |= kcb->kprobe_old_flags;
924 		break;
925 	case 0xc2:	/* iret/ret/lret */
926 	case 0xc3:
927 	case 0xca:
928 	case 0xcb:
929 	case 0xcf:
930 	case 0xea:	/* jmp absolute -- ip is correct */
931 		/* ip is already adjusted, no more changes required */
932 		p->ainsn.boostable = true;
933 		goto no_change;
934 	case 0xe8:	/* call relative - Fix return addr */
935 		*tos = orig_ip + (*tos - copy_ip);
936 		break;
937 #ifdef CONFIG_X86_32
938 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
939 		*tos = orig_ip + (*tos - copy_ip);
940 		goto no_change;
941 #endif
942 	case 0xff:
943 		if ((insn[1] & 0x30) == 0x10) {
944 			/*
945 			 * call absolute, indirect
946 			 * Fix return addr; ip is correct.
947 			 * But this is not boostable
948 			 */
949 			*tos = orig_ip + (*tos - copy_ip);
950 			goto no_change;
951 		} else if (((insn[1] & 0x31) == 0x20) ||
952 			   ((insn[1] & 0x31) == 0x21)) {
953 			/*
954 			 * jmp near and far, absolute indirect
955 			 * ip is correct. And this is boostable
956 			 */
957 			p->ainsn.boostable = true;
958 			goto no_change;
959 		}
960 	default:
961 		break;
962 	}
963 
964 	regs->ip += orig_ip - copy_ip;
965 
966 no_change:
967 	restore_btf();
968 }
969 NOKPROBE_SYMBOL(resume_execution);
970 
971 /*
972  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
973  * remain disabled throughout this function.
974  */
kprobe_debug_handler(struct pt_regs * regs)975 int kprobe_debug_handler(struct pt_regs *regs)
976 {
977 	struct kprobe *cur = kprobe_running();
978 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
979 
980 	if (!cur)
981 		return 0;
982 
983 	resume_execution(cur, regs, kcb);
984 	regs->flags |= kcb->kprobe_saved_flags;
985 
986 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
987 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
988 		cur->post_handler(cur, regs, 0);
989 	}
990 
991 	/* Restore back the original saved kprobes variables and continue. */
992 	if (kcb->kprobe_status == KPROBE_REENTER) {
993 		restore_previous_kprobe(kcb);
994 		goto out;
995 	}
996 	reset_current_kprobe();
997 out:
998 	preempt_enable_no_resched();
999 
1000 	/*
1001 	 * if somebody else is singlestepping across a probe point, flags
1002 	 * will have TF set, in which case, continue the remaining processing
1003 	 * of do_debug, as if this is not a probe hit.
1004 	 */
1005 	if (regs->flags & X86_EFLAGS_TF)
1006 		return 0;
1007 
1008 	return 1;
1009 }
1010 NOKPROBE_SYMBOL(kprobe_debug_handler);
1011 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)1012 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1013 {
1014 	struct kprobe *cur = kprobe_running();
1015 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1016 
1017 	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1018 		/* This must happen on single-stepping */
1019 		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1020 			kcb->kprobe_status != KPROBE_REENTER);
1021 		/*
1022 		 * We are here because the instruction being single
1023 		 * stepped caused a page fault. We reset the current
1024 		 * kprobe and the ip points back to the probe address
1025 		 * and allow the page fault handler to continue as a
1026 		 * normal page fault.
1027 		 */
1028 		regs->ip = (unsigned long)cur->addr;
1029 		/*
1030 		 * Trap flag (TF) has been set here because this fault
1031 		 * happened where the single stepping will be done.
1032 		 * So clear it by resetting the current kprobe:
1033 		 */
1034 		regs->flags &= ~X86_EFLAGS_TF;
1035 
1036 		/*
1037 		 * If the TF flag was set before the kprobe hit,
1038 		 * don't touch it:
1039 		 */
1040 		regs->flags |= kcb->kprobe_old_flags;
1041 
1042 		if (kcb->kprobe_status == KPROBE_REENTER)
1043 			restore_previous_kprobe(kcb);
1044 		else
1045 			reset_current_kprobe();
1046 		preempt_enable_no_resched();
1047 	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1048 		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1049 		/*
1050 		 * We increment the nmissed count for accounting,
1051 		 * we can also use npre/npostfault count for accounting
1052 		 * these specific fault cases.
1053 		 */
1054 		kprobes_inc_nmissed_count(cur);
1055 
1056 		/*
1057 		 * We come here because instructions in the pre/post
1058 		 * handler caused the page_fault, this could happen
1059 		 * if handler tries to access user space by
1060 		 * copy_from_user(), get_user() etc. Let the
1061 		 * user-specified handler try to fix it first.
1062 		 */
1063 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1064 			return 1;
1065 
1066 		/*
1067 		 * In case the user-specified fault handler returned
1068 		 * zero, try to fix up.
1069 		 */
1070 		if (fixup_exception(regs, trapnr))
1071 			return 1;
1072 
1073 		/*
1074 		 * fixup routine could not handle it,
1075 		 * Let do_page_fault() fix it.
1076 		 */
1077 	}
1078 
1079 	return 0;
1080 }
1081 NOKPROBE_SYMBOL(kprobe_fault_handler);
1082 
1083 /*
1084  * Wrapper routine for handling exceptions.
1085  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1086 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1087 			     void *data)
1088 {
1089 	struct die_args *args = data;
1090 	int ret = NOTIFY_DONE;
1091 
1092 	if (args->regs && user_mode(args->regs))
1093 		return ret;
1094 
1095 	if (val == DIE_GPF) {
1096 		/*
1097 		 * To be potentially processing a kprobe fault and to
1098 		 * trust the result from kprobe_running(), we have
1099 		 * be non-preemptible.
1100 		 */
1101 		if (!preemptible() && kprobe_running() &&
1102 		    kprobe_fault_handler(args->regs, args->trapnr))
1103 			ret = NOTIFY_STOP;
1104 	}
1105 	return ret;
1106 }
1107 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1108 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)1109 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1110 {
1111 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1112 	unsigned long addr;
1113 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1114 
1115 	kcb->jprobe_saved_regs = *regs;
1116 	kcb->jprobe_saved_sp = stack_addr(regs);
1117 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1118 
1119 	/*
1120 	 * As Linus pointed out, gcc assumes that the callee
1121 	 * owns the argument space and could overwrite it, e.g.
1122 	 * tailcall optimization. So, to be absolutely safe
1123 	 * we also save and restore enough stack bytes to cover
1124 	 * the argument area.
1125 	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1126 	 * raw stack chunk with redzones:
1127 	 */
1128 	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1129 	regs->ip = (unsigned long)(jp->entry);
1130 
1131 	/*
1132 	 * jprobes use jprobe_return() which skips the normal return
1133 	 * path of the function, and this messes up the accounting of the
1134 	 * function graph tracer to get messed up.
1135 	 *
1136 	 * Pause function graph tracing while performing the jprobe function.
1137 	 */
1138 	pause_graph_tracing();
1139 	return 1;
1140 }
1141 NOKPROBE_SYMBOL(setjmp_pre_handler);
1142 
jprobe_return(void)1143 void jprobe_return(void)
1144 {
1145 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1146 
1147 	/* Unpoison stack redzones in the frames we are going to jump over. */
1148 	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1149 
1150 	asm volatile (
1151 #ifdef CONFIG_X86_64
1152 			"       xchg   %%rbx,%%rsp	\n"
1153 #else
1154 			"       xchgl   %%ebx,%%esp	\n"
1155 #endif
1156 			"       int3			\n"
1157 			"       .globl jprobe_return_end\n"
1158 			"       jprobe_return_end:	\n"
1159 			"       nop			\n"::"b"
1160 			(kcb->jprobe_saved_sp):"memory");
1161 }
1162 NOKPROBE_SYMBOL(jprobe_return);
1163 NOKPROBE_SYMBOL(jprobe_return_end);
1164 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)1165 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1166 {
1167 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1168 	u8 *addr = (u8 *) (regs->ip - 1);
1169 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1170 	void *saved_sp = kcb->jprobe_saved_sp;
1171 
1172 	if ((addr > (u8 *) jprobe_return) &&
1173 	    (addr < (u8 *) jprobe_return_end)) {
1174 		if (stack_addr(regs) != saved_sp) {
1175 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1176 			printk(KERN_ERR
1177 			       "current sp %p does not match saved sp %p\n",
1178 			       stack_addr(regs), saved_sp);
1179 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1180 			show_regs(saved_regs);
1181 			printk(KERN_ERR "Current registers\n");
1182 			show_regs(regs);
1183 			BUG();
1184 		}
1185 		/* It's OK to start function graph tracing again */
1186 		unpause_graph_tracing();
1187 		*regs = kcb->jprobe_saved_regs;
1188 		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1189 		preempt_enable_no_resched();
1190 		return 1;
1191 	}
1192 	return 0;
1193 }
1194 NOKPROBE_SYMBOL(longjmp_break_handler);
1195 
arch_within_kprobe_blacklist(unsigned long addr)1196 bool arch_within_kprobe_blacklist(unsigned long addr)
1197 {
1198 	bool is_in_entry_trampoline_section = false;
1199 
1200 #ifdef CONFIG_X86_64
1201 	is_in_entry_trampoline_section =
1202 		(addr >= (unsigned long)__entry_trampoline_start &&
1203 		 addr < (unsigned long)__entry_trampoline_end);
1204 #endif
1205 	return  (addr >= (unsigned long)__kprobes_text_start &&
1206 		 addr < (unsigned long)__kprobes_text_end) ||
1207 		(addr >= (unsigned long)__entry_text_start &&
1208 		 addr < (unsigned long)__entry_text_end) ||
1209 		is_in_entry_trampoline_section;
1210 }
1211 
arch_init_kprobes(void)1212 int __init arch_init_kprobes(void)
1213 {
1214 	return 0;
1215 }
1216 
arch_trampoline_kprobe(struct kprobe * p)1217 int arch_trampoline_kprobe(struct kprobe *p)
1218 {
1219 	return 0;
1220 }
1221