• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 /*
22  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23  * so the code in this file is compiled twice, once per pte size.
24  */
25 
26 #if PTTYPE == 64
27 	#define pt_element_t u64
28 	#define guest_walker guest_walker64
29 	#define FNAME(name) paging##64_##name
30 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
35 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
37 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
38 	#ifdef CONFIG_X86_64
39 	#define PT_MAX_FULL_LEVELS 4
40 	#define CMPXCHG cmpxchg
41 	#else
42 	#define CMPXCHG cmpxchg64
43 	#define PT_MAX_FULL_LEVELS 2
44 	#endif
45 #elif PTTYPE == 32
46 	#define pt_element_t u32
47 	#define guest_walker guest_walker32
48 	#define FNAME(name) paging##32_##name
49 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
50 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
52 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
53 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
54 	#define PT_MAX_FULL_LEVELS 2
55 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
57 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
58 	#define CMPXCHG cmpxchg
59 #elif PTTYPE == PTTYPE_EPT
60 	#define pt_element_t u64
61 	#define guest_walker guest_walkerEPT
62 	#define FNAME(name) ept_##name
63 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
68 	#define PT_GUEST_DIRTY_SHIFT 9
69 	#define PT_GUEST_ACCESSED_SHIFT 8
70 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
71 	#define CMPXCHG cmpxchg64
72 	#define PT_MAX_FULL_LEVELS 4
73 #else
74 	#error Invalid PTTYPE value
75 #endif
76 
77 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
78 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79 
80 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
82 
83 /*
84  * The guest_walker structure emulates the behavior of the hardware page
85  * table walker.
86  */
87 struct guest_walker {
88 	int level;
89 	unsigned max_level;
90 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
91 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
92 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
93 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
94 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
95 	bool pte_writable[PT_MAX_FULL_LEVELS];
96 	unsigned pt_access;
97 	unsigned pte_access;
98 	gfn_t gfn;
99 	struct x86_exception fault;
100 };
101 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)102 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
103 {
104 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
105 }
106 
FNAME(protect_clean_gpte)107 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108 					     unsigned gpte)
109 {
110 	unsigned mask;
111 
112 	/* dirty bit is not supported, so no need to track it */
113 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
114 		return;
115 
116 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117 
118 	mask = (unsigned)~ACC_WRITE_MASK;
119 	/* Allow write access to dirty gptes */
120 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121 		PT_WRITABLE_MASK;
122 	*access &= mask;
123 }
124 
FNAME(is_present_gpte)125 static inline int FNAME(is_present_gpte)(unsigned long pte)
126 {
127 #if PTTYPE != PTTYPE_EPT
128 	return pte & PT_PRESENT_MASK;
129 #else
130 	return pte & 7;
131 #endif
132 }
133 
FNAME(cmpxchg_gpte)134 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
135 			       pt_element_t __user *ptep_user, unsigned index,
136 			       pt_element_t orig_pte, pt_element_t new_pte)
137 {
138 	int npages;
139 	pt_element_t ret;
140 	pt_element_t *table;
141 	struct page *page;
142 
143 	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
144 	/* Check if the user is doing something meaningless. */
145 	if (unlikely(npages != 1))
146 		return -EFAULT;
147 
148 	table = kmap_atomic(page);
149 	ret = CMPXCHG(&table[index], orig_pte, new_pte);
150 	kunmap_atomic(table);
151 
152 	kvm_release_page_dirty(page);
153 
154 	return (ret != orig_pte);
155 }
156 
FNAME(prefetch_invalid_gpte)157 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
158 				  struct kvm_mmu_page *sp, u64 *spte,
159 				  u64 gpte)
160 {
161 	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
162 		goto no_present;
163 
164 	if (!FNAME(is_present_gpte)(gpte))
165 		goto no_present;
166 
167 	/* if accessed bit is not supported prefetch non accessed gpte */
168 	if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK))
169 		goto no_present;
170 
171 	return false;
172 
173 no_present:
174 	drop_spte(vcpu->kvm, spte);
175 	return true;
176 }
177 
178 /*
179  * For PTTYPE_EPT, a page table can be executable but not readable
180  * on supported processors. Therefore, set_spte does not automatically
181  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
182  * to signify readability since it isn't used in the EPT case
183  */
FNAME(gpte_access)184 static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
185 {
186 	unsigned access;
187 #if PTTYPE == PTTYPE_EPT
188 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
189 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
190 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
191 #else
192 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
193 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
194 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
195 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
196 	access ^= (gpte >> PT64_NX_SHIFT);
197 #endif
198 
199 	return access;
200 }
201 
FNAME(update_accessed_dirty_bits)202 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
203 					     struct kvm_mmu *mmu,
204 					     struct guest_walker *walker,
205 					     int write_fault)
206 {
207 	unsigned level, index;
208 	pt_element_t pte, orig_pte;
209 	pt_element_t __user *ptep_user;
210 	gfn_t table_gfn;
211 	int ret;
212 
213 	/* dirty/accessed bits are not supported, so no need to update them */
214 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
215 		return 0;
216 
217 	for (level = walker->max_level; level >= walker->level; --level) {
218 		pte = orig_pte = walker->ptes[level - 1];
219 		table_gfn = walker->table_gfn[level - 1];
220 		ptep_user = walker->ptep_user[level - 1];
221 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
222 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
223 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
224 			pte |= PT_GUEST_ACCESSED_MASK;
225 		}
226 		if (level == walker->level && write_fault &&
227 				!(pte & PT_GUEST_DIRTY_MASK)) {
228 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
229 #if PTTYPE == PTTYPE_EPT
230 			if (kvm_arch_write_log_dirty(vcpu))
231 				return -EINVAL;
232 #endif
233 			pte |= PT_GUEST_DIRTY_MASK;
234 		}
235 		if (pte == orig_pte)
236 			continue;
237 
238 		/*
239 		 * If the slot is read-only, simply do not process the accessed
240 		 * and dirty bits.  This is the correct thing to do if the slot
241 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
242 		 * are only supported if the accessed and dirty bits are already
243 		 * set in the ROM (so that MMIO writes are never needed).
244 		 *
245 		 * Note that NPT does not allow this at all and faults, since
246 		 * it always wants nested page table entries for the guest
247 		 * page tables to be writable.  And EPT works but will simply
248 		 * overwrite the read-only memory to set the accessed and dirty
249 		 * bits.
250 		 */
251 		if (unlikely(!walker->pte_writable[level - 1]))
252 			continue;
253 
254 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
255 		if (ret)
256 			return ret;
257 
258 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
259 		walker->ptes[level - 1] = pte;
260 	}
261 	return 0;
262 }
263 
FNAME(gpte_pkeys)264 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
265 {
266 	unsigned pkeys = 0;
267 #if PTTYPE == 64
268 	pte_t pte = {.pte = gpte};
269 
270 	pkeys = pte_flags_pkey(pte_flags(pte));
271 #endif
272 	return pkeys;
273 }
274 
275 /*
276  * Fetch a guest pte for a guest virtual address
277  */
FNAME(walk_addr_generic)278 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
279 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
280 				    gva_t addr, u32 access)
281 {
282 	int ret;
283 	pt_element_t pte;
284 	pt_element_t __user *uninitialized_var(ptep_user);
285 	gfn_t table_gfn;
286 	u64 pt_access, pte_access;
287 	unsigned index, accessed_dirty, pte_pkey;
288 	unsigned nested_access;
289 	gpa_t pte_gpa;
290 	bool have_ad;
291 	int offset;
292 	u64 walk_nx_mask = 0;
293 	const int write_fault = access & PFERR_WRITE_MASK;
294 	const int user_fault  = access & PFERR_USER_MASK;
295 	const int fetch_fault = access & PFERR_FETCH_MASK;
296 	u16 errcode = 0;
297 	gpa_t real_gpa;
298 	gfn_t gfn;
299 
300 	trace_kvm_mmu_pagetable_walk(addr, access);
301 retry_walk:
302 	walker->level = mmu->root_level;
303 	pte           = mmu->get_cr3(vcpu);
304 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
305 
306 #if PTTYPE == 64
307 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
308 	if (walker->level == PT32E_ROOT_LEVEL) {
309 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
310 		trace_kvm_mmu_paging_element(pte, walker->level);
311 		if (!FNAME(is_present_gpte)(pte))
312 			goto error;
313 		--walker->level;
314 	}
315 #endif
316 	walker->max_level = walker->level;
317 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
318 
319 	/*
320 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
321 	 * by the MOV to CR instruction are treated as reads and do not cause the
322 	 * processor to set the dirty flag in any EPT paging-structure entry.
323 	 */
324 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
325 
326 	pte_access = ~0;
327 	++walker->level;
328 
329 	do {
330 		gfn_t real_gfn;
331 		unsigned long host_addr;
332 
333 		pt_access = pte_access;
334 		--walker->level;
335 
336 		index = PT_INDEX(addr, walker->level);
337 		table_gfn = gpte_to_gfn(pte);
338 		offset    = index * sizeof(pt_element_t);
339 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
340 
341 		BUG_ON(walker->level < 1);
342 		walker->table_gfn[walker->level - 1] = table_gfn;
343 		walker->pte_gpa[walker->level - 1] = pte_gpa;
344 
345 		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
346 					      nested_access,
347 					      &walker->fault);
348 
349 		/*
350 		 * FIXME: This can happen if emulation (for of an INS/OUTS
351 		 * instruction) triggers a nested page fault.  The exit
352 		 * qualification / exit info field will incorrectly have
353 		 * "guest page access" as the nested page fault's cause,
354 		 * instead of "guest page structure access".  To fix this,
355 		 * the x86_exception struct should be augmented with enough
356 		 * information to fix the exit_qualification or exit_info_1
357 		 * fields.
358 		 */
359 		if (unlikely(real_gfn == UNMAPPED_GVA))
360 			return 0;
361 
362 		real_gfn = gpa_to_gfn(real_gfn);
363 
364 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
365 					    &walker->pte_writable[walker->level - 1]);
366 		if (unlikely(kvm_is_error_hva(host_addr)))
367 			goto error;
368 
369 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
370 		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
371 			goto error;
372 		walker->ptep_user[walker->level - 1] = ptep_user;
373 
374 		trace_kvm_mmu_paging_element(pte, walker->level);
375 
376 		/*
377 		 * Inverting the NX it lets us AND it like other
378 		 * permission bits.
379 		 */
380 		pte_access = pt_access & (pte ^ walk_nx_mask);
381 
382 		if (unlikely(!FNAME(is_present_gpte)(pte)))
383 			goto error;
384 
385 		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
386 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
387 			goto error;
388 		}
389 
390 		walker->ptes[walker->level - 1] = pte;
391 	} while (!is_last_gpte(mmu, walker->level, pte));
392 
393 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
394 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
395 
396 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
397 	walker->pt_access = FNAME(gpte_access)(vcpu, pt_access ^ walk_nx_mask);
398 	walker->pte_access = FNAME(gpte_access)(vcpu, pte_access ^ walk_nx_mask);
399 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
400 	if (unlikely(errcode))
401 		goto error;
402 
403 	gfn = gpte_to_gfn_lvl(pte, walker->level);
404 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
405 
406 	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
407 		gfn += pse36_gfn_delta(pte);
408 
409 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
410 	if (real_gpa == UNMAPPED_GVA)
411 		return 0;
412 
413 	walker->gfn = real_gpa >> PAGE_SHIFT;
414 
415 	if (!write_fault)
416 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
417 	else
418 		/*
419 		 * On a write fault, fold the dirty bit into accessed_dirty.
420 		 * For modes without A/D bits support accessed_dirty will be
421 		 * always clear.
422 		 */
423 		accessed_dirty &= pte >>
424 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
425 
426 	if (unlikely(!accessed_dirty)) {
427 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
428 		if (unlikely(ret < 0))
429 			goto error;
430 		else if (ret)
431 			goto retry_walk;
432 	}
433 
434 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
435 		 __func__, (u64)pte, walker->pte_access, walker->pt_access);
436 	return 1;
437 
438 error:
439 	errcode |= write_fault | user_fault;
440 	if (fetch_fault && (mmu->nx ||
441 			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
442 		errcode |= PFERR_FETCH_MASK;
443 
444 	walker->fault.vector = PF_VECTOR;
445 	walker->fault.error_code_valid = true;
446 	walker->fault.error_code = errcode;
447 
448 #if PTTYPE == PTTYPE_EPT
449 	/*
450 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
451 	 * misconfiguration requires to be injected. The detection is
452 	 * done by is_rsvd_bits_set() above.
453 	 *
454 	 * We set up the value of exit_qualification to inject:
455 	 * [2:0] - Derive from the access bits. The exit_qualification might be
456 	 *         out of date if it is serving an EPT misconfiguration.
457 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
458 	 * [7:8] - Derived from [7:8] of real exit_qualification
459 	 *
460 	 * The other bits are set to 0.
461 	 */
462 	if (!(errcode & PFERR_RSVD_MASK)) {
463 		vcpu->arch.exit_qualification &= 0x180;
464 		if (write_fault)
465 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
466 		if (user_fault)
467 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
468 		if (fetch_fault)
469 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
470 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
471 	}
472 #endif
473 	walker->fault.address = addr;
474 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
475 
476 	trace_kvm_mmu_walker_error(walker->fault.error_code);
477 	return 0;
478 }
479 
FNAME(walk_addr)480 static int FNAME(walk_addr)(struct guest_walker *walker,
481 			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
482 {
483 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
484 					access);
485 }
486 
487 #if PTTYPE != PTTYPE_EPT
FNAME(walk_addr_nested)488 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
489 				   struct kvm_vcpu *vcpu, gva_t addr,
490 				   u32 access)
491 {
492 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
493 					addr, access);
494 }
495 #endif
496 
497 static bool
FNAME(prefetch_gpte)498 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
499 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
500 {
501 	unsigned pte_access;
502 	gfn_t gfn;
503 	kvm_pfn_t pfn;
504 
505 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
506 		return false;
507 
508 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
509 
510 	gfn = gpte_to_gfn(gpte);
511 	pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
512 	FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
513 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
514 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
515 	if (is_error_pfn(pfn))
516 		return false;
517 
518 	/*
519 	 * we call mmu_set_spte() with host_writable = true because
520 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
521 	 */
522 	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
523 		     true, true);
524 
525 	kvm_release_pfn_clean(pfn);
526 	return true;
527 }
528 
FNAME(update_pte)529 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
530 			      u64 *spte, const void *pte)
531 {
532 	pt_element_t gpte = *(const pt_element_t *)pte;
533 
534 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
535 }
536 
FNAME(gpte_changed)537 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
538 				struct guest_walker *gw, int level)
539 {
540 	pt_element_t curr_pte;
541 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
542 	u64 mask;
543 	int r, index;
544 
545 	if (level == PT_PAGE_TABLE_LEVEL) {
546 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
547 		base_gpa = pte_gpa & ~mask;
548 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
549 
550 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
551 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
552 		curr_pte = gw->prefetch_ptes[index];
553 	} else
554 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
555 				  &curr_pte, sizeof(curr_pte));
556 
557 	return r || curr_pte != gw->ptes[level - 1];
558 }
559 
FNAME(pte_prefetch)560 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
561 				u64 *sptep)
562 {
563 	struct kvm_mmu_page *sp;
564 	pt_element_t *gptep = gw->prefetch_ptes;
565 	u64 *spte;
566 	int i;
567 
568 	sp = page_header(__pa(sptep));
569 
570 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
571 		return;
572 
573 	if (sp->role.direct)
574 		return __direct_pte_prefetch(vcpu, sp, sptep);
575 
576 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
577 	spte = sp->spt + i;
578 
579 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
580 		if (spte == sptep)
581 			continue;
582 
583 		if (is_shadow_present_pte(*spte))
584 			continue;
585 
586 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
587 			break;
588 	}
589 }
590 
591 /*
592  * Fetch a shadow pte for a specific level in the paging hierarchy.
593  * If the guest tries to write a write-protected page, we need to
594  * emulate this operation, return 1 to indicate this case.
595  */
FNAME(fetch)596 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
597 			 struct guest_walker *gw,
598 			 int write_fault, int hlevel,
599 			 kvm_pfn_t pfn, bool map_writable, bool prefault,
600 			 bool lpage_disallowed)
601 {
602 	struct kvm_mmu_page *sp = NULL;
603 	struct kvm_shadow_walk_iterator it;
604 	unsigned direct_access, access = gw->pt_access;
605 	int top_level, ret;
606 	gfn_t gfn, base_gfn;
607 
608 	direct_access = gw->pte_access;
609 
610 	top_level = vcpu->arch.mmu.root_level;
611 	if (top_level == PT32E_ROOT_LEVEL)
612 		top_level = PT32_ROOT_LEVEL;
613 	/*
614 	 * Verify that the top-level gpte is still there.  Since the page
615 	 * is a root page, it is either write protected (and cannot be
616 	 * changed from now on) or it is invalid (in which case, we don't
617 	 * really care if it changes underneath us after this point).
618 	 */
619 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
620 		goto out_gpte_changed;
621 
622 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
623 		goto out_gpte_changed;
624 
625 	for (shadow_walk_init(&it, vcpu, addr);
626 	     shadow_walk_okay(&it) && it.level > gw->level;
627 	     shadow_walk_next(&it)) {
628 		gfn_t table_gfn;
629 
630 		clear_sp_write_flooding_count(it.sptep);
631 		drop_large_spte(vcpu, it.sptep);
632 
633 		sp = NULL;
634 		if (!is_shadow_present_pte(*it.sptep)) {
635 			table_gfn = gw->table_gfn[it.level - 2];
636 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
637 					      false, access);
638 		}
639 
640 		/*
641 		 * Verify that the gpte in the page we've just write
642 		 * protected is still there.
643 		 */
644 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
645 			goto out_gpte_changed;
646 
647 		if (sp)
648 			link_shadow_page(vcpu, it.sptep, sp);
649 	}
650 
651 	/*
652 	 * FNAME(page_fault) might have clobbered the bottom bits of
653 	 * gw->gfn, restore them from the virtual address.
654 	 */
655 	gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
656 	base_gfn = gfn;
657 
658 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
659 
660 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
661 		clear_sp_write_flooding_count(it.sptep);
662 
663 		/*
664 		 * We cannot overwrite existing page tables with an NX
665 		 * large page, as the leaf could be executable.
666 		 */
667 		disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
668 
669 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
670 		if (it.level == hlevel)
671 			break;
672 
673 		validate_direct_spte(vcpu, it.sptep, direct_access);
674 
675 		drop_large_spte(vcpu, it.sptep);
676 
677 		if (!is_shadow_present_pte(*it.sptep)) {
678 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
679 					      it.level - 1, true, direct_access);
680 			link_shadow_page(vcpu, it.sptep, sp);
681 			if (lpage_disallowed)
682 				account_huge_nx_page(vcpu->kvm, sp);
683 		}
684 	}
685 
686 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
687 			   it.level, base_gfn, pfn, prefault, map_writable);
688 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
689 	++vcpu->stat.pf_fixed;
690 	return ret;
691 
692 out_gpte_changed:
693 	return RET_PF_RETRY;
694 }
695 
696  /*
697  * To see whether the mapped gfn can write its page table in the current
698  * mapping.
699  *
700  * It is the helper function of FNAME(page_fault). When guest uses large page
701  * size to map the writable gfn which is used as current page table, we should
702  * force kvm to use small page size to map it because new shadow page will be
703  * created when kvm establishes shadow page table that stop kvm using large
704  * page size. Do it early can avoid unnecessary #PF and emulation.
705  *
706  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
707  * currently used as its page table.
708  *
709  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
710  * since the PDPT is always shadowed, that means, we can not use large page
711  * size to map the gfn which is used as PDPT.
712  */
713 static bool
FNAME(is_self_change_mapping)714 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
715 			      struct guest_walker *walker, int user_fault,
716 			      bool *write_fault_to_shadow_pgtable)
717 {
718 	int level;
719 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
720 	bool self_changed = false;
721 
722 	if (!(walker->pte_access & ACC_WRITE_MASK ||
723 	      (!is_write_protection(vcpu) && !user_fault)))
724 		return false;
725 
726 	for (level = walker->level; level <= walker->max_level; level++) {
727 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
728 
729 		self_changed |= !(gfn & mask);
730 		*write_fault_to_shadow_pgtable |= !gfn;
731 	}
732 
733 	return self_changed;
734 }
735 
736 /*
737  * Page fault handler.  There are several causes for a page fault:
738  *   - there is no shadow pte for the guest pte
739  *   - write access through a shadow pte marked read only so that we can set
740  *     the dirty bit
741  *   - write access to a shadow pte marked read only so we can update the page
742  *     dirty bitmap, when userspace requests it
743  *   - mmio access; in this case we will never install a present shadow pte
744  *   - normal guest page fault due to the guest pte marked not present, not
745  *     writable, or not executable
746  *
747  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
748  *           a negative value on error.
749  */
FNAME(page_fault)750 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
751 			     bool prefault)
752 {
753 	int write_fault = error_code & PFERR_WRITE_MASK;
754 	int user_fault = error_code & PFERR_USER_MASK;
755 	struct guest_walker walker;
756 	int r;
757 	kvm_pfn_t pfn;
758 	int level = PT_PAGE_TABLE_LEVEL;
759 	unsigned long mmu_seq;
760 	bool map_writable, is_self_change_mapping;
761 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
762 				is_nx_huge_page_enabled();
763 	bool force_pt_level = lpage_disallowed;
764 
765 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
766 
767 	r = mmu_topup_memory_caches(vcpu);
768 	if (r)
769 		return r;
770 
771 	/*
772 	 * If PFEC.RSVD is set, this is a shadow page fault.
773 	 * The bit needs to be cleared before walking guest page tables.
774 	 */
775 	error_code &= ~PFERR_RSVD_MASK;
776 
777 	/*
778 	 * Look up the guest pte for the faulting address.
779 	 */
780 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
781 
782 	/*
783 	 * The page is not mapped by the guest.  Let the guest handle it.
784 	 */
785 	if (!r) {
786 		pgprintk("%s: guest page fault\n", __func__);
787 		if (!prefault)
788 			inject_page_fault(vcpu, &walker.fault);
789 
790 		return RET_PF_RETRY;
791 	}
792 
793 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
794 		shadow_page_table_clear_flood(vcpu, addr);
795 		return RET_PF_EMULATE;
796 	}
797 
798 	vcpu->arch.write_fault_to_shadow_pgtable = false;
799 
800 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
801 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
802 
803 	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
804 		level = mapping_level(vcpu, walker.gfn, &force_pt_level);
805 		if (likely(!force_pt_level)) {
806 			level = min(walker.level, level);
807 			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
808 		}
809 	} else
810 		force_pt_level = true;
811 
812 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
813 	smp_rmb();
814 
815 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
816 			 &map_writable))
817 		return RET_PF_RETRY;
818 
819 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
820 		return r;
821 
822 	/*
823 	 * Do not change pte_access if the pfn is a mmio page, otherwise
824 	 * we will cache the incorrect access into mmio spte.
825 	 */
826 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
827 	     !is_write_protection(vcpu) && !user_fault &&
828 	      !is_noslot_pfn(pfn)) {
829 		walker.pte_access |= ACC_WRITE_MASK;
830 		walker.pte_access &= ~ACC_USER_MASK;
831 
832 		/*
833 		 * If we converted a user page to a kernel page,
834 		 * so that the kernel can write to it when cr0.wp=0,
835 		 * then we should prevent the kernel from executing it
836 		 * if SMEP is enabled.
837 		 */
838 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
839 			walker.pte_access &= ~ACC_EXEC_MASK;
840 	}
841 
842 	r = RET_PF_RETRY;
843 	spin_lock(&vcpu->kvm->mmu_lock);
844 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
845 		goto out_unlock;
846 
847 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
848 	if (make_mmu_pages_available(vcpu) < 0)
849 		goto out_unlock;
850 	if (!force_pt_level)
851 		transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
852 	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
853 			 level, pfn, map_writable, prefault, lpage_disallowed);
854 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
855 
856 out_unlock:
857 	spin_unlock(&vcpu->kvm->mmu_lock);
858 	kvm_release_pfn_clean(pfn);
859 	return r;
860 }
861 
FNAME(get_level1_sp_gpa)862 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
863 {
864 	int offset = 0;
865 
866 	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
867 
868 	if (PTTYPE == 32)
869 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
870 
871 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
872 }
873 
FNAME(invlpg)874 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
875 {
876 	struct kvm_shadow_walk_iterator iterator;
877 	struct kvm_mmu_page *sp;
878 	int level;
879 	u64 *sptep;
880 
881 	vcpu_clear_mmio_info(vcpu, gva);
882 
883 	/*
884 	 * No need to check return value here, rmap_can_add() can
885 	 * help us to skip pte prefetch later.
886 	 */
887 	mmu_topup_memory_caches(vcpu);
888 
889 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
890 		WARN_ON(1);
891 		return;
892 	}
893 
894 	spin_lock(&vcpu->kvm->mmu_lock);
895 	for_each_shadow_entry(vcpu, gva, iterator) {
896 		level = iterator.level;
897 		sptep = iterator.sptep;
898 
899 		sp = page_header(__pa(sptep));
900 		if (is_last_spte(*sptep, level)) {
901 			pt_element_t gpte;
902 			gpa_t pte_gpa;
903 
904 			if (!sp->unsync)
905 				break;
906 
907 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
908 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
909 
910 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
911 				kvm_flush_remote_tlbs(vcpu->kvm);
912 
913 			if (!rmap_can_add(vcpu))
914 				break;
915 
916 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
917 						       sizeof(pt_element_t)))
918 				break;
919 
920 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
921 		}
922 
923 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
924 			break;
925 	}
926 	spin_unlock(&vcpu->kvm->mmu_lock);
927 }
928 
FNAME(gva_to_gpa)929 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
930 			       struct x86_exception *exception)
931 {
932 	struct guest_walker walker;
933 	gpa_t gpa = UNMAPPED_GVA;
934 	int r;
935 
936 	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
937 
938 	if (r) {
939 		gpa = gfn_to_gpa(walker.gfn);
940 		gpa |= vaddr & ~PAGE_MASK;
941 	} else if (exception)
942 		*exception = walker.fault;
943 
944 	return gpa;
945 }
946 
947 #if PTTYPE != PTTYPE_EPT
FNAME(gva_to_gpa_nested)948 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
949 				      u32 access,
950 				      struct x86_exception *exception)
951 {
952 	struct guest_walker walker;
953 	gpa_t gpa = UNMAPPED_GVA;
954 	int r;
955 
956 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
957 
958 	if (r) {
959 		gpa = gfn_to_gpa(walker.gfn);
960 		gpa |= vaddr & ~PAGE_MASK;
961 	} else if (exception)
962 		*exception = walker.fault;
963 
964 	return gpa;
965 }
966 #endif
967 
968 /*
969  * Using the cached information from sp->gfns is safe because:
970  * - The spte has a reference to the struct page, so the pfn for a given gfn
971  *   can't change unless all sptes pointing to it are nuked first.
972  *
973  * Note:
974  *   We should flush all tlbs if spte is dropped even though guest is
975  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
976  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
977  *   used by guest then tlbs are not flushed, so guest is allowed to access the
978  *   freed pages.
979  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
980  */
FNAME(sync_page)981 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
982 {
983 	int i, nr_present = 0;
984 	bool host_writable;
985 	gpa_t first_pte_gpa;
986 
987 	/* direct kvm_mmu_page can not be unsync. */
988 	BUG_ON(sp->role.direct);
989 
990 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
991 
992 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
993 		unsigned pte_access;
994 		pt_element_t gpte;
995 		gpa_t pte_gpa;
996 		gfn_t gfn;
997 
998 		if (!sp->spt[i])
999 			continue;
1000 
1001 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1002 
1003 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1004 					       sizeof(pt_element_t)))
1005 			return 0;
1006 
1007 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1008 			/*
1009 			 * Update spte before increasing tlbs_dirty to make
1010 			 * sure no tlb flush is lost after spte is zapped; see
1011 			 * the comments in kvm_flush_remote_tlbs().
1012 			 */
1013 			smp_wmb();
1014 			vcpu->kvm->tlbs_dirty++;
1015 			continue;
1016 		}
1017 
1018 		gfn = gpte_to_gfn(gpte);
1019 		pte_access = sp->role.access;
1020 		pte_access &= FNAME(gpte_access)(vcpu, gpte);
1021 		FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
1022 
1023 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1024 		      &nr_present))
1025 			continue;
1026 
1027 		if (gfn != sp->gfns[i]) {
1028 			drop_spte(vcpu->kvm, &sp->spt[i]);
1029 			/*
1030 			 * The same as above where we are doing
1031 			 * prefetch_invalid_gpte().
1032 			 */
1033 			smp_wmb();
1034 			vcpu->kvm->tlbs_dirty++;
1035 			continue;
1036 		}
1037 
1038 		nr_present++;
1039 
1040 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1041 
1042 		set_spte(vcpu, &sp->spt[i], pte_access,
1043 			 PT_PAGE_TABLE_LEVEL, gfn,
1044 			 spte_to_pfn(sp->spt[i]), true, false,
1045 			 host_writable);
1046 	}
1047 
1048 	return nr_present;
1049 }
1050 
1051 #undef pt_element_t
1052 #undef guest_walker
1053 #undef FNAME
1054 #undef PT_BASE_ADDR_MASK
1055 #undef PT_INDEX
1056 #undef PT_LVL_ADDR_MASK
1057 #undef PT_LVL_OFFSET_MASK
1058 #undef PT_LEVEL_BITS
1059 #undef PT_MAX_FULL_LEVELS
1060 #undef gpte_to_gfn
1061 #undef gpte_to_gfn_lvl
1062 #undef CMPXCHG
1063 #undef PT_GUEST_ACCESSED_MASK
1064 #undef PT_GUEST_DIRTY_MASK
1065 #undef PT_GUEST_DIRTY_SHIFT
1066 #undef PT_GUEST_ACCESSED_SHIFT
1067 #undef PT_HAVE_ACCESSED_DIRTY
1068