1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
41 */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/sched/debug.h>
49 #include <linux/extable.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 #include <linux/frame.h>
54 #include <linux/kasan.h>
55 #include <linux/moduleloader.h>
56
57 #include <asm/text-patching.h>
58 #include <asm/cacheflush.h>
59 #include <asm/desc.h>
60 #include <asm/pgtable.h>
61 #include <linux/uaccess.h>
62 #include <asm/alternative.h>
63 #include <asm/insn.h>
64 #include <asm/debugreg.h>
65 #include <asm/set_memory.h>
66 #include <asm/sections.h>
67
68 #include "common.h"
69
70 void jprobe_return_end(void);
71
72 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
73 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
74
75 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
76
77 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
78 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
79 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
80 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
81 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
82 << (row % 32))
83 /*
84 * Undefined/reserved opcodes, conditional jump, Opcode Extension
85 * Groups, and some special opcodes can not boost.
86 * This is non-const and volatile to keep gcc from statically
87 * optimizing it out, as variable_test_bit makes gcc think only
88 * *(unsigned long*) is used.
89 */
90 static volatile u32 twobyte_is_boostable[256 / 32] = {
91 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
92 /* ---------------------------------------------- */
93 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
94 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
95 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
96 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
97 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
98 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
99 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
100 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
101 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
102 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
103 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
104 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
105 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
106 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
107 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
108 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
109 /* ----------------------------------------------- */
110 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
111 };
112 #undef W
113
114 struct kretprobe_blackpoint kretprobe_blacklist[] = {
115 {"__switch_to", }, /* This function switches only current task, but
116 doesn't switch kernel stack.*/
117 {NULL, NULL} /* Terminator */
118 };
119
120 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
121
122 static nokprobe_inline void
__synthesize_relative_insn(void * from,void * to,u8 op)123 __synthesize_relative_insn(void *from, void *to, u8 op)
124 {
125 struct __arch_relative_insn {
126 u8 op;
127 s32 raddr;
128 } __packed *insn;
129
130 insn = (struct __arch_relative_insn *)from;
131 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
132 insn->op = op;
133 }
134
135 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * from,void * to)136 void synthesize_reljump(void *from, void *to)
137 {
138 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
139 }
140 NOKPROBE_SYMBOL(synthesize_reljump);
141
142 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * from,void * to)143 void synthesize_relcall(void *from, void *to)
144 {
145 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
146 }
147 NOKPROBE_SYMBOL(synthesize_relcall);
148
149 /*
150 * Skip the prefixes of the instruction.
151 */
skip_prefixes(kprobe_opcode_t * insn)152 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
153 {
154 insn_attr_t attr;
155
156 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
157 while (inat_is_legacy_prefix(attr)) {
158 insn++;
159 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
160 }
161 #ifdef CONFIG_X86_64
162 if (inat_is_rex_prefix(attr))
163 insn++;
164 #endif
165 return insn;
166 }
167 NOKPROBE_SYMBOL(skip_prefixes);
168
169 /*
170 * Returns non-zero if INSN is boostable.
171 * RIP relative instructions are adjusted at copying time in 64 bits mode
172 */
can_boost(struct insn * insn,void * addr)173 int can_boost(struct insn *insn, void *addr)
174 {
175 kprobe_opcode_t opcode;
176
177 if (search_exception_tables((unsigned long)addr))
178 return 0; /* Page fault may occur on this address. */
179
180 /* 2nd-byte opcode */
181 if (insn->opcode.nbytes == 2)
182 return test_bit(insn->opcode.bytes[1],
183 (unsigned long *)twobyte_is_boostable);
184
185 if (insn->opcode.nbytes != 1)
186 return 0;
187
188 /* Can't boost Address-size override prefix */
189 if (unlikely(inat_is_address_size_prefix(insn->attr)))
190 return 0;
191
192 opcode = insn->opcode.bytes[0];
193
194 switch (opcode & 0xf0) {
195 case 0x60:
196 /* can't boost "bound" */
197 return (opcode != 0x62);
198 case 0x70:
199 return 0; /* can't boost conditional jump */
200 case 0x90:
201 return opcode != 0x9a; /* can't boost call far */
202 case 0xc0:
203 /* can't boost software-interruptions */
204 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
205 case 0xd0:
206 /* can boost AA* and XLAT */
207 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
208 case 0xe0:
209 /* can boost in/out and absolute jmps */
210 return ((opcode & 0x04) || opcode == 0xea);
211 case 0xf0:
212 /* clear and set flags are boostable */
213 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
214 default:
215 /* CS override prefix and call are not boostable */
216 return (opcode != 0x2e && opcode != 0x9a);
217 }
218 }
219
220 static unsigned long
__recover_probed_insn(kprobe_opcode_t * buf,unsigned long addr)221 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
222 {
223 struct kprobe *kp;
224 unsigned long faddr;
225
226 kp = get_kprobe((void *)addr);
227 faddr = ftrace_location(addr);
228 /*
229 * Addresses inside the ftrace location are refused by
230 * arch_check_ftrace_location(). Something went terribly wrong
231 * if such an address is checked here.
232 */
233 if (WARN_ON(faddr && faddr != addr))
234 return 0UL;
235 /*
236 * Use the current code if it is not modified by Kprobe
237 * and it cannot be modified by ftrace.
238 */
239 if (!kp && !faddr)
240 return addr;
241
242 /*
243 * Basically, kp->ainsn.insn has an original instruction.
244 * However, RIP-relative instruction can not do single-stepping
245 * at different place, __copy_instruction() tweaks the displacement of
246 * that instruction. In that case, we can't recover the instruction
247 * from the kp->ainsn.insn.
248 *
249 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
250 * of the first byte of the probed instruction, which is overwritten
251 * by int3. And the instruction at kp->addr is not modified by kprobes
252 * except for the first byte, we can recover the original instruction
253 * from it and kp->opcode.
254 *
255 * In case of Kprobes using ftrace, we do not have a copy of
256 * the original instruction. In fact, the ftrace location might
257 * be modified at anytime and even could be in an inconsistent state.
258 * Fortunately, we know that the original code is the ideal 5-byte
259 * long NOP.
260 */
261 if (probe_kernel_read(buf, (void *)addr,
262 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
263 return 0UL;
264
265 if (faddr)
266 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
267 else
268 buf[0] = kp->opcode;
269 return (unsigned long)buf;
270 }
271
272 /*
273 * Recover the probed instruction at addr for further analysis.
274 * Caller must lock kprobes by kprobe_mutex, or disable preemption
275 * for preventing to release referencing kprobes.
276 * Returns zero if the instruction can not get recovered (or access failed).
277 */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)278 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
279 {
280 unsigned long __addr;
281
282 __addr = __recover_optprobed_insn(buf, addr);
283 if (__addr != addr)
284 return __addr;
285
286 return __recover_probed_insn(buf, addr);
287 }
288
289 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)290 static int can_probe(unsigned long paddr)
291 {
292 unsigned long addr, __addr, offset = 0;
293 struct insn insn;
294 kprobe_opcode_t buf[MAX_INSN_SIZE];
295
296 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
297 return 0;
298
299 /* Decode instructions */
300 addr = paddr - offset;
301 while (addr < paddr) {
302 /*
303 * Check if the instruction has been modified by another
304 * kprobe, in which case we replace the breakpoint by the
305 * original instruction in our buffer.
306 * Also, jump optimization will change the breakpoint to
307 * relative-jump. Since the relative-jump itself is
308 * normally used, we just go through if there is no kprobe.
309 */
310 __addr = recover_probed_instruction(buf, addr);
311 if (!__addr)
312 return 0;
313 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
314 insn_get_length(&insn);
315
316 /*
317 * Another debugging subsystem might insert this breakpoint.
318 * In that case, we can't recover it.
319 */
320 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
321 return 0;
322 addr += insn.length;
323 }
324
325 return (addr == paddr);
326 }
327
328 /*
329 * Returns non-zero if opcode modifies the interrupt flag.
330 */
is_IF_modifier(kprobe_opcode_t * insn)331 static int is_IF_modifier(kprobe_opcode_t *insn)
332 {
333 /* Skip prefixes */
334 insn = skip_prefixes(insn);
335
336 switch (*insn) {
337 case 0xfa: /* cli */
338 case 0xfb: /* sti */
339 case 0xcf: /* iret/iretd */
340 case 0x9d: /* popf/popfd */
341 return 1;
342 }
343
344 return 0;
345 }
346
347 /*
348 * Copy an instruction with recovering modified instruction by kprobes
349 * and adjust the displacement if the instruction uses the %rip-relative
350 * addressing mode.
351 * This returns the length of copied instruction, or 0 if it has an error.
352 */
__copy_instruction(u8 * dest,u8 * src,struct insn * insn)353 int __copy_instruction(u8 *dest, u8 *src, struct insn *insn)
354 {
355 kprobe_opcode_t buf[MAX_INSN_SIZE];
356 unsigned long recovered_insn =
357 recover_probed_instruction(buf, (unsigned long)src);
358
359 if (!recovered_insn || !insn)
360 return 0;
361
362 /* This can access kernel text if given address is not recovered */
363 if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE))
364 return 0;
365
366 kernel_insn_init(insn, dest, MAX_INSN_SIZE);
367 insn_get_length(insn);
368
369 /* Another subsystem puts a breakpoint, failed to recover */
370 if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
371 return 0;
372
373 /* We should not singlestep on the exception masking instructions */
374 if (insn_masking_exception(insn))
375 return 0;
376
377 #ifdef CONFIG_X86_64
378 /* Only x86_64 has RIP relative instructions */
379 if (insn_rip_relative(insn)) {
380 s64 newdisp;
381 u8 *disp;
382 /*
383 * The copied instruction uses the %rip-relative addressing
384 * mode. Adjust the displacement for the difference between
385 * the original location of this instruction and the location
386 * of the copy that will actually be run. The tricky bit here
387 * is making sure that the sign extension happens correctly in
388 * this calculation, since we need a signed 32-bit result to
389 * be sign-extended to 64 bits when it's added to the %rip
390 * value and yield the same 64-bit result that the sign-
391 * extension of the original signed 32-bit displacement would
392 * have given.
393 */
394 newdisp = (u8 *) src + (s64) insn->displacement.value
395 - (u8 *) dest;
396 if ((s64) (s32) newdisp != newdisp) {
397 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
398 return 0;
399 }
400 disp = (u8 *) dest + insn_offset_displacement(insn);
401 *(s32 *) disp = (s32) newdisp;
402 }
403 #endif
404 return insn->length;
405 }
406
407 /* Prepare reljump right after instruction to boost */
prepare_boost(struct kprobe * p,struct insn * insn)408 static void prepare_boost(struct kprobe *p, struct insn *insn)
409 {
410 if (can_boost(insn, p->addr) &&
411 MAX_INSN_SIZE - insn->length >= RELATIVEJUMP_SIZE) {
412 /*
413 * These instructions can be executed directly if it
414 * jumps back to correct address.
415 */
416 synthesize_reljump(p->ainsn.insn + insn->length,
417 p->addr + insn->length);
418 p->ainsn.boostable = true;
419 } else {
420 p->ainsn.boostable = false;
421 }
422 }
423
424 /* Recover page to RW mode before releasing it */
free_insn_page(void * page)425 void free_insn_page(void *page)
426 {
427 set_memory_nx((unsigned long)page & PAGE_MASK, 1);
428 set_memory_rw((unsigned long)page & PAGE_MASK, 1);
429 module_memfree(page);
430 }
431
arch_copy_kprobe(struct kprobe * p)432 static int arch_copy_kprobe(struct kprobe *p)
433 {
434 struct insn insn;
435 int len;
436
437 set_memory_rw((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
438
439 /* Copy an instruction with recovering if other optprobe modifies it.*/
440 len = __copy_instruction(p->ainsn.insn, p->addr, &insn);
441 if (!len)
442 return -EINVAL;
443
444 /*
445 * __copy_instruction can modify the displacement of the instruction,
446 * but it doesn't affect boostable check.
447 */
448 prepare_boost(p, &insn);
449
450 set_memory_ro((unsigned long)p->ainsn.insn & PAGE_MASK, 1);
451
452 /* Check whether the instruction modifies Interrupt Flag or not */
453 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
454
455 /* Also, displacement change doesn't affect the first byte */
456 p->opcode = p->ainsn.insn[0];
457
458 return 0;
459 }
460
arch_prepare_kprobe(struct kprobe * p)461 int arch_prepare_kprobe(struct kprobe *p)
462 {
463 int ret;
464
465 if (alternatives_text_reserved(p->addr, p->addr))
466 return -EINVAL;
467
468 if (!can_probe((unsigned long)p->addr))
469 return -EILSEQ;
470 /* insn: must be on special executable page on x86. */
471 p->ainsn.insn = get_insn_slot();
472 if (!p->ainsn.insn)
473 return -ENOMEM;
474
475 ret = arch_copy_kprobe(p);
476 if (ret) {
477 free_insn_slot(p->ainsn.insn, 0);
478 p->ainsn.insn = NULL;
479 }
480
481 return ret;
482 }
483
arch_arm_kprobe(struct kprobe * p)484 void arch_arm_kprobe(struct kprobe *p)
485 {
486 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
487 }
488
arch_disarm_kprobe(struct kprobe * p)489 void arch_disarm_kprobe(struct kprobe *p)
490 {
491 text_poke(p->addr, &p->opcode, 1);
492 }
493
arch_remove_kprobe(struct kprobe * p)494 void arch_remove_kprobe(struct kprobe *p)
495 {
496 if (p->ainsn.insn) {
497 free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
498 p->ainsn.insn = NULL;
499 }
500 }
501
502 static nokprobe_inline void
save_previous_kprobe(struct kprobe_ctlblk * kcb)503 save_previous_kprobe(struct kprobe_ctlblk *kcb)
504 {
505 kcb->prev_kprobe.kp = kprobe_running();
506 kcb->prev_kprobe.status = kcb->kprobe_status;
507 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
508 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
509 }
510
511 static nokprobe_inline void
restore_previous_kprobe(struct kprobe_ctlblk * kcb)512 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
513 {
514 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
515 kcb->kprobe_status = kcb->prev_kprobe.status;
516 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
517 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
518 }
519
520 static nokprobe_inline void
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)521 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
522 struct kprobe_ctlblk *kcb)
523 {
524 __this_cpu_write(current_kprobe, p);
525 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
526 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
527 if (p->ainsn.if_modifier)
528 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
529 }
530
clear_btf(void)531 static nokprobe_inline void clear_btf(void)
532 {
533 if (test_thread_flag(TIF_BLOCKSTEP)) {
534 unsigned long debugctl = get_debugctlmsr();
535
536 debugctl &= ~DEBUGCTLMSR_BTF;
537 update_debugctlmsr(debugctl);
538 }
539 }
540
restore_btf(void)541 static nokprobe_inline void restore_btf(void)
542 {
543 if (test_thread_flag(TIF_BLOCKSTEP)) {
544 unsigned long debugctl = get_debugctlmsr();
545
546 debugctl |= DEBUGCTLMSR_BTF;
547 update_debugctlmsr(debugctl);
548 }
549 }
550
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)551 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
552 {
553 unsigned long *sara = stack_addr(regs);
554
555 ri->ret_addr = (kprobe_opcode_t *) *sara;
556 ri->fp = sara;
557
558 /* Replace the return addr with trampoline addr */
559 *sara = (unsigned long) &kretprobe_trampoline;
560 }
561 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
562
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)563 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
564 struct kprobe_ctlblk *kcb, int reenter)
565 {
566 if (setup_detour_execution(p, regs, reenter))
567 return;
568
569 #if !defined(CONFIG_PREEMPT)
570 if (p->ainsn.boostable && !p->post_handler) {
571 /* Boost up -- we can execute copied instructions directly */
572 if (!reenter)
573 reset_current_kprobe();
574 /*
575 * Reentering boosted probe doesn't reset current_kprobe,
576 * nor set current_kprobe, because it doesn't use single
577 * stepping.
578 */
579 regs->ip = (unsigned long)p->ainsn.insn;
580 preempt_enable_no_resched();
581 return;
582 }
583 #endif
584 if (reenter) {
585 save_previous_kprobe(kcb);
586 set_current_kprobe(p, regs, kcb);
587 kcb->kprobe_status = KPROBE_REENTER;
588 } else
589 kcb->kprobe_status = KPROBE_HIT_SS;
590 /* Prepare real single stepping */
591 clear_btf();
592 regs->flags |= X86_EFLAGS_TF;
593 regs->flags &= ~X86_EFLAGS_IF;
594 /* single step inline if the instruction is an int3 */
595 if (p->opcode == BREAKPOINT_INSTRUCTION)
596 regs->ip = (unsigned long)p->addr;
597 else
598 regs->ip = (unsigned long)p->ainsn.insn;
599 }
600 NOKPROBE_SYMBOL(setup_singlestep);
601
602 /*
603 * We have reentered the kprobe_handler(), since another probe was hit while
604 * within the handler. We save the original kprobes variables and just single
605 * step on the instruction of the new probe without calling any user handlers.
606 */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)607 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
608 struct kprobe_ctlblk *kcb)
609 {
610 switch (kcb->kprobe_status) {
611 case KPROBE_HIT_SSDONE:
612 case KPROBE_HIT_ACTIVE:
613 case KPROBE_HIT_SS:
614 kprobes_inc_nmissed_count(p);
615 setup_singlestep(p, regs, kcb, 1);
616 break;
617 case KPROBE_REENTER:
618 /* A probe has been hit in the codepath leading up to, or just
619 * after, single-stepping of a probed instruction. This entire
620 * codepath should strictly reside in .kprobes.text section.
621 * Raise a BUG or we'll continue in an endless reentering loop
622 * and eventually a stack overflow.
623 */
624 pr_err("Unrecoverable kprobe detected.\n");
625 dump_kprobe(p);
626 BUG();
627 default:
628 /* impossible cases */
629 WARN_ON(1);
630 return 0;
631 }
632
633 return 1;
634 }
635 NOKPROBE_SYMBOL(reenter_kprobe);
636
637 /*
638 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
639 * remain disabled throughout this function.
640 */
kprobe_int3_handler(struct pt_regs * regs)641 int kprobe_int3_handler(struct pt_regs *regs)
642 {
643 kprobe_opcode_t *addr;
644 struct kprobe *p;
645 struct kprobe_ctlblk *kcb;
646
647 if (user_mode(regs))
648 return 0;
649
650 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
651 /*
652 * We don't want to be preempted for the entire
653 * duration of kprobe processing. We conditionally
654 * re-enable preemption at the end of this function,
655 * and also in reenter_kprobe() and setup_singlestep().
656 */
657 preempt_disable();
658
659 kcb = get_kprobe_ctlblk();
660 p = get_kprobe(addr);
661
662 if (p) {
663 if (kprobe_running()) {
664 if (reenter_kprobe(p, regs, kcb))
665 return 1;
666 } else {
667 set_current_kprobe(p, regs, kcb);
668 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
669
670 /*
671 * If we have no pre-handler or it returned 0, we
672 * continue with normal processing. If we have a
673 * pre-handler and it returned non-zero, it prepped
674 * for calling the break_handler below on re-entry
675 * for jprobe processing, so get out doing nothing
676 * more here.
677 */
678 if (!p->pre_handler || !p->pre_handler(p, regs))
679 setup_singlestep(p, regs, kcb, 0);
680 return 1;
681 }
682 } else if (*addr != BREAKPOINT_INSTRUCTION) {
683 /*
684 * The breakpoint instruction was removed right
685 * after we hit it. Another cpu has removed
686 * either a probepoint or a debugger breakpoint
687 * at this address. In either case, no further
688 * handling of this interrupt is appropriate.
689 * Back up over the (now missing) int3 and run
690 * the original instruction.
691 */
692 regs->ip = (unsigned long)addr;
693 preempt_enable_no_resched();
694 return 1;
695 } else if (kprobe_running()) {
696 p = __this_cpu_read(current_kprobe);
697 if (p->break_handler && p->break_handler(p, regs)) {
698 if (!skip_singlestep(p, regs, kcb))
699 setup_singlestep(p, regs, kcb, 0);
700 return 1;
701 }
702 } /* else: not a kprobe fault; let the kernel handle it */
703
704 preempt_enable_no_resched();
705 return 0;
706 }
707 NOKPROBE_SYMBOL(kprobe_int3_handler);
708
709 /*
710 * When a retprobed function returns, this code saves registers and
711 * calls trampoline_handler() runs, which calls the kretprobe's handler.
712 */
713 asm(
714 ".global kretprobe_trampoline\n"
715 ".type kretprobe_trampoline, @function\n"
716 "kretprobe_trampoline:\n"
717 #ifdef CONFIG_X86_64
718 /* We don't bother saving the ss register */
719 " pushq %rsp\n"
720 " pushfq\n"
721 SAVE_REGS_STRING
722 " movq %rsp, %rdi\n"
723 " call trampoline_handler\n"
724 /* Replace saved sp with true return address. */
725 " movq %rax, 152(%rsp)\n"
726 RESTORE_REGS_STRING
727 " popfq\n"
728 #else
729 " pushf\n"
730 SAVE_REGS_STRING
731 " movl %esp, %eax\n"
732 " call trampoline_handler\n"
733 /* Move flags to cs */
734 " movl 56(%esp), %edx\n"
735 " movl %edx, 52(%esp)\n"
736 /* Replace saved flags with true return address. */
737 " movl %eax, 56(%esp)\n"
738 RESTORE_REGS_STRING
739 " popf\n"
740 #endif
741 " ret\n"
742 ".size kretprobe_trampoline, .-kretprobe_trampoline\n"
743 );
744 NOKPROBE_SYMBOL(kretprobe_trampoline);
745 STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
746
747 static struct kprobe kretprobe_kprobe = {
748 .addr = (void *)kretprobe_trampoline,
749 };
750
751 /*
752 * Called from kretprobe_trampoline
753 */
trampoline_handler(struct pt_regs * regs)754 __visible __used void *trampoline_handler(struct pt_regs *regs)
755 {
756 struct kprobe_ctlblk *kcb;
757 struct kretprobe_instance *ri = NULL;
758 struct hlist_head *head, empty_rp;
759 struct hlist_node *tmp;
760 unsigned long flags, orig_ret_address = 0;
761 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
762 kprobe_opcode_t *correct_ret_addr = NULL;
763 void *frame_pointer;
764 bool skipped = false;
765
766 preempt_disable();
767
768 /*
769 * Set a dummy kprobe for avoiding kretprobe recursion.
770 * Since kretprobe never run in kprobe handler, kprobe must not
771 * be running at this point.
772 */
773 kcb = get_kprobe_ctlblk();
774 __this_cpu_write(current_kprobe, &kretprobe_kprobe);
775 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
776
777 INIT_HLIST_HEAD(&empty_rp);
778 kretprobe_hash_lock(current, &head, &flags);
779 /* fixup registers */
780 #ifdef CONFIG_X86_64
781 regs->cs = __KERNEL_CS;
782 /* On x86-64, we use pt_regs->sp for return address holder. */
783 frame_pointer = ®s->sp;
784 #else
785 regs->cs = __KERNEL_CS | get_kernel_rpl();
786 regs->gs = 0;
787 /* On x86-32, we use pt_regs->flags for return address holder. */
788 frame_pointer = ®s->flags;
789 #endif
790 regs->ip = trampoline_address;
791 regs->orig_ax = ~0UL;
792
793 /*
794 * It is possible to have multiple instances associated with a given
795 * task either because multiple functions in the call path have
796 * return probes installed on them, and/or more than one
797 * return probe was registered for a target function.
798 *
799 * We can handle this because:
800 * - instances are always pushed into the head of the list
801 * - when multiple return probes are registered for the same
802 * function, the (chronologically) first instance's ret_addr
803 * will be the real return address, and all the rest will
804 * point to kretprobe_trampoline.
805 */
806 hlist_for_each_entry(ri, head, hlist) {
807 if (ri->task != current)
808 /* another task is sharing our hash bucket */
809 continue;
810 /*
811 * Return probes must be pushed on this hash list correct
812 * order (same as return order) so that it can be poped
813 * correctly. However, if we find it is pushed it incorrect
814 * order, this means we find a function which should not be
815 * probed, because the wrong order entry is pushed on the
816 * path of processing other kretprobe itself.
817 */
818 if (ri->fp != frame_pointer) {
819 if (!skipped)
820 pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
821 skipped = true;
822 continue;
823 }
824
825 orig_ret_address = (unsigned long)ri->ret_addr;
826 if (skipped)
827 pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
828 ri->rp->kp.addr);
829
830 if (orig_ret_address != trampoline_address)
831 /*
832 * This is the real return address. Any other
833 * instances associated with this task are for
834 * other calls deeper on the call stack
835 */
836 break;
837 }
838
839 kretprobe_assert(ri, orig_ret_address, trampoline_address);
840
841 correct_ret_addr = ri->ret_addr;
842 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
843 if (ri->task != current)
844 /* another task is sharing our hash bucket */
845 continue;
846 if (ri->fp != frame_pointer)
847 continue;
848
849 orig_ret_address = (unsigned long)ri->ret_addr;
850 if (ri->rp && ri->rp->handler) {
851 __this_cpu_write(current_kprobe, &ri->rp->kp);
852 ri->ret_addr = correct_ret_addr;
853 ri->rp->handler(ri, regs);
854 __this_cpu_write(current_kprobe, &kretprobe_kprobe);
855 }
856
857 recycle_rp_inst(ri, &empty_rp);
858
859 if (orig_ret_address != trampoline_address)
860 /*
861 * This is the real return address. Any other
862 * instances associated with this task are for
863 * other calls deeper on the call stack
864 */
865 break;
866 }
867
868 kretprobe_hash_unlock(current, &flags);
869
870 __this_cpu_write(current_kprobe, NULL);
871 preempt_enable();
872
873 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
874 hlist_del(&ri->hlist);
875 kfree(ri);
876 }
877 return (void *)orig_ret_address;
878 }
879 NOKPROBE_SYMBOL(trampoline_handler);
880
881 /*
882 * Called after single-stepping. p->addr is the address of the
883 * instruction whose first byte has been replaced by the "int 3"
884 * instruction. To avoid the SMP problems that can occur when we
885 * temporarily put back the original opcode to single-step, we
886 * single-stepped a copy of the instruction. The address of this
887 * copy is p->ainsn.insn.
888 *
889 * This function prepares to return from the post-single-step
890 * interrupt. We have to fix up the stack as follows:
891 *
892 * 0) Except in the case of absolute or indirect jump or call instructions,
893 * the new ip is relative to the copied instruction. We need to make
894 * it relative to the original instruction.
895 *
896 * 1) If the single-stepped instruction was pushfl, then the TF and IF
897 * flags are set in the just-pushed flags, and may need to be cleared.
898 *
899 * 2) If the single-stepped instruction was a call, the return address
900 * that is atop the stack is the address following the copied instruction.
901 * We need to make it the address following the original instruction.
902 *
903 * If this is the first time we've single-stepped the instruction at
904 * this probepoint, and the instruction is boostable, boost it: add a
905 * jump instruction after the copied instruction, that jumps to the next
906 * instruction after the probepoint.
907 */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)908 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
909 struct kprobe_ctlblk *kcb)
910 {
911 unsigned long *tos = stack_addr(regs);
912 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
913 unsigned long orig_ip = (unsigned long)p->addr;
914 kprobe_opcode_t *insn = p->ainsn.insn;
915
916 /* Skip prefixes */
917 insn = skip_prefixes(insn);
918
919 regs->flags &= ~X86_EFLAGS_TF;
920 switch (*insn) {
921 case 0x9c: /* pushfl */
922 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
923 *tos |= kcb->kprobe_old_flags;
924 break;
925 case 0xc2: /* iret/ret/lret */
926 case 0xc3:
927 case 0xca:
928 case 0xcb:
929 case 0xcf:
930 case 0xea: /* jmp absolute -- ip is correct */
931 /* ip is already adjusted, no more changes required */
932 p->ainsn.boostable = true;
933 goto no_change;
934 case 0xe8: /* call relative - Fix return addr */
935 *tos = orig_ip + (*tos - copy_ip);
936 break;
937 #ifdef CONFIG_X86_32
938 case 0x9a: /* call absolute -- same as call absolute, indirect */
939 *tos = orig_ip + (*tos - copy_ip);
940 goto no_change;
941 #endif
942 case 0xff:
943 if ((insn[1] & 0x30) == 0x10) {
944 /*
945 * call absolute, indirect
946 * Fix return addr; ip is correct.
947 * But this is not boostable
948 */
949 *tos = orig_ip + (*tos - copy_ip);
950 goto no_change;
951 } else if (((insn[1] & 0x31) == 0x20) ||
952 ((insn[1] & 0x31) == 0x21)) {
953 /*
954 * jmp near and far, absolute indirect
955 * ip is correct. And this is boostable
956 */
957 p->ainsn.boostable = true;
958 goto no_change;
959 }
960 default:
961 break;
962 }
963
964 regs->ip += orig_ip - copy_ip;
965
966 no_change:
967 restore_btf();
968 }
969 NOKPROBE_SYMBOL(resume_execution);
970
971 /*
972 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
973 * remain disabled throughout this function.
974 */
kprobe_debug_handler(struct pt_regs * regs)975 int kprobe_debug_handler(struct pt_regs *regs)
976 {
977 struct kprobe *cur = kprobe_running();
978 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
979
980 if (!cur)
981 return 0;
982
983 resume_execution(cur, regs, kcb);
984 regs->flags |= kcb->kprobe_saved_flags;
985
986 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
987 kcb->kprobe_status = KPROBE_HIT_SSDONE;
988 cur->post_handler(cur, regs, 0);
989 }
990
991 /* Restore back the original saved kprobes variables and continue. */
992 if (kcb->kprobe_status == KPROBE_REENTER) {
993 restore_previous_kprobe(kcb);
994 goto out;
995 }
996 reset_current_kprobe();
997 out:
998 preempt_enable_no_resched();
999
1000 /*
1001 * if somebody else is singlestepping across a probe point, flags
1002 * will have TF set, in which case, continue the remaining processing
1003 * of do_debug, as if this is not a probe hit.
1004 */
1005 if (regs->flags & X86_EFLAGS_TF)
1006 return 0;
1007
1008 return 1;
1009 }
1010 NOKPROBE_SYMBOL(kprobe_debug_handler);
1011
kprobe_fault_handler(struct pt_regs * regs,int trapnr)1012 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1013 {
1014 struct kprobe *cur = kprobe_running();
1015 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1016
1017 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1018 /* This must happen on single-stepping */
1019 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1020 kcb->kprobe_status != KPROBE_REENTER);
1021 /*
1022 * We are here because the instruction being single
1023 * stepped caused a page fault. We reset the current
1024 * kprobe and the ip points back to the probe address
1025 * and allow the page fault handler to continue as a
1026 * normal page fault.
1027 */
1028 regs->ip = (unsigned long)cur->addr;
1029 /*
1030 * Trap flag (TF) has been set here because this fault
1031 * happened where the single stepping will be done.
1032 * So clear it by resetting the current kprobe:
1033 */
1034 regs->flags &= ~X86_EFLAGS_TF;
1035
1036 /*
1037 * If the TF flag was set before the kprobe hit,
1038 * don't touch it:
1039 */
1040 regs->flags |= kcb->kprobe_old_flags;
1041
1042 if (kcb->kprobe_status == KPROBE_REENTER)
1043 restore_previous_kprobe(kcb);
1044 else
1045 reset_current_kprobe();
1046 preempt_enable_no_resched();
1047 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1048 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1049 /*
1050 * We increment the nmissed count for accounting,
1051 * we can also use npre/npostfault count for accounting
1052 * these specific fault cases.
1053 */
1054 kprobes_inc_nmissed_count(cur);
1055
1056 /*
1057 * We come here because instructions in the pre/post
1058 * handler caused the page_fault, this could happen
1059 * if handler tries to access user space by
1060 * copy_from_user(), get_user() etc. Let the
1061 * user-specified handler try to fix it first.
1062 */
1063 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1064 return 1;
1065
1066 /*
1067 * In case the user-specified fault handler returned
1068 * zero, try to fix up.
1069 */
1070 if (fixup_exception(regs, trapnr))
1071 return 1;
1072
1073 /*
1074 * fixup routine could not handle it,
1075 * Let do_page_fault() fix it.
1076 */
1077 }
1078
1079 return 0;
1080 }
1081 NOKPROBE_SYMBOL(kprobe_fault_handler);
1082
1083 /*
1084 * Wrapper routine for handling exceptions.
1085 */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1086 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1087 void *data)
1088 {
1089 struct die_args *args = data;
1090 int ret = NOTIFY_DONE;
1091
1092 if (args->regs && user_mode(args->regs))
1093 return ret;
1094
1095 if (val == DIE_GPF) {
1096 /*
1097 * To be potentially processing a kprobe fault and to
1098 * trust the result from kprobe_running(), we have
1099 * be non-preemptible.
1100 */
1101 if (!preemptible() && kprobe_running() &&
1102 kprobe_fault_handler(args->regs, args->trapnr))
1103 ret = NOTIFY_STOP;
1104 }
1105 return ret;
1106 }
1107 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1108
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)1109 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1110 {
1111 struct jprobe *jp = container_of(p, struct jprobe, kp);
1112 unsigned long addr;
1113 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1114
1115 kcb->jprobe_saved_regs = *regs;
1116 kcb->jprobe_saved_sp = stack_addr(regs);
1117 addr = (unsigned long)(kcb->jprobe_saved_sp);
1118
1119 /*
1120 * As Linus pointed out, gcc assumes that the callee
1121 * owns the argument space and could overwrite it, e.g.
1122 * tailcall optimization. So, to be absolutely safe
1123 * we also save and restore enough stack bytes to cover
1124 * the argument area.
1125 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
1126 * raw stack chunk with redzones:
1127 */
1128 __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
1129 regs->ip = (unsigned long)(jp->entry);
1130
1131 /*
1132 * jprobes use jprobe_return() which skips the normal return
1133 * path of the function, and this messes up the accounting of the
1134 * function graph tracer to get messed up.
1135 *
1136 * Pause function graph tracing while performing the jprobe function.
1137 */
1138 pause_graph_tracing();
1139 return 1;
1140 }
1141 NOKPROBE_SYMBOL(setjmp_pre_handler);
1142
jprobe_return(void)1143 void jprobe_return(void)
1144 {
1145 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1146
1147 /* Unpoison stack redzones in the frames we are going to jump over. */
1148 kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
1149
1150 asm volatile (
1151 #ifdef CONFIG_X86_64
1152 " xchg %%rbx,%%rsp \n"
1153 #else
1154 " xchgl %%ebx,%%esp \n"
1155 #endif
1156 " int3 \n"
1157 " .globl jprobe_return_end\n"
1158 " jprobe_return_end: \n"
1159 " nop \n"::"b"
1160 (kcb->jprobe_saved_sp):"memory");
1161 }
1162 NOKPROBE_SYMBOL(jprobe_return);
1163 NOKPROBE_SYMBOL(jprobe_return_end);
1164
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)1165 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1166 {
1167 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1168 u8 *addr = (u8 *) (regs->ip - 1);
1169 struct jprobe *jp = container_of(p, struct jprobe, kp);
1170 void *saved_sp = kcb->jprobe_saved_sp;
1171
1172 if ((addr > (u8 *) jprobe_return) &&
1173 (addr < (u8 *) jprobe_return_end)) {
1174 if (stack_addr(regs) != saved_sp) {
1175 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1176 printk(KERN_ERR
1177 "current sp %p does not match saved sp %p\n",
1178 stack_addr(regs), saved_sp);
1179 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1180 show_regs(saved_regs);
1181 printk(KERN_ERR "Current registers\n");
1182 show_regs(regs);
1183 BUG();
1184 }
1185 /* It's OK to start function graph tracing again */
1186 unpause_graph_tracing();
1187 *regs = kcb->jprobe_saved_regs;
1188 __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1189 preempt_enable_no_resched();
1190 return 1;
1191 }
1192 return 0;
1193 }
1194 NOKPROBE_SYMBOL(longjmp_break_handler);
1195
arch_within_kprobe_blacklist(unsigned long addr)1196 bool arch_within_kprobe_blacklist(unsigned long addr)
1197 {
1198 bool is_in_entry_trampoline_section = false;
1199
1200 #ifdef CONFIG_X86_64
1201 is_in_entry_trampoline_section =
1202 (addr >= (unsigned long)__entry_trampoline_start &&
1203 addr < (unsigned long)__entry_trampoline_end);
1204 #endif
1205 return (addr >= (unsigned long)__kprobes_text_start &&
1206 addr < (unsigned long)__kprobes_text_end) ||
1207 (addr >= (unsigned long)__entry_text_start &&
1208 addr < (unsigned long)__entry_text_end) ||
1209 is_in_entry_trampoline_section;
1210 }
1211
arch_init_kprobes(void)1212 int __init arch_init_kprobes(void)
1213 {
1214 return 0;
1215 }
1216
arch_trampoline_kprobe(struct kprobe * p)1217 int arch_trampoline_kprobe(struct kprobe *p)
1218 {
1219 return 0;
1220 }
1221