• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
20 
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29 
xstate_required_size(u64 xstate_bv,bool compacted)30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31 {
32 	int feature_bit = 0;
33 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34 
35 	xstate_bv &= XFEATURE_MASK_EXTEND;
36 	while (xstate_bv) {
37 		if (xstate_bv & 0x1) {
38 		        u32 eax, ebx, ecx, edx, offset;
39 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40 			offset = compacted ? ret : ebx;
41 			ret = max(ret, offset + eax);
42 		}
43 
44 		xstate_bv >>= 1;
45 		feature_bit++;
46 	}
47 
48 	return ret;
49 }
50 
kvm_mpx_supported(void)51 bool kvm_mpx_supported(void)
52 {
53 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54 		 && kvm_x86_ops->mpx_supported());
55 }
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57 
kvm_supported_xcr0(void)58 u64 kvm_supported_xcr0(void)
59 {
60 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61 
62 	if (!kvm_mpx_supported())
63 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64 
65 	return xcr0;
66 }
67 
68 #define F(x) bit(X86_FEATURE_##x)
69 
70 /* For scattered features from cpufeatures.h; we currently expose none */
71 #define KF(x) bit(KVM_CPUID_BIT_##x)
72 
kvm_update_cpuid(struct kvm_vcpu * vcpu)73 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
74 {
75 	struct kvm_cpuid_entry2 *best;
76 	struct kvm_lapic *apic = vcpu->arch.apic;
77 
78 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
79 	if (!best)
80 		return 0;
81 
82 	/* Update OSXSAVE bit */
83 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
84 		best->ecx &= ~F(OSXSAVE);
85 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
86 			best->ecx |= F(OSXSAVE);
87 	}
88 
89 	best->edx &= ~F(APIC);
90 	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91 		best->edx |= F(APIC);
92 
93 	if (apic) {
94 		if (best->ecx & F(TSC_DEADLINE_TIMER))
95 			apic->lapic_timer.timer_mode_mask = 3 << 17;
96 		else
97 			apic->lapic_timer.timer_mode_mask = 1 << 17;
98 	}
99 
100 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
101 	if (best) {
102 		/* Update OSPKE bit */
103 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104 			best->ecx &= ~F(OSPKE);
105 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106 				best->ecx |= F(OSPKE);
107 		}
108 	}
109 
110 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111 	if (!best) {
112 		vcpu->arch.guest_supported_xcr0 = 0;
113 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114 	} else {
115 		vcpu->arch.guest_supported_xcr0 =
116 			(best->eax | ((u64)best->edx << 32)) &
117 			kvm_supported_xcr0();
118 		vcpu->arch.guest_xstate_size = best->ebx =
119 			xstate_required_size(vcpu->arch.xcr0, false);
120 	}
121 
122 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125 
126 	/*
127 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
128 	 * canonical address checks; exit if it is ever changed.
129 	 */
130 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131 	if (best) {
132 		int vaddr_bits = (best->eax & 0xff00) >> 8;
133 
134 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135 			return -EINVAL;
136 	}
137 
138 	/* Update physical-address width */
139 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
140 	kvm_mmu_reset_context(vcpu);
141 
142 	kvm_pmu_refresh(vcpu);
143 	return 0;
144 }
145 
is_efer_nx(void)146 static int is_efer_nx(void)
147 {
148 	unsigned long long efer = 0;
149 
150 	rdmsrl_safe(MSR_EFER, &efer);
151 	return efer & EFER_NX;
152 }
153 
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)154 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
155 {
156 	int i;
157 	struct kvm_cpuid_entry2 *e, *entry;
158 
159 	entry = NULL;
160 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
161 		e = &vcpu->arch.cpuid_entries[i];
162 		if (e->function == 0x80000001) {
163 			entry = e;
164 			break;
165 		}
166 	}
167 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
168 		entry->edx &= ~F(NX);
169 		printk(KERN_INFO "kvm: guest NX capability removed\n");
170 	}
171 }
172 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)173 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
174 {
175 	struct kvm_cpuid_entry2 *best;
176 
177 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
178 	if (!best || best->eax < 0x80000008)
179 		goto not_found;
180 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
181 	if (best)
182 		return best->eax & 0xff;
183 not_found:
184 	return 36;
185 }
186 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
187 
188 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)189 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
190 			     struct kvm_cpuid *cpuid,
191 			     struct kvm_cpuid_entry __user *entries)
192 {
193 	int r, i;
194 	struct kvm_cpuid_entry *cpuid_entries = NULL;
195 
196 	r = -E2BIG;
197 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
198 		goto out;
199 	r = -ENOMEM;
200 	if (cpuid->nent) {
201 		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
202 					cpuid->nent);
203 		if (!cpuid_entries)
204 			goto out;
205 		r = -EFAULT;
206 		if (copy_from_user(cpuid_entries, entries,
207 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
208 			goto out;
209 	}
210 	for (i = 0; i < cpuid->nent; i++) {
211 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
212 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
213 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
214 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
215 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
216 		vcpu->arch.cpuid_entries[i].index = 0;
217 		vcpu->arch.cpuid_entries[i].flags = 0;
218 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
219 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
220 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
221 	}
222 	vcpu->arch.cpuid_nent = cpuid->nent;
223 	cpuid_fix_nx_cap(vcpu);
224 	kvm_apic_set_version(vcpu);
225 	kvm_x86_ops->cpuid_update(vcpu);
226 	r = kvm_update_cpuid(vcpu);
227 
228 out:
229 	vfree(cpuid_entries);
230 	return r;
231 }
232 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)233 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
234 			      struct kvm_cpuid2 *cpuid,
235 			      struct kvm_cpuid_entry2 __user *entries)
236 {
237 	int r;
238 
239 	r = -E2BIG;
240 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
241 		goto out;
242 	r = -EFAULT;
243 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
244 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
245 		goto out;
246 	vcpu->arch.cpuid_nent = cpuid->nent;
247 	kvm_apic_set_version(vcpu);
248 	kvm_x86_ops->cpuid_update(vcpu);
249 	r = kvm_update_cpuid(vcpu);
250 out:
251 	return r;
252 }
253 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)254 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
255 			      struct kvm_cpuid2 *cpuid,
256 			      struct kvm_cpuid_entry2 __user *entries)
257 {
258 	int r;
259 
260 	r = -E2BIG;
261 	if (cpuid->nent < vcpu->arch.cpuid_nent)
262 		goto out;
263 	r = -EFAULT;
264 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
265 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
266 		goto out;
267 	return 0;
268 
269 out:
270 	cpuid->nent = vcpu->arch.cpuid_nent;
271 	return r;
272 }
273 
cpuid_mask(u32 * word,int wordnum)274 static void cpuid_mask(u32 *word, int wordnum)
275 {
276 	*word &= boot_cpu_data.x86_capability[wordnum];
277 }
278 
do_cpuid_1_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)279 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
280 			   u32 index)
281 {
282 	entry->function = function;
283 	entry->index = index;
284 	cpuid_count(entry->function, entry->index,
285 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
286 	entry->flags = 0;
287 }
288 
__do_cpuid_ent_emulated(struct kvm_cpuid_entry2 * entry,u32 func,u32 index,int * nent,int maxnent)289 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
290 				   u32 func, u32 index, int *nent, int maxnent)
291 {
292 	switch (func) {
293 	case 0:
294 		entry->eax = 7;
295 		++*nent;
296 		break;
297 	case 1:
298 		entry->ecx = F(MOVBE);
299 		++*nent;
300 		break;
301 	case 7:
302 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
303 		if (index == 0)
304 			entry->ecx = F(RDPID);
305 		++*nent;
306 	default:
307 		break;
308 	}
309 
310 	entry->function = func;
311 	entry->index = index;
312 
313 	return 0;
314 }
315 
__do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index,int * nent,int maxnent)316 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
317 				 u32 index, int *nent, int maxnent)
318 {
319 	int r;
320 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
321 #ifdef CONFIG_X86_64
322 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
323 				? F(GBPAGES) : 0;
324 	unsigned f_lm = F(LM);
325 #else
326 	unsigned f_gbpages = 0;
327 	unsigned f_lm = 0;
328 #endif
329 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
330 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
331 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
332 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
333 
334 	/* cpuid 1.edx */
335 	const u32 kvm_cpuid_1_edx_x86_features =
336 		F(FPU) | F(VME) | F(DE) | F(PSE) |
337 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
338 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
339 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
340 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
341 		0 /* Reserved, DS, ACPI */ | F(MMX) |
342 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
343 		0 /* HTT, TM, Reserved, PBE */;
344 	/* cpuid 0x80000001.edx */
345 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
346 		F(FPU) | F(VME) | F(DE) | F(PSE) |
347 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
348 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
349 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
350 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
351 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
352 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
353 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
354 	/* cpuid 1.ecx */
355 	const u32 kvm_cpuid_1_ecx_x86_features =
356 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
357 		 * but *not* advertised to guests via CPUID ! */
358 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
359 		0 /* DS-CPL, VMX, SMX, EST */ |
360 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
361 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
362 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
363 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
364 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
365 		F(F16C) | F(RDRAND);
366 	/* cpuid 0x80000001.ecx */
367 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
368 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
369 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
370 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
371 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
372 
373 	/* cpuid 0x80000008.ebx */
374 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
375 		F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
376 		F(AMD_SSB_NO) | F(AMD_STIBP);
377 
378 	/* cpuid 0xC0000001.edx */
379 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
380 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
381 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
382 		F(PMM) | F(PMM_EN);
383 
384 	/* cpuid 7.0.ebx */
385 	const u32 kvm_cpuid_7_0_ebx_x86_features =
386 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
387 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
388 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
389 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
390 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
391 
392 	/* cpuid 0xD.1.eax */
393 	const u32 kvm_cpuid_D_1_eax_x86_features =
394 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
395 
396 	/* cpuid 7.0.ecx*/
397 	const u32 kvm_cpuid_7_0_ecx_x86_features =
398 		F(AVX512VBMI) | F(LA57) | F(PKU) |
399 		0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ);
400 
401 	/* cpuid 7.0.edx*/
402 	const u32 kvm_cpuid_7_0_edx_x86_features =
403 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
404 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
405 		F(MD_CLEAR);
406 
407 	/* all calls to cpuid_count() should be made on the same cpu */
408 	get_cpu();
409 
410 	r = -E2BIG;
411 
412 	if (WARN_ON(*nent >= maxnent))
413 		goto out;
414 
415 	do_cpuid_1_ent(entry, function, index);
416 	++*nent;
417 
418 	switch (function) {
419 	case 0:
420 		entry->eax = min(entry->eax, (u32)0xd);
421 		break;
422 	case 1:
423 		entry->edx &= kvm_cpuid_1_edx_x86_features;
424 		cpuid_mask(&entry->edx, CPUID_1_EDX);
425 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
426 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
427 		/* we support x2apic emulation even if host does not support
428 		 * it since we emulate x2apic in software */
429 		entry->ecx |= F(X2APIC);
430 		break;
431 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
432 	 * may return different values. This forces us to get_cpu() before
433 	 * issuing the first command, and also to emulate this annoying behavior
434 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
435 	case 2: {
436 		int t, times = entry->eax & 0xff;
437 
438 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
439 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
440 		for (t = 1; t < times; ++t) {
441 			if (*nent >= maxnent)
442 				goto out;
443 
444 			do_cpuid_1_ent(&entry[t], function, 0);
445 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
446 			++*nent;
447 		}
448 		break;
449 	}
450 	/* function 4 has additional index. */
451 	case 4: {
452 		int i, cache_type;
453 
454 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
455 		/* read more entries until cache_type is zero */
456 		for (i = 1; ; ++i) {
457 			if (*nent >= maxnent)
458 				goto out;
459 
460 			cache_type = entry[i - 1].eax & 0x1f;
461 			if (!cache_type)
462 				break;
463 			do_cpuid_1_ent(&entry[i], function, i);
464 			entry[i].flags |=
465 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
466 			++*nent;
467 		}
468 		break;
469 	}
470 	case 6: /* Thermal management */
471 		entry->eax = 0x4; /* allow ARAT */
472 		entry->ebx = 0;
473 		entry->ecx = 0;
474 		entry->edx = 0;
475 		break;
476 	case 7: {
477 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
478 		/* Mask ebx against host capability word 9 */
479 		if (index == 0) {
480 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
481 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
482 			// TSC_ADJUST is emulated
483 			entry->ebx |= F(TSC_ADJUST);
484 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
485 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
486 			/* PKU is not yet implemented for shadow paging. */
487 			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
488 				entry->ecx &= ~F(PKU);
489 
490 			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
491 			cpuid_mask(&entry->edx, CPUID_7_EDX);
492 			if (boot_cpu_has(X86_FEATURE_IBPB) &&
493 			    boot_cpu_has(X86_FEATURE_IBRS))
494 				entry->edx |= F(SPEC_CTRL);
495 			if (boot_cpu_has(X86_FEATURE_STIBP))
496 				entry->edx |= F(INTEL_STIBP);
497 			if (boot_cpu_has(X86_FEATURE_SSBD))
498 				entry->edx |= F(SPEC_CTRL_SSBD);
499 			/*
500 			 * We emulate ARCH_CAPABILITIES in software even
501 			 * if the host doesn't support it.
502 			 */
503 			entry->edx |= F(ARCH_CAPABILITIES);
504 		} else {
505 			entry->ebx = 0;
506 			entry->ecx = 0;
507 			entry->edx = 0;
508 		}
509 		entry->eax = 0;
510 		break;
511 	}
512 	case 9:
513 		break;
514 	case 0xa: { /* Architectural Performance Monitoring */
515 		struct x86_pmu_capability cap;
516 		union cpuid10_eax eax;
517 		union cpuid10_edx edx;
518 
519 		perf_get_x86_pmu_capability(&cap);
520 
521 		/*
522 		 * Only support guest architectural pmu on a host
523 		 * with architectural pmu.
524 		 */
525 		if (!cap.version)
526 			memset(&cap, 0, sizeof(cap));
527 
528 		eax.split.version_id = min(cap.version, 2);
529 		eax.split.num_counters = cap.num_counters_gp;
530 		eax.split.bit_width = cap.bit_width_gp;
531 		eax.split.mask_length = cap.events_mask_len;
532 
533 		edx.split.num_counters_fixed = cap.num_counters_fixed;
534 		edx.split.bit_width_fixed = cap.bit_width_fixed;
535 		edx.split.reserved = 0;
536 
537 		entry->eax = eax.full;
538 		entry->ebx = cap.events_mask;
539 		entry->ecx = 0;
540 		entry->edx = edx.full;
541 		break;
542 	}
543 	/* function 0xb has additional index. */
544 	case 0xb: {
545 		int i, level_type;
546 
547 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
548 		/* read more entries until level_type is zero */
549 		for (i = 1; ; ++i) {
550 			if (*nent >= maxnent)
551 				goto out;
552 
553 			level_type = entry[i - 1].ecx & 0xff00;
554 			if (!level_type)
555 				break;
556 			do_cpuid_1_ent(&entry[i], function, i);
557 			entry[i].flags |=
558 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
559 			++*nent;
560 		}
561 		break;
562 	}
563 	case 0xd: {
564 		int idx, i;
565 		u64 supported = kvm_supported_xcr0();
566 
567 		entry->eax &= supported;
568 		entry->ebx = xstate_required_size(supported, false);
569 		entry->ecx = entry->ebx;
570 		entry->edx &= supported >> 32;
571 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
572 		if (!supported)
573 			break;
574 
575 		for (idx = 1, i = 1; idx < 64; ++idx) {
576 			u64 mask = ((u64)1 << idx);
577 			if (*nent >= maxnent)
578 				goto out;
579 
580 			do_cpuid_1_ent(&entry[i], function, idx);
581 			if (idx == 1) {
582 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
583 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
584 				entry[i].ebx = 0;
585 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
586 					entry[i].ebx =
587 						xstate_required_size(supported,
588 								     true);
589 			} else {
590 				if (entry[i].eax == 0 || !(supported & mask))
591 					continue;
592 				if (WARN_ON_ONCE(entry[i].ecx & 1))
593 					continue;
594 			}
595 			entry[i].ecx = 0;
596 			entry[i].edx = 0;
597 			entry[i].flags |=
598 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
599 			++*nent;
600 			++i;
601 		}
602 		break;
603 	}
604 	case KVM_CPUID_SIGNATURE: {
605 		static const char signature[12] = "KVMKVMKVM\0\0";
606 		const u32 *sigptr = (const u32 *)signature;
607 		entry->eax = KVM_CPUID_FEATURES;
608 		entry->ebx = sigptr[0];
609 		entry->ecx = sigptr[1];
610 		entry->edx = sigptr[2];
611 		break;
612 	}
613 	case KVM_CPUID_FEATURES:
614 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
615 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
616 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
617 			     (1 << KVM_FEATURE_ASYNC_PF) |
618 			     (1 << KVM_FEATURE_PV_EOI) |
619 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
620 			     (1 << KVM_FEATURE_PV_UNHALT) |
621 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT);
622 
623 		if (sched_info_on())
624 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
625 
626 		entry->ebx = 0;
627 		entry->ecx = 0;
628 		entry->edx = 0;
629 		break;
630 	case 0x80000000:
631 		entry->eax = min(entry->eax, 0x8000001a);
632 		break;
633 	case 0x80000001:
634 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
635 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
636 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
637 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
638 		break;
639 	case 0x80000007: /* Advanced power management */
640 		/* invariant TSC is CPUID.80000007H:EDX[8] */
641 		entry->edx &= (1 << 8);
642 		/* mask against host */
643 		entry->edx &= boot_cpu_data.x86_power;
644 		entry->eax = entry->ebx = entry->ecx = 0;
645 		break;
646 	case 0x80000008: {
647 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
648 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
649 		unsigned phys_as = entry->eax & 0xff;
650 
651 		if (!g_phys_as)
652 			g_phys_as = phys_as;
653 		entry->eax = g_phys_as | (virt_as << 8);
654 		entry->edx = 0;
655 		/*
656 		 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
657 		 * hardware cpuid
658 		 */
659 		if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
660 			entry->ebx |= F(AMD_IBPB);
661 		if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
662 			entry->ebx |= F(AMD_IBRS);
663 		if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
664 			entry->ebx |= F(VIRT_SSBD);
665 		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
666 		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
667 		/*
668 		 * The preference is to use SPEC CTRL MSR instead of the
669 		 * VIRT_SPEC MSR.
670 		 */
671 		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
672 		    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
673 			entry->ebx |= F(VIRT_SSBD);
674 		break;
675 	}
676 	case 0x80000019:
677 		entry->ecx = entry->edx = 0;
678 		break;
679 	case 0x8000001a:
680 		break;
681 	case 0x8000001d:
682 		break;
683 	/*Add support for Centaur's CPUID instruction*/
684 	case 0xC0000000:
685 		/*Just support up to 0xC0000004 now*/
686 		entry->eax = min(entry->eax, 0xC0000004);
687 		break;
688 	case 0xC0000001:
689 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
690 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
691 		break;
692 	case 3: /* Processor serial number */
693 	case 5: /* MONITOR/MWAIT */
694 	case 0xC0000002:
695 	case 0xC0000003:
696 	case 0xC0000004:
697 	default:
698 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
699 		break;
700 	}
701 
702 	kvm_x86_ops->set_supported_cpuid(function, entry);
703 
704 	r = 0;
705 
706 out:
707 	put_cpu();
708 
709 	return r;
710 }
711 
do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 func,u32 idx,int * nent,int maxnent,unsigned int type)712 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
713 			u32 idx, int *nent, int maxnent, unsigned int type)
714 {
715 	if (*nent >= maxnent)
716 		return -E2BIG;
717 
718 	if (type == KVM_GET_EMULATED_CPUID)
719 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
720 
721 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
722 }
723 
724 #undef F
725 
726 struct kvm_cpuid_param {
727 	u32 func;
728 	u32 idx;
729 	bool has_leaf_count;
730 	bool (*qualifier)(const struct kvm_cpuid_param *param);
731 };
732 
is_centaur_cpu(const struct kvm_cpuid_param * param)733 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
734 {
735 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
736 }
737 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)738 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
739 				 __u32 num_entries, unsigned int ioctl_type)
740 {
741 	int i;
742 	__u32 pad[3];
743 
744 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
745 		return false;
746 
747 	/*
748 	 * We want to make sure that ->padding is being passed clean from
749 	 * userspace in case we want to use it for something in the future.
750 	 *
751 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
752 	 * have to give ourselves satisfied only with the emulated side. /me
753 	 * sheds a tear.
754 	 */
755 	for (i = 0; i < num_entries; i++) {
756 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
757 			return true;
758 
759 		if (pad[0] || pad[1] || pad[2])
760 			return true;
761 	}
762 	return false;
763 }
764 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)765 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
766 			    struct kvm_cpuid_entry2 __user *entries,
767 			    unsigned int type)
768 {
769 	struct kvm_cpuid_entry2 *cpuid_entries;
770 	int limit, nent = 0, r = -E2BIG, i;
771 	u32 func;
772 	static const struct kvm_cpuid_param param[] = {
773 		{ .func = 0, .has_leaf_count = true },
774 		{ .func = 0x80000000, .has_leaf_count = true },
775 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
776 		{ .func = KVM_CPUID_SIGNATURE },
777 		{ .func = KVM_CPUID_FEATURES },
778 	};
779 
780 	if (cpuid->nent < 1)
781 		goto out;
782 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
783 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
784 
785 	if (sanity_check_entries(entries, cpuid->nent, type))
786 		return -EINVAL;
787 
788 	r = -ENOMEM;
789 	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
790 	if (!cpuid_entries)
791 		goto out;
792 
793 	r = 0;
794 	for (i = 0; i < ARRAY_SIZE(param); i++) {
795 		const struct kvm_cpuid_param *ent = &param[i];
796 
797 		if (ent->qualifier && !ent->qualifier(ent))
798 			continue;
799 
800 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
801 				&nent, cpuid->nent, type);
802 
803 		if (r)
804 			goto out_free;
805 
806 		if (!ent->has_leaf_count)
807 			continue;
808 
809 		limit = cpuid_entries[nent - 1].eax;
810 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
811 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
812 				     &nent, cpuid->nent, type);
813 
814 		if (r)
815 			goto out_free;
816 	}
817 
818 	r = -EFAULT;
819 	if (copy_to_user(entries, cpuid_entries,
820 			 nent * sizeof(struct kvm_cpuid_entry2)))
821 		goto out_free;
822 	cpuid->nent = nent;
823 	r = 0;
824 
825 out_free:
826 	vfree(cpuid_entries);
827 out:
828 	return r;
829 }
830 
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)831 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
832 {
833 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
834 	struct kvm_cpuid_entry2 *ej;
835 	int j = i;
836 	int nent = vcpu->arch.cpuid_nent;
837 
838 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
839 	/* when no next entry is found, the current entry[i] is reselected */
840 	do {
841 		j = (j + 1) % nent;
842 		ej = &vcpu->arch.cpuid_entries[j];
843 	} while (ej->function != e->function);
844 
845 	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
846 
847 	return j;
848 }
849 
850 /* find an entry with matching function, matching index (if needed), and that
851  * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)852 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
853 	u32 function, u32 index)
854 {
855 	if (e->function != function)
856 		return 0;
857 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
858 		return 0;
859 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
860 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
861 		return 0;
862 	return 1;
863 }
864 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)865 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
866 					      u32 function, u32 index)
867 {
868 	int i;
869 	struct kvm_cpuid_entry2 *best = NULL;
870 
871 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
872 		struct kvm_cpuid_entry2 *e;
873 
874 		e = &vcpu->arch.cpuid_entries[i];
875 		if (is_matching_cpuid_entry(e, function, index)) {
876 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
877 				move_to_next_stateful_cpuid_entry(vcpu, i);
878 			best = e;
879 			break;
880 		}
881 	}
882 	return best;
883 }
884 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
885 
886 /*
887  * If no match is found, check whether we exceed the vCPU's limit
888  * and return the content of the highest valid _standard_ leaf instead.
889  * This is to satisfy the CPUID specification.
890  */
check_cpuid_limit(struct kvm_vcpu * vcpu,u32 function,u32 index)891 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
892                                                   u32 function, u32 index)
893 {
894 	struct kvm_cpuid_entry2 *maxlevel;
895 
896 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
897 	if (!maxlevel || maxlevel->eax >= function)
898 		return NULL;
899 	if (function & 0x80000000) {
900 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
901 		if (!maxlevel)
902 			return NULL;
903 	}
904 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
905 }
906 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool check_limit)907 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
908 	       u32 *ecx, u32 *edx, bool check_limit)
909 {
910 	u32 function = *eax, index = *ecx;
911 	struct kvm_cpuid_entry2 *best;
912 	bool entry_found = true;
913 
914 	best = kvm_find_cpuid_entry(vcpu, function, index);
915 
916 	if (!best) {
917 		entry_found = false;
918 		if (!check_limit)
919 			goto out;
920 
921 		best = check_cpuid_limit(vcpu, function, index);
922 	}
923 
924 out:
925 	if (best) {
926 		*eax = best->eax;
927 		*ebx = best->ebx;
928 		*ecx = best->ecx;
929 		*edx = best->edx;
930 	} else
931 		*eax = *ebx = *ecx = *edx = 0;
932 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
933 	return entry_found;
934 }
935 EXPORT_SYMBOL_GPL(kvm_cpuid);
936 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)937 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
938 {
939 	u32 eax, ebx, ecx, edx;
940 
941 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
942 		return 1;
943 
944 	eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
945 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
946 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
947 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
948 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
949 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
950 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
951 	return kvm_skip_emulated_instruction(vcpu);
952 }
953 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
954