1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * derived from drivers/kvm/kvm_main.c
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
16 *
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
19 *
20 */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83 * - enable syscall per default because its emulated by KVM
84 * - enable LME and LMA per default on 64 bit KVM
85 */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
94 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 unsigned int min_timer_period_us = 500;
111 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
112
113 static bool __read_mostly kvmclock_periodic_sync = true;
114 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
115
116 bool __read_mostly kvm_has_tsc_control;
117 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
118 u32 __read_mostly kvm_max_guest_tsc_khz;
119 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
120 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
121 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
122 u64 __read_mostly kvm_max_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
124 u64 __read_mostly kvm_default_tsc_scaling_ratio;
125 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
126
127 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
128 static u32 __read_mostly tsc_tolerance_ppm = 250;
129 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
130
131 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
132 unsigned int __read_mostly lapic_timer_advance_ns = 0;
133 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
134
135 static bool __read_mostly vector_hashing = true;
136 module_param(vector_hashing, bool, S_IRUGO);
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141 int nr;
142 u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146 struct user_return_notifier urn;
147 bool registered;
148 struct kvm_shared_msr_values {
149 u64 host;
150 u64 curr;
151 } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed) },
159 { "pf_guest", VCPU_STAT(pf_guest) },
160 { "tlb_flush", VCPU_STAT(tlb_flush) },
161 { "invlpg", VCPU_STAT(invlpg) },
162 { "exits", VCPU_STAT(exits) },
163 { "io_exits", VCPU_STAT(io_exits) },
164 { "mmio_exits", VCPU_STAT(mmio_exits) },
165 { "signal_exits", VCPU_STAT(signal_exits) },
166 { "irq_window", VCPU_STAT(irq_window_exits) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits) },
168 { "halt_exits", VCPU_STAT(halt_exits) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173 { "hypercalls", VCPU_STAT(hypercalls) },
174 { "request_irq", VCPU_STAT(request_irq_exits) },
175 { "irq_exits", VCPU_STAT(irq_exits) },
176 { "host_state_reload", VCPU_STAT(host_state_reload) },
177 { "efer_reload", VCPU_STAT(efer_reload) },
178 { "fpu_reload", VCPU_STAT(fpu_reload) },
179 { "insn_emulation", VCPU_STAT(insn_emulation) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181 { "irq_injections", VCPU_STAT(irq_injections) },
182 { "nmi_injections", VCPU_STAT(nmi_injections) },
183 { "req_event", VCPU_STAT(req_event) },
184 { "l1d_flush", VCPU_STAT(l1d_flush) },
185 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
186 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
187 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
188 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
189 { "mmu_flooded", VM_STAT(mmu_flooded) },
190 { "mmu_recycled", VM_STAT(mmu_recycled) },
191 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
192 { "mmu_unsync", VM_STAT(mmu_unsync) },
193 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
194 { "largepages", VM_STAT(lpages, .mode = 0444) },
195 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
196 { "max_mmu_page_hash_collisions",
197 VM_STAT(max_mmu_page_hash_collisions) },
198 { NULL }
199 };
200
201 u64 __read_mostly host_xcr0;
202
203 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
204
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)205 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
206 {
207 int i;
208 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
209 vcpu->arch.apf.gfns[i] = ~0;
210 }
211
kvm_on_user_return(struct user_return_notifier * urn)212 static void kvm_on_user_return(struct user_return_notifier *urn)
213 {
214 unsigned slot;
215 struct kvm_shared_msrs *locals
216 = container_of(urn, struct kvm_shared_msrs, urn);
217 struct kvm_shared_msr_values *values;
218 unsigned long flags;
219
220 /*
221 * Disabling irqs at this point since the following code could be
222 * interrupted and executed through kvm_arch_hardware_disable()
223 */
224 local_irq_save(flags);
225 if (locals->registered) {
226 locals->registered = false;
227 user_return_notifier_unregister(urn);
228 }
229 local_irq_restore(flags);
230 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
231 values = &locals->values[slot];
232 if (values->host != values->curr) {
233 wrmsrl(shared_msrs_global.msrs[slot], values->host);
234 values->curr = values->host;
235 }
236 }
237 }
238
shared_msr_update(unsigned slot,u32 msr)239 static void shared_msr_update(unsigned slot, u32 msr)
240 {
241 u64 value;
242 unsigned int cpu = smp_processor_id();
243 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244
245 /* only read, and nobody should modify it at this time,
246 * so don't need lock */
247 if (slot >= shared_msrs_global.nr) {
248 printk(KERN_ERR "kvm: invalid MSR slot!");
249 return;
250 }
251 rdmsrl_safe(msr, &value);
252 smsr->values[slot].host = value;
253 smsr->values[slot].curr = value;
254 }
255
kvm_define_shared_msr(unsigned slot,u32 msr)256 void kvm_define_shared_msr(unsigned slot, u32 msr)
257 {
258 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
259 shared_msrs_global.msrs[slot] = msr;
260 if (slot >= shared_msrs_global.nr)
261 shared_msrs_global.nr = slot + 1;
262 }
263 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
264
kvm_shared_msr_cpu_online(void)265 static void kvm_shared_msr_cpu_online(void)
266 {
267 unsigned i;
268
269 for (i = 0; i < shared_msrs_global.nr; ++i)
270 shared_msr_update(i, shared_msrs_global.msrs[i]);
271 }
272
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)273 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
274 {
275 unsigned int cpu = smp_processor_id();
276 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277 int err;
278
279 value = (value & mask) | (smsr->values[slot].host & ~mask);
280 if (value == smsr->values[slot].curr)
281 return 0;
282 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
283 if (err)
284 return 1;
285
286 smsr->values[slot].curr = value;
287 if (!smsr->registered) {
288 smsr->urn.on_user_return = kvm_on_user_return;
289 user_return_notifier_register(&smsr->urn);
290 smsr->registered = true;
291 }
292 return 0;
293 }
294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
295
drop_user_return_notifiers(void)296 static void drop_user_return_notifiers(void)
297 {
298 unsigned int cpu = smp_processor_id();
299 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300
301 if (smsr->registered)
302 kvm_on_user_return(&smsr->urn);
303 }
304
kvm_get_apic_base(struct kvm_vcpu * vcpu)305 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
306 {
307 return vcpu->arch.apic_base;
308 }
309 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
310
kvm_get_apic_mode(struct kvm_vcpu * vcpu)311 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
312 {
313 return kvm_apic_mode(kvm_get_apic_base(vcpu));
314 }
315 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
316
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)317 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
318 {
319 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
320 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
321 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
322 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
323
324 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
325 return 1;
326 if (!msr_info->host_initiated) {
327 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
328 return 1;
329 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
330 return 1;
331 }
332
333 kvm_lapic_set_base(vcpu, msr_info->data);
334 return 0;
335 }
336 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
337
kvm_spurious_fault(void)338 asmlinkage __visible void kvm_spurious_fault(void)
339 {
340 /* Fault while not rebooting. We want the trace. */
341 BUG();
342 }
343 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
344
345 #define EXCPT_BENIGN 0
346 #define EXCPT_CONTRIBUTORY 1
347 #define EXCPT_PF 2
348
exception_class(int vector)349 static int exception_class(int vector)
350 {
351 switch (vector) {
352 case PF_VECTOR:
353 return EXCPT_PF;
354 case DE_VECTOR:
355 case TS_VECTOR:
356 case NP_VECTOR:
357 case SS_VECTOR:
358 case GP_VECTOR:
359 return EXCPT_CONTRIBUTORY;
360 default:
361 break;
362 }
363 return EXCPT_BENIGN;
364 }
365
366 #define EXCPT_FAULT 0
367 #define EXCPT_TRAP 1
368 #define EXCPT_ABORT 2
369 #define EXCPT_INTERRUPT 3
370
exception_type(int vector)371 static int exception_type(int vector)
372 {
373 unsigned int mask;
374
375 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
376 return EXCPT_INTERRUPT;
377
378 mask = 1 << vector;
379
380 /* #DB is trap, as instruction watchpoints are handled elsewhere */
381 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
382 return EXCPT_TRAP;
383
384 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
385 return EXCPT_ABORT;
386
387 /* Reserved exceptions will result in fault */
388 return EXCPT_FAULT;
389 }
390
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)391 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
392 unsigned nr, bool has_error, u32 error_code,
393 bool reinject)
394 {
395 u32 prev_nr;
396 int class1, class2;
397
398 kvm_make_request(KVM_REQ_EVENT, vcpu);
399
400 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
401 queue:
402 if (has_error && !is_protmode(vcpu))
403 has_error = false;
404 if (reinject) {
405 /*
406 * On vmentry, vcpu->arch.exception.pending is only
407 * true if an event injection was blocked by
408 * nested_run_pending. In that case, however,
409 * vcpu_enter_guest requests an immediate exit,
410 * and the guest shouldn't proceed far enough to
411 * need reinjection.
412 */
413 WARN_ON_ONCE(vcpu->arch.exception.pending);
414 vcpu->arch.exception.injected = true;
415 } else {
416 vcpu->arch.exception.pending = true;
417 vcpu->arch.exception.injected = false;
418 }
419 vcpu->arch.exception.has_error_code = has_error;
420 vcpu->arch.exception.nr = nr;
421 vcpu->arch.exception.error_code = error_code;
422 return;
423 }
424
425 /* to check exception */
426 prev_nr = vcpu->arch.exception.nr;
427 if (prev_nr == DF_VECTOR) {
428 /* triple fault -> shutdown */
429 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
430 return;
431 }
432 class1 = exception_class(prev_nr);
433 class2 = exception_class(nr);
434 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
435 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
436 /*
437 * Generate double fault per SDM Table 5-5. Set
438 * exception.pending = true so that the double fault
439 * can trigger a nested vmexit.
440 */
441 vcpu->arch.exception.pending = true;
442 vcpu->arch.exception.injected = false;
443 vcpu->arch.exception.has_error_code = true;
444 vcpu->arch.exception.nr = DF_VECTOR;
445 vcpu->arch.exception.error_code = 0;
446 } else
447 /* replace previous exception with a new one in a hope
448 that instruction re-execution will regenerate lost
449 exception */
450 goto queue;
451 }
452
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)453 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
454 {
455 kvm_multiple_exception(vcpu, nr, false, 0, false);
456 }
457 EXPORT_SYMBOL_GPL(kvm_queue_exception);
458
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)459 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
460 {
461 kvm_multiple_exception(vcpu, nr, false, 0, true);
462 }
463 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
464
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)465 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
466 {
467 if (err)
468 kvm_inject_gp(vcpu, 0);
469 else
470 return kvm_skip_emulated_instruction(vcpu);
471
472 return 1;
473 }
474 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
475
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)476 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
477 {
478 ++vcpu->stat.pf_guest;
479 vcpu->arch.exception.nested_apf =
480 is_guest_mode(vcpu) && fault->async_page_fault;
481 if (vcpu->arch.exception.nested_apf)
482 vcpu->arch.apf.nested_apf_token = fault->address;
483 else
484 vcpu->arch.cr2 = fault->address;
485 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
486 }
487 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
488
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)489 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
490 {
491 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
492 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
493 else
494 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
495
496 return fault->nested_page_fault;
497 }
498
kvm_inject_nmi(struct kvm_vcpu * vcpu)499 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
500 {
501 atomic_inc(&vcpu->arch.nmi_queued);
502 kvm_make_request(KVM_REQ_NMI, vcpu);
503 }
504 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
505
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)506 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
507 {
508 kvm_multiple_exception(vcpu, nr, true, error_code, false);
509 }
510 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
511
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)512 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
513 {
514 kvm_multiple_exception(vcpu, nr, true, error_code, true);
515 }
516 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
517
518 /*
519 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
520 * a #GP and return false.
521 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)522 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
523 {
524 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
525 return true;
526 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
527 return false;
528 }
529 EXPORT_SYMBOL_GPL(kvm_require_cpl);
530
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)531 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
532 {
533 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
534 return true;
535
536 kvm_queue_exception(vcpu, UD_VECTOR);
537 return false;
538 }
539 EXPORT_SYMBOL_GPL(kvm_require_dr);
540
541 /*
542 * This function will be used to read from the physical memory of the currently
543 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
544 * can read from guest physical or from the guest's guest physical memory.
545 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)546 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
547 gfn_t ngfn, void *data, int offset, int len,
548 u32 access)
549 {
550 struct x86_exception exception;
551 gfn_t real_gfn;
552 gpa_t ngpa;
553
554 ngpa = gfn_to_gpa(ngfn);
555 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
556 if (real_gfn == UNMAPPED_GVA)
557 return -EFAULT;
558
559 real_gfn = gpa_to_gfn(real_gfn);
560
561 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
562 }
563 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
564
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)565 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
566 void *data, int offset, int len, u32 access)
567 {
568 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
569 data, offset, len, access);
570 }
571
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)572 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
573 {
574 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
575 rsvd_bits(1, 2);
576 }
577
578 /*
579 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
580 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)581 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
582 {
583 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
584 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
585 int i;
586 int ret;
587 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
588
589 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
590 offset * sizeof(u64), sizeof(pdpte),
591 PFERR_USER_MASK|PFERR_WRITE_MASK);
592 if (ret < 0) {
593 ret = 0;
594 goto out;
595 }
596 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
597 if ((pdpte[i] & PT_PRESENT_MASK) &&
598 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
599 ret = 0;
600 goto out;
601 }
602 }
603 ret = 1;
604
605 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
606 __set_bit(VCPU_EXREG_PDPTR,
607 (unsigned long *)&vcpu->arch.regs_avail);
608 __set_bit(VCPU_EXREG_PDPTR,
609 (unsigned long *)&vcpu->arch.regs_dirty);
610 out:
611
612 return ret;
613 }
614 EXPORT_SYMBOL_GPL(load_pdptrs);
615
pdptrs_changed(struct kvm_vcpu * vcpu)616 bool pdptrs_changed(struct kvm_vcpu *vcpu)
617 {
618 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
619 bool changed = true;
620 int offset;
621 gfn_t gfn;
622 int r;
623
624 if (!is_pae_paging(vcpu))
625 return false;
626
627 if (!test_bit(VCPU_EXREG_PDPTR,
628 (unsigned long *)&vcpu->arch.regs_avail))
629 return true;
630
631 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
632 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
633 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
634 PFERR_USER_MASK | PFERR_WRITE_MASK);
635 if (r < 0)
636 goto out;
637 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
638 out:
639
640 return changed;
641 }
642 EXPORT_SYMBOL_GPL(pdptrs_changed);
643
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)644 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
645 {
646 unsigned long old_cr0 = kvm_read_cr0(vcpu);
647 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
648
649 cr0 |= X86_CR0_ET;
650
651 #ifdef CONFIG_X86_64
652 if (cr0 & 0xffffffff00000000UL)
653 return 1;
654 #endif
655
656 cr0 &= ~CR0_RESERVED_BITS;
657
658 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
659 return 1;
660
661 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
662 return 1;
663
664 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
665 #ifdef CONFIG_X86_64
666 if ((vcpu->arch.efer & EFER_LME)) {
667 int cs_db, cs_l;
668
669 if (!is_pae(vcpu))
670 return 1;
671 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
672 if (cs_l)
673 return 1;
674 } else
675 #endif
676 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
677 kvm_read_cr3(vcpu)))
678 return 1;
679 }
680
681 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
682 return 1;
683
684 kvm_x86_ops->set_cr0(vcpu, cr0);
685
686 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
687 kvm_clear_async_pf_completion_queue(vcpu);
688 kvm_async_pf_hash_reset(vcpu);
689 }
690
691 if ((cr0 ^ old_cr0) & update_bits)
692 kvm_mmu_reset_context(vcpu);
693
694 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
695 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
696 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
697 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
698
699 return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cr0);
702
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)703 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
704 {
705 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
706 }
707 EXPORT_SYMBOL_GPL(kvm_lmsw);
708
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)709 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
710 {
711 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
712 !vcpu->guest_xcr0_loaded) {
713 /* kvm_set_xcr() also depends on this */
714 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
715 vcpu->guest_xcr0_loaded = 1;
716 }
717 }
718
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)719 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
720 {
721 if (vcpu->guest_xcr0_loaded) {
722 if (vcpu->arch.xcr0 != host_xcr0)
723 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
724 vcpu->guest_xcr0_loaded = 0;
725 }
726 }
727
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)728 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
729 {
730 u64 xcr0 = xcr;
731 u64 old_xcr0 = vcpu->arch.xcr0;
732 u64 valid_bits;
733
734 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
735 if (index != XCR_XFEATURE_ENABLED_MASK)
736 return 1;
737 if (!(xcr0 & XFEATURE_MASK_FP))
738 return 1;
739 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
740 return 1;
741
742 /*
743 * Do not allow the guest to set bits that we do not support
744 * saving. However, xcr0 bit 0 is always set, even if the
745 * emulated CPU does not support XSAVE (see fx_init).
746 */
747 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
748 if (xcr0 & ~valid_bits)
749 return 1;
750
751 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
752 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
753 return 1;
754
755 if (xcr0 & XFEATURE_MASK_AVX512) {
756 if (!(xcr0 & XFEATURE_MASK_YMM))
757 return 1;
758 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
759 return 1;
760 }
761 vcpu->arch.xcr0 = xcr0;
762
763 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
764 kvm_update_cpuid(vcpu);
765 return 0;
766 }
767
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)768 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
769 {
770 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
771 __kvm_set_xcr(vcpu, index, xcr)) {
772 kvm_inject_gp(vcpu, 0);
773 return 1;
774 }
775 return 0;
776 }
777 EXPORT_SYMBOL_GPL(kvm_set_xcr);
778
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)779 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
780 {
781 unsigned long old_cr4 = kvm_read_cr4(vcpu);
782 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
783 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
784
785 if (cr4 & CR4_RESERVED_BITS)
786 return 1;
787
788 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
789 return 1;
790
791 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
792 return 1;
793
794 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
795 return 1;
796
797 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
798 return 1;
799
800 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
801 return 1;
802
803 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
804 return 1;
805
806 if (is_long_mode(vcpu)) {
807 if (!(cr4 & X86_CR4_PAE))
808 return 1;
809 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
810 && ((cr4 ^ old_cr4) & pdptr_bits)
811 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
812 kvm_read_cr3(vcpu)))
813 return 1;
814
815 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
816 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
817 return 1;
818
819 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
820 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
821 return 1;
822 }
823
824 if (kvm_x86_ops->set_cr4(vcpu, cr4))
825 return 1;
826
827 if (((cr4 ^ old_cr4) & pdptr_bits) ||
828 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
829 kvm_mmu_reset_context(vcpu);
830
831 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
832 kvm_update_cpuid(vcpu);
833
834 return 0;
835 }
836 EXPORT_SYMBOL_GPL(kvm_set_cr4);
837
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)838 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
839 {
840 #ifdef CONFIG_X86_64
841 cr3 &= ~CR3_PCID_INVD;
842 #endif
843
844 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
845 kvm_mmu_sync_roots(vcpu);
846 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
847 return 0;
848 }
849
850 if (is_long_mode(vcpu) &&
851 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
852 return 1;
853 else if (is_pae_paging(vcpu) &&
854 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
855 return 1;
856
857 vcpu->arch.cr3 = cr3;
858 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
859 kvm_mmu_new_cr3(vcpu);
860 return 0;
861 }
862 EXPORT_SYMBOL_GPL(kvm_set_cr3);
863
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)864 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
865 {
866 if (cr8 & CR8_RESERVED_BITS)
867 return 1;
868 if (lapic_in_kernel(vcpu))
869 kvm_lapic_set_tpr(vcpu, cr8);
870 else
871 vcpu->arch.cr8 = cr8;
872 return 0;
873 }
874 EXPORT_SYMBOL_GPL(kvm_set_cr8);
875
kvm_get_cr8(struct kvm_vcpu * vcpu)876 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
877 {
878 if (lapic_in_kernel(vcpu))
879 return kvm_lapic_get_cr8(vcpu);
880 else
881 return vcpu->arch.cr8;
882 }
883 EXPORT_SYMBOL_GPL(kvm_get_cr8);
884
kvm_update_dr0123(struct kvm_vcpu * vcpu)885 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
886 {
887 int i;
888
889 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
890 for (i = 0; i < KVM_NR_DB_REGS; i++)
891 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
892 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
893 }
894 }
895
kvm_update_dr6(struct kvm_vcpu * vcpu)896 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
897 {
898 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
899 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
900 }
901
kvm_update_dr7(struct kvm_vcpu * vcpu)902 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
903 {
904 unsigned long dr7;
905
906 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
907 dr7 = vcpu->arch.guest_debug_dr7;
908 else
909 dr7 = vcpu->arch.dr7;
910 kvm_x86_ops->set_dr7(vcpu, dr7);
911 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
912 if (dr7 & DR7_BP_EN_MASK)
913 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
914 }
915
kvm_dr6_fixed(struct kvm_vcpu * vcpu)916 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
917 {
918 u64 fixed = DR6_FIXED_1;
919
920 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
921 fixed |= DR6_RTM;
922 return fixed;
923 }
924
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)925 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
926 {
927 size_t size = ARRAY_SIZE(vcpu->arch.db);
928
929 switch (dr) {
930 case 0 ... 3:
931 vcpu->arch.db[array_index_nospec(dr, size)] = val;
932 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
933 vcpu->arch.eff_db[dr] = val;
934 break;
935 case 4:
936 /* fall through */
937 case 6:
938 if (val & 0xffffffff00000000ULL)
939 return -1; /* #GP */
940 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
941 kvm_update_dr6(vcpu);
942 break;
943 case 5:
944 /* fall through */
945 default: /* 7 */
946 if (val & 0xffffffff00000000ULL)
947 return -1; /* #GP */
948 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
949 kvm_update_dr7(vcpu);
950 break;
951 }
952
953 return 0;
954 }
955
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)956 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
957 {
958 if (__kvm_set_dr(vcpu, dr, val)) {
959 kvm_inject_gp(vcpu, 0);
960 return 1;
961 }
962 return 0;
963 }
964 EXPORT_SYMBOL_GPL(kvm_set_dr);
965
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)966 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
967 {
968 size_t size = ARRAY_SIZE(vcpu->arch.db);
969
970 switch (dr) {
971 case 0 ... 3:
972 *val = vcpu->arch.db[array_index_nospec(dr, size)];
973 break;
974 case 4:
975 /* fall through */
976 case 6:
977 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
978 *val = vcpu->arch.dr6;
979 else
980 *val = kvm_x86_ops->get_dr6(vcpu);
981 break;
982 case 5:
983 /* fall through */
984 default: /* 7 */
985 *val = vcpu->arch.dr7;
986 break;
987 }
988 return 0;
989 }
990 EXPORT_SYMBOL_GPL(kvm_get_dr);
991
kvm_rdpmc(struct kvm_vcpu * vcpu)992 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
993 {
994 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
995 u64 data;
996 int err;
997
998 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
999 if (err)
1000 return err;
1001 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1002 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1003 return err;
1004 }
1005 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1006
1007 /*
1008 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1009 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1010 *
1011 * This list is modified at module load time to reflect the
1012 * capabilities of the host cpu. This capabilities test skips MSRs that are
1013 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1014 * may depend on host virtualization features rather than host cpu features.
1015 */
1016
1017 static u32 msrs_to_save[] = {
1018 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1019 MSR_STAR,
1020 #ifdef CONFIG_X86_64
1021 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1022 #endif
1023 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1024 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1025 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1026 };
1027
1028 static unsigned num_msrs_to_save;
1029
1030 static u32 emulated_msrs[] = {
1031 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1032 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1033 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1034 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1035 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1036 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1037 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1038 HV_X64_MSR_RESET,
1039 HV_X64_MSR_VP_INDEX,
1040 HV_X64_MSR_VP_RUNTIME,
1041 HV_X64_MSR_SCONTROL,
1042 HV_X64_MSR_STIMER0_CONFIG,
1043 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1044 MSR_KVM_PV_EOI_EN,
1045
1046 MSR_IA32_TSC_ADJUST,
1047 MSR_IA32_TSCDEADLINE,
1048 MSR_IA32_MISC_ENABLE,
1049 MSR_IA32_MCG_STATUS,
1050 MSR_IA32_MCG_CTL,
1051 MSR_IA32_MCG_EXT_CTL,
1052 MSR_IA32_SMBASE,
1053 MSR_PLATFORM_INFO,
1054 MSR_MISC_FEATURES_ENABLES,
1055 MSR_AMD64_VIRT_SPEC_CTRL,
1056 };
1057
1058 static unsigned num_emulated_msrs;
1059
1060 /*
1061 * List of msr numbers which are used to expose MSR-based features that
1062 * can be used by a hypervisor to validate requested CPU features.
1063 */
1064 static u32 msr_based_features[] = {
1065 MSR_F10H_DECFG,
1066 MSR_IA32_UCODE_REV,
1067 MSR_IA32_ARCH_CAPABILITIES,
1068 };
1069
1070 static unsigned int num_msr_based_features;
1071
kvm_get_arch_capabilities(void)1072 u64 kvm_get_arch_capabilities(void)
1073 {
1074 u64 data;
1075
1076 rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1077
1078 /*
1079 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1080 * the nested hypervisor runs with NX huge pages. If it is not,
1081 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1082 * L1 guests, so it need not worry about its own (L2) guests.
1083 */
1084 data |= ARCH_CAP_PSCHANGE_MC_NO;
1085
1086 /*
1087 * If we're doing cache flushes (either "always" or "cond")
1088 * we will do one whenever the guest does a vmlaunch/vmresume.
1089 * If an outer hypervisor is doing the cache flush for us
1090 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1091 * capability to the guest too, and if EPT is disabled we're not
1092 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1093 * require a nested hypervisor to do a flush of its own.
1094 */
1095 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1096 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1097
1098 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1099 data |= ARCH_CAP_RDCL_NO;
1100 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1101 data |= ARCH_CAP_SSB_NO;
1102 if (!boot_cpu_has_bug(X86_BUG_MDS))
1103 data |= ARCH_CAP_MDS_NO;
1104
1105 /*
1106 * On TAA affected systems, export MDS_NO=0 when:
1107 * - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1108 * - Updated microcode is present. This is detected by
1109 * the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1110 * that VERW clears CPU buffers.
1111 *
1112 * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1113 * mitigation and don't complain:
1114 *
1115 * "Vulnerable: Clear CPU buffers attempted, no microcode"
1116 *
1117 * If TSX is disabled on the system, guests are also mitigated against
1118 * TAA and clear CPU buffer mitigation is not required for guests.
1119 */
1120 if (!boot_cpu_has(X86_FEATURE_RTM))
1121 data &= ~ARCH_CAP_TAA_NO;
1122 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1123 data |= ARCH_CAP_TAA_NO;
1124 else if (data & ARCH_CAP_TSX_CTRL_MSR)
1125 data &= ~ARCH_CAP_MDS_NO;
1126
1127 /* KVM does not emulate MSR_IA32_TSX_CTRL. */
1128 data &= ~ARCH_CAP_TSX_CTRL_MSR;
1129 return data;
1130 }
1131
1132 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1133
kvm_get_msr_feature(struct kvm_msr_entry * msr)1134 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1135 {
1136 switch (msr->index) {
1137 case MSR_IA32_ARCH_CAPABILITIES:
1138 msr->data = kvm_get_arch_capabilities();
1139 break;
1140 case MSR_IA32_UCODE_REV:
1141 rdmsrl_safe(msr->index, &msr->data);
1142 break;
1143 default:
1144 if (kvm_x86_ops->get_msr_feature(msr))
1145 return 1;
1146 }
1147 return 0;
1148 }
1149
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1150 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151 {
1152 struct kvm_msr_entry msr;
1153 int r;
1154
1155 msr.index = index;
1156 r = kvm_get_msr_feature(&msr);
1157 if (r)
1158 return r;
1159
1160 *data = msr.data;
1161
1162 return 0;
1163 }
1164
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1165 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1166 {
1167 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1168 return false;
1169
1170 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1171 return false;
1172
1173 return true;
1174
1175 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1176 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1177 {
1178 if (efer & efer_reserved_bits)
1179 return false;
1180
1181 return __kvm_valid_efer(vcpu, efer);
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1184
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1185 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1186 {
1187 u64 old_efer = vcpu->arch.efer;
1188 u64 efer = msr_info->data;
1189
1190 if (efer & efer_reserved_bits)
1191 return 1;
1192
1193 if (!msr_info->host_initiated) {
1194 if (!__kvm_valid_efer(vcpu, efer))
1195 return 1;
1196
1197 if (is_paging(vcpu) &&
1198 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1199 return 1;
1200 }
1201
1202 efer &= ~EFER_LMA;
1203 efer |= vcpu->arch.efer & EFER_LMA;
1204
1205 kvm_x86_ops->set_efer(vcpu, efer);
1206
1207 /* Update reserved bits */
1208 if ((efer ^ old_efer) & EFER_NX)
1209 kvm_mmu_reset_context(vcpu);
1210
1211 return 0;
1212 }
1213
kvm_enable_efer_bits(u64 mask)1214 void kvm_enable_efer_bits(u64 mask)
1215 {
1216 efer_reserved_bits &= ~mask;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1219
1220 /*
1221 * Writes msr value into into the appropriate "register".
1222 * Returns 0 on success, non-0 otherwise.
1223 * Assumes vcpu_load() was already called.
1224 */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)1225 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1226 {
1227 switch (msr->index) {
1228 case MSR_FS_BASE:
1229 case MSR_GS_BASE:
1230 case MSR_KERNEL_GS_BASE:
1231 case MSR_CSTAR:
1232 case MSR_LSTAR:
1233 if (is_noncanonical_address(msr->data, vcpu))
1234 return 1;
1235 break;
1236 case MSR_IA32_SYSENTER_EIP:
1237 case MSR_IA32_SYSENTER_ESP:
1238 /*
1239 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1240 * non-canonical address is written on Intel but not on
1241 * AMD (which ignores the top 32-bits, because it does
1242 * not implement 64-bit SYSENTER).
1243 *
1244 * 64-bit code should hence be able to write a non-canonical
1245 * value on AMD. Making the address canonical ensures that
1246 * vmentry does not fail on Intel after writing a non-canonical
1247 * value, and that something deterministic happens if the guest
1248 * invokes 64-bit SYSENTER.
1249 */
1250 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1251 }
1252 return kvm_x86_ops->set_msr(vcpu, msr);
1253 }
1254 EXPORT_SYMBOL_GPL(kvm_set_msr);
1255
1256 /*
1257 * Adapt set_msr() to msr_io()'s calling convention
1258 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1259 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1260 {
1261 struct msr_data msr;
1262 int r;
1263
1264 msr.index = index;
1265 msr.host_initiated = true;
1266 r = kvm_get_msr(vcpu, &msr);
1267 if (r)
1268 return r;
1269
1270 *data = msr.data;
1271 return 0;
1272 }
1273
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1274 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1275 {
1276 struct msr_data msr;
1277
1278 msr.data = *data;
1279 msr.index = index;
1280 msr.host_initiated = true;
1281 return kvm_set_msr(vcpu, &msr);
1282 }
1283
1284 #ifdef CONFIG_X86_64
1285 struct pvclock_gtod_data {
1286 seqcount_t seq;
1287
1288 struct { /* extract of a clocksource struct */
1289 int vclock_mode;
1290 u64 cycle_last;
1291 u64 mask;
1292 u32 mult;
1293 u32 shift;
1294 } clock;
1295
1296 u64 boot_ns;
1297 u64 nsec_base;
1298 u64 wall_time_sec;
1299 };
1300
1301 static struct pvclock_gtod_data pvclock_gtod_data;
1302
update_pvclock_gtod(struct timekeeper * tk)1303 static void update_pvclock_gtod(struct timekeeper *tk)
1304 {
1305 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1306 u64 boot_ns;
1307
1308 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1309
1310 write_seqcount_begin(&vdata->seq);
1311
1312 /* copy pvclock gtod data */
1313 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1314 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1315 vdata->clock.mask = tk->tkr_mono.mask;
1316 vdata->clock.mult = tk->tkr_mono.mult;
1317 vdata->clock.shift = tk->tkr_mono.shift;
1318
1319 vdata->boot_ns = boot_ns;
1320 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1321
1322 vdata->wall_time_sec = tk->xtime_sec;
1323
1324 write_seqcount_end(&vdata->seq);
1325 }
1326 #endif
1327
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1328 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1329 {
1330 /*
1331 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1332 * vcpu_enter_guest. This function is only called from
1333 * the physical CPU that is running vcpu.
1334 */
1335 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1336 }
1337
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1338 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1339 {
1340 int version;
1341 int r;
1342 struct pvclock_wall_clock wc;
1343 struct timespec64 boot;
1344
1345 if (!wall_clock)
1346 return;
1347
1348 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1349 if (r)
1350 return;
1351
1352 if (version & 1)
1353 ++version; /* first time write, random junk */
1354
1355 ++version;
1356
1357 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1358 return;
1359
1360 /*
1361 * The guest calculates current wall clock time by adding
1362 * system time (updated by kvm_guest_time_update below) to the
1363 * wall clock specified here. guest system time equals host
1364 * system time for us, thus we must fill in host boot time here.
1365 */
1366 getboottime64(&boot);
1367
1368 if (kvm->arch.kvmclock_offset) {
1369 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1370 boot = timespec64_sub(boot, ts);
1371 }
1372 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1373 wc.nsec = boot.tv_nsec;
1374 wc.version = version;
1375
1376 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1377
1378 version++;
1379 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1380 }
1381
div_frac(uint32_t dividend,uint32_t divisor)1382 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1383 {
1384 do_shl32_div32(dividend, divisor);
1385 return dividend;
1386 }
1387
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)1388 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1389 s8 *pshift, u32 *pmultiplier)
1390 {
1391 uint64_t scaled64;
1392 int32_t shift = 0;
1393 uint64_t tps64;
1394 uint32_t tps32;
1395
1396 tps64 = base_hz;
1397 scaled64 = scaled_hz;
1398 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1399 tps64 >>= 1;
1400 shift--;
1401 }
1402
1403 tps32 = (uint32_t)tps64;
1404 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1405 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1406 scaled64 >>= 1;
1407 else
1408 tps32 <<= 1;
1409 shift++;
1410 }
1411
1412 *pshift = shift;
1413 *pmultiplier = div_frac(scaled64, tps32);
1414
1415 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1416 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1417 }
1418
1419 #ifdef CONFIG_X86_64
1420 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1421 #endif
1422
1423 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1424 static unsigned long max_tsc_khz;
1425
adjust_tsc_khz(u32 khz,s32 ppm)1426 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1427 {
1428 u64 v = (u64)khz * (1000000 + ppm);
1429 do_div(v, 1000000);
1430 return v;
1431 }
1432
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1433 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1434 {
1435 u64 ratio;
1436
1437 /* Guest TSC same frequency as host TSC? */
1438 if (!scale) {
1439 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1440 return 0;
1441 }
1442
1443 /* TSC scaling supported? */
1444 if (!kvm_has_tsc_control) {
1445 if (user_tsc_khz > tsc_khz) {
1446 vcpu->arch.tsc_catchup = 1;
1447 vcpu->arch.tsc_always_catchup = 1;
1448 return 0;
1449 } else {
1450 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1451 return -1;
1452 }
1453 }
1454
1455 /* TSC scaling required - calculate ratio */
1456 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1457 user_tsc_khz, tsc_khz);
1458
1459 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1460 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1461 user_tsc_khz);
1462 return -1;
1463 }
1464
1465 vcpu->arch.tsc_scaling_ratio = ratio;
1466 return 0;
1467 }
1468
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)1469 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1470 {
1471 u32 thresh_lo, thresh_hi;
1472 int use_scaling = 0;
1473
1474 /* tsc_khz can be zero if TSC calibration fails */
1475 if (user_tsc_khz == 0) {
1476 /* set tsc_scaling_ratio to a safe value */
1477 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1478 return -1;
1479 }
1480
1481 /* Compute a scale to convert nanoseconds in TSC cycles */
1482 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1483 &vcpu->arch.virtual_tsc_shift,
1484 &vcpu->arch.virtual_tsc_mult);
1485 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1486
1487 /*
1488 * Compute the variation in TSC rate which is acceptable
1489 * within the range of tolerance and decide if the
1490 * rate being applied is within that bounds of the hardware
1491 * rate. If so, no scaling or compensation need be done.
1492 */
1493 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1494 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1495 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1496 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1497 use_scaling = 1;
1498 }
1499 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1500 }
1501
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1502 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1503 {
1504 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1505 vcpu->arch.virtual_tsc_mult,
1506 vcpu->arch.virtual_tsc_shift);
1507 tsc += vcpu->arch.this_tsc_write;
1508 return tsc;
1509 }
1510
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1511 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1512 {
1513 #ifdef CONFIG_X86_64
1514 bool vcpus_matched;
1515 struct kvm_arch *ka = &vcpu->kvm->arch;
1516 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1517
1518 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1519 atomic_read(&vcpu->kvm->online_vcpus));
1520
1521 /*
1522 * Once the masterclock is enabled, always perform request in
1523 * order to update it.
1524 *
1525 * In order to enable masterclock, the host clocksource must be TSC
1526 * and the vcpus need to have matched TSCs. When that happens,
1527 * perform request to enable masterclock.
1528 */
1529 if (ka->use_master_clock ||
1530 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1531 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1532
1533 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1534 atomic_read(&vcpu->kvm->online_vcpus),
1535 ka->use_master_clock, gtod->clock.vclock_mode);
1536 #endif
1537 }
1538
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1539 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1540 {
1541 u64 curr_offset = vcpu->arch.tsc_offset;
1542 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1543 }
1544
1545 /*
1546 * Multiply tsc by a fixed point number represented by ratio.
1547 *
1548 * The most significant 64-N bits (mult) of ratio represent the
1549 * integral part of the fixed point number; the remaining N bits
1550 * (frac) represent the fractional part, ie. ratio represents a fixed
1551 * point number (mult + frac * 2^(-N)).
1552 *
1553 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1554 */
__scale_tsc(u64 ratio,u64 tsc)1555 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1556 {
1557 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1558 }
1559
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1560 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1561 {
1562 u64 _tsc = tsc;
1563 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1564
1565 if (ratio != kvm_default_tsc_scaling_ratio)
1566 _tsc = __scale_tsc(ratio, tsc);
1567
1568 return _tsc;
1569 }
1570 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1571
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1572 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1573 {
1574 u64 tsc;
1575
1576 tsc = kvm_scale_tsc(vcpu, rdtsc());
1577
1578 return target_tsc - tsc;
1579 }
1580
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1581 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1582 {
1583 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1586
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1587 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1588 {
1589 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1590 vcpu->arch.tsc_offset = offset;
1591 }
1592
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1593 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1594 {
1595 struct kvm *kvm = vcpu->kvm;
1596 u64 offset, ns, elapsed;
1597 unsigned long flags;
1598 bool matched;
1599 bool already_matched;
1600 u64 data = msr->data;
1601 bool synchronizing = false;
1602
1603 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1604 offset = kvm_compute_tsc_offset(vcpu, data);
1605 ns = ktime_get_boot_ns();
1606 elapsed = ns - kvm->arch.last_tsc_nsec;
1607
1608 if (vcpu->arch.virtual_tsc_khz) {
1609 if (data == 0 && msr->host_initiated) {
1610 /*
1611 * detection of vcpu initialization -- need to sync
1612 * with other vCPUs. This particularly helps to keep
1613 * kvm_clock stable after CPU hotplug
1614 */
1615 synchronizing = true;
1616 } else {
1617 u64 tsc_exp = kvm->arch.last_tsc_write +
1618 nsec_to_cycles(vcpu, elapsed);
1619 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1620 /*
1621 * Special case: TSC write with a small delta (1 second)
1622 * of virtual cycle time against real time is
1623 * interpreted as an attempt to synchronize the CPU.
1624 */
1625 synchronizing = data < tsc_exp + tsc_hz &&
1626 data + tsc_hz > tsc_exp;
1627 }
1628 }
1629
1630 /*
1631 * For a reliable TSC, we can match TSC offsets, and for an unstable
1632 * TSC, we add elapsed time in this computation. We could let the
1633 * compensation code attempt to catch up if we fall behind, but
1634 * it's better to try to match offsets from the beginning.
1635 */
1636 if (synchronizing &&
1637 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1638 if (!check_tsc_unstable()) {
1639 offset = kvm->arch.cur_tsc_offset;
1640 pr_debug("kvm: matched tsc offset for %llu\n", data);
1641 } else {
1642 u64 delta = nsec_to_cycles(vcpu, elapsed);
1643 data += delta;
1644 offset = kvm_compute_tsc_offset(vcpu, data);
1645 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1646 }
1647 matched = true;
1648 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1649 } else {
1650 /*
1651 * We split periods of matched TSC writes into generations.
1652 * For each generation, we track the original measured
1653 * nanosecond time, offset, and write, so if TSCs are in
1654 * sync, we can match exact offset, and if not, we can match
1655 * exact software computation in compute_guest_tsc()
1656 *
1657 * These values are tracked in kvm->arch.cur_xxx variables.
1658 */
1659 kvm->arch.cur_tsc_generation++;
1660 kvm->arch.cur_tsc_nsec = ns;
1661 kvm->arch.cur_tsc_write = data;
1662 kvm->arch.cur_tsc_offset = offset;
1663 matched = false;
1664 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1665 kvm->arch.cur_tsc_generation, data);
1666 }
1667
1668 /*
1669 * We also track th most recent recorded KHZ, write and time to
1670 * allow the matching interval to be extended at each write.
1671 */
1672 kvm->arch.last_tsc_nsec = ns;
1673 kvm->arch.last_tsc_write = data;
1674 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1675
1676 vcpu->arch.last_guest_tsc = data;
1677
1678 /* Keep track of which generation this VCPU has synchronized to */
1679 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1680 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1681 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1682
1683 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1684 update_ia32_tsc_adjust_msr(vcpu, offset);
1685
1686 kvm_vcpu_write_tsc_offset(vcpu, offset);
1687 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1688
1689 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1690 if (!matched) {
1691 kvm->arch.nr_vcpus_matched_tsc = 0;
1692 } else if (!already_matched) {
1693 kvm->arch.nr_vcpus_matched_tsc++;
1694 }
1695
1696 kvm_track_tsc_matching(vcpu);
1697 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1698 }
1699
1700 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1701
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)1702 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1703 s64 adjustment)
1704 {
1705 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1706 }
1707
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)1708 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1709 {
1710 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1711 WARN_ON(adjustment < 0);
1712 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1713 adjust_tsc_offset_guest(vcpu, adjustment);
1714 }
1715
1716 #ifdef CONFIG_X86_64
1717
read_tsc(void)1718 static u64 read_tsc(void)
1719 {
1720 u64 ret = (u64)rdtsc_ordered();
1721 u64 last = pvclock_gtod_data.clock.cycle_last;
1722
1723 if (likely(ret >= last))
1724 return ret;
1725
1726 /*
1727 * GCC likes to generate cmov here, but this branch is extremely
1728 * predictable (it's just a function of time and the likely is
1729 * very likely) and there's a data dependence, so force GCC
1730 * to generate a branch instead. I don't barrier() because
1731 * we don't actually need a barrier, and if this function
1732 * ever gets inlined it will generate worse code.
1733 */
1734 asm volatile ("");
1735 return last;
1736 }
1737
vgettsc(u64 * cycle_now)1738 static inline u64 vgettsc(u64 *cycle_now)
1739 {
1740 long v;
1741 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1742
1743 *cycle_now = read_tsc();
1744
1745 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1746 return v * gtod->clock.mult;
1747 }
1748
do_monotonic_boot(s64 * t,u64 * cycle_now)1749 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1750 {
1751 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1752 unsigned long seq;
1753 int mode;
1754 u64 ns;
1755
1756 do {
1757 seq = read_seqcount_begin(>od->seq);
1758 mode = gtod->clock.vclock_mode;
1759 ns = gtod->nsec_base;
1760 ns += vgettsc(cycle_now);
1761 ns >>= gtod->clock.shift;
1762 ns += gtod->boot_ns;
1763 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1764 *t = ns;
1765
1766 return mode;
1767 }
1768
do_realtime(struct timespec * ts,u64 * cycle_now)1769 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1770 {
1771 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1772 unsigned long seq;
1773 int mode;
1774 u64 ns;
1775
1776 do {
1777 seq = read_seqcount_begin(>od->seq);
1778 mode = gtod->clock.vclock_mode;
1779 ts->tv_sec = gtod->wall_time_sec;
1780 ns = gtod->nsec_base;
1781 ns += vgettsc(cycle_now);
1782 ns >>= gtod->clock.shift;
1783 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
1784
1785 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1786 ts->tv_nsec = ns;
1787
1788 return mode;
1789 }
1790
1791 /* returns true if host is using tsc clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * cycle_now)1792 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1793 {
1794 /* checked again under seqlock below */
1795 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1796 return false;
1797
1798 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1799 }
1800
1801 /* returns true if host is using tsc clocksource */
kvm_get_walltime_and_clockread(struct timespec * ts,u64 * cycle_now)1802 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1803 u64 *cycle_now)
1804 {
1805 /* checked again under seqlock below */
1806 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1807 return false;
1808
1809 return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1810 }
1811 #endif
1812
1813 /*
1814 *
1815 * Assuming a stable TSC across physical CPUS, and a stable TSC
1816 * across virtual CPUs, the following condition is possible.
1817 * Each numbered line represents an event visible to both
1818 * CPUs at the next numbered event.
1819 *
1820 * "timespecX" represents host monotonic time. "tscX" represents
1821 * RDTSC value.
1822 *
1823 * VCPU0 on CPU0 | VCPU1 on CPU1
1824 *
1825 * 1. read timespec0,tsc0
1826 * 2. | timespec1 = timespec0 + N
1827 * | tsc1 = tsc0 + M
1828 * 3. transition to guest | transition to guest
1829 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1830 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1831 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1832 *
1833 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1834 *
1835 * - ret0 < ret1
1836 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1837 * ...
1838 * - 0 < N - M => M < N
1839 *
1840 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1841 * always the case (the difference between two distinct xtime instances
1842 * might be smaller then the difference between corresponding TSC reads,
1843 * when updating guest vcpus pvclock areas).
1844 *
1845 * To avoid that problem, do not allow visibility of distinct
1846 * system_timestamp/tsc_timestamp values simultaneously: use a master
1847 * copy of host monotonic time values. Update that master copy
1848 * in lockstep.
1849 *
1850 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1851 *
1852 */
1853
pvclock_update_vm_gtod_copy(struct kvm * kvm)1854 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1855 {
1856 #ifdef CONFIG_X86_64
1857 struct kvm_arch *ka = &kvm->arch;
1858 int vclock_mode;
1859 bool host_tsc_clocksource, vcpus_matched;
1860
1861 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1862 atomic_read(&kvm->online_vcpus));
1863
1864 /*
1865 * If the host uses TSC clock, then passthrough TSC as stable
1866 * to the guest.
1867 */
1868 host_tsc_clocksource = kvm_get_time_and_clockread(
1869 &ka->master_kernel_ns,
1870 &ka->master_cycle_now);
1871
1872 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1873 && !ka->backwards_tsc_observed
1874 && !ka->boot_vcpu_runs_old_kvmclock;
1875
1876 if (ka->use_master_clock)
1877 atomic_set(&kvm_guest_has_master_clock, 1);
1878
1879 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1880 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1881 vcpus_matched);
1882 #endif
1883 }
1884
kvm_make_mclock_inprogress_request(struct kvm * kvm)1885 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1886 {
1887 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1888 }
1889
kvm_gen_update_masterclock(struct kvm * kvm)1890 static void kvm_gen_update_masterclock(struct kvm *kvm)
1891 {
1892 #ifdef CONFIG_X86_64
1893 int i;
1894 struct kvm_vcpu *vcpu;
1895 struct kvm_arch *ka = &kvm->arch;
1896
1897 spin_lock(&ka->pvclock_gtod_sync_lock);
1898 kvm_make_mclock_inprogress_request(kvm);
1899 /* no guest entries from this point */
1900 pvclock_update_vm_gtod_copy(kvm);
1901
1902 kvm_for_each_vcpu(i, vcpu, kvm)
1903 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1904
1905 /* guest entries allowed */
1906 kvm_for_each_vcpu(i, vcpu, kvm)
1907 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1908
1909 spin_unlock(&ka->pvclock_gtod_sync_lock);
1910 #endif
1911 }
1912
get_kvmclock_ns(struct kvm * kvm)1913 u64 get_kvmclock_ns(struct kvm *kvm)
1914 {
1915 struct kvm_arch *ka = &kvm->arch;
1916 struct pvclock_vcpu_time_info hv_clock;
1917 u64 ret;
1918
1919 spin_lock(&ka->pvclock_gtod_sync_lock);
1920 if (!ka->use_master_clock) {
1921 spin_unlock(&ka->pvclock_gtod_sync_lock);
1922 return ktime_get_boot_ns() + ka->kvmclock_offset;
1923 }
1924
1925 hv_clock.tsc_timestamp = ka->master_cycle_now;
1926 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1927 spin_unlock(&ka->pvclock_gtod_sync_lock);
1928
1929 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1930 get_cpu();
1931
1932 if (__this_cpu_read(cpu_tsc_khz)) {
1933 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1934 &hv_clock.tsc_shift,
1935 &hv_clock.tsc_to_system_mul);
1936 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1937 } else
1938 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1939
1940 put_cpu();
1941
1942 return ret;
1943 }
1944
kvm_setup_pvclock_page(struct kvm_vcpu * v)1945 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1946 {
1947 struct kvm_vcpu_arch *vcpu = &v->arch;
1948 struct pvclock_vcpu_time_info guest_hv_clock;
1949
1950 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1951 &guest_hv_clock, sizeof(guest_hv_clock))))
1952 return;
1953
1954 /* This VCPU is paused, but it's legal for a guest to read another
1955 * VCPU's kvmclock, so we really have to follow the specification where
1956 * it says that version is odd if data is being modified, and even after
1957 * it is consistent.
1958 *
1959 * Version field updates must be kept separate. This is because
1960 * kvm_write_guest_cached might use a "rep movs" instruction, and
1961 * writes within a string instruction are weakly ordered. So there
1962 * are three writes overall.
1963 *
1964 * As a small optimization, only write the version field in the first
1965 * and third write. The vcpu->pv_time cache is still valid, because the
1966 * version field is the first in the struct.
1967 */
1968 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1969
1970 if (guest_hv_clock.version & 1)
1971 ++guest_hv_clock.version; /* first time write, random junk */
1972
1973 vcpu->hv_clock.version = guest_hv_clock.version + 1;
1974 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1975 &vcpu->hv_clock,
1976 sizeof(vcpu->hv_clock.version));
1977
1978 smp_wmb();
1979
1980 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1981 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1982
1983 if (vcpu->pvclock_set_guest_stopped_request) {
1984 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1985 vcpu->pvclock_set_guest_stopped_request = false;
1986 }
1987
1988 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1989
1990 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1991 &vcpu->hv_clock,
1992 sizeof(vcpu->hv_clock));
1993
1994 smp_wmb();
1995
1996 vcpu->hv_clock.version++;
1997 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1998 &vcpu->hv_clock,
1999 sizeof(vcpu->hv_clock.version));
2000 }
2001
kvm_guest_time_update(struct kvm_vcpu * v)2002 static int kvm_guest_time_update(struct kvm_vcpu *v)
2003 {
2004 unsigned long flags, tgt_tsc_khz;
2005 struct kvm_vcpu_arch *vcpu = &v->arch;
2006 struct kvm_arch *ka = &v->kvm->arch;
2007 s64 kernel_ns;
2008 u64 tsc_timestamp, host_tsc;
2009 u8 pvclock_flags;
2010 bool use_master_clock;
2011
2012 kernel_ns = 0;
2013 host_tsc = 0;
2014
2015 /*
2016 * If the host uses TSC clock, then passthrough TSC as stable
2017 * to the guest.
2018 */
2019 spin_lock(&ka->pvclock_gtod_sync_lock);
2020 use_master_clock = ka->use_master_clock;
2021 if (use_master_clock) {
2022 host_tsc = ka->master_cycle_now;
2023 kernel_ns = ka->master_kernel_ns;
2024 }
2025 spin_unlock(&ka->pvclock_gtod_sync_lock);
2026
2027 /* Keep irq disabled to prevent changes to the clock */
2028 local_irq_save(flags);
2029 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2030 if (unlikely(tgt_tsc_khz == 0)) {
2031 local_irq_restore(flags);
2032 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2033 return 1;
2034 }
2035 if (!use_master_clock) {
2036 host_tsc = rdtsc();
2037 kernel_ns = ktime_get_boot_ns();
2038 }
2039
2040 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2041
2042 /*
2043 * We may have to catch up the TSC to match elapsed wall clock
2044 * time for two reasons, even if kvmclock is used.
2045 * 1) CPU could have been running below the maximum TSC rate
2046 * 2) Broken TSC compensation resets the base at each VCPU
2047 * entry to avoid unknown leaps of TSC even when running
2048 * again on the same CPU. This may cause apparent elapsed
2049 * time to disappear, and the guest to stand still or run
2050 * very slowly.
2051 */
2052 if (vcpu->tsc_catchup) {
2053 u64 tsc = compute_guest_tsc(v, kernel_ns);
2054 if (tsc > tsc_timestamp) {
2055 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2056 tsc_timestamp = tsc;
2057 }
2058 }
2059
2060 local_irq_restore(flags);
2061
2062 /* With all the info we got, fill in the values */
2063
2064 if (kvm_has_tsc_control)
2065 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2066
2067 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2068 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2069 &vcpu->hv_clock.tsc_shift,
2070 &vcpu->hv_clock.tsc_to_system_mul);
2071 vcpu->hw_tsc_khz = tgt_tsc_khz;
2072 }
2073
2074 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2075 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2076 vcpu->last_guest_tsc = tsc_timestamp;
2077
2078 /* If the host uses TSC clocksource, then it is stable */
2079 pvclock_flags = 0;
2080 if (use_master_clock)
2081 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2082
2083 vcpu->hv_clock.flags = pvclock_flags;
2084
2085 if (vcpu->pv_time_enabled)
2086 kvm_setup_pvclock_page(v);
2087 if (v == kvm_get_vcpu(v->kvm, 0))
2088 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2089 return 0;
2090 }
2091
2092 /*
2093 * kvmclock updates which are isolated to a given vcpu, such as
2094 * vcpu->cpu migration, should not allow system_timestamp from
2095 * the rest of the vcpus to remain static. Otherwise ntp frequency
2096 * correction applies to one vcpu's system_timestamp but not
2097 * the others.
2098 *
2099 * So in those cases, request a kvmclock update for all vcpus.
2100 * We need to rate-limit these requests though, as they can
2101 * considerably slow guests that have a large number of vcpus.
2102 * The time for a remote vcpu to update its kvmclock is bound
2103 * by the delay we use to rate-limit the updates.
2104 */
2105
2106 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2107
kvmclock_update_fn(struct work_struct * work)2108 static void kvmclock_update_fn(struct work_struct *work)
2109 {
2110 int i;
2111 struct delayed_work *dwork = to_delayed_work(work);
2112 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2113 kvmclock_update_work);
2114 struct kvm *kvm = container_of(ka, struct kvm, arch);
2115 struct kvm_vcpu *vcpu;
2116
2117 kvm_for_each_vcpu(i, vcpu, kvm) {
2118 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2119 kvm_vcpu_kick(vcpu);
2120 }
2121 }
2122
kvm_gen_kvmclock_update(struct kvm_vcpu * v)2123 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2124 {
2125 struct kvm *kvm = v->kvm;
2126
2127 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2128 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2129 KVMCLOCK_UPDATE_DELAY);
2130 }
2131
2132 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2133
kvmclock_sync_fn(struct work_struct * work)2134 static void kvmclock_sync_fn(struct work_struct *work)
2135 {
2136 struct delayed_work *dwork = to_delayed_work(work);
2137 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2138 kvmclock_sync_work);
2139 struct kvm *kvm = container_of(ka, struct kvm, arch);
2140
2141 if (!kvmclock_periodic_sync)
2142 return;
2143
2144 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2145 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2146 KVMCLOCK_SYNC_PERIOD);
2147 }
2148
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)2149 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2150 {
2151 u64 mcg_cap = vcpu->arch.mcg_cap;
2152 unsigned bank_num = mcg_cap & 0xff;
2153
2154 switch (msr) {
2155 case MSR_IA32_MCG_STATUS:
2156 vcpu->arch.mcg_status = data;
2157 break;
2158 case MSR_IA32_MCG_CTL:
2159 if (!(mcg_cap & MCG_CTL_P))
2160 return 1;
2161 if (data != 0 && data != ~(u64)0)
2162 return -1;
2163 vcpu->arch.mcg_ctl = data;
2164 break;
2165 default:
2166 if (msr >= MSR_IA32_MC0_CTL &&
2167 msr < MSR_IA32_MCx_CTL(bank_num)) {
2168 u32 offset = array_index_nospec(
2169 msr - MSR_IA32_MC0_CTL,
2170 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2171
2172 /* only 0 or all 1s can be written to IA32_MCi_CTL
2173 * some Linux kernels though clear bit 10 in bank 4 to
2174 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2175 * this to avoid an uncatched #GP in the guest
2176 */
2177 if ((offset & 0x3) == 0 &&
2178 data != 0 && (data | (1 << 10)) != ~(u64)0)
2179 return -1;
2180 vcpu->arch.mce_banks[offset] = data;
2181 break;
2182 }
2183 return 1;
2184 }
2185 return 0;
2186 }
2187
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)2188 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2189 {
2190 struct kvm *kvm = vcpu->kvm;
2191 int lm = is_long_mode(vcpu);
2192 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2193 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2194 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2195 : kvm->arch.xen_hvm_config.blob_size_32;
2196 u32 page_num = data & ~PAGE_MASK;
2197 u64 page_addr = data & PAGE_MASK;
2198 u8 *page;
2199 int r;
2200
2201 r = -E2BIG;
2202 if (page_num >= blob_size)
2203 goto out;
2204 r = -ENOMEM;
2205 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2206 if (IS_ERR(page)) {
2207 r = PTR_ERR(page);
2208 goto out;
2209 }
2210 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2211 goto out_free;
2212 r = 0;
2213 out_free:
2214 kfree(page);
2215 out:
2216 return r;
2217 }
2218
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2219 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2220 {
2221 gpa_t gpa = data & ~0x3f;
2222
2223 /* Bits 3:5 are reserved, Should be zero */
2224 if (data & 0x38)
2225 return 1;
2226
2227 vcpu->arch.apf.msr_val = data;
2228
2229 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2230 kvm_clear_async_pf_completion_queue(vcpu);
2231 kvm_async_pf_hash_reset(vcpu);
2232 return 0;
2233 }
2234
2235 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2236 sizeof(u32)))
2237 return 1;
2238
2239 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2240 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2241 kvm_async_pf_wakeup_all(vcpu);
2242 return 0;
2243 }
2244
kvmclock_reset(struct kvm_vcpu * vcpu)2245 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2246 {
2247 vcpu->arch.pv_time_enabled = false;
2248 }
2249
record_steal_time(struct kvm_vcpu * vcpu)2250 static void record_steal_time(struct kvm_vcpu *vcpu)
2251 {
2252 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2253 return;
2254
2255 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2256 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2257 return;
2258
2259 vcpu->arch.st.steal.preempted = 0;
2260
2261 if (vcpu->arch.st.steal.version & 1)
2262 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2263
2264 vcpu->arch.st.steal.version += 1;
2265
2266 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2267 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2268
2269 smp_wmb();
2270
2271 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2272 vcpu->arch.st.last_steal;
2273 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2274
2275 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2276 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2277
2278 smp_wmb();
2279
2280 vcpu->arch.st.steal.version += 1;
2281
2282 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2283 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2284 }
2285
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2286 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2287 {
2288 bool pr = false;
2289 u32 msr = msr_info->index;
2290 u64 data = msr_info->data;
2291
2292 switch (msr) {
2293 case MSR_AMD64_NB_CFG:
2294 case MSR_IA32_UCODE_WRITE:
2295 case MSR_VM_HSAVE_PA:
2296 case MSR_AMD64_PATCH_LOADER:
2297 case MSR_AMD64_BU_CFG2:
2298 case MSR_AMD64_DC_CFG:
2299 case MSR_F15H_EX_CFG:
2300 break;
2301
2302 case MSR_IA32_UCODE_REV:
2303 if (msr_info->host_initiated)
2304 vcpu->arch.microcode_version = data;
2305 break;
2306 case MSR_IA32_ARCH_CAPABILITIES:
2307 if (!msr_info->host_initiated)
2308 return 1;
2309 vcpu->arch.arch_capabilities = data;
2310 break;
2311 case MSR_EFER:
2312 return set_efer(vcpu, msr_info);
2313 case MSR_K7_HWCR:
2314 data &= ~(u64)0x40; /* ignore flush filter disable */
2315 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2316 data &= ~(u64)0x8; /* ignore TLB cache disable */
2317 data &= ~(u64)0x40000; /* ignore Mc status write enable */
2318 if (data != 0) {
2319 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2320 data);
2321 return 1;
2322 }
2323 break;
2324 case MSR_FAM10H_MMIO_CONF_BASE:
2325 if (data != 0) {
2326 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2327 "0x%llx\n", data);
2328 return 1;
2329 }
2330 break;
2331 case MSR_IA32_DEBUGCTLMSR:
2332 if (!data) {
2333 /* We support the non-activated case already */
2334 break;
2335 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2336 /* Values other than LBR and BTF are vendor-specific,
2337 thus reserved and should throw a #GP */
2338 return 1;
2339 }
2340 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2341 __func__, data);
2342 break;
2343 case 0x200 ... 0x2ff:
2344 return kvm_mtrr_set_msr(vcpu, msr, data);
2345 case MSR_IA32_APICBASE:
2346 return kvm_set_apic_base(vcpu, msr_info);
2347 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2348 return kvm_x2apic_msr_write(vcpu, msr, data);
2349 case MSR_IA32_TSCDEADLINE:
2350 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2351 break;
2352 case MSR_IA32_TSC_ADJUST:
2353 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2354 if (!msr_info->host_initiated) {
2355 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2356 adjust_tsc_offset_guest(vcpu, adj);
2357 }
2358 vcpu->arch.ia32_tsc_adjust_msr = data;
2359 }
2360 break;
2361 case MSR_IA32_MISC_ENABLE:
2362 vcpu->arch.ia32_misc_enable_msr = data;
2363 break;
2364 case MSR_IA32_SMBASE:
2365 if (!msr_info->host_initiated)
2366 return 1;
2367 vcpu->arch.smbase = data;
2368 break;
2369 case MSR_KVM_WALL_CLOCK_NEW:
2370 case MSR_KVM_WALL_CLOCK:
2371 vcpu->kvm->arch.wall_clock = data;
2372 kvm_write_wall_clock(vcpu->kvm, data);
2373 break;
2374 case MSR_KVM_SYSTEM_TIME_NEW:
2375 case MSR_KVM_SYSTEM_TIME: {
2376 struct kvm_arch *ka = &vcpu->kvm->arch;
2377
2378 kvmclock_reset(vcpu);
2379
2380 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2381 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2382
2383 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2384 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2385
2386 ka->boot_vcpu_runs_old_kvmclock = tmp;
2387 }
2388
2389 vcpu->arch.time = data;
2390 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2391
2392 /* we verify if the enable bit is set... */
2393 if (!(data & 1))
2394 break;
2395
2396 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2397 &vcpu->arch.pv_time, data & ~1ULL,
2398 sizeof(struct pvclock_vcpu_time_info)))
2399 vcpu->arch.pv_time_enabled = false;
2400 else
2401 vcpu->arch.pv_time_enabled = true;
2402
2403 break;
2404 }
2405 case MSR_KVM_ASYNC_PF_EN:
2406 if (kvm_pv_enable_async_pf(vcpu, data))
2407 return 1;
2408 break;
2409 case MSR_KVM_STEAL_TIME:
2410
2411 if (unlikely(!sched_info_on()))
2412 return 1;
2413
2414 if (data & KVM_STEAL_RESERVED_MASK)
2415 return 1;
2416
2417 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2418 data & KVM_STEAL_VALID_BITS,
2419 sizeof(struct kvm_steal_time)))
2420 return 1;
2421
2422 vcpu->arch.st.msr_val = data;
2423
2424 if (!(data & KVM_MSR_ENABLED))
2425 break;
2426
2427 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2428
2429 break;
2430 case MSR_KVM_PV_EOI_EN:
2431 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2432 return 1;
2433 break;
2434
2435 case MSR_IA32_MCG_CTL:
2436 case MSR_IA32_MCG_STATUS:
2437 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2438 return set_msr_mce(vcpu, msr, data);
2439
2440 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2441 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2442 pr = true; /* fall through */
2443 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2444 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2445 if (kvm_pmu_is_valid_msr(vcpu, msr))
2446 return kvm_pmu_set_msr(vcpu, msr_info);
2447
2448 if (pr || data != 0)
2449 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2450 "0x%x data 0x%llx\n", msr, data);
2451 break;
2452 case MSR_K7_CLK_CTL:
2453 /*
2454 * Ignore all writes to this no longer documented MSR.
2455 * Writes are only relevant for old K7 processors,
2456 * all pre-dating SVM, but a recommended workaround from
2457 * AMD for these chips. It is possible to specify the
2458 * affected processor models on the command line, hence
2459 * the need to ignore the workaround.
2460 */
2461 break;
2462 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2463 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2464 case HV_X64_MSR_CRASH_CTL:
2465 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2466 return kvm_hv_set_msr_common(vcpu, msr, data,
2467 msr_info->host_initiated);
2468 case MSR_IA32_BBL_CR_CTL3:
2469 /* Drop writes to this legacy MSR -- see rdmsr
2470 * counterpart for further detail.
2471 */
2472 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2473 break;
2474 case MSR_AMD64_OSVW_ID_LENGTH:
2475 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2476 return 1;
2477 vcpu->arch.osvw.length = data;
2478 break;
2479 case MSR_AMD64_OSVW_STATUS:
2480 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2481 return 1;
2482 vcpu->arch.osvw.status = data;
2483 break;
2484 case MSR_PLATFORM_INFO:
2485 if (!msr_info->host_initiated ||
2486 data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2487 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2488 cpuid_fault_enabled(vcpu)))
2489 return 1;
2490 vcpu->arch.msr_platform_info = data;
2491 break;
2492 case MSR_MISC_FEATURES_ENABLES:
2493 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2494 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2495 !supports_cpuid_fault(vcpu)))
2496 return 1;
2497 vcpu->arch.msr_misc_features_enables = data;
2498 break;
2499 default:
2500 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2501 return xen_hvm_config(vcpu, data);
2502 if (kvm_pmu_is_valid_msr(vcpu, msr))
2503 return kvm_pmu_set_msr(vcpu, msr_info);
2504 if (!ignore_msrs) {
2505 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2506 msr, data);
2507 return 1;
2508 } else {
2509 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2510 msr, data);
2511 break;
2512 }
2513 }
2514 return 0;
2515 }
2516 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2517
2518
2519 /*
2520 * Reads an msr value (of 'msr_index') into 'pdata'.
2521 * Returns 0 on success, non-0 otherwise.
2522 * Assumes vcpu_load() was already called.
2523 */
kvm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2524 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2525 {
2526 return kvm_x86_ops->get_msr(vcpu, msr);
2527 }
2528 EXPORT_SYMBOL_GPL(kvm_get_msr);
2529
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2530 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2531 {
2532 u64 data;
2533 u64 mcg_cap = vcpu->arch.mcg_cap;
2534 unsigned bank_num = mcg_cap & 0xff;
2535
2536 switch (msr) {
2537 case MSR_IA32_P5_MC_ADDR:
2538 case MSR_IA32_P5_MC_TYPE:
2539 data = 0;
2540 break;
2541 case MSR_IA32_MCG_CAP:
2542 data = vcpu->arch.mcg_cap;
2543 break;
2544 case MSR_IA32_MCG_CTL:
2545 if (!(mcg_cap & MCG_CTL_P))
2546 return 1;
2547 data = vcpu->arch.mcg_ctl;
2548 break;
2549 case MSR_IA32_MCG_STATUS:
2550 data = vcpu->arch.mcg_status;
2551 break;
2552 default:
2553 if (msr >= MSR_IA32_MC0_CTL &&
2554 msr < MSR_IA32_MCx_CTL(bank_num)) {
2555 u32 offset = array_index_nospec(
2556 msr - MSR_IA32_MC0_CTL,
2557 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2558
2559 data = vcpu->arch.mce_banks[offset];
2560 break;
2561 }
2562 return 1;
2563 }
2564 *pdata = data;
2565 return 0;
2566 }
2567
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2568 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2569 {
2570 switch (msr_info->index) {
2571 case MSR_IA32_PLATFORM_ID:
2572 case MSR_IA32_EBL_CR_POWERON:
2573 case MSR_IA32_DEBUGCTLMSR:
2574 case MSR_IA32_LASTBRANCHFROMIP:
2575 case MSR_IA32_LASTBRANCHTOIP:
2576 case MSR_IA32_LASTINTFROMIP:
2577 case MSR_IA32_LASTINTTOIP:
2578 case MSR_K8_SYSCFG:
2579 case MSR_K8_TSEG_ADDR:
2580 case MSR_K8_TSEG_MASK:
2581 case MSR_K7_HWCR:
2582 case MSR_VM_HSAVE_PA:
2583 case MSR_K8_INT_PENDING_MSG:
2584 case MSR_AMD64_NB_CFG:
2585 case MSR_FAM10H_MMIO_CONF_BASE:
2586 case MSR_AMD64_BU_CFG2:
2587 case MSR_IA32_PERF_CTL:
2588 case MSR_AMD64_DC_CFG:
2589 case MSR_F15H_EX_CFG:
2590 msr_info->data = 0;
2591 break;
2592 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2593 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2594 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2595 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2596 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2597 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2598 msr_info->data = 0;
2599 break;
2600 case MSR_IA32_UCODE_REV:
2601 msr_info->data = vcpu->arch.microcode_version;
2602 break;
2603 case MSR_IA32_ARCH_CAPABILITIES:
2604 if (!msr_info->host_initiated &&
2605 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2606 return 1;
2607 msr_info->data = vcpu->arch.arch_capabilities;
2608 break;
2609 case MSR_MTRRcap:
2610 case 0x200 ... 0x2ff:
2611 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2612 case 0xcd: /* fsb frequency */
2613 msr_info->data = 3;
2614 break;
2615 /*
2616 * MSR_EBC_FREQUENCY_ID
2617 * Conservative value valid for even the basic CPU models.
2618 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2619 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2620 * and 266MHz for model 3, or 4. Set Core Clock
2621 * Frequency to System Bus Frequency Ratio to 1 (bits
2622 * 31:24) even though these are only valid for CPU
2623 * models > 2, however guests may end up dividing or
2624 * multiplying by zero otherwise.
2625 */
2626 case MSR_EBC_FREQUENCY_ID:
2627 msr_info->data = 1 << 24;
2628 break;
2629 case MSR_IA32_APICBASE:
2630 msr_info->data = kvm_get_apic_base(vcpu);
2631 break;
2632 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2633 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2634 break;
2635 case MSR_IA32_TSCDEADLINE:
2636 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2637 break;
2638 case MSR_IA32_TSC_ADJUST:
2639 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2640 break;
2641 case MSR_IA32_MISC_ENABLE:
2642 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2643 break;
2644 case MSR_IA32_SMBASE:
2645 if (!msr_info->host_initiated)
2646 return 1;
2647 msr_info->data = vcpu->arch.smbase;
2648 break;
2649 case MSR_IA32_PERF_STATUS:
2650 /* TSC increment by tick */
2651 msr_info->data = 1000ULL;
2652 /* CPU multiplier */
2653 msr_info->data |= (((uint64_t)4ULL) << 40);
2654 break;
2655 case MSR_EFER:
2656 msr_info->data = vcpu->arch.efer;
2657 break;
2658 case MSR_KVM_WALL_CLOCK:
2659 case MSR_KVM_WALL_CLOCK_NEW:
2660 msr_info->data = vcpu->kvm->arch.wall_clock;
2661 break;
2662 case MSR_KVM_SYSTEM_TIME:
2663 case MSR_KVM_SYSTEM_TIME_NEW:
2664 msr_info->data = vcpu->arch.time;
2665 break;
2666 case MSR_KVM_ASYNC_PF_EN:
2667 msr_info->data = vcpu->arch.apf.msr_val;
2668 break;
2669 case MSR_KVM_STEAL_TIME:
2670 msr_info->data = vcpu->arch.st.msr_val;
2671 break;
2672 case MSR_KVM_PV_EOI_EN:
2673 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2674 break;
2675 case MSR_IA32_P5_MC_ADDR:
2676 case MSR_IA32_P5_MC_TYPE:
2677 case MSR_IA32_MCG_CAP:
2678 case MSR_IA32_MCG_CTL:
2679 case MSR_IA32_MCG_STATUS:
2680 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2681 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2682 case MSR_K7_CLK_CTL:
2683 /*
2684 * Provide expected ramp-up count for K7. All other
2685 * are set to zero, indicating minimum divisors for
2686 * every field.
2687 *
2688 * This prevents guest kernels on AMD host with CPU
2689 * type 6, model 8 and higher from exploding due to
2690 * the rdmsr failing.
2691 */
2692 msr_info->data = 0x20000000;
2693 break;
2694 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2695 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2696 case HV_X64_MSR_CRASH_CTL:
2697 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2698 return kvm_hv_get_msr_common(vcpu,
2699 msr_info->index, &msr_info->data);
2700 break;
2701 case MSR_IA32_BBL_CR_CTL3:
2702 /* This legacy MSR exists but isn't fully documented in current
2703 * silicon. It is however accessed by winxp in very narrow
2704 * scenarios where it sets bit #19, itself documented as
2705 * a "reserved" bit. Best effort attempt to source coherent
2706 * read data here should the balance of the register be
2707 * interpreted by the guest:
2708 *
2709 * L2 cache control register 3: 64GB range, 256KB size,
2710 * enabled, latency 0x1, configured
2711 */
2712 msr_info->data = 0xbe702111;
2713 break;
2714 case MSR_AMD64_OSVW_ID_LENGTH:
2715 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2716 return 1;
2717 msr_info->data = vcpu->arch.osvw.length;
2718 break;
2719 case MSR_AMD64_OSVW_STATUS:
2720 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2721 return 1;
2722 msr_info->data = vcpu->arch.osvw.status;
2723 break;
2724 case MSR_PLATFORM_INFO:
2725 msr_info->data = vcpu->arch.msr_platform_info;
2726 break;
2727 case MSR_MISC_FEATURES_ENABLES:
2728 msr_info->data = vcpu->arch.msr_misc_features_enables;
2729 break;
2730 default:
2731 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2732 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2733 if (!ignore_msrs) {
2734 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2735 msr_info->index);
2736 return 1;
2737 } else {
2738 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2739 msr_info->data = 0;
2740 }
2741 break;
2742 }
2743 return 0;
2744 }
2745 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2746
2747 /*
2748 * Read or write a bunch of msrs. All parameters are kernel addresses.
2749 *
2750 * @return number of msrs set successfully.
2751 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2752 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2753 struct kvm_msr_entry *entries,
2754 int (*do_msr)(struct kvm_vcpu *vcpu,
2755 unsigned index, u64 *data))
2756 {
2757 int i;
2758
2759 for (i = 0; i < msrs->nmsrs; ++i)
2760 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2761 break;
2762
2763 return i;
2764 }
2765
2766 /*
2767 * Read or write a bunch of msrs. Parameters are user addresses.
2768 *
2769 * @return number of msrs set successfully.
2770 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2771 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2772 int (*do_msr)(struct kvm_vcpu *vcpu,
2773 unsigned index, u64 *data),
2774 int writeback)
2775 {
2776 struct kvm_msrs msrs;
2777 struct kvm_msr_entry *entries;
2778 int r, n;
2779 unsigned size;
2780
2781 r = -EFAULT;
2782 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2783 goto out;
2784
2785 r = -E2BIG;
2786 if (msrs.nmsrs >= MAX_IO_MSRS)
2787 goto out;
2788
2789 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2790 entries = memdup_user(user_msrs->entries, size);
2791 if (IS_ERR(entries)) {
2792 r = PTR_ERR(entries);
2793 goto out;
2794 }
2795
2796 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2797 if (r < 0)
2798 goto out_free;
2799
2800 r = -EFAULT;
2801 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2802 goto out_free;
2803
2804 r = n;
2805
2806 out_free:
2807 kfree(entries);
2808 out:
2809 return r;
2810 }
2811
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)2812 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2813 {
2814 int r;
2815
2816 switch (ext) {
2817 case KVM_CAP_IRQCHIP:
2818 case KVM_CAP_HLT:
2819 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2820 case KVM_CAP_SET_TSS_ADDR:
2821 case KVM_CAP_EXT_CPUID:
2822 case KVM_CAP_EXT_EMUL_CPUID:
2823 case KVM_CAP_CLOCKSOURCE:
2824 case KVM_CAP_PIT:
2825 case KVM_CAP_NOP_IO_DELAY:
2826 case KVM_CAP_MP_STATE:
2827 case KVM_CAP_SYNC_MMU:
2828 case KVM_CAP_USER_NMI:
2829 case KVM_CAP_REINJECT_CONTROL:
2830 case KVM_CAP_IRQ_INJECT_STATUS:
2831 case KVM_CAP_IOEVENTFD:
2832 case KVM_CAP_IOEVENTFD_NO_LENGTH:
2833 case KVM_CAP_PIT2:
2834 case KVM_CAP_PIT_STATE2:
2835 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2836 case KVM_CAP_XEN_HVM:
2837 case KVM_CAP_VCPU_EVENTS:
2838 case KVM_CAP_HYPERV:
2839 case KVM_CAP_HYPERV_VAPIC:
2840 case KVM_CAP_HYPERV_SPIN:
2841 case KVM_CAP_HYPERV_SYNIC:
2842 case KVM_CAP_HYPERV_SYNIC2:
2843 case KVM_CAP_HYPERV_VP_INDEX:
2844 case KVM_CAP_PCI_SEGMENT:
2845 case KVM_CAP_DEBUGREGS:
2846 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2847 case KVM_CAP_XSAVE:
2848 case KVM_CAP_ASYNC_PF:
2849 case KVM_CAP_GET_TSC_KHZ:
2850 case KVM_CAP_KVMCLOCK_CTRL:
2851 case KVM_CAP_READONLY_MEM:
2852 case KVM_CAP_HYPERV_TIME:
2853 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2854 case KVM_CAP_TSC_DEADLINE_TIMER:
2855 case KVM_CAP_ENABLE_CAP_VM:
2856 case KVM_CAP_DISABLE_QUIRKS:
2857 case KVM_CAP_SET_BOOT_CPU_ID:
2858 case KVM_CAP_SPLIT_IRQCHIP:
2859 case KVM_CAP_IMMEDIATE_EXIT:
2860 case KVM_CAP_GET_MSR_FEATURES:
2861 r = 1;
2862 break;
2863 case KVM_CAP_ADJUST_CLOCK:
2864 r = KVM_CLOCK_TSC_STABLE;
2865 break;
2866 case KVM_CAP_X86_GUEST_MWAIT:
2867 r = kvm_mwait_in_guest();
2868 break;
2869 case KVM_CAP_X86_SMM:
2870 /* SMBASE is usually relocated above 1M on modern chipsets,
2871 * and SMM handlers might indeed rely on 4G segment limits,
2872 * so do not report SMM to be available if real mode is
2873 * emulated via vm86 mode. Still, do not go to great lengths
2874 * to avoid userspace's usage of the feature, because it is a
2875 * fringe case that is not enabled except via specific settings
2876 * of the module parameters.
2877 */
2878 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2879 break;
2880 case KVM_CAP_VAPIC:
2881 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2882 break;
2883 case KVM_CAP_NR_VCPUS:
2884 r = KVM_SOFT_MAX_VCPUS;
2885 break;
2886 case KVM_CAP_MAX_VCPUS:
2887 r = KVM_MAX_VCPUS;
2888 break;
2889 case KVM_CAP_MAX_VCPU_ID:
2890 r = KVM_MAX_VCPU_ID;
2891 break;
2892 case KVM_CAP_NR_MEMSLOTS:
2893 r = KVM_USER_MEM_SLOTS;
2894 break;
2895 case KVM_CAP_PV_MMU: /* obsolete */
2896 r = 0;
2897 break;
2898 case KVM_CAP_MCE:
2899 r = KVM_MAX_MCE_BANKS;
2900 break;
2901 case KVM_CAP_XCRS:
2902 r = boot_cpu_has(X86_FEATURE_XSAVE);
2903 break;
2904 case KVM_CAP_TSC_CONTROL:
2905 r = kvm_has_tsc_control;
2906 break;
2907 case KVM_CAP_X2APIC_API:
2908 r = KVM_X2APIC_API_VALID_FLAGS;
2909 break;
2910 default:
2911 r = 0;
2912 break;
2913 }
2914 return r;
2915
2916 }
2917
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2918 long kvm_arch_dev_ioctl(struct file *filp,
2919 unsigned int ioctl, unsigned long arg)
2920 {
2921 void __user *argp = (void __user *)arg;
2922 long r;
2923
2924 switch (ioctl) {
2925 case KVM_GET_MSR_INDEX_LIST: {
2926 struct kvm_msr_list __user *user_msr_list = argp;
2927 struct kvm_msr_list msr_list;
2928 unsigned n;
2929
2930 r = -EFAULT;
2931 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2932 goto out;
2933 n = msr_list.nmsrs;
2934 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2935 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2936 goto out;
2937 r = -E2BIG;
2938 if (n < msr_list.nmsrs)
2939 goto out;
2940 r = -EFAULT;
2941 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2942 num_msrs_to_save * sizeof(u32)))
2943 goto out;
2944 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2945 &emulated_msrs,
2946 num_emulated_msrs * sizeof(u32)))
2947 goto out;
2948 r = 0;
2949 break;
2950 }
2951 case KVM_GET_SUPPORTED_CPUID:
2952 case KVM_GET_EMULATED_CPUID: {
2953 struct kvm_cpuid2 __user *cpuid_arg = argp;
2954 struct kvm_cpuid2 cpuid;
2955
2956 r = -EFAULT;
2957 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2958 goto out;
2959
2960 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2961 ioctl);
2962 if (r)
2963 goto out;
2964
2965 r = -EFAULT;
2966 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2967 goto out;
2968 r = 0;
2969 break;
2970 }
2971 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2972 r = -EFAULT;
2973 if (copy_to_user(argp, &kvm_mce_cap_supported,
2974 sizeof(kvm_mce_cap_supported)))
2975 goto out;
2976 r = 0;
2977 break;
2978 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2979 struct kvm_msr_list __user *user_msr_list = argp;
2980 struct kvm_msr_list msr_list;
2981 unsigned int n;
2982
2983 r = -EFAULT;
2984 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2985 goto out;
2986 n = msr_list.nmsrs;
2987 msr_list.nmsrs = num_msr_based_features;
2988 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2989 goto out;
2990 r = -E2BIG;
2991 if (n < msr_list.nmsrs)
2992 goto out;
2993 r = -EFAULT;
2994 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2995 num_msr_based_features * sizeof(u32)))
2996 goto out;
2997 r = 0;
2998 break;
2999 }
3000 case KVM_GET_MSRS:
3001 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3002 break;
3003 }
3004 default:
3005 r = -EINVAL;
3006 }
3007 out:
3008 return r;
3009 }
3010
wbinvd_ipi(void * garbage)3011 static void wbinvd_ipi(void *garbage)
3012 {
3013 wbinvd();
3014 }
3015
need_emulate_wbinvd(struct kvm_vcpu * vcpu)3016 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3017 {
3018 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3019 }
3020
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)3021 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3022 {
3023 /* Address WBINVD may be executed by guest */
3024 if (need_emulate_wbinvd(vcpu)) {
3025 if (kvm_x86_ops->has_wbinvd_exit())
3026 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3027 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3028 smp_call_function_single(vcpu->cpu,
3029 wbinvd_ipi, NULL, 1);
3030 }
3031
3032 kvm_x86_ops->vcpu_load(vcpu, cpu);
3033
3034 /* Apply any externally detected TSC adjustments (due to suspend) */
3035 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3036 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3037 vcpu->arch.tsc_offset_adjustment = 0;
3038 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3039 }
3040
3041 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
3042 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3043 rdtsc() - vcpu->arch.last_host_tsc;
3044 if (tsc_delta < 0)
3045 mark_tsc_unstable("KVM discovered backwards TSC");
3046
3047 if (check_tsc_unstable()) {
3048 u64 offset = kvm_compute_tsc_offset(vcpu,
3049 vcpu->arch.last_guest_tsc);
3050 kvm_vcpu_write_tsc_offset(vcpu, offset);
3051 vcpu->arch.tsc_catchup = 1;
3052 }
3053
3054 if (kvm_lapic_hv_timer_in_use(vcpu))
3055 kvm_lapic_restart_hv_timer(vcpu);
3056
3057 /*
3058 * On a host with synchronized TSC, there is no need to update
3059 * kvmclock on vcpu->cpu migration
3060 */
3061 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3062 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3063 if (vcpu->cpu != cpu)
3064 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3065 vcpu->cpu = cpu;
3066 }
3067
3068 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3069 }
3070
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)3071 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3072 {
3073 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3074 return;
3075
3076 vcpu->arch.st.steal.preempted = 1;
3077
3078 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3079 &vcpu->arch.st.steal.preempted,
3080 offsetof(struct kvm_steal_time, preempted),
3081 sizeof(vcpu->arch.st.steal.preempted));
3082 }
3083
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)3084 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3085 {
3086 int idx;
3087
3088 if (vcpu->preempted)
3089 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3090
3091 /*
3092 * Disable page faults because we're in atomic context here.
3093 * kvm_write_guest_offset_cached() would call might_fault()
3094 * that relies on pagefault_disable() to tell if there's a
3095 * bug. NOTE: the write to guest memory may not go through if
3096 * during postcopy live migration or if there's heavy guest
3097 * paging.
3098 */
3099 pagefault_disable();
3100 /*
3101 * kvm_memslots() will be called by
3102 * kvm_write_guest_offset_cached() so take the srcu lock.
3103 */
3104 idx = srcu_read_lock(&vcpu->kvm->srcu);
3105 kvm_steal_time_set_preempted(vcpu);
3106 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3107 pagefault_enable();
3108 kvm_x86_ops->vcpu_put(vcpu);
3109 vcpu->arch.last_host_tsc = rdtsc();
3110 /*
3111 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3112 * on every vmexit, but if not, we might have a stale dr6 from the
3113 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3114 */
3115 set_debugreg(0, 6);
3116 }
3117
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3118 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3119 struct kvm_lapic_state *s)
3120 {
3121 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
3122 kvm_x86_ops->sync_pir_to_irr(vcpu);
3123
3124 return kvm_apic_get_state(vcpu, s);
3125 }
3126
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)3127 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3128 struct kvm_lapic_state *s)
3129 {
3130 int r;
3131
3132 r = kvm_apic_set_state(vcpu, s);
3133 if (r)
3134 return r;
3135 update_cr8_intercept(vcpu);
3136
3137 return 0;
3138 }
3139
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)3140 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3141 {
3142 return (!lapic_in_kernel(vcpu) ||
3143 kvm_apic_accept_pic_intr(vcpu));
3144 }
3145
3146 /*
3147 * if userspace requested an interrupt window, check that the
3148 * interrupt window is open.
3149 *
3150 * No need to exit to userspace if we already have an interrupt queued.
3151 */
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)3152 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3153 {
3154 return kvm_arch_interrupt_allowed(vcpu) &&
3155 !kvm_cpu_has_interrupt(vcpu) &&
3156 !kvm_event_needs_reinjection(vcpu) &&
3157 kvm_cpu_accept_dm_intr(vcpu);
3158 }
3159
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)3160 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3161 struct kvm_interrupt *irq)
3162 {
3163 if (irq->irq >= KVM_NR_INTERRUPTS)
3164 return -EINVAL;
3165
3166 if (!irqchip_in_kernel(vcpu->kvm)) {
3167 kvm_queue_interrupt(vcpu, irq->irq, false);
3168 kvm_make_request(KVM_REQ_EVENT, vcpu);
3169 return 0;
3170 }
3171
3172 /*
3173 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3174 * fail for in-kernel 8259.
3175 */
3176 if (pic_in_kernel(vcpu->kvm))
3177 return -ENXIO;
3178
3179 if (vcpu->arch.pending_external_vector != -1)
3180 return -EEXIST;
3181
3182 vcpu->arch.pending_external_vector = irq->irq;
3183 kvm_make_request(KVM_REQ_EVENT, vcpu);
3184 return 0;
3185 }
3186
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)3187 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3188 {
3189 kvm_inject_nmi(vcpu);
3190
3191 return 0;
3192 }
3193
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)3194 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3195 {
3196 kvm_make_request(KVM_REQ_SMI, vcpu);
3197
3198 return 0;
3199 }
3200
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)3201 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3202 struct kvm_tpr_access_ctl *tac)
3203 {
3204 if (tac->flags)
3205 return -EINVAL;
3206 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3207 return 0;
3208 }
3209
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)3210 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3211 u64 mcg_cap)
3212 {
3213 int r;
3214 unsigned bank_num = mcg_cap & 0xff, bank;
3215
3216 r = -EINVAL;
3217 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3218 goto out;
3219 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3220 goto out;
3221 r = 0;
3222 vcpu->arch.mcg_cap = mcg_cap;
3223 /* Init IA32_MCG_CTL to all 1s */
3224 if (mcg_cap & MCG_CTL_P)
3225 vcpu->arch.mcg_ctl = ~(u64)0;
3226 /* Init IA32_MCi_CTL to all 1s */
3227 for (bank = 0; bank < bank_num; bank++)
3228 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3229
3230 if (kvm_x86_ops->setup_mce)
3231 kvm_x86_ops->setup_mce(vcpu);
3232 out:
3233 return r;
3234 }
3235
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)3236 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3237 struct kvm_x86_mce *mce)
3238 {
3239 u64 mcg_cap = vcpu->arch.mcg_cap;
3240 unsigned bank_num = mcg_cap & 0xff;
3241 u64 *banks = vcpu->arch.mce_banks;
3242
3243 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3244 return -EINVAL;
3245 /*
3246 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3247 * reporting is disabled
3248 */
3249 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3250 vcpu->arch.mcg_ctl != ~(u64)0)
3251 return 0;
3252 banks += 4 * mce->bank;
3253 /*
3254 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3255 * reporting is disabled for the bank
3256 */
3257 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3258 return 0;
3259 if (mce->status & MCI_STATUS_UC) {
3260 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3261 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3262 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3263 return 0;
3264 }
3265 if (banks[1] & MCI_STATUS_VAL)
3266 mce->status |= MCI_STATUS_OVER;
3267 banks[2] = mce->addr;
3268 banks[3] = mce->misc;
3269 vcpu->arch.mcg_status = mce->mcg_status;
3270 banks[1] = mce->status;
3271 kvm_queue_exception(vcpu, MC_VECTOR);
3272 } else if (!(banks[1] & MCI_STATUS_VAL)
3273 || !(banks[1] & MCI_STATUS_UC)) {
3274 if (banks[1] & MCI_STATUS_VAL)
3275 mce->status |= MCI_STATUS_OVER;
3276 banks[2] = mce->addr;
3277 banks[3] = mce->misc;
3278 banks[1] = mce->status;
3279 } else
3280 banks[1] |= MCI_STATUS_OVER;
3281 return 0;
3282 }
3283
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3284 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3285 struct kvm_vcpu_events *events)
3286 {
3287 process_nmi(vcpu);
3288 /*
3289 * FIXME: pass injected and pending separately. This is only
3290 * needed for nested virtualization, whose state cannot be
3291 * migrated yet. For now we can combine them.
3292 */
3293 events->exception.injected =
3294 (vcpu->arch.exception.pending ||
3295 vcpu->arch.exception.injected) &&
3296 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3297 events->exception.nr = vcpu->arch.exception.nr;
3298 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3299 events->exception.pad = 0;
3300 events->exception.error_code = vcpu->arch.exception.error_code;
3301
3302 events->interrupt.injected =
3303 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3304 events->interrupt.nr = vcpu->arch.interrupt.nr;
3305 events->interrupt.soft = 0;
3306 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3307
3308 events->nmi.injected = vcpu->arch.nmi_injected;
3309 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3310 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3311 events->nmi.pad = 0;
3312
3313 events->sipi_vector = 0; /* never valid when reporting to user space */
3314
3315 events->smi.smm = is_smm(vcpu);
3316 events->smi.pending = vcpu->arch.smi_pending;
3317 events->smi.smm_inside_nmi =
3318 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3319 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3320
3321 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3322 | KVM_VCPUEVENT_VALID_SHADOW
3323 | KVM_VCPUEVENT_VALID_SMM);
3324 memset(&events->reserved, 0, sizeof(events->reserved));
3325 }
3326
3327 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3328
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3329 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3330 struct kvm_vcpu_events *events)
3331 {
3332 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3333 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3334 | KVM_VCPUEVENT_VALID_SHADOW
3335 | KVM_VCPUEVENT_VALID_SMM))
3336 return -EINVAL;
3337
3338 if (events->exception.injected &&
3339 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3340 is_guest_mode(vcpu)))
3341 return -EINVAL;
3342
3343 /* INITs are latched while in SMM */
3344 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3345 (events->smi.smm || events->smi.pending) &&
3346 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3347 return -EINVAL;
3348
3349 process_nmi(vcpu);
3350 vcpu->arch.exception.injected = false;
3351 vcpu->arch.exception.pending = events->exception.injected;
3352 vcpu->arch.exception.nr = events->exception.nr;
3353 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3354 vcpu->arch.exception.error_code = events->exception.error_code;
3355
3356 vcpu->arch.interrupt.pending = events->interrupt.injected;
3357 vcpu->arch.interrupt.nr = events->interrupt.nr;
3358 vcpu->arch.interrupt.soft = events->interrupt.soft;
3359 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3360 kvm_x86_ops->set_interrupt_shadow(vcpu,
3361 events->interrupt.shadow);
3362
3363 vcpu->arch.nmi_injected = events->nmi.injected;
3364 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3365 vcpu->arch.nmi_pending = events->nmi.pending;
3366 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3367
3368 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3369 lapic_in_kernel(vcpu))
3370 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3371
3372 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3373 u32 hflags = vcpu->arch.hflags;
3374 if (events->smi.smm)
3375 hflags |= HF_SMM_MASK;
3376 else
3377 hflags &= ~HF_SMM_MASK;
3378 kvm_set_hflags(vcpu, hflags);
3379
3380 vcpu->arch.smi_pending = events->smi.pending;
3381
3382 if (events->smi.smm) {
3383 if (events->smi.smm_inside_nmi)
3384 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3385 else
3386 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3387 if (lapic_in_kernel(vcpu)) {
3388 if (events->smi.latched_init)
3389 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3390 else
3391 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3392 }
3393 }
3394 }
3395
3396 kvm_make_request(KVM_REQ_EVENT, vcpu);
3397
3398 return 0;
3399 }
3400
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3401 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3402 struct kvm_debugregs *dbgregs)
3403 {
3404 unsigned long val;
3405
3406 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3407 kvm_get_dr(vcpu, 6, &val);
3408 dbgregs->dr6 = val;
3409 dbgregs->dr7 = vcpu->arch.dr7;
3410 dbgregs->flags = 0;
3411 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3412 }
3413
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3414 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3415 struct kvm_debugregs *dbgregs)
3416 {
3417 if (dbgregs->flags)
3418 return -EINVAL;
3419
3420 if (dbgregs->dr6 & ~0xffffffffull)
3421 return -EINVAL;
3422 if (dbgregs->dr7 & ~0xffffffffull)
3423 return -EINVAL;
3424
3425 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3426 kvm_update_dr0123(vcpu);
3427 vcpu->arch.dr6 = dbgregs->dr6;
3428 kvm_update_dr6(vcpu);
3429 vcpu->arch.dr7 = dbgregs->dr7;
3430 kvm_update_dr7(vcpu);
3431
3432 return 0;
3433 }
3434
3435 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3436
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3437 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3438 {
3439 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3440 u64 xstate_bv = xsave->header.xfeatures;
3441 u64 valid;
3442
3443 /*
3444 * Copy legacy XSAVE area, to avoid complications with CPUID
3445 * leaves 0 and 1 in the loop below.
3446 */
3447 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3448
3449 /* Set XSTATE_BV */
3450 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3451 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3452
3453 /*
3454 * Copy each region from the possibly compacted offset to the
3455 * non-compacted offset.
3456 */
3457 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3458 while (valid) {
3459 u64 feature = valid & -valid;
3460 int index = fls64(feature) - 1;
3461 void *src = get_xsave_addr(xsave, feature);
3462
3463 if (src) {
3464 u32 size, offset, ecx, edx;
3465 cpuid_count(XSTATE_CPUID, index,
3466 &size, &offset, &ecx, &edx);
3467 if (feature == XFEATURE_MASK_PKRU)
3468 memcpy(dest + offset, &vcpu->arch.pkru,
3469 sizeof(vcpu->arch.pkru));
3470 else
3471 memcpy(dest + offset, src, size);
3472
3473 }
3474
3475 valid -= feature;
3476 }
3477 }
3478
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3479 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3480 {
3481 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3482 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3483 u64 valid;
3484
3485 /*
3486 * Copy legacy XSAVE area, to avoid complications with CPUID
3487 * leaves 0 and 1 in the loop below.
3488 */
3489 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3490
3491 /* Set XSTATE_BV and possibly XCOMP_BV. */
3492 xsave->header.xfeatures = xstate_bv;
3493 if (boot_cpu_has(X86_FEATURE_XSAVES))
3494 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3495
3496 /*
3497 * Copy each region from the non-compacted offset to the
3498 * possibly compacted offset.
3499 */
3500 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3501 while (valid) {
3502 u64 feature = valid & -valid;
3503 int index = fls64(feature) - 1;
3504 void *dest = get_xsave_addr(xsave, feature);
3505
3506 if (dest) {
3507 u32 size, offset, ecx, edx;
3508 cpuid_count(XSTATE_CPUID, index,
3509 &size, &offset, &ecx, &edx);
3510 if (feature == XFEATURE_MASK_PKRU)
3511 memcpy(&vcpu->arch.pkru, src + offset,
3512 sizeof(vcpu->arch.pkru));
3513 else
3514 memcpy(dest, src + offset, size);
3515 }
3516
3517 valid -= feature;
3518 }
3519 }
3520
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3521 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3522 struct kvm_xsave *guest_xsave)
3523 {
3524 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3525 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3526 fill_xsave((u8 *) guest_xsave->region, vcpu);
3527 } else {
3528 memcpy(guest_xsave->region,
3529 &vcpu->arch.guest_fpu.state.fxsave,
3530 sizeof(struct fxregs_state));
3531 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3532 XFEATURE_MASK_FPSSE;
3533 }
3534 }
3535
3536 #define XSAVE_MXCSR_OFFSET 24
3537
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3538 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3539 struct kvm_xsave *guest_xsave)
3540 {
3541 u64 xstate_bv =
3542 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3543 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3544
3545 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3546 /*
3547 * Here we allow setting states that are not present in
3548 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3549 * with old userspace.
3550 */
3551 if (xstate_bv & ~kvm_supported_xcr0() ||
3552 mxcsr & ~mxcsr_feature_mask)
3553 return -EINVAL;
3554 load_xsave(vcpu, (u8 *)guest_xsave->region);
3555 } else {
3556 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3557 mxcsr & ~mxcsr_feature_mask)
3558 return -EINVAL;
3559 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3560 guest_xsave->region, sizeof(struct fxregs_state));
3561 }
3562 return 0;
3563 }
3564
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3565 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3566 struct kvm_xcrs *guest_xcrs)
3567 {
3568 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3569 guest_xcrs->nr_xcrs = 0;
3570 return;
3571 }
3572
3573 guest_xcrs->nr_xcrs = 1;
3574 guest_xcrs->flags = 0;
3575 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3576 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3577 }
3578
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3579 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3580 struct kvm_xcrs *guest_xcrs)
3581 {
3582 int i, r = 0;
3583
3584 if (!boot_cpu_has(X86_FEATURE_XSAVE))
3585 return -EINVAL;
3586
3587 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3588 return -EINVAL;
3589
3590 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3591 /* Only support XCR0 currently */
3592 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3593 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3594 guest_xcrs->xcrs[i].value);
3595 break;
3596 }
3597 if (r)
3598 r = -EINVAL;
3599 return r;
3600 }
3601
3602 /*
3603 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3604 * stopped by the hypervisor. This function will be called from the host only.
3605 * EINVAL is returned when the host attempts to set the flag for a guest that
3606 * does not support pv clocks.
3607 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3608 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3609 {
3610 if (!vcpu->arch.pv_time_enabled)
3611 return -EINVAL;
3612 vcpu->arch.pvclock_set_guest_stopped_request = true;
3613 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3614 return 0;
3615 }
3616
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)3617 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3618 struct kvm_enable_cap *cap)
3619 {
3620 if (cap->flags)
3621 return -EINVAL;
3622
3623 switch (cap->cap) {
3624 case KVM_CAP_HYPERV_SYNIC2:
3625 if (cap->args[0])
3626 return -EINVAL;
3627 case KVM_CAP_HYPERV_SYNIC:
3628 if (!irqchip_in_kernel(vcpu->kvm))
3629 return -EINVAL;
3630 return kvm_hv_activate_synic(vcpu, cap->cap ==
3631 KVM_CAP_HYPERV_SYNIC2);
3632 default:
3633 return -EINVAL;
3634 }
3635 }
3636
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3637 long kvm_arch_vcpu_ioctl(struct file *filp,
3638 unsigned int ioctl, unsigned long arg)
3639 {
3640 struct kvm_vcpu *vcpu = filp->private_data;
3641 void __user *argp = (void __user *)arg;
3642 int r;
3643 union {
3644 struct kvm_lapic_state *lapic;
3645 struct kvm_xsave *xsave;
3646 struct kvm_xcrs *xcrs;
3647 void *buffer;
3648 } u;
3649
3650 u.buffer = NULL;
3651 switch (ioctl) {
3652 case KVM_GET_LAPIC: {
3653 r = -EINVAL;
3654 if (!lapic_in_kernel(vcpu))
3655 goto out;
3656 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3657
3658 r = -ENOMEM;
3659 if (!u.lapic)
3660 goto out;
3661 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3662 if (r)
3663 goto out;
3664 r = -EFAULT;
3665 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3666 goto out;
3667 r = 0;
3668 break;
3669 }
3670 case KVM_SET_LAPIC: {
3671 r = -EINVAL;
3672 if (!lapic_in_kernel(vcpu))
3673 goto out;
3674 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3675 if (IS_ERR(u.lapic))
3676 return PTR_ERR(u.lapic);
3677
3678 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3679 break;
3680 }
3681 case KVM_INTERRUPT: {
3682 struct kvm_interrupt irq;
3683
3684 r = -EFAULT;
3685 if (copy_from_user(&irq, argp, sizeof irq))
3686 goto out;
3687 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3688 break;
3689 }
3690 case KVM_NMI: {
3691 r = kvm_vcpu_ioctl_nmi(vcpu);
3692 break;
3693 }
3694 case KVM_SMI: {
3695 r = kvm_vcpu_ioctl_smi(vcpu);
3696 break;
3697 }
3698 case KVM_SET_CPUID: {
3699 struct kvm_cpuid __user *cpuid_arg = argp;
3700 struct kvm_cpuid cpuid;
3701
3702 r = -EFAULT;
3703 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3704 goto out;
3705 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3706 break;
3707 }
3708 case KVM_SET_CPUID2: {
3709 struct kvm_cpuid2 __user *cpuid_arg = argp;
3710 struct kvm_cpuid2 cpuid;
3711
3712 r = -EFAULT;
3713 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3714 goto out;
3715 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3716 cpuid_arg->entries);
3717 break;
3718 }
3719 case KVM_GET_CPUID2: {
3720 struct kvm_cpuid2 __user *cpuid_arg = argp;
3721 struct kvm_cpuid2 cpuid;
3722
3723 r = -EFAULT;
3724 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3725 goto out;
3726 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3727 cpuid_arg->entries);
3728 if (r)
3729 goto out;
3730 r = -EFAULT;
3731 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3732 goto out;
3733 r = 0;
3734 break;
3735 }
3736 case KVM_GET_MSRS: {
3737 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3738 r = msr_io(vcpu, argp, do_get_msr, 1);
3739 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3740 break;
3741 }
3742 case KVM_SET_MSRS: {
3743 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3744 r = msr_io(vcpu, argp, do_set_msr, 0);
3745 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3746 break;
3747 }
3748 case KVM_TPR_ACCESS_REPORTING: {
3749 struct kvm_tpr_access_ctl tac;
3750
3751 r = -EFAULT;
3752 if (copy_from_user(&tac, argp, sizeof tac))
3753 goto out;
3754 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3755 if (r)
3756 goto out;
3757 r = -EFAULT;
3758 if (copy_to_user(argp, &tac, sizeof tac))
3759 goto out;
3760 r = 0;
3761 break;
3762 };
3763 case KVM_SET_VAPIC_ADDR: {
3764 struct kvm_vapic_addr va;
3765 int idx;
3766
3767 r = -EINVAL;
3768 if (!lapic_in_kernel(vcpu))
3769 goto out;
3770 r = -EFAULT;
3771 if (copy_from_user(&va, argp, sizeof va))
3772 goto out;
3773 idx = srcu_read_lock(&vcpu->kvm->srcu);
3774 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3775 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3776 break;
3777 }
3778 case KVM_X86_SETUP_MCE: {
3779 u64 mcg_cap;
3780
3781 r = -EFAULT;
3782 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3783 goto out;
3784 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3785 break;
3786 }
3787 case KVM_X86_SET_MCE: {
3788 struct kvm_x86_mce mce;
3789
3790 r = -EFAULT;
3791 if (copy_from_user(&mce, argp, sizeof mce))
3792 goto out;
3793 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3794 break;
3795 }
3796 case KVM_GET_VCPU_EVENTS: {
3797 struct kvm_vcpu_events events;
3798
3799 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3800
3801 r = -EFAULT;
3802 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3803 break;
3804 r = 0;
3805 break;
3806 }
3807 case KVM_SET_VCPU_EVENTS: {
3808 struct kvm_vcpu_events events;
3809
3810 r = -EFAULT;
3811 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3812 break;
3813
3814 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3815 break;
3816 }
3817 case KVM_GET_DEBUGREGS: {
3818 struct kvm_debugregs dbgregs;
3819
3820 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3821
3822 r = -EFAULT;
3823 if (copy_to_user(argp, &dbgregs,
3824 sizeof(struct kvm_debugregs)))
3825 break;
3826 r = 0;
3827 break;
3828 }
3829 case KVM_SET_DEBUGREGS: {
3830 struct kvm_debugregs dbgregs;
3831
3832 r = -EFAULT;
3833 if (copy_from_user(&dbgregs, argp,
3834 sizeof(struct kvm_debugregs)))
3835 break;
3836
3837 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3838 break;
3839 }
3840 case KVM_GET_XSAVE: {
3841 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3842 r = -ENOMEM;
3843 if (!u.xsave)
3844 break;
3845
3846 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3847
3848 r = -EFAULT;
3849 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3850 break;
3851 r = 0;
3852 break;
3853 }
3854 case KVM_SET_XSAVE: {
3855 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3856 if (IS_ERR(u.xsave))
3857 return PTR_ERR(u.xsave);
3858
3859 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3860 break;
3861 }
3862 case KVM_GET_XCRS: {
3863 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3864 r = -ENOMEM;
3865 if (!u.xcrs)
3866 break;
3867
3868 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3869
3870 r = -EFAULT;
3871 if (copy_to_user(argp, u.xcrs,
3872 sizeof(struct kvm_xcrs)))
3873 break;
3874 r = 0;
3875 break;
3876 }
3877 case KVM_SET_XCRS: {
3878 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3879 if (IS_ERR(u.xcrs))
3880 return PTR_ERR(u.xcrs);
3881
3882 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3883 break;
3884 }
3885 case KVM_SET_TSC_KHZ: {
3886 u32 user_tsc_khz;
3887
3888 r = -EINVAL;
3889 user_tsc_khz = (u32)arg;
3890
3891 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3892 goto out;
3893
3894 if (user_tsc_khz == 0)
3895 user_tsc_khz = tsc_khz;
3896
3897 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3898 r = 0;
3899
3900 goto out;
3901 }
3902 case KVM_GET_TSC_KHZ: {
3903 r = vcpu->arch.virtual_tsc_khz;
3904 goto out;
3905 }
3906 case KVM_KVMCLOCK_CTRL: {
3907 r = kvm_set_guest_paused(vcpu);
3908 goto out;
3909 }
3910 case KVM_ENABLE_CAP: {
3911 struct kvm_enable_cap cap;
3912
3913 r = -EFAULT;
3914 if (copy_from_user(&cap, argp, sizeof(cap)))
3915 goto out;
3916 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3917 break;
3918 }
3919 default:
3920 r = -EINVAL;
3921 }
3922 out:
3923 kfree(u.buffer);
3924 return r;
3925 }
3926
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)3927 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3928 {
3929 return VM_FAULT_SIGBUS;
3930 }
3931
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3932 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3933 {
3934 int ret;
3935
3936 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3937 return -EINVAL;
3938 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3939 return ret;
3940 }
3941
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3942 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3943 u64 ident_addr)
3944 {
3945 kvm->arch.ept_identity_map_addr = ident_addr;
3946 return 0;
3947 }
3948
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3949 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3950 u32 kvm_nr_mmu_pages)
3951 {
3952 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3953 return -EINVAL;
3954
3955 mutex_lock(&kvm->slots_lock);
3956
3957 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3958 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3959
3960 mutex_unlock(&kvm->slots_lock);
3961 return 0;
3962 }
3963
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3964 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3965 {
3966 return kvm->arch.n_max_mmu_pages;
3967 }
3968
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3969 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3970 {
3971 struct kvm_pic *pic = kvm->arch.vpic;
3972 int r;
3973
3974 r = 0;
3975 switch (chip->chip_id) {
3976 case KVM_IRQCHIP_PIC_MASTER:
3977 memcpy(&chip->chip.pic, &pic->pics[0],
3978 sizeof(struct kvm_pic_state));
3979 break;
3980 case KVM_IRQCHIP_PIC_SLAVE:
3981 memcpy(&chip->chip.pic, &pic->pics[1],
3982 sizeof(struct kvm_pic_state));
3983 break;
3984 case KVM_IRQCHIP_IOAPIC:
3985 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3986 break;
3987 default:
3988 r = -EINVAL;
3989 break;
3990 }
3991 return r;
3992 }
3993
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3994 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3995 {
3996 struct kvm_pic *pic = kvm->arch.vpic;
3997 int r;
3998
3999 r = 0;
4000 switch (chip->chip_id) {
4001 case KVM_IRQCHIP_PIC_MASTER:
4002 spin_lock(&pic->lock);
4003 memcpy(&pic->pics[0], &chip->chip.pic,
4004 sizeof(struct kvm_pic_state));
4005 spin_unlock(&pic->lock);
4006 break;
4007 case KVM_IRQCHIP_PIC_SLAVE:
4008 spin_lock(&pic->lock);
4009 memcpy(&pic->pics[1], &chip->chip.pic,
4010 sizeof(struct kvm_pic_state));
4011 spin_unlock(&pic->lock);
4012 break;
4013 case KVM_IRQCHIP_IOAPIC:
4014 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4015 break;
4016 default:
4017 r = -EINVAL;
4018 break;
4019 }
4020 kvm_pic_update_irq(pic);
4021 return r;
4022 }
4023
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)4024 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4025 {
4026 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4027
4028 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4029
4030 mutex_lock(&kps->lock);
4031 memcpy(ps, &kps->channels, sizeof(*ps));
4032 mutex_unlock(&kps->lock);
4033 return 0;
4034 }
4035
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)4036 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4037 {
4038 int i;
4039 struct kvm_pit *pit = kvm->arch.vpit;
4040
4041 mutex_lock(&pit->pit_state.lock);
4042 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4043 for (i = 0; i < 3; i++)
4044 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4045 mutex_unlock(&pit->pit_state.lock);
4046 return 0;
4047 }
4048
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4049 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4050 {
4051 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4052 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4053 sizeof(ps->channels));
4054 ps->flags = kvm->arch.vpit->pit_state.flags;
4055 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4056 memset(&ps->reserved, 0, sizeof(ps->reserved));
4057 return 0;
4058 }
4059
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)4060 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4061 {
4062 int start = 0;
4063 int i;
4064 u32 prev_legacy, cur_legacy;
4065 struct kvm_pit *pit = kvm->arch.vpit;
4066
4067 mutex_lock(&pit->pit_state.lock);
4068 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4069 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4070 if (!prev_legacy && cur_legacy)
4071 start = 1;
4072 memcpy(&pit->pit_state.channels, &ps->channels,
4073 sizeof(pit->pit_state.channels));
4074 pit->pit_state.flags = ps->flags;
4075 for (i = 0; i < 3; i++)
4076 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4077 start && i == 0);
4078 mutex_unlock(&pit->pit_state.lock);
4079 return 0;
4080 }
4081
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)4082 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4083 struct kvm_reinject_control *control)
4084 {
4085 struct kvm_pit *pit = kvm->arch.vpit;
4086
4087 if (!pit)
4088 return -ENXIO;
4089
4090 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4091 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4092 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4093 */
4094 mutex_lock(&pit->pit_state.lock);
4095 kvm_pit_set_reinject(pit, control->pit_reinject);
4096 mutex_unlock(&pit->pit_state.lock);
4097
4098 return 0;
4099 }
4100
4101 /**
4102 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4103 * @kvm: kvm instance
4104 * @log: slot id and address to which we copy the log
4105 *
4106 * Steps 1-4 below provide general overview of dirty page logging. See
4107 * kvm_get_dirty_log_protect() function description for additional details.
4108 *
4109 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4110 * always flush the TLB (step 4) even if previous step failed and the dirty
4111 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4112 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4113 * writes will be marked dirty for next log read.
4114 *
4115 * 1. Take a snapshot of the bit and clear it if needed.
4116 * 2. Write protect the corresponding page.
4117 * 3. Copy the snapshot to the userspace.
4118 * 4. Flush TLB's if needed.
4119 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)4120 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4121 {
4122 bool is_dirty = false;
4123 int r;
4124
4125 mutex_lock(&kvm->slots_lock);
4126
4127 /*
4128 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4129 */
4130 if (kvm_x86_ops->flush_log_dirty)
4131 kvm_x86_ops->flush_log_dirty(kvm);
4132
4133 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4134
4135 /*
4136 * All the TLBs can be flushed out of mmu lock, see the comments in
4137 * kvm_mmu_slot_remove_write_access().
4138 */
4139 lockdep_assert_held(&kvm->slots_lock);
4140 if (is_dirty)
4141 kvm_flush_remote_tlbs(kvm);
4142
4143 mutex_unlock(&kvm->slots_lock);
4144 return r;
4145 }
4146
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)4147 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4148 bool line_status)
4149 {
4150 if (!irqchip_in_kernel(kvm))
4151 return -ENXIO;
4152
4153 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4154 irq_event->irq, irq_event->level,
4155 line_status);
4156 return 0;
4157 }
4158
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4159 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4160 struct kvm_enable_cap *cap)
4161 {
4162 int r;
4163
4164 if (cap->flags)
4165 return -EINVAL;
4166
4167 switch (cap->cap) {
4168 case KVM_CAP_DISABLE_QUIRKS:
4169 kvm->arch.disabled_quirks = cap->args[0];
4170 r = 0;
4171 break;
4172 case KVM_CAP_SPLIT_IRQCHIP: {
4173 mutex_lock(&kvm->lock);
4174 r = -EINVAL;
4175 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4176 goto split_irqchip_unlock;
4177 r = -EEXIST;
4178 if (irqchip_in_kernel(kvm))
4179 goto split_irqchip_unlock;
4180 if (kvm->created_vcpus)
4181 goto split_irqchip_unlock;
4182 r = kvm_setup_empty_irq_routing(kvm);
4183 if (r)
4184 goto split_irqchip_unlock;
4185 /* Pairs with irqchip_in_kernel. */
4186 smp_wmb();
4187 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4188 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4189 r = 0;
4190 split_irqchip_unlock:
4191 mutex_unlock(&kvm->lock);
4192 break;
4193 }
4194 case KVM_CAP_X2APIC_API:
4195 r = -EINVAL;
4196 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4197 break;
4198
4199 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4200 kvm->arch.x2apic_format = true;
4201 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4202 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4203
4204 r = 0;
4205 break;
4206 default:
4207 r = -EINVAL;
4208 break;
4209 }
4210 return r;
4211 }
4212
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4213 long kvm_arch_vm_ioctl(struct file *filp,
4214 unsigned int ioctl, unsigned long arg)
4215 {
4216 struct kvm *kvm = filp->private_data;
4217 void __user *argp = (void __user *)arg;
4218 int r = -ENOTTY;
4219 /*
4220 * This union makes it completely explicit to gcc-3.x
4221 * that these two variables' stack usage should be
4222 * combined, not added together.
4223 */
4224 union {
4225 struct kvm_pit_state ps;
4226 struct kvm_pit_state2 ps2;
4227 struct kvm_pit_config pit_config;
4228 } u;
4229
4230 switch (ioctl) {
4231 case KVM_SET_TSS_ADDR:
4232 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4233 break;
4234 case KVM_SET_IDENTITY_MAP_ADDR: {
4235 u64 ident_addr;
4236
4237 r = -EFAULT;
4238 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4239 goto out;
4240 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4241 break;
4242 }
4243 case KVM_SET_NR_MMU_PAGES:
4244 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4245 break;
4246 case KVM_GET_NR_MMU_PAGES:
4247 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4248 break;
4249 case KVM_CREATE_IRQCHIP: {
4250 mutex_lock(&kvm->lock);
4251
4252 r = -EEXIST;
4253 if (irqchip_in_kernel(kvm))
4254 goto create_irqchip_unlock;
4255
4256 r = -EINVAL;
4257 if (kvm->created_vcpus)
4258 goto create_irqchip_unlock;
4259
4260 r = kvm_pic_init(kvm);
4261 if (r)
4262 goto create_irqchip_unlock;
4263
4264 r = kvm_ioapic_init(kvm);
4265 if (r) {
4266 kvm_pic_destroy(kvm);
4267 goto create_irqchip_unlock;
4268 }
4269
4270 r = kvm_setup_default_irq_routing(kvm);
4271 if (r) {
4272 kvm_ioapic_destroy(kvm);
4273 kvm_pic_destroy(kvm);
4274 goto create_irqchip_unlock;
4275 }
4276 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4277 smp_wmb();
4278 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4279 create_irqchip_unlock:
4280 mutex_unlock(&kvm->lock);
4281 break;
4282 }
4283 case KVM_CREATE_PIT:
4284 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4285 goto create_pit;
4286 case KVM_CREATE_PIT2:
4287 r = -EFAULT;
4288 if (copy_from_user(&u.pit_config, argp,
4289 sizeof(struct kvm_pit_config)))
4290 goto out;
4291 create_pit:
4292 mutex_lock(&kvm->lock);
4293 r = -EEXIST;
4294 if (kvm->arch.vpit)
4295 goto create_pit_unlock;
4296 r = -ENOMEM;
4297 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4298 if (kvm->arch.vpit)
4299 r = 0;
4300 create_pit_unlock:
4301 mutex_unlock(&kvm->lock);
4302 break;
4303 case KVM_GET_IRQCHIP: {
4304 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4305 struct kvm_irqchip *chip;
4306
4307 chip = memdup_user(argp, sizeof(*chip));
4308 if (IS_ERR(chip)) {
4309 r = PTR_ERR(chip);
4310 goto out;
4311 }
4312
4313 r = -ENXIO;
4314 if (!irqchip_kernel(kvm))
4315 goto get_irqchip_out;
4316 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4317 if (r)
4318 goto get_irqchip_out;
4319 r = -EFAULT;
4320 if (copy_to_user(argp, chip, sizeof *chip))
4321 goto get_irqchip_out;
4322 r = 0;
4323 get_irqchip_out:
4324 kfree(chip);
4325 break;
4326 }
4327 case KVM_SET_IRQCHIP: {
4328 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4329 struct kvm_irqchip *chip;
4330
4331 chip = memdup_user(argp, sizeof(*chip));
4332 if (IS_ERR(chip)) {
4333 r = PTR_ERR(chip);
4334 goto out;
4335 }
4336
4337 r = -ENXIO;
4338 if (!irqchip_kernel(kvm))
4339 goto set_irqchip_out;
4340 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4341 if (r)
4342 goto set_irqchip_out;
4343 r = 0;
4344 set_irqchip_out:
4345 kfree(chip);
4346 break;
4347 }
4348 case KVM_GET_PIT: {
4349 r = -EFAULT;
4350 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4351 goto out;
4352 r = -ENXIO;
4353 if (!kvm->arch.vpit)
4354 goto out;
4355 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4356 if (r)
4357 goto out;
4358 r = -EFAULT;
4359 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4360 goto out;
4361 r = 0;
4362 break;
4363 }
4364 case KVM_SET_PIT: {
4365 r = -EFAULT;
4366 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4367 goto out;
4368 r = -ENXIO;
4369 if (!kvm->arch.vpit)
4370 goto out;
4371 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4372 break;
4373 }
4374 case KVM_GET_PIT2: {
4375 r = -ENXIO;
4376 if (!kvm->arch.vpit)
4377 goto out;
4378 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4379 if (r)
4380 goto out;
4381 r = -EFAULT;
4382 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4383 goto out;
4384 r = 0;
4385 break;
4386 }
4387 case KVM_SET_PIT2: {
4388 r = -EFAULT;
4389 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4390 goto out;
4391 r = -ENXIO;
4392 if (!kvm->arch.vpit)
4393 goto out;
4394 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4395 break;
4396 }
4397 case KVM_REINJECT_CONTROL: {
4398 struct kvm_reinject_control control;
4399 r = -EFAULT;
4400 if (copy_from_user(&control, argp, sizeof(control)))
4401 goto out;
4402 r = kvm_vm_ioctl_reinject(kvm, &control);
4403 break;
4404 }
4405 case KVM_SET_BOOT_CPU_ID:
4406 r = 0;
4407 mutex_lock(&kvm->lock);
4408 if (kvm->created_vcpus)
4409 r = -EBUSY;
4410 else
4411 kvm->arch.bsp_vcpu_id = arg;
4412 mutex_unlock(&kvm->lock);
4413 break;
4414 case KVM_XEN_HVM_CONFIG: {
4415 struct kvm_xen_hvm_config xhc;
4416 r = -EFAULT;
4417 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4418 goto out;
4419 r = -EINVAL;
4420 if (xhc.flags)
4421 goto out;
4422 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4423 r = 0;
4424 break;
4425 }
4426 case KVM_SET_CLOCK: {
4427 struct kvm_clock_data user_ns;
4428 u64 now_ns;
4429
4430 r = -EFAULT;
4431 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4432 goto out;
4433
4434 r = -EINVAL;
4435 if (user_ns.flags)
4436 goto out;
4437
4438 r = 0;
4439 /*
4440 * TODO: userspace has to take care of races with VCPU_RUN, so
4441 * kvm_gen_update_masterclock() can be cut down to locked
4442 * pvclock_update_vm_gtod_copy().
4443 */
4444 kvm_gen_update_masterclock(kvm);
4445 now_ns = get_kvmclock_ns(kvm);
4446 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4447 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4448 break;
4449 }
4450 case KVM_GET_CLOCK: {
4451 struct kvm_clock_data user_ns;
4452 u64 now_ns;
4453
4454 now_ns = get_kvmclock_ns(kvm);
4455 user_ns.clock = now_ns;
4456 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4457 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4458
4459 r = -EFAULT;
4460 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4461 goto out;
4462 r = 0;
4463 break;
4464 }
4465 case KVM_ENABLE_CAP: {
4466 struct kvm_enable_cap cap;
4467
4468 r = -EFAULT;
4469 if (copy_from_user(&cap, argp, sizeof(cap)))
4470 goto out;
4471 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4472 break;
4473 }
4474 default:
4475 r = -ENOTTY;
4476 }
4477 out:
4478 return r;
4479 }
4480
kvm_init_msr_list(void)4481 static void kvm_init_msr_list(void)
4482 {
4483 u32 dummy[2];
4484 unsigned i, j;
4485
4486 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4487 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4488 continue;
4489
4490 /*
4491 * Even MSRs that are valid in the host may not be exposed
4492 * to the guests in some cases.
4493 */
4494 switch (msrs_to_save[i]) {
4495 case MSR_IA32_BNDCFGS:
4496 if (!kvm_x86_ops->mpx_supported())
4497 continue;
4498 break;
4499 case MSR_TSC_AUX:
4500 if (!kvm_x86_ops->rdtscp_supported())
4501 continue;
4502 break;
4503 default:
4504 break;
4505 }
4506
4507 if (j < i)
4508 msrs_to_save[j] = msrs_to_save[i];
4509 j++;
4510 }
4511 num_msrs_to_save = j;
4512
4513 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4514 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4515 continue;
4516
4517 if (j < i)
4518 emulated_msrs[j] = emulated_msrs[i];
4519 j++;
4520 }
4521 num_emulated_msrs = j;
4522
4523 for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4524 struct kvm_msr_entry msr;
4525
4526 msr.index = msr_based_features[i];
4527 if (kvm_get_msr_feature(&msr))
4528 continue;
4529
4530 if (j < i)
4531 msr_based_features[j] = msr_based_features[i];
4532 j++;
4533 }
4534 num_msr_based_features = j;
4535 }
4536
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4537 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4538 const void *v)
4539 {
4540 int handled = 0;
4541 int n;
4542
4543 do {
4544 n = min(len, 8);
4545 if (!(lapic_in_kernel(vcpu) &&
4546 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4547 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4548 break;
4549 handled += n;
4550 addr += n;
4551 len -= n;
4552 v += n;
4553 } while (len);
4554
4555 return handled;
4556 }
4557
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4558 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4559 {
4560 int handled = 0;
4561 int n;
4562
4563 do {
4564 n = min(len, 8);
4565 if (!(lapic_in_kernel(vcpu) &&
4566 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4567 addr, n, v))
4568 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4569 break;
4570 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4571 handled += n;
4572 addr += n;
4573 len -= n;
4574 v += n;
4575 } while (len);
4576
4577 return handled;
4578 }
4579
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4580 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4581 struct kvm_segment *var, int seg)
4582 {
4583 kvm_x86_ops->set_segment(vcpu, var, seg);
4584 }
4585
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4586 void kvm_get_segment(struct kvm_vcpu *vcpu,
4587 struct kvm_segment *var, int seg)
4588 {
4589 kvm_x86_ops->get_segment(vcpu, var, seg);
4590 }
4591
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4592 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4593 struct x86_exception *exception)
4594 {
4595 gpa_t t_gpa;
4596
4597 BUG_ON(!mmu_is_nested(vcpu));
4598
4599 /* NPT walks are always user-walks */
4600 access |= PFERR_USER_MASK;
4601 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4602
4603 return t_gpa;
4604 }
4605
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4606 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4607 struct x86_exception *exception)
4608 {
4609 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4610 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4611 }
4612
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4613 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4614 struct x86_exception *exception)
4615 {
4616 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4617 access |= PFERR_FETCH_MASK;
4618 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4619 }
4620
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4621 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4622 struct x86_exception *exception)
4623 {
4624 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4625 access |= PFERR_WRITE_MASK;
4626 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4627 }
4628
4629 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4630 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4631 struct x86_exception *exception)
4632 {
4633 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4634 }
4635
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4636 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4637 struct kvm_vcpu *vcpu, u32 access,
4638 struct x86_exception *exception)
4639 {
4640 void *data = val;
4641 int r = X86EMUL_CONTINUE;
4642
4643 while (bytes) {
4644 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4645 exception);
4646 unsigned offset = addr & (PAGE_SIZE-1);
4647 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4648 int ret;
4649
4650 if (gpa == UNMAPPED_GVA)
4651 return X86EMUL_PROPAGATE_FAULT;
4652 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4653 offset, toread);
4654 if (ret < 0) {
4655 r = X86EMUL_IO_NEEDED;
4656 goto out;
4657 }
4658
4659 bytes -= toread;
4660 data += toread;
4661 addr += toread;
4662 }
4663 out:
4664 return r;
4665 }
4666
4667 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4668 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4669 gva_t addr, void *val, unsigned int bytes,
4670 struct x86_exception *exception)
4671 {
4672 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4673 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4674 unsigned offset;
4675 int ret;
4676
4677 /* Inline kvm_read_guest_virt_helper for speed. */
4678 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4679 exception);
4680 if (unlikely(gpa == UNMAPPED_GVA))
4681 return X86EMUL_PROPAGATE_FAULT;
4682
4683 offset = addr & (PAGE_SIZE-1);
4684 if (WARN_ON(offset + bytes > PAGE_SIZE))
4685 bytes = (unsigned)PAGE_SIZE - offset;
4686 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4687 offset, bytes);
4688 if (unlikely(ret < 0))
4689 return X86EMUL_IO_NEEDED;
4690
4691 return X86EMUL_CONTINUE;
4692 }
4693
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4694 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4695 gva_t addr, void *val, unsigned int bytes,
4696 struct x86_exception *exception)
4697 {
4698 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4699
4700 /*
4701 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4702 * is returned, but our callers are not ready for that and they blindly
4703 * call kvm_inject_page_fault. Ensure that they at least do not leak
4704 * uninitialized kernel stack memory into cr2 and error code.
4705 */
4706 memset(exception, 0, sizeof(*exception));
4707 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4708 exception);
4709 }
4710 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4711
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)4712 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4713 gva_t addr, void *val, unsigned int bytes,
4714 struct x86_exception *exception, bool system)
4715 {
4716 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4717 u32 access = 0;
4718
4719 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4720 access |= PFERR_USER_MASK;
4721
4722 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4723 }
4724
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)4725 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4726 unsigned long addr, void *val, unsigned int bytes)
4727 {
4728 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4729 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4730
4731 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4732 }
4733
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4734 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4735 struct kvm_vcpu *vcpu, u32 access,
4736 struct x86_exception *exception)
4737 {
4738 void *data = val;
4739 int r = X86EMUL_CONTINUE;
4740
4741 while (bytes) {
4742 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4743 access,
4744 exception);
4745 unsigned offset = addr & (PAGE_SIZE-1);
4746 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4747 int ret;
4748
4749 if (gpa == UNMAPPED_GVA)
4750 return X86EMUL_PROPAGATE_FAULT;
4751 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4752 if (ret < 0) {
4753 r = X86EMUL_IO_NEEDED;
4754 goto out;
4755 }
4756
4757 bytes -= towrite;
4758 data += towrite;
4759 addr += towrite;
4760 }
4761 out:
4762 return r;
4763 }
4764
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)4765 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4766 unsigned int bytes, struct x86_exception *exception,
4767 bool system)
4768 {
4769 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4770 u32 access = PFERR_WRITE_MASK;
4771
4772 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4773 access |= PFERR_USER_MASK;
4774
4775 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4776 access, exception);
4777 }
4778
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4779 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4780 unsigned int bytes, struct x86_exception *exception)
4781 {
4782 /* kvm_write_guest_virt_system can pull in tons of pages. */
4783 vcpu->arch.l1tf_flush_l1d = true;
4784
4785 /*
4786 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
4787 * is returned, but our callers are not ready for that and they blindly
4788 * call kvm_inject_page_fault. Ensure that they at least do not leak
4789 * uninitialized kernel stack memory into cr2 and error code.
4790 */
4791 memset(exception, 0, sizeof(*exception));
4792 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4793 PFERR_WRITE_MASK, exception);
4794 }
4795 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4796
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)4797 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4798 gpa_t gpa, bool write)
4799 {
4800 /* For APIC access vmexit */
4801 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4802 return 1;
4803
4804 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4805 trace_vcpu_match_mmio(gva, gpa, write, true);
4806 return 1;
4807 }
4808
4809 return 0;
4810 }
4811
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)4812 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4813 gpa_t *gpa, struct x86_exception *exception,
4814 bool write)
4815 {
4816 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4817 | (write ? PFERR_WRITE_MASK : 0);
4818
4819 /*
4820 * currently PKRU is only applied to ept enabled guest so
4821 * there is no pkey in EPT page table for L1 guest or EPT
4822 * shadow page table for L2 guest.
4823 */
4824 if (vcpu_match_mmio_gva(vcpu, gva)
4825 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4826 vcpu->arch.access, 0, access)) {
4827 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4828 (gva & (PAGE_SIZE - 1));
4829 trace_vcpu_match_mmio(gva, *gpa, write, false);
4830 return 1;
4831 }
4832
4833 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4834
4835 if (*gpa == UNMAPPED_GVA)
4836 return -1;
4837
4838 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4839 }
4840
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)4841 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4842 const void *val, int bytes)
4843 {
4844 int ret;
4845
4846 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4847 if (ret < 0)
4848 return 0;
4849 kvm_page_track_write(vcpu, gpa, val, bytes);
4850 return 1;
4851 }
4852
4853 struct read_write_emulator_ops {
4854 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4855 int bytes);
4856 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4857 void *val, int bytes);
4858 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4859 int bytes, void *val);
4860 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4861 void *val, int bytes);
4862 bool write;
4863 };
4864
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)4865 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4866 {
4867 if (vcpu->mmio_read_completed) {
4868 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4869 vcpu->mmio_fragments[0].gpa, val);
4870 vcpu->mmio_read_completed = 0;
4871 return 1;
4872 }
4873
4874 return 0;
4875 }
4876
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4877 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4878 void *val, int bytes)
4879 {
4880 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4881 }
4882
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4883 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4884 void *val, int bytes)
4885 {
4886 return emulator_write_phys(vcpu, gpa, val, bytes);
4887 }
4888
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)4889 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4890 {
4891 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4892 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4893 }
4894
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4895 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4896 void *val, int bytes)
4897 {
4898 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4899 return X86EMUL_IO_NEEDED;
4900 }
4901
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4902 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4903 void *val, int bytes)
4904 {
4905 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4906
4907 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4908 return X86EMUL_CONTINUE;
4909 }
4910
4911 static const struct read_write_emulator_ops read_emultor = {
4912 .read_write_prepare = read_prepare,
4913 .read_write_emulate = read_emulate,
4914 .read_write_mmio = vcpu_mmio_read,
4915 .read_write_exit_mmio = read_exit_mmio,
4916 };
4917
4918 static const struct read_write_emulator_ops write_emultor = {
4919 .read_write_emulate = write_emulate,
4920 .read_write_mmio = write_mmio,
4921 .read_write_exit_mmio = write_exit_mmio,
4922 .write = true,
4923 };
4924
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)4925 static int emulator_read_write_onepage(unsigned long addr, void *val,
4926 unsigned int bytes,
4927 struct x86_exception *exception,
4928 struct kvm_vcpu *vcpu,
4929 const struct read_write_emulator_ops *ops)
4930 {
4931 gpa_t gpa;
4932 int handled, ret;
4933 bool write = ops->write;
4934 struct kvm_mmio_fragment *frag;
4935 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4936
4937 /*
4938 * If the exit was due to a NPF we may already have a GPA.
4939 * If the GPA is present, use it to avoid the GVA to GPA table walk.
4940 * Note, this cannot be used on string operations since string
4941 * operation using rep will only have the initial GPA from the NPF
4942 * occurred.
4943 */
4944 if (vcpu->arch.gpa_available &&
4945 emulator_can_use_gpa(ctxt) &&
4946 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4947 gpa = vcpu->arch.gpa_val;
4948 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4949 } else {
4950 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4951 if (ret < 0)
4952 return X86EMUL_PROPAGATE_FAULT;
4953 }
4954
4955 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4956 return X86EMUL_CONTINUE;
4957
4958 /*
4959 * Is this MMIO handled locally?
4960 */
4961 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4962 if (handled == bytes)
4963 return X86EMUL_CONTINUE;
4964
4965 gpa += handled;
4966 bytes -= handled;
4967 val += handled;
4968
4969 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4970 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4971 frag->gpa = gpa;
4972 frag->data = val;
4973 frag->len = bytes;
4974 return X86EMUL_CONTINUE;
4975 }
4976
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)4977 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4978 unsigned long addr,
4979 void *val, unsigned int bytes,
4980 struct x86_exception *exception,
4981 const struct read_write_emulator_ops *ops)
4982 {
4983 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4984 gpa_t gpa;
4985 int rc;
4986
4987 if (ops->read_write_prepare &&
4988 ops->read_write_prepare(vcpu, val, bytes))
4989 return X86EMUL_CONTINUE;
4990
4991 vcpu->mmio_nr_fragments = 0;
4992
4993 /* Crossing a page boundary? */
4994 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4995 int now;
4996
4997 now = -addr & ~PAGE_MASK;
4998 rc = emulator_read_write_onepage(addr, val, now, exception,
4999 vcpu, ops);
5000
5001 if (rc != X86EMUL_CONTINUE)
5002 return rc;
5003 addr += now;
5004 if (ctxt->mode != X86EMUL_MODE_PROT64)
5005 addr = (u32)addr;
5006 val += now;
5007 bytes -= now;
5008 }
5009
5010 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5011 vcpu, ops);
5012 if (rc != X86EMUL_CONTINUE)
5013 return rc;
5014
5015 if (!vcpu->mmio_nr_fragments)
5016 return rc;
5017
5018 gpa = vcpu->mmio_fragments[0].gpa;
5019
5020 vcpu->mmio_needed = 1;
5021 vcpu->mmio_cur_fragment = 0;
5022
5023 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5024 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5025 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5026 vcpu->run->mmio.phys_addr = gpa;
5027
5028 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5029 }
5030
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)5031 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5032 unsigned long addr,
5033 void *val,
5034 unsigned int bytes,
5035 struct x86_exception *exception)
5036 {
5037 return emulator_read_write(ctxt, addr, val, bytes,
5038 exception, &read_emultor);
5039 }
5040
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)5041 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5042 unsigned long addr,
5043 const void *val,
5044 unsigned int bytes,
5045 struct x86_exception *exception)
5046 {
5047 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5048 exception, &write_emultor);
5049 }
5050
5051 #define CMPXCHG_TYPE(t, ptr, old, new) \
5052 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5053
5054 #ifdef CONFIG_X86_64
5055 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5056 #else
5057 # define CMPXCHG64(ptr, old, new) \
5058 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5059 #endif
5060
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)5061 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5062 unsigned long addr,
5063 const void *old,
5064 const void *new,
5065 unsigned int bytes,
5066 struct x86_exception *exception)
5067 {
5068 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5069 gpa_t gpa;
5070 struct page *page;
5071 char *kaddr;
5072 bool exchanged;
5073
5074 /* guests cmpxchg8b have to be emulated atomically */
5075 if (bytes > 8 || (bytes & (bytes - 1)))
5076 goto emul_write;
5077
5078 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5079
5080 if (gpa == UNMAPPED_GVA ||
5081 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5082 goto emul_write;
5083
5084 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5085 goto emul_write;
5086
5087 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5088 if (is_error_page(page))
5089 goto emul_write;
5090
5091 kaddr = kmap_atomic(page);
5092 kaddr += offset_in_page(gpa);
5093 switch (bytes) {
5094 case 1:
5095 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5096 break;
5097 case 2:
5098 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5099 break;
5100 case 4:
5101 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5102 break;
5103 case 8:
5104 exchanged = CMPXCHG64(kaddr, old, new);
5105 break;
5106 default:
5107 BUG();
5108 }
5109 kunmap_atomic(kaddr);
5110 kvm_release_page_dirty(page);
5111
5112 if (!exchanged)
5113 return X86EMUL_CMPXCHG_FAILED;
5114
5115 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5116 kvm_page_track_write(vcpu, gpa, new, bytes);
5117
5118 return X86EMUL_CONTINUE;
5119
5120 emul_write:
5121 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5122
5123 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5124 }
5125
kernel_pio(struct kvm_vcpu * vcpu,void * pd)5126 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5127 {
5128 int r = 0, i;
5129
5130 for (i = 0; i < vcpu->arch.pio.count; i++) {
5131 if (vcpu->arch.pio.in)
5132 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5133 vcpu->arch.pio.size, pd);
5134 else
5135 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5136 vcpu->arch.pio.port, vcpu->arch.pio.size,
5137 pd);
5138 if (r)
5139 break;
5140 pd += vcpu->arch.pio.size;
5141 }
5142 return r;
5143 }
5144
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)5145 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5146 unsigned short port, void *val,
5147 unsigned int count, bool in)
5148 {
5149 vcpu->arch.pio.port = port;
5150 vcpu->arch.pio.in = in;
5151 vcpu->arch.pio.count = count;
5152 vcpu->arch.pio.size = size;
5153
5154 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5155 vcpu->arch.pio.count = 0;
5156 return 1;
5157 }
5158
5159 vcpu->run->exit_reason = KVM_EXIT_IO;
5160 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5161 vcpu->run->io.size = size;
5162 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5163 vcpu->run->io.count = count;
5164 vcpu->run->io.port = port;
5165
5166 return 0;
5167 }
5168
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)5169 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5170 int size, unsigned short port, void *val,
5171 unsigned int count)
5172 {
5173 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5174 int ret;
5175
5176 if (vcpu->arch.pio.count)
5177 goto data_avail;
5178
5179 memset(vcpu->arch.pio_data, 0, size * count);
5180
5181 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5182 if (ret) {
5183 data_avail:
5184 memcpy(val, vcpu->arch.pio_data, size * count);
5185 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5186 vcpu->arch.pio.count = 0;
5187 return 1;
5188 }
5189
5190 return 0;
5191 }
5192
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)5193 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5194 int size, unsigned short port,
5195 const void *val, unsigned int count)
5196 {
5197 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5198
5199 memcpy(vcpu->arch.pio_data, val, size * count);
5200 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5201 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5202 }
5203
get_segment_base(struct kvm_vcpu * vcpu,int seg)5204 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5205 {
5206 return kvm_x86_ops->get_segment_base(vcpu, seg);
5207 }
5208
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)5209 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5210 {
5211 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5212 }
5213
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)5214 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5215 {
5216 if (!need_emulate_wbinvd(vcpu))
5217 return X86EMUL_CONTINUE;
5218
5219 if (kvm_x86_ops->has_wbinvd_exit()) {
5220 int cpu = get_cpu();
5221
5222 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5223 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5224 wbinvd_ipi, NULL, 1);
5225 put_cpu();
5226 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5227 } else
5228 wbinvd();
5229 return X86EMUL_CONTINUE;
5230 }
5231
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)5232 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5233 {
5234 kvm_emulate_wbinvd_noskip(vcpu);
5235 return kvm_skip_emulated_instruction(vcpu);
5236 }
5237 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5238
5239
5240
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)5241 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5242 {
5243 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5244 }
5245
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)5246 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5247 unsigned long *dest)
5248 {
5249 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5250 }
5251
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)5252 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5253 unsigned long value)
5254 {
5255
5256 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5257 }
5258
mk_cr_64(u64 curr_cr,u32 new_val)5259 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5260 {
5261 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5262 }
5263
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)5264 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5265 {
5266 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5267 unsigned long value;
5268
5269 switch (cr) {
5270 case 0:
5271 value = kvm_read_cr0(vcpu);
5272 break;
5273 case 2:
5274 value = vcpu->arch.cr2;
5275 break;
5276 case 3:
5277 value = kvm_read_cr3(vcpu);
5278 break;
5279 case 4:
5280 value = kvm_read_cr4(vcpu);
5281 break;
5282 case 8:
5283 value = kvm_get_cr8(vcpu);
5284 break;
5285 default:
5286 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5287 return 0;
5288 }
5289
5290 return value;
5291 }
5292
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)5293 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5294 {
5295 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5296 int res = 0;
5297
5298 switch (cr) {
5299 case 0:
5300 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5301 break;
5302 case 2:
5303 vcpu->arch.cr2 = val;
5304 break;
5305 case 3:
5306 res = kvm_set_cr3(vcpu, val);
5307 break;
5308 case 4:
5309 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5310 break;
5311 case 8:
5312 res = kvm_set_cr8(vcpu, val);
5313 break;
5314 default:
5315 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5316 res = -1;
5317 }
5318
5319 return res;
5320 }
5321
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)5322 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5323 {
5324 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5325 }
5326
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5327 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5328 {
5329 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5330 }
5331
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5332 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5333 {
5334 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5335 }
5336
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5337 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5338 {
5339 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5340 }
5341
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)5342 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5343 {
5344 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5345 }
5346
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)5347 static unsigned long emulator_get_cached_segment_base(
5348 struct x86_emulate_ctxt *ctxt, int seg)
5349 {
5350 return get_segment_base(emul_to_vcpu(ctxt), seg);
5351 }
5352
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)5353 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5354 struct desc_struct *desc, u32 *base3,
5355 int seg)
5356 {
5357 struct kvm_segment var;
5358
5359 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5360 *selector = var.selector;
5361
5362 if (var.unusable) {
5363 memset(desc, 0, sizeof(*desc));
5364 if (base3)
5365 *base3 = 0;
5366 return false;
5367 }
5368
5369 if (var.g)
5370 var.limit >>= 12;
5371 set_desc_limit(desc, var.limit);
5372 set_desc_base(desc, (unsigned long)var.base);
5373 #ifdef CONFIG_X86_64
5374 if (base3)
5375 *base3 = var.base >> 32;
5376 #endif
5377 desc->type = var.type;
5378 desc->s = var.s;
5379 desc->dpl = var.dpl;
5380 desc->p = var.present;
5381 desc->avl = var.avl;
5382 desc->l = var.l;
5383 desc->d = var.db;
5384 desc->g = var.g;
5385
5386 return true;
5387 }
5388
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)5389 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5390 struct desc_struct *desc, u32 base3,
5391 int seg)
5392 {
5393 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5394 struct kvm_segment var;
5395
5396 var.selector = selector;
5397 var.base = get_desc_base(desc);
5398 #ifdef CONFIG_X86_64
5399 var.base |= ((u64)base3) << 32;
5400 #endif
5401 var.limit = get_desc_limit(desc);
5402 if (desc->g)
5403 var.limit = (var.limit << 12) | 0xfff;
5404 var.type = desc->type;
5405 var.dpl = desc->dpl;
5406 var.db = desc->d;
5407 var.s = desc->s;
5408 var.l = desc->l;
5409 var.g = desc->g;
5410 var.avl = desc->avl;
5411 var.present = desc->p;
5412 var.unusable = !var.present;
5413 var.padding = 0;
5414
5415 kvm_set_segment(vcpu, &var, seg);
5416 return;
5417 }
5418
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)5419 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5420 u32 msr_index, u64 *pdata)
5421 {
5422 struct msr_data msr;
5423 int r;
5424
5425 msr.index = msr_index;
5426 msr.host_initiated = false;
5427 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5428 if (r)
5429 return r;
5430
5431 *pdata = msr.data;
5432 return 0;
5433 }
5434
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)5435 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5436 u32 msr_index, u64 data)
5437 {
5438 struct msr_data msr;
5439
5440 msr.data = data;
5441 msr.index = msr_index;
5442 msr.host_initiated = false;
5443 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5444 }
5445
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)5446 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5447 {
5448 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5449
5450 return vcpu->arch.smbase;
5451 }
5452
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)5453 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5454 {
5455 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5456
5457 vcpu->arch.smbase = smbase;
5458 }
5459
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)5460 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5461 u32 pmc)
5462 {
5463 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5464 }
5465
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)5466 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5467 u32 pmc, u64 *pdata)
5468 {
5469 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5470 }
5471
emulator_halt(struct x86_emulate_ctxt * ctxt)5472 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5473 {
5474 emul_to_vcpu(ctxt)->arch.halt_request = 1;
5475 }
5476
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)5477 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5478 {
5479 }
5480
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)5481 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5482 {
5483 }
5484
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)5485 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5486 struct x86_instruction_info *info,
5487 enum x86_intercept_stage stage)
5488 {
5489 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5490 }
5491
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool check_limit)5492 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5493 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5494 {
5495 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5496 }
5497
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)5498 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5499 {
5500 return kvm_register_read(emul_to_vcpu(ctxt), reg);
5501 }
5502
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)5503 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5504 {
5505 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5506 }
5507
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)5508 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5509 {
5510 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5511 }
5512
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)5513 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5514 {
5515 return emul_to_vcpu(ctxt)->arch.hflags;
5516 }
5517
emulator_set_hflags(struct x86_emulate_ctxt * ctxt,unsigned emul_flags)5518 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5519 {
5520 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5521 }
5522
5523 static const struct x86_emulate_ops emulate_ops = {
5524 .read_gpr = emulator_read_gpr,
5525 .write_gpr = emulator_write_gpr,
5526 .read_std = emulator_read_std,
5527 .write_std = emulator_write_std,
5528 .read_phys = kvm_read_guest_phys_system,
5529 .fetch = kvm_fetch_guest_virt,
5530 .read_emulated = emulator_read_emulated,
5531 .write_emulated = emulator_write_emulated,
5532 .cmpxchg_emulated = emulator_cmpxchg_emulated,
5533 .invlpg = emulator_invlpg,
5534 .pio_in_emulated = emulator_pio_in_emulated,
5535 .pio_out_emulated = emulator_pio_out_emulated,
5536 .get_segment = emulator_get_segment,
5537 .set_segment = emulator_set_segment,
5538 .get_cached_segment_base = emulator_get_cached_segment_base,
5539 .get_gdt = emulator_get_gdt,
5540 .get_idt = emulator_get_idt,
5541 .set_gdt = emulator_set_gdt,
5542 .set_idt = emulator_set_idt,
5543 .get_cr = emulator_get_cr,
5544 .set_cr = emulator_set_cr,
5545 .cpl = emulator_get_cpl,
5546 .get_dr = emulator_get_dr,
5547 .set_dr = emulator_set_dr,
5548 .get_smbase = emulator_get_smbase,
5549 .set_smbase = emulator_set_smbase,
5550 .set_msr = emulator_set_msr,
5551 .get_msr = emulator_get_msr,
5552 .check_pmc = emulator_check_pmc,
5553 .read_pmc = emulator_read_pmc,
5554 .halt = emulator_halt,
5555 .wbinvd = emulator_wbinvd,
5556 .fix_hypercall = emulator_fix_hypercall,
5557 .get_fpu = emulator_get_fpu,
5558 .put_fpu = emulator_put_fpu,
5559 .intercept = emulator_intercept,
5560 .get_cpuid = emulator_get_cpuid,
5561 .set_nmi_mask = emulator_set_nmi_mask,
5562 .get_hflags = emulator_get_hflags,
5563 .set_hflags = emulator_set_hflags,
5564 };
5565
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5566 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5567 {
5568 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5569 /*
5570 * an sti; sti; sequence only disable interrupts for the first
5571 * instruction. So, if the last instruction, be it emulated or
5572 * not, left the system with the INT_STI flag enabled, it
5573 * means that the last instruction is an sti. We should not
5574 * leave the flag on in this case. The same goes for mov ss
5575 */
5576 if (int_shadow & mask)
5577 mask = 0;
5578 if (unlikely(int_shadow || mask)) {
5579 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5580 if (!mask)
5581 kvm_make_request(KVM_REQ_EVENT, vcpu);
5582 }
5583 }
5584
inject_emulated_exception(struct kvm_vcpu * vcpu)5585 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5586 {
5587 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5588 if (ctxt->exception.vector == PF_VECTOR)
5589 return kvm_propagate_fault(vcpu, &ctxt->exception);
5590
5591 if (ctxt->exception.error_code_valid)
5592 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5593 ctxt->exception.error_code);
5594 else
5595 kvm_queue_exception(vcpu, ctxt->exception.vector);
5596 return false;
5597 }
5598
init_emulate_ctxt(struct kvm_vcpu * vcpu)5599 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5600 {
5601 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5602 int cs_db, cs_l;
5603
5604 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5605
5606 ctxt->eflags = kvm_get_rflags(vcpu);
5607 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5608
5609 ctxt->eip = kvm_rip_read(vcpu);
5610 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
5611 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
5612 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
5613 cs_db ? X86EMUL_MODE_PROT32 :
5614 X86EMUL_MODE_PROT16;
5615 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5616 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5617 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5618
5619 init_decode_cache(ctxt);
5620 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5621 }
5622
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5623 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5624 {
5625 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5626 int ret;
5627
5628 init_emulate_ctxt(vcpu);
5629
5630 ctxt->op_bytes = 2;
5631 ctxt->ad_bytes = 2;
5632 ctxt->_eip = ctxt->eip + inc_eip;
5633 ret = emulate_int_real(ctxt, irq);
5634
5635 if (ret != X86EMUL_CONTINUE)
5636 return EMULATE_FAIL;
5637
5638 ctxt->eip = ctxt->_eip;
5639 kvm_rip_write(vcpu, ctxt->eip);
5640 kvm_set_rflags(vcpu, ctxt->eflags);
5641
5642 if (irq == NMI_VECTOR)
5643 vcpu->arch.nmi_pending = 0;
5644 else
5645 vcpu->arch.interrupt.pending = false;
5646
5647 return EMULATE_DONE;
5648 }
5649 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5650
handle_emulation_failure(struct kvm_vcpu * vcpu)5651 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5652 {
5653 int r = EMULATE_DONE;
5654
5655 ++vcpu->stat.insn_emulation_fail;
5656 trace_kvm_emulate_insn_failed(vcpu);
5657 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5658 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5659 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5660 vcpu->run->internal.ndata = 0;
5661 r = EMULATE_USER_EXIT;
5662 }
5663 kvm_queue_exception(vcpu, UD_VECTOR);
5664
5665 return r;
5666 }
5667
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)5668 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5669 bool write_fault_to_shadow_pgtable,
5670 int emulation_type)
5671 {
5672 gpa_t gpa = cr2;
5673 kvm_pfn_t pfn;
5674
5675 if (emulation_type & EMULTYPE_NO_REEXECUTE)
5676 return false;
5677
5678 if (!vcpu->arch.mmu.direct_map) {
5679 /*
5680 * Write permission should be allowed since only
5681 * write access need to be emulated.
5682 */
5683 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5684
5685 /*
5686 * If the mapping is invalid in guest, let cpu retry
5687 * it to generate fault.
5688 */
5689 if (gpa == UNMAPPED_GVA)
5690 return true;
5691 }
5692
5693 /*
5694 * Do not retry the unhandleable instruction if it faults on the
5695 * readonly host memory, otherwise it will goto a infinite loop:
5696 * retry instruction -> write #PF -> emulation fail -> retry
5697 * instruction -> ...
5698 */
5699 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5700
5701 /*
5702 * If the instruction failed on the error pfn, it can not be fixed,
5703 * report the error to userspace.
5704 */
5705 if (is_error_noslot_pfn(pfn))
5706 return false;
5707
5708 kvm_release_pfn_clean(pfn);
5709
5710 /* The instructions are well-emulated on direct mmu. */
5711 if (vcpu->arch.mmu.direct_map) {
5712 unsigned int indirect_shadow_pages;
5713
5714 spin_lock(&vcpu->kvm->mmu_lock);
5715 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5716 spin_unlock(&vcpu->kvm->mmu_lock);
5717
5718 if (indirect_shadow_pages)
5719 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5720
5721 return true;
5722 }
5723
5724 /*
5725 * if emulation was due to access to shadowed page table
5726 * and it failed try to unshadow page and re-enter the
5727 * guest to let CPU execute the instruction.
5728 */
5729 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5730
5731 /*
5732 * If the access faults on its page table, it can not
5733 * be fixed by unprotecting shadow page and it should
5734 * be reported to userspace.
5735 */
5736 return !write_fault_to_shadow_pgtable;
5737 }
5738
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)5739 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5740 unsigned long cr2, int emulation_type)
5741 {
5742 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5743 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5744
5745 last_retry_eip = vcpu->arch.last_retry_eip;
5746 last_retry_addr = vcpu->arch.last_retry_addr;
5747
5748 /*
5749 * If the emulation is caused by #PF and it is non-page_table
5750 * writing instruction, it means the VM-EXIT is caused by shadow
5751 * page protected, we can zap the shadow page and retry this
5752 * instruction directly.
5753 *
5754 * Note: if the guest uses a non-page-table modifying instruction
5755 * on the PDE that points to the instruction, then we will unmap
5756 * the instruction and go to an infinite loop. So, we cache the
5757 * last retried eip and the last fault address, if we meet the eip
5758 * and the address again, we can break out of the potential infinite
5759 * loop.
5760 */
5761 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5762
5763 if (!(emulation_type & EMULTYPE_RETRY))
5764 return false;
5765
5766 if (x86_page_table_writing_insn(ctxt))
5767 return false;
5768
5769 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5770 return false;
5771
5772 vcpu->arch.last_retry_eip = ctxt->eip;
5773 vcpu->arch.last_retry_addr = cr2;
5774
5775 if (!vcpu->arch.mmu.direct_map)
5776 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5777
5778 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5779
5780 return true;
5781 }
5782
5783 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5784 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5785
kvm_smm_changed(struct kvm_vcpu * vcpu)5786 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5787 {
5788 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5789 /* This is a good place to trace that we are exiting SMM. */
5790 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5791
5792 /* Process a latched INIT or SMI, if any. */
5793 kvm_make_request(KVM_REQ_EVENT, vcpu);
5794 }
5795
5796 kvm_mmu_reset_context(vcpu);
5797 }
5798
kvm_set_hflags(struct kvm_vcpu * vcpu,unsigned emul_flags)5799 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5800 {
5801 unsigned changed = vcpu->arch.hflags ^ emul_flags;
5802
5803 vcpu->arch.hflags = emul_flags;
5804
5805 if (changed & HF_SMM_MASK)
5806 kvm_smm_changed(vcpu);
5807 }
5808
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)5809 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5810 unsigned long *db)
5811 {
5812 u32 dr6 = 0;
5813 int i;
5814 u32 enable, rwlen;
5815
5816 enable = dr7;
5817 rwlen = dr7 >> 16;
5818 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5819 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5820 dr6 |= (1 << i);
5821 return dr6;
5822 }
5823
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu,int * r)5824 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5825 {
5826 struct kvm_run *kvm_run = vcpu->run;
5827
5828 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5829 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5830 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5831 kvm_run->debug.arch.exception = DB_VECTOR;
5832 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5833 *r = EMULATE_USER_EXIT;
5834 } else {
5835 /*
5836 * "Certain debug exceptions may clear bit 0-3. The
5837 * remaining contents of the DR6 register are never
5838 * cleared by the processor".
5839 */
5840 vcpu->arch.dr6 &= ~15;
5841 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5842 kvm_queue_exception(vcpu, DB_VECTOR);
5843 }
5844 }
5845
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)5846 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5847 {
5848 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5849 int r = EMULATE_DONE;
5850
5851 kvm_x86_ops->skip_emulated_instruction(vcpu);
5852
5853 /*
5854 * rflags is the old, "raw" value of the flags. The new value has
5855 * not been saved yet.
5856 *
5857 * This is correct even for TF set by the guest, because "the
5858 * processor will not generate this exception after the instruction
5859 * that sets the TF flag".
5860 */
5861 if (unlikely(rflags & X86_EFLAGS_TF))
5862 kvm_vcpu_do_singlestep(vcpu, &r);
5863 return r == EMULATE_DONE;
5864 }
5865 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5866
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)5867 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5868 {
5869 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5870 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5871 struct kvm_run *kvm_run = vcpu->run;
5872 unsigned long eip = kvm_get_linear_rip(vcpu);
5873 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5874 vcpu->arch.guest_debug_dr7,
5875 vcpu->arch.eff_db);
5876
5877 if (dr6 != 0) {
5878 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5879 kvm_run->debug.arch.pc = eip;
5880 kvm_run->debug.arch.exception = DB_VECTOR;
5881 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5882 *r = EMULATE_USER_EXIT;
5883 return true;
5884 }
5885 }
5886
5887 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5888 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5889 unsigned long eip = kvm_get_linear_rip(vcpu);
5890 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5891 vcpu->arch.dr7,
5892 vcpu->arch.db);
5893
5894 if (dr6 != 0) {
5895 vcpu->arch.dr6 &= ~15;
5896 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5897 kvm_queue_exception(vcpu, DB_VECTOR);
5898 *r = EMULATE_DONE;
5899 return true;
5900 }
5901 }
5902
5903 return false;
5904 }
5905
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)5906 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5907 unsigned long cr2,
5908 int emulation_type,
5909 void *insn,
5910 int insn_len)
5911 {
5912 int r;
5913 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5914 bool writeback = true;
5915 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5916
5917 vcpu->arch.l1tf_flush_l1d = true;
5918
5919 /*
5920 * Clear write_fault_to_shadow_pgtable here to ensure it is
5921 * never reused.
5922 */
5923 vcpu->arch.write_fault_to_shadow_pgtable = false;
5924 kvm_clear_exception_queue(vcpu);
5925
5926 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5927 init_emulate_ctxt(vcpu);
5928
5929 /*
5930 * We will reenter on the same instruction since
5931 * we do not set complete_userspace_io. This does not
5932 * handle watchpoints yet, those would be handled in
5933 * the emulate_ops.
5934 */
5935 if (!(emulation_type & EMULTYPE_SKIP) &&
5936 kvm_vcpu_check_breakpoint(vcpu, &r))
5937 return r;
5938
5939 ctxt->interruptibility = 0;
5940 ctxt->have_exception = false;
5941 ctxt->exception.vector = -1;
5942 ctxt->perm_ok = false;
5943
5944 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5945
5946 r = x86_decode_insn(ctxt, insn, insn_len);
5947
5948 trace_kvm_emulate_insn_start(vcpu);
5949 ++vcpu->stat.insn_emulation;
5950 if (r != EMULATION_OK) {
5951 if (emulation_type & EMULTYPE_TRAP_UD)
5952 return EMULATE_FAIL;
5953 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5954 emulation_type))
5955 return EMULATE_DONE;
5956 if (ctxt->have_exception) {
5957 /*
5958 * #UD should result in just EMULATION_FAILED, and trap-like
5959 * exception should not be encountered during decode.
5960 */
5961 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
5962 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
5963 inject_emulated_exception(vcpu);
5964 return EMULATE_DONE;
5965 }
5966 if (emulation_type & EMULTYPE_SKIP)
5967 return EMULATE_FAIL;
5968 return handle_emulation_failure(vcpu);
5969 }
5970 }
5971
5972 if (emulation_type & EMULTYPE_SKIP) {
5973 kvm_rip_write(vcpu, ctxt->_eip);
5974 if (ctxt->eflags & X86_EFLAGS_RF)
5975 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5976 return EMULATE_DONE;
5977 }
5978
5979 if (retry_instruction(ctxt, cr2, emulation_type))
5980 return EMULATE_DONE;
5981
5982 /* this is needed for vmware backdoor interface to work since it
5983 changes registers values during IO operation */
5984 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5985 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5986 emulator_invalidate_register_cache(ctxt);
5987 }
5988
5989 restart:
5990 /* Save the faulting GPA (cr2) in the address field */
5991 ctxt->exception.address = cr2;
5992
5993 r = x86_emulate_insn(ctxt);
5994
5995 if (r == EMULATION_INTERCEPTED)
5996 return EMULATE_DONE;
5997
5998 if (r == EMULATION_FAILED) {
5999 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6000 emulation_type))
6001 return EMULATE_DONE;
6002
6003 return handle_emulation_failure(vcpu);
6004 }
6005
6006 if (ctxt->have_exception) {
6007 r = EMULATE_DONE;
6008 if (inject_emulated_exception(vcpu))
6009 return r;
6010 } else if (vcpu->arch.pio.count) {
6011 if (!vcpu->arch.pio.in) {
6012 /* FIXME: return into emulator if single-stepping. */
6013 vcpu->arch.pio.count = 0;
6014 } else {
6015 writeback = false;
6016 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6017 }
6018 r = EMULATE_USER_EXIT;
6019 } else if (vcpu->mmio_needed) {
6020 if (!vcpu->mmio_is_write)
6021 writeback = false;
6022 r = EMULATE_USER_EXIT;
6023 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6024 } else if (r == EMULATION_RESTART)
6025 goto restart;
6026 else
6027 r = EMULATE_DONE;
6028
6029 if (writeback) {
6030 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6031 toggle_interruptibility(vcpu, ctxt->interruptibility);
6032 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6033 if (!ctxt->have_exception ||
6034 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6035 kvm_rip_write(vcpu, ctxt->eip);
6036 if (r == EMULATE_DONE && ctxt->tf)
6037 kvm_vcpu_do_singlestep(vcpu, &r);
6038 __kvm_set_rflags(vcpu, ctxt->eflags);
6039 }
6040
6041 /*
6042 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6043 * do nothing, and it will be requested again as soon as
6044 * the shadow expires. But we still need to check here,
6045 * because POPF has no interrupt shadow.
6046 */
6047 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6048 kvm_make_request(KVM_REQ_EVENT, vcpu);
6049 } else
6050 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6051
6052 return r;
6053 }
6054 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6055
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)6056 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
6057 {
6058 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6059 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6060 size, port, &val, 1);
6061 /* do not return to emulator after return from userspace */
6062 vcpu->arch.pio.count = 0;
6063 return ret;
6064 }
6065 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
6066
complete_fast_pio_in(struct kvm_vcpu * vcpu)6067 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6068 {
6069 unsigned long val;
6070
6071 /* We should only ever be called with arch.pio.count equal to 1 */
6072 BUG_ON(vcpu->arch.pio.count != 1);
6073
6074 /* For size less than 4 we merge, else we zero extend */
6075 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6076 : 0;
6077
6078 /*
6079 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6080 * the copy and tracing
6081 */
6082 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6083 vcpu->arch.pio.port, &val, 1);
6084 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6085
6086 return 1;
6087 }
6088
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)6089 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6090 {
6091 unsigned long val;
6092 int ret;
6093
6094 /* For size less than 4 we merge, else we zero extend */
6095 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6096
6097 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6098 &val, 1);
6099 if (ret) {
6100 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6101 return ret;
6102 }
6103
6104 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6105
6106 return 0;
6107 }
6108 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6109
kvmclock_cpu_down_prep(unsigned int cpu)6110 static int kvmclock_cpu_down_prep(unsigned int cpu)
6111 {
6112 __this_cpu_write(cpu_tsc_khz, 0);
6113 return 0;
6114 }
6115
tsc_khz_changed(void * data)6116 static void tsc_khz_changed(void *data)
6117 {
6118 struct cpufreq_freqs *freq = data;
6119 unsigned long khz = 0;
6120
6121 if (data)
6122 khz = freq->new;
6123 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6124 khz = cpufreq_quick_get(raw_smp_processor_id());
6125 if (!khz)
6126 khz = tsc_khz;
6127 __this_cpu_write(cpu_tsc_khz, khz);
6128 }
6129
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)6130 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6131 void *data)
6132 {
6133 struct cpufreq_freqs *freq = data;
6134 struct kvm *kvm;
6135 struct kvm_vcpu *vcpu;
6136 int i, send_ipi = 0;
6137
6138 /*
6139 * We allow guests to temporarily run on slowing clocks,
6140 * provided we notify them after, or to run on accelerating
6141 * clocks, provided we notify them before. Thus time never
6142 * goes backwards.
6143 *
6144 * However, we have a problem. We can't atomically update
6145 * the frequency of a given CPU from this function; it is
6146 * merely a notifier, which can be called from any CPU.
6147 * Changing the TSC frequency at arbitrary points in time
6148 * requires a recomputation of local variables related to
6149 * the TSC for each VCPU. We must flag these local variables
6150 * to be updated and be sure the update takes place with the
6151 * new frequency before any guests proceed.
6152 *
6153 * Unfortunately, the combination of hotplug CPU and frequency
6154 * change creates an intractable locking scenario; the order
6155 * of when these callouts happen is undefined with respect to
6156 * CPU hotplug, and they can race with each other. As such,
6157 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6158 * undefined; you can actually have a CPU frequency change take
6159 * place in between the computation of X and the setting of the
6160 * variable. To protect against this problem, all updates of
6161 * the per_cpu tsc_khz variable are done in an interrupt
6162 * protected IPI, and all callers wishing to update the value
6163 * must wait for a synchronous IPI to complete (which is trivial
6164 * if the caller is on the CPU already). This establishes the
6165 * necessary total order on variable updates.
6166 *
6167 * Note that because a guest time update may take place
6168 * anytime after the setting of the VCPU's request bit, the
6169 * correct TSC value must be set before the request. However,
6170 * to ensure the update actually makes it to any guest which
6171 * starts running in hardware virtualization between the set
6172 * and the acquisition of the spinlock, we must also ping the
6173 * CPU after setting the request bit.
6174 *
6175 */
6176
6177 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6178 return 0;
6179 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6180 return 0;
6181
6182 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6183
6184 mutex_lock(&kvm_lock);
6185 list_for_each_entry(kvm, &vm_list, vm_list) {
6186 kvm_for_each_vcpu(i, vcpu, kvm) {
6187 if (vcpu->cpu != freq->cpu)
6188 continue;
6189 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6190 if (vcpu->cpu != raw_smp_processor_id())
6191 send_ipi = 1;
6192 }
6193 }
6194 mutex_unlock(&kvm_lock);
6195
6196 if (freq->old < freq->new && send_ipi) {
6197 /*
6198 * We upscale the frequency. Must make the guest
6199 * doesn't see old kvmclock values while running with
6200 * the new frequency, otherwise we risk the guest sees
6201 * time go backwards.
6202 *
6203 * In case we update the frequency for another cpu
6204 * (which might be in guest context) send an interrupt
6205 * to kick the cpu out of guest context. Next time
6206 * guest context is entered kvmclock will be updated,
6207 * so the guest will not see stale values.
6208 */
6209 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6210 }
6211 return 0;
6212 }
6213
6214 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6215 .notifier_call = kvmclock_cpufreq_notifier
6216 };
6217
kvmclock_cpu_online(unsigned int cpu)6218 static int kvmclock_cpu_online(unsigned int cpu)
6219 {
6220 tsc_khz_changed(NULL);
6221 return 0;
6222 }
6223
kvm_timer_init(void)6224 static void kvm_timer_init(void)
6225 {
6226 max_tsc_khz = tsc_khz;
6227
6228 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6229 #ifdef CONFIG_CPU_FREQ
6230 struct cpufreq_policy policy;
6231 int cpu;
6232
6233 memset(&policy, 0, sizeof(policy));
6234 cpu = get_cpu();
6235 cpufreq_get_policy(&policy, cpu);
6236 if (policy.cpuinfo.max_freq)
6237 max_tsc_khz = policy.cpuinfo.max_freq;
6238 put_cpu();
6239 #endif
6240 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6241 CPUFREQ_TRANSITION_NOTIFIER);
6242 }
6243 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6244
6245 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6246 kvmclock_cpu_online, kvmclock_cpu_down_prep);
6247 }
6248
6249 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6250
kvm_is_in_guest(void)6251 int kvm_is_in_guest(void)
6252 {
6253 return __this_cpu_read(current_vcpu) != NULL;
6254 }
6255
kvm_is_user_mode(void)6256 static int kvm_is_user_mode(void)
6257 {
6258 int user_mode = 3;
6259
6260 if (__this_cpu_read(current_vcpu))
6261 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6262
6263 return user_mode != 0;
6264 }
6265
kvm_get_guest_ip(void)6266 static unsigned long kvm_get_guest_ip(void)
6267 {
6268 unsigned long ip = 0;
6269
6270 if (__this_cpu_read(current_vcpu))
6271 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6272
6273 return ip;
6274 }
6275
6276 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6277 .is_in_guest = kvm_is_in_guest,
6278 .is_user_mode = kvm_is_user_mode,
6279 .get_guest_ip = kvm_get_guest_ip,
6280 };
6281
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)6282 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6283 {
6284 __this_cpu_write(current_vcpu, vcpu);
6285 }
6286 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6287
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)6288 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6289 {
6290 __this_cpu_write(current_vcpu, NULL);
6291 }
6292 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6293
kvm_set_mmio_spte_mask(void)6294 static void kvm_set_mmio_spte_mask(void)
6295 {
6296 u64 mask;
6297 int maxphyaddr = boot_cpu_data.x86_phys_bits;
6298
6299 /*
6300 * Set the reserved bits and the present bit of an paging-structure
6301 * entry to generate page fault with PFER.RSV = 1.
6302 */
6303
6304 /*
6305 * Mask the uppermost physical address bit, which would be reserved as
6306 * long as the supported physical address width is less than 52.
6307 */
6308 mask = 1ull << 51;
6309
6310 /* Set the present bit. */
6311 mask |= 1ull;
6312
6313 /*
6314 * If reserved bit is not supported, clear the present bit to disable
6315 * mmio page fault.
6316 */
6317 if (maxphyaddr == 52)
6318 mask &= ~1ull;
6319
6320 kvm_mmu_set_mmio_spte_mask(mask, mask);
6321 }
6322
6323 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)6324 static void pvclock_gtod_update_fn(struct work_struct *work)
6325 {
6326 struct kvm *kvm;
6327
6328 struct kvm_vcpu *vcpu;
6329 int i;
6330
6331 mutex_lock(&kvm_lock);
6332 list_for_each_entry(kvm, &vm_list, vm_list)
6333 kvm_for_each_vcpu(i, vcpu, kvm)
6334 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6335 atomic_set(&kvm_guest_has_master_clock, 0);
6336 mutex_unlock(&kvm_lock);
6337 }
6338
6339 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6340
6341 /*
6342 * Notification about pvclock gtod data update.
6343 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)6344 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6345 void *priv)
6346 {
6347 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6348 struct timekeeper *tk = priv;
6349
6350 update_pvclock_gtod(tk);
6351
6352 /* disable master clock if host does not trust, or does not
6353 * use, TSC clocksource
6354 */
6355 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6356 atomic_read(&kvm_guest_has_master_clock) != 0)
6357 queue_work(system_long_wq, &pvclock_gtod_work);
6358
6359 return 0;
6360 }
6361
6362 static struct notifier_block pvclock_gtod_notifier = {
6363 .notifier_call = pvclock_gtod_notify,
6364 };
6365 #endif
6366
kvm_arch_init(void * opaque)6367 int kvm_arch_init(void *opaque)
6368 {
6369 int r;
6370 struct kvm_x86_ops *ops = opaque;
6371
6372 if (kvm_x86_ops) {
6373 printk(KERN_ERR "kvm: already loaded the other module\n");
6374 r = -EEXIST;
6375 goto out;
6376 }
6377
6378 if (!ops->cpu_has_kvm_support()) {
6379 printk(KERN_ERR "kvm: no hardware support\n");
6380 r = -EOPNOTSUPP;
6381 goto out;
6382 }
6383 if (ops->disabled_by_bios()) {
6384 printk(KERN_ERR "kvm: disabled by bios\n");
6385 r = -EOPNOTSUPP;
6386 goto out;
6387 }
6388
6389 r = -ENOMEM;
6390 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6391 if (!shared_msrs) {
6392 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6393 goto out;
6394 }
6395
6396 r = kvm_mmu_module_init();
6397 if (r)
6398 goto out_free_percpu;
6399
6400 kvm_set_mmio_spte_mask();
6401
6402 kvm_x86_ops = ops;
6403
6404 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6405 PT_DIRTY_MASK, PT64_NX_MASK, 0,
6406 PT_PRESENT_MASK, 0, sme_me_mask);
6407 kvm_timer_init();
6408
6409 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6410
6411 if (boot_cpu_has(X86_FEATURE_XSAVE))
6412 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6413
6414 kvm_lapic_init();
6415 #ifdef CONFIG_X86_64
6416 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6417 #endif
6418
6419 return 0;
6420
6421 out_free_percpu:
6422 free_percpu(shared_msrs);
6423 out:
6424 return r;
6425 }
6426
kvm_arch_exit(void)6427 void kvm_arch_exit(void)
6428 {
6429 kvm_lapic_exit();
6430 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6431
6432 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6433 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6434 CPUFREQ_TRANSITION_NOTIFIER);
6435 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6436 #ifdef CONFIG_X86_64
6437 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6438 #endif
6439 kvm_x86_ops = NULL;
6440 kvm_mmu_module_exit();
6441 free_percpu(shared_msrs);
6442 }
6443
kvm_vcpu_halt(struct kvm_vcpu * vcpu)6444 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6445 {
6446 ++vcpu->stat.halt_exits;
6447 if (lapic_in_kernel(vcpu)) {
6448 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6449 return 1;
6450 } else {
6451 vcpu->run->exit_reason = KVM_EXIT_HLT;
6452 return 0;
6453 }
6454 }
6455 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6456
kvm_emulate_halt(struct kvm_vcpu * vcpu)6457 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6458 {
6459 int ret = kvm_skip_emulated_instruction(vcpu);
6460 /*
6461 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6462 * KVM_EXIT_DEBUG here.
6463 */
6464 return kvm_vcpu_halt(vcpu) && ret;
6465 }
6466 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6467
6468 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)6469 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6470 unsigned long clock_type)
6471 {
6472 struct kvm_clock_pairing clock_pairing;
6473 struct timespec ts;
6474 u64 cycle;
6475 int ret;
6476
6477 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6478 return -KVM_EOPNOTSUPP;
6479
6480 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6481 return -KVM_EOPNOTSUPP;
6482
6483 clock_pairing.sec = ts.tv_sec;
6484 clock_pairing.nsec = ts.tv_nsec;
6485 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6486 clock_pairing.flags = 0;
6487 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6488
6489 ret = 0;
6490 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6491 sizeof(struct kvm_clock_pairing)))
6492 ret = -KVM_EFAULT;
6493
6494 return ret;
6495 }
6496 #endif
6497
6498 /*
6499 * kvm_pv_kick_cpu_op: Kick a vcpu.
6500 *
6501 * @apicid - apicid of vcpu to be kicked.
6502 */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)6503 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6504 {
6505 struct kvm_lapic_irq lapic_irq;
6506
6507 lapic_irq.shorthand = 0;
6508 lapic_irq.dest_mode = 0;
6509 lapic_irq.level = 0;
6510 lapic_irq.dest_id = apicid;
6511 lapic_irq.msi_redir_hint = false;
6512
6513 lapic_irq.delivery_mode = APIC_DM_REMRD;
6514 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6515 }
6516
kvm_vcpu_deactivate_apicv(struct kvm_vcpu * vcpu)6517 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6518 {
6519 vcpu->arch.apicv_active = false;
6520 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6521 }
6522
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)6523 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6524 {
6525 unsigned long nr, a0, a1, a2, a3, ret;
6526 int op_64_bit;
6527
6528 if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6529 if (!kvm_hv_hypercall(vcpu))
6530 return 0;
6531 goto out;
6532 }
6533
6534 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6535 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6536 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6537 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6538 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6539
6540 trace_kvm_hypercall(nr, a0, a1, a2, a3);
6541
6542 op_64_bit = is_64_bit_mode(vcpu);
6543 if (!op_64_bit) {
6544 nr &= 0xFFFFFFFF;
6545 a0 &= 0xFFFFFFFF;
6546 a1 &= 0xFFFFFFFF;
6547 a2 &= 0xFFFFFFFF;
6548 a3 &= 0xFFFFFFFF;
6549 }
6550
6551 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6552 ret = -KVM_EPERM;
6553 goto out_error;
6554 }
6555
6556 switch (nr) {
6557 case KVM_HC_VAPIC_POLL_IRQ:
6558 ret = 0;
6559 break;
6560 case KVM_HC_KICK_CPU:
6561 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6562 ret = 0;
6563 break;
6564 #ifdef CONFIG_X86_64
6565 case KVM_HC_CLOCK_PAIRING:
6566 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6567 break;
6568 #endif
6569 default:
6570 ret = -KVM_ENOSYS;
6571 break;
6572 }
6573 out_error:
6574 if (!op_64_bit)
6575 ret = (u32)ret;
6576 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6577
6578 out:
6579 ++vcpu->stat.hypercalls;
6580 return kvm_skip_emulated_instruction(vcpu);
6581 }
6582 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6583
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)6584 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6585 {
6586 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6587 char instruction[3];
6588 unsigned long rip = kvm_rip_read(vcpu);
6589
6590 kvm_x86_ops->patch_hypercall(vcpu, instruction);
6591
6592 return emulator_write_emulated(ctxt, rip, instruction, 3,
6593 &ctxt->exception);
6594 }
6595
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)6596 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6597 {
6598 return vcpu->run->request_interrupt_window &&
6599 likely(!pic_in_kernel(vcpu->kvm));
6600 }
6601
post_kvm_run_save(struct kvm_vcpu * vcpu)6602 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6603 {
6604 struct kvm_run *kvm_run = vcpu->run;
6605
6606 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6607 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6608 kvm_run->cr8 = kvm_get_cr8(vcpu);
6609 kvm_run->apic_base = kvm_get_apic_base(vcpu);
6610 kvm_run->ready_for_interrupt_injection =
6611 pic_in_kernel(vcpu->kvm) ||
6612 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6613 }
6614
update_cr8_intercept(struct kvm_vcpu * vcpu)6615 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6616 {
6617 int max_irr, tpr;
6618
6619 if (!kvm_x86_ops->update_cr8_intercept)
6620 return;
6621
6622 if (!lapic_in_kernel(vcpu))
6623 return;
6624
6625 if (vcpu->arch.apicv_active)
6626 return;
6627
6628 if (!vcpu->arch.apic->vapic_addr)
6629 max_irr = kvm_lapic_find_highest_irr(vcpu);
6630 else
6631 max_irr = -1;
6632
6633 if (max_irr != -1)
6634 max_irr >>= 4;
6635
6636 tpr = kvm_lapic_get_cr8(vcpu);
6637
6638 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6639 }
6640
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)6641 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6642 {
6643 int r;
6644
6645 /* try to reinject previous events if any */
6646 if (vcpu->arch.exception.injected) {
6647 kvm_x86_ops->queue_exception(vcpu);
6648 return 0;
6649 }
6650
6651 /*
6652 * Exceptions must be injected immediately, or the exception
6653 * frame will have the address of the NMI or interrupt handler.
6654 */
6655 if (!vcpu->arch.exception.pending) {
6656 if (vcpu->arch.nmi_injected) {
6657 kvm_x86_ops->set_nmi(vcpu);
6658 return 0;
6659 }
6660
6661 if (vcpu->arch.interrupt.pending) {
6662 kvm_x86_ops->set_irq(vcpu);
6663 return 0;
6664 }
6665 }
6666
6667 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6668 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6669 if (r != 0)
6670 return r;
6671 }
6672
6673 /* try to inject new event if pending */
6674 if (vcpu->arch.exception.pending) {
6675 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6676 vcpu->arch.exception.has_error_code,
6677 vcpu->arch.exception.error_code);
6678
6679 vcpu->arch.exception.pending = false;
6680 vcpu->arch.exception.injected = true;
6681
6682 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6683 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6684 X86_EFLAGS_RF);
6685
6686 if (vcpu->arch.exception.nr == DB_VECTOR &&
6687 (vcpu->arch.dr7 & DR7_GD)) {
6688 vcpu->arch.dr7 &= ~DR7_GD;
6689 kvm_update_dr7(vcpu);
6690 }
6691
6692 kvm_x86_ops->queue_exception(vcpu);
6693 } else if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6694 vcpu->arch.smi_pending = false;
6695 enter_smm(vcpu);
6696 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6697 --vcpu->arch.nmi_pending;
6698 vcpu->arch.nmi_injected = true;
6699 kvm_x86_ops->set_nmi(vcpu);
6700 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6701 /*
6702 * Because interrupts can be injected asynchronously, we are
6703 * calling check_nested_events again here to avoid a race condition.
6704 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6705 * proposal and current concerns. Perhaps we should be setting
6706 * KVM_REQ_EVENT only on certain events and not unconditionally?
6707 */
6708 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6709 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6710 if (r != 0)
6711 return r;
6712 }
6713 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6714 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6715 false);
6716 kvm_x86_ops->set_irq(vcpu);
6717 }
6718 }
6719
6720 return 0;
6721 }
6722
process_nmi(struct kvm_vcpu * vcpu)6723 static void process_nmi(struct kvm_vcpu *vcpu)
6724 {
6725 unsigned limit = 2;
6726
6727 /*
6728 * x86 is limited to one NMI running, and one NMI pending after it.
6729 * If an NMI is already in progress, limit further NMIs to just one.
6730 * Otherwise, allow two (and we'll inject the first one immediately).
6731 */
6732 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6733 limit = 1;
6734
6735 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6736 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6737 kvm_make_request(KVM_REQ_EVENT, vcpu);
6738 }
6739
6740 #define put_smstate(type, buf, offset, val) \
6741 *(type *)((buf) + (offset) - 0x7e00) = val
6742
enter_smm_get_segment_flags(struct kvm_segment * seg)6743 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6744 {
6745 u32 flags = 0;
6746 flags |= seg->g << 23;
6747 flags |= seg->db << 22;
6748 flags |= seg->l << 21;
6749 flags |= seg->avl << 20;
6750 flags |= seg->present << 15;
6751 flags |= seg->dpl << 13;
6752 flags |= seg->s << 12;
6753 flags |= seg->type << 8;
6754 return flags;
6755 }
6756
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)6757 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6758 {
6759 struct kvm_segment seg;
6760 int offset;
6761
6762 kvm_get_segment(vcpu, &seg, n);
6763 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6764
6765 if (n < 3)
6766 offset = 0x7f84 + n * 12;
6767 else
6768 offset = 0x7f2c + (n - 3) * 12;
6769
6770 put_smstate(u32, buf, offset + 8, seg.base);
6771 put_smstate(u32, buf, offset + 4, seg.limit);
6772 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6773 }
6774
6775 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)6776 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6777 {
6778 struct kvm_segment seg;
6779 int offset;
6780 u16 flags;
6781
6782 kvm_get_segment(vcpu, &seg, n);
6783 offset = 0x7e00 + n * 16;
6784
6785 flags = enter_smm_get_segment_flags(&seg) >> 8;
6786 put_smstate(u16, buf, offset, seg.selector);
6787 put_smstate(u16, buf, offset + 2, flags);
6788 put_smstate(u32, buf, offset + 4, seg.limit);
6789 put_smstate(u64, buf, offset + 8, seg.base);
6790 }
6791 #endif
6792
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)6793 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6794 {
6795 struct desc_ptr dt;
6796 struct kvm_segment seg;
6797 unsigned long val;
6798 int i;
6799
6800 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6801 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6802 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6803 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6804
6805 for (i = 0; i < 8; i++)
6806 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6807
6808 kvm_get_dr(vcpu, 6, &val);
6809 put_smstate(u32, buf, 0x7fcc, (u32)val);
6810 kvm_get_dr(vcpu, 7, &val);
6811 put_smstate(u32, buf, 0x7fc8, (u32)val);
6812
6813 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6814 put_smstate(u32, buf, 0x7fc4, seg.selector);
6815 put_smstate(u32, buf, 0x7f64, seg.base);
6816 put_smstate(u32, buf, 0x7f60, seg.limit);
6817 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6818
6819 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6820 put_smstate(u32, buf, 0x7fc0, seg.selector);
6821 put_smstate(u32, buf, 0x7f80, seg.base);
6822 put_smstate(u32, buf, 0x7f7c, seg.limit);
6823 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6824
6825 kvm_x86_ops->get_gdt(vcpu, &dt);
6826 put_smstate(u32, buf, 0x7f74, dt.address);
6827 put_smstate(u32, buf, 0x7f70, dt.size);
6828
6829 kvm_x86_ops->get_idt(vcpu, &dt);
6830 put_smstate(u32, buf, 0x7f58, dt.address);
6831 put_smstate(u32, buf, 0x7f54, dt.size);
6832
6833 for (i = 0; i < 6; i++)
6834 enter_smm_save_seg_32(vcpu, buf, i);
6835
6836 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6837
6838 /* revision id */
6839 put_smstate(u32, buf, 0x7efc, 0x00020000);
6840 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6841 }
6842
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)6843 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6844 {
6845 #ifdef CONFIG_X86_64
6846 struct desc_ptr dt;
6847 struct kvm_segment seg;
6848 unsigned long val;
6849 int i;
6850
6851 for (i = 0; i < 16; i++)
6852 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6853
6854 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6855 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6856
6857 kvm_get_dr(vcpu, 6, &val);
6858 put_smstate(u64, buf, 0x7f68, val);
6859 kvm_get_dr(vcpu, 7, &val);
6860 put_smstate(u64, buf, 0x7f60, val);
6861
6862 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6863 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6864 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6865
6866 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6867
6868 /* revision id */
6869 put_smstate(u32, buf, 0x7efc, 0x00020064);
6870
6871 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6872
6873 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6874 put_smstate(u16, buf, 0x7e90, seg.selector);
6875 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6876 put_smstate(u32, buf, 0x7e94, seg.limit);
6877 put_smstate(u64, buf, 0x7e98, seg.base);
6878
6879 kvm_x86_ops->get_idt(vcpu, &dt);
6880 put_smstate(u32, buf, 0x7e84, dt.size);
6881 put_smstate(u64, buf, 0x7e88, dt.address);
6882
6883 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6884 put_smstate(u16, buf, 0x7e70, seg.selector);
6885 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6886 put_smstate(u32, buf, 0x7e74, seg.limit);
6887 put_smstate(u64, buf, 0x7e78, seg.base);
6888
6889 kvm_x86_ops->get_gdt(vcpu, &dt);
6890 put_smstate(u32, buf, 0x7e64, dt.size);
6891 put_smstate(u64, buf, 0x7e68, dt.address);
6892
6893 for (i = 0; i < 6; i++)
6894 enter_smm_save_seg_64(vcpu, buf, i);
6895 #else
6896 WARN_ON_ONCE(1);
6897 #endif
6898 }
6899
enter_smm(struct kvm_vcpu * vcpu)6900 static void enter_smm(struct kvm_vcpu *vcpu)
6901 {
6902 struct kvm_segment cs, ds;
6903 struct desc_ptr dt;
6904 char buf[512];
6905 u32 cr0;
6906
6907 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6908 vcpu->arch.hflags |= HF_SMM_MASK;
6909 memset(buf, 0, 512);
6910 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6911 enter_smm_save_state_64(vcpu, buf);
6912 else
6913 enter_smm_save_state_32(vcpu, buf);
6914
6915 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6916
6917 if (kvm_x86_ops->get_nmi_mask(vcpu))
6918 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6919 else
6920 kvm_x86_ops->set_nmi_mask(vcpu, true);
6921
6922 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6923 kvm_rip_write(vcpu, 0x8000);
6924
6925 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6926 kvm_x86_ops->set_cr0(vcpu, cr0);
6927 vcpu->arch.cr0 = cr0;
6928
6929 kvm_x86_ops->set_cr4(vcpu, 0);
6930
6931 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6932 dt.address = dt.size = 0;
6933 kvm_x86_ops->set_idt(vcpu, &dt);
6934
6935 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6936
6937 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6938 cs.base = vcpu->arch.smbase;
6939
6940 ds.selector = 0;
6941 ds.base = 0;
6942
6943 cs.limit = ds.limit = 0xffffffff;
6944 cs.type = ds.type = 0x3;
6945 cs.dpl = ds.dpl = 0;
6946 cs.db = ds.db = 0;
6947 cs.s = ds.s = 1;
6948 cs.l = ds.l = 0;
6949 cs.g = ds.g = 1;
6950 cs.avl = ds.avl = 0;
6951 cs.present = ds.present = 1;
6952 cs.unusable = ds.unusable = 0;
6953 cs.padding = ds.padding = 0;
6954
6955 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6956 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6957 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6958 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6959 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6960 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6961
6962 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6963 kvm_x86_ops->set_efer(vcpu, 0);
6964
6965 kvm_update_cpuid(vcpu);
6966 kvm_mmu_reset_context(vcpu);
6967 }
6968
process_smi(struct kvm_vcpu * vcpu)6969 static void process_smi(struct kvm_vcpu *vcpu)
6970 {
6971 vcpu->arch.smi_pending = true;
6972 kvm_make_request(KVM_REQ_EVENT, vcpu);
6973 }
6974
kvm_make_scan_ioapic_request(struct kvm * kvm)6975 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6976 {
6977 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6978 }
6979
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)6980 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6981 {
6982 u64 eoi_exit_bitmap[4];
6983
6984 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6985 return;
6986
6987 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6988
6989 if (irqchip_split(vcpu->kvm))
6990 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6991 else {
6992 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6993 kvm_x86_ops->sync_pir_to_irr(vcpu);
6994 if (ioapic_in_kernel(vcpu->kvm))
6995 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6996 }
6997 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6998 vcpu_to_synic(vcpu)->vec_bitmap, 256);
6999 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7000 }
7001
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu,bool invalidate_gpa)7002 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
7003 {
7004 ++vcpu->stat.tlb_flush;
7005 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
7006 }
7007
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)7008 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7009 unsigned long start, unsigned long end)
7010 {
7011 unsigned long apic_address;
7012
7013 /*
7014 * The physical address of apic access page is stored in the VMCS.
7015 * Update it when it becomes invalid.
7016 */
7017 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7018 if (start <= apic_address && apic_address < end)
7019 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7020 }
7021
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)7022 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7023 {
7024 struct page *page = NULL;
7025
7026 if (!lapic_in_kernel(vcpu))
7027 return;
7028
7029 if (!kvm_x86_ops->set_apic_access_page_addr)
7030 return;
7031
7032 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7033 if (is_error_page(page))
7034 return;
7035 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7036
7037 /*
7038 * Do not pin apic access page in memory, the MMU notifier
7039 * will call us again if it is migrated or swapped out.
7040 */
7041 put_page(page);
7042 }
7043 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7044
7045 /*
7046 * Returns 1 to let vcpu_run() continue the guest execution loop without
7047 * exiting to the userspace. Otherwise, the value will be returned to the
7048 * userspace.
7049 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)7050 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7051 {
7052 int r;
7053 bool req_int_win =
7054 dm_request_for_irq_injection(vcpu) &&
7055 kvm_cpu_accept_dm_intr(vcpu);
7056
7057 bool req_immediate_exit = false;
7058
7059 if (kvm_request_pending(vcpu)) {
7060 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7061 kvm_mmu_unload(vcpu);
7062 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7063 __kvm_migrate_timers(vcpu);
7064 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7065 kvm_gen_update_masterclock(vcpu->kvm);
7066 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7067 kvm_gen_kvmclock_update(vcpu);
7068 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7069 r = kvm_guest_time_update(vcpu);
7070 if (unlikely(r))
7071 goto out;
7072 }
7073 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7074 kvm_mmu_sync_roots(vcpu);
7075 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7076 kvm_vcpu_flush_tlb(vcpu, true);
7077 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7078 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7079 r = 0;
7080 goto out;
7081 }
7082 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7083 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7084 vcpu->mmio_needed = 0;
7085 r = 0;
7086 goto out;
7087 }
7088 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7089 /* Page is swapped out. Do synthetic halt */
7090 vcpu->arch.apf.halted = true;
7091 r = 1;
7092 goto out;
7093 }
7094 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7095 record_steal_time(vcpu);
7096 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7097 process_smi(vcpu);
7098 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7099 process_nmi(vcpu);
7100 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7101 kvm_pmu_handle_event(vcpu);
7102 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7103 kvm_pmu_deliver_pmi(vcpu);
7104 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7105 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7106 if (test_bit(vcpu->arch.pending_ioapic_eoi,
7107 vcpu->arch.ioapic_handled_vectors)) {
7108 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7109 vcpu->run->eoi.vector =
7110 vcpu->arch.pending_ioapic_eoi;
7111 r = 0;
7112 goto out;
7113 }
7114 }
7115 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7116 vcpu_scan_ioapic(vcpu);
7117 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7118 kvm_vcpu_reload_apic_access_page(vcpu);
7119 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7120 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7121 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7122 r = 0;
7123 goto out;
7124 }
7125 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7126 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7127 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7128 r = 0;
7129 goto out;
7130 }
7131 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7132 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7133 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7134 r = 0;
7135 goto out;
7136 }
7137
7138 /*
7139 * KVM_REQ_HV_STIMER has to be processed after
7140 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7141 * depend on the guest clock being up-to-date
7142 */
7143 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7144 kvm_hv_process_stimers(vcpu);
7145 }
7146
7147 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7148 ++vcpu->stat.req_event;
7149 kvm_apic_accept_events(vcpu);
7150 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7151 r = 1;
7152 goto out;
7153 }
7154
7155 if (inject_pending_event(vcpu, req_int_win) != 0)
7156 req_immediate_exit = true;
7157 else {
7158 /* Enable NMI/IRQ window open exits if needed.
7159 *
7160 * SMIs have two cases: 1) they can be nested, and
7161 * then there is nothing to do here because RSM will
7162 * cause a vmexit anyway; 2) or the SMI can be pending
7163 * because inject_pending_event has completed the
7164 * injection of an IRQ or NMI from the previous vmexit,
7165 * and then we request an immediate exit to inject the SMI.
7166 */
7167 if (vcpu->arch.smi_pending && !is_smm(vcpu))
7168 req_immediate_exit = true;
7169 if (vcpu->arch.nmi_pending)
7170 kvm_x86_ops->enable_nmi_window(vcpu);
7171 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7172 kvm_x86_ops->enable_irq_window(vcpu);
7173 WARN_ON(vcpu->arch.exception.pending);
7174 }
7175
7176 if (kvm_lapic_enabled(vcpu)) {
7177 update_cr8_intercept(vcpu);
7178 kvm_lapic_sync_to_vapic(vcpu);
7179 }
7180 }
7181
7182 r = kvm_mmu_reload(vcpu);
7183 if (unlikely(r)) {
7184 goto cancel_injection;
7185 }
7186
7187 preempt_disable();
7188
7189 kvm_x86_ops->prepare_guest_switch(vcpu);
7190
7191 /*
7192 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
7193 * IPI are then delayed after guest entry, which ensures that they
7194 * result in virtual interrupt delivery.
7195 */
7196 local_irq_disable();
7197 vcpu->mode = IN_GUEST_MODE;
7198
7199 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7200
7201 /*
7202 * 1) We should set ->mode before checking ->requests. Please see
7203 * the comment in kvm_vcpu_exiting_guest_mode().
7204 *
7205 * 2) For APICv, we should set ->mode before checking PIR.ON. This
7206 * pairs with the memory barrier implicit in pi_test_and_set_on
7207 * (see vmx_deliver_posted_interrupt).
7208 *
7209 * 3) This also orders the write to mode from any reads to the page
7210 * tables done while the VCPU is running. Please see the comment
7211 * in kvm_flush_remote_tlbs.
7212 */
7213 smp_mb__after_srcu_read_unlock();
7214
7215 /*
7216 * This handles the case where a posted interrupt was
7217 * notified with kvm_vcpu_kick.
7218 */
7219 if (kvm_lapic_enabled(vcpu)) {
7220 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
7221 kvm_x86_ops->sync_pir_to_irr(vcpu);
7222 }
7223
7224 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7225 || need_resched() || signal_pending(current)) {
7226 vcpu->mode = OUTSIDE_GUEST_MODE;
7227 smp_wmb();
7228 local_irq_enable();
7229 preempt_enable();
7230 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7231 r = 1;
7232 goto cancel_injection;
7233 }
7234
7235 kvm_load_guest_xcr0(vcpu);
7236
7237 if (req_immediate_exit) {
7238 kvm_make_request(KVM_REQ_EVENT, vcpu);
7239 smp_send_reschedule(vcpu->cpu);
7240 }
7241
7242 trace_kvm_entry(vcpu->vcpu_id);
7243 wait_lapic_expire(vcpu);
7244 guest_enter_irqoff();
7245
7246 if (unlikely(vcpu->arch.switch_db_regs)) {
7247 set_debugreg(0, 7);
7248 set_debugreg(vcpu->arch.eff_db[0], 0);
7249 set_debugreg(vcpu->arch.eff_db[1], 1);
7250 set_debugreg(vcpu->arch.eff_db[2], 2);
7251 set_debugreg(vcpu->arch.eff_db[3], 3);
7252 set_debugreg(vcpu->arch.dr6, 6);
7253 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7254 }
7255
7256 kvm_x86_ops->run(vcpu);
7257
7258 /*
7259 * Do this here before restoring debug registers on the host. And
7260 * since we do this before handling the vmexit, a DR access vmexit
7261 * can (a) read the correct value of the debug registers, (b) set
7262 * KVM_DEBUGREG_WONT_EXIT again.
7263 */
7264 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7265 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7266 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7267 kvm_update_dr0123(vcpu);
7268 kvm_update_dr6(vcpu);
7269 kvm_update_dr7(vcpu);
7270 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7271 }
7272
7273 /*
7274 * If the guest has used debug registers, at least dr7
7275 * will be disabled while returning to the host.
7276 * If we don't have active breakpoints in the host, we don't
7277 * care about the messed up debug address registers. But if
7278 * we have some of them active, restore the old state.
7279 */
7280 if (hw_breakpoint_active())
7281 hw_breakpoint_restore();
7282
7283 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7284
7285 vcpu->mode = OUTSIDE_GUEST_MODE;
7286 smp_wmb();
7287
7288 kvm_put_guest_xcr0(vcpu);
7289
7290 kvm_x86_ops->handle_external_intr(vcpu);
7291
7292 ++vcpu->stat.exits;
7293
7294 guest_exit_irqoff();
7295
7296 local_irq_enable();
7297 preempt_enable();
7298
7299 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7300
7301 /*
7302 * Profile KVM exit RIPs:
7303 */
7304 if (unlikely(prof_on == KVM_PROFILING)) {
7305 unsigned long rip = kvm_rip_read(vcpu);
7306 profile_hit(KVM_PROFILING, (void *)rip);
7307 }
7308
7309 if (unlikely(vcpu->arch.tsc_always_catchup))
7310 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7311
7312 if (vcpu->arch.apic_attention)
7313 kvm_lapic_sync_from_vapic(vcpu);
7314
7315 vcpu->arch.gpa_available = false;
7316 r = kvm_x86_ops->handle_exit(vcpu);
7317 return r;
7318
7319 cancel_injection:
7320 kvm_x86_ops->cancel_injection(vcpu);
7321 if (unlikely(vcpu->arch.apic_attention))
7322 kvm_lapic_sync_from_vapic(vcpu);
7323 out:
7324 return r;
7325 }
7326
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)7327 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7328 {
7329 if (!kvm_arch_vcpu_runnable(vcpu) &&
7330 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7331 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7332 kvm_vcpu_block(vcpu);
7333 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7334
7335 if (kvm_x86_ops->post_block)
7336 kvm_x86_ops->post_block(vcpu);
7337
7338 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7339 return 1;
7340 }
7341
7342 kvm_apic_accept_events(vcpu);
7343 switch(vcpu->arch.mp_state) {
7344 case KVM_MP_STATE_HALTED:
7345 vcpu->arch.pv.pv_unhalted = false;
7346 vcpu->arch.mp_state =
7347 KVM_MP_STATE_RUNNABLE;
7348 case KVM_MP_STATE_RUNNABLE:
7349 vcpu->arch.apf.halted = false;
7350 break;
7351 case KVM_MP_STATE_INIT_RECEIVED:
7352 break;
7353 default:
7354 return -EINTR;
7355 break;
7356 }
7357 return 1;
7358 }
7359
kvm_vcpu_running(struct kvm_vcpu * vcpu)7360 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7361 {
7362 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7363 kvm_x86_ops->check_nested_events(vcpu, false);
7364
7365 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7366 !vcpu->arch.apf.halted);
7367 }
7368
vcpu_run(struct kvm_vcpu * vcpu)7369 static int vcpu_run(struct kvm_vcpu *vcpu)
7370 {
7371 int r;
7372 struct kvm *kvm = vcpu->kvm;
7373
7374 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7375 vcpu->arch.l1tf_flush_l1d = true;
7376
7377 for (;;) {
7378 if (kvm_vcpu_running(vcpu)) {
7379 r = vcpu_enter_guest(vcpu);
7380 } else {
7381 r = vcpu_block(kvm, vcpu);
7382 }
7383
7384 if (r <= 0)
7385 break;
7386
7387 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7388 if (kvm_cpu_has_pending_timer(vcpu))
7389 kvm_inject_pending_timer_irqs(vcpu);
7390
7391 if (dm_request_for_irq_injection(vcpu) &&
7392 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7393 r = 0;
7394 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7395 ++vcpu->stat.request_irq_exits;
7396 break;
7397 }
7398
7399 kvm_check_async_pf_completion(vcpu);
7400
7401 if (signal_pending(current)) {
7402 r = -EINTR;
7403 vcpu->run->exit_reason = KVM_EXIT_INTR;
7404 ++vcpu->stat.signal_exits;
7405 break;
7406 }
7407 if (need_resched()) {
7408 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7409 cond_resched();
7410 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7411 }
7412 }
7413
7414 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7415
7416 return r;
7417 }
7418
complete_emulated_io(struct kvm_vcpu * vcpu)7419 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7420 {
7421 int r;
7422 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7423 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7424 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7425 if (r != EMULATE_DONE)
7426 return 0;
7427 return 1;
7428 }
7429
complete_emulated_pio(struct kvm_vcpu * vcpu)7430 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7431 {
7432 BUG_ON(!vcpu->arch.pio.count);
7433
7434 return complete_emulated_io(vcpu);
7435 }
7436
7437 /*
7438 * Implements the following, as a state machine:
7439 *
7440 * read:
7441 * for each fragment
7442 * for each mmio piece in the fragment
7443 * write gpa, len
7444 * exit
7445 * copy data
7446 * execute insn
7447 *
7448 * write:
7449 * for each fragment
7450 * for each mmio piece in the fragment
7451 * write gpa, len
7452 * copy data
7453 * exit
7454 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)7455 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7456 {
7457 struct kvm_run *run = vcpu->run;
7458 struct kvm_mmio_fragment *frag;
7459 unsigned len;
7460
7461 BUG_ON(!vcpu->mmio_needed);
7462
7463 /* Complete previous fragment */
7464 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7465 len = min(8u, frag->len);
7466 if (!vcpu->mmio_is_write)
7467 memcpy(frag->data, run->mmio.data, len);
7468
7469 if (frag->len <= 8) {
7470 /* Switch to the next fragment. */
7471 frag++;
7472 vcpu->mmio_cur_fragment++;
7473 } else {
7474 /* Go forward to the next mmio piece. */
7475 frag->data += len;
7476 frag->gpa += len;
7477 frag->len -= len;
7478 }
7479
7480 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7481 vcpu->mmio_needed = 0;
7482
7483 /* FIXME: return into emulator if single-stepping. */
7484 if (vcpu->mmio_is_write)
7485 return 1;
7486 vcpu->mmio_read_completed = 1;
7487 return complete_emulated_io(vcpu);
7488 }
7489
7490 run->exit_reason = KVM_EXIT_MMIO;
7491 run->mmio.phys_addr = frag->gpa;
7492 if (vcpu->mmio_is_write)
7493 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7494 run->mmio.len = min(8u, frag->len);
7495 run->mmio.is_write = vcpu->mmio_is_write;
7496 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7497 return 0;
7498 }
7499
7500
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)7501 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7502 {
7503 int r;
7504
7505 kvm_sigset_activate(vcpu);
7506
7507 kvm_load_guest_fpu(vcpu);
7508
7509 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7510 if (kvm_run->immediate_exit) {
7511 r = -EINTR;
7512 goto out;
7513 }
7514 kvm_vcpu_block(vcpu);
7515 kvm_apic_accept_events(vcpu);
7516 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7517 r = -EAGAIN;
7518 if (signal_pending(current)) {
7519 r = -EINTR;
7520 vcpu->run->exit_reason = KVM_EXIT_INTR;
7521 ++vcpu->stat.signal_exits;
7522 }
7523 goto out;
7524 }
7525
7526 /* re-sync apic's tpr */
7527 if (!lapic_in_kernel(vcpu)) {
7528 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7529 r = -EINVAL;
7530 goto out;
7531 }
7532 }
7533
7534 if (unlikely(vcpu->arch.complete_userspace_io)) {
7535 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7536 vcpu->arch.complete_userspace_io = NULL;
7537 r = cui(vcpu);
7538 if (r <= 0)
7539 goto out;
7540 } else
7541 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7542
7543 if (kvm_run->immediate_exit)
7544 r = -EINTR;
7545 else
7546 r = vcpu_run(vcpu);
7547
7548 out:
7549 kvm_put_guest_fpu(vcpu);
7550 post_kvm_run_save(vcpu);
7551 kvm_sigset_deactivate(vcpu);
7552
7553 return r;
7554 }
7555
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7556 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7557 {
7558 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7559 /*
7560 * We are here if userspace calls get_regs() in the middle of
7561 * instruction emulation. Registers state needs to be copied
7562 * back from emulation context to vcpu. Userspace shouldn't do
7563 * that usually, but some bad designed PV devices (vmware
7564 * backdoor interface) need this to work
7565 */
7566 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7567 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7568 }
7569 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7570 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7571 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7572 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7573 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7574 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7575 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7576 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7577 #ifdef CONFIG_X86_64
7578 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7579 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7580 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7581 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7582 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7583 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7584 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7585 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7586 #endif
7587
7588 regs->rip = kvm_rip_read(vcpu);
7589 regs->rflags = kvm_get_rflags(vcpu);
7590
7591 return 0;
7592 }
7593
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)7594 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7595 {
7596 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7597 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7598
7599 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7600 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7601 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7602 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7603 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7604 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7605 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7606 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7607 #ifdef CONFIG_X86_64
7608 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7609 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7610 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7611 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7612 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7613 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7614 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7615 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7616 #endif
7617
7618 kvm_rip_write(vcpu, regs->rip);
7619 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7620
7621 vcpu->arch.exception.pending = false;
7622
7623 kvm_make_request(KVM_REQ_EVENT, vcpu);
7624
7625 return 0;
7626 }
7627
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)7628 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7629 {
7630 struct kvm_segment cs;
7631
7632 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7633 *db = cs.db;
7634 *l = cs.l;
7635 }
7636 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7637
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7638 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7639 struct kvm_sregs *sregs)
7640 {
7641 struct desc_ptr dt;
7642
7643 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7644 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7645 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7646 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7647 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7648 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7649
7650 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7651 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7652
7653 kvm_x86_ops->get_idt(vcpu, &dt);
7654 sregs->idt.limit = dt.size;
7655 sregs->idt.base = dt.address;
7656 kvm_x86_ops->get_gdt(vcpu, &dt);
7657 sregs->gdt.limit = dt.size;
7658 sregs->gdt.base = dt.address;
7659
7660 sregs->cr0 = kvm_read_cr0(vcpu);
7661 sregs->cr2 = vcpu->arch.cr2;
7662 sregs->cr3 = kvm_read_cr3(vcpu);
7663 sregs->cr4 = kvm_read_cr4(vcpu);
7664 sregs->cr8 = kvm_get_cr8(vcpu);
7665 sregs->efer = vcpu->arch.efer;
7666 sregs->apic_base = kvm_get_apic_base(vcpu);
7667
7668 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7669
7670 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7671 set_bit(vcpu->arch.interrupt.nr,
7672 (unsigned long *)sregs->interrupt_bitmap);
7673
7674 return 0;
7675 }
7676
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)7677 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7678 struct kvm_mp_state *mp_state)
7679 {
7680 if (kvm_mpx_supported())
7681 kvm_load_guest_fpu(vcpu);
7682
7683 kvm_apic_accept_events(vcpu);
7684 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7685 vcpu->arch.pv.pv_unhalted)
7686 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7687 else
7688 mp_state->mp_state = vcpu->arch.mp_state;
7689
7690 if (kvm_mpx_supported())
7691 kvm_put_guest_fpu(vcpu);
7692 return 0;
7693 }
7694
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)7695 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7696 struct kvm_mp_state *mp_state)
7697 {
7698 if (!lapic_in_kernel(vcpu) &&
7699 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7700 return -EINVAL;
7701
7702 /* INITs are latched while in SMM */
7703 if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7704 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7705 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7706 return -EINVAL;
7707
7708 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7709 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7710 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7711 } else
7712 vcpu->arch.mp_state = mp_state->mp_state;
7713 kvm_make_request(KVM_REQ_EVENT, vcpu);
7714 return 0;
7715 }
7716
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)7717 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7718 int reason, bool has_error_code, u32 error_code)
7719 {
7720 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7721 int ret;
7722
7723 init_emulate_ctxt(vcpu);
7724
7725 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7726 has_error_code, error_code);
7727
7728 if (ret)
7729 return EMULATE_FAIL;
7730
7731 kvm_rip_write(vcpu, ctxt->eip);
7732 kvm_set_rflags(vcpu, ctxt->eflags);
7733 kvm_make_request(KVM_REQ_EVENT, vcpu);
7734 return EMULATE_DONE;
7735 }
7736 EXPORT_SYMBOL_GPL(kvm_task_switch);
7737
kvm_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7738 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7739 {
7740 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7741 /*
7742 * When EFER.LME and CR0.PG are set, the processor is in
7743 * 64-bit mode (though maybe in a 32-bit code segment).
7744 * CR4.PAE and EFER.LMA must be set.
7745 */
7746 if (!(sregs->cr4 & X86_CR4_PAE)
7747 || !(sregs->efer & EFER_LMA))
7748 return -EINVAL;
7749 } else {
7750 /*
7751 * Not in 64-bit mode: EFER.LMA is clear and the code
7752 * segment cannot be 64-bit.
7753 */
7754 if (sregs->efer & EFER_LMA || sregs->cs.l)
7755 return -EINVAL;
7756 }
7757
7758 return 0;
7759 }
7760
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7761 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7762 struct kvm_sregs *sregs)
7763 {
7764 struct msr_data apic_base_msr;
7765 int mmu_reset_needed = 0;
7766 int cpuid_update_needed = 0;
7767 int pending_vec, max_bits, idx;
7768 struct desc_ptr dt;
7769
7770 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7771 (sregs->cr4 & X86_CR4_OSXSAVE))
7772 return -EINVAL;
7773
7774 if (kvm_valid_sregs(vcpu, sregs))
7775 return -EINVAL;
7776
7777 apic_base_msr.data = sregs->apic_base;
7778 apic_base_msr.host_initiated = true;
7779 if (kvm_set_apic_base(vcpu, &apic_base_msr))
7780 return -EINVAL;
7781
7782 dt.size = sregs->idt.limit;
7783 dt.address = sregs->idt.base;
7784 kvm_x86_ops->set_idt(vcpu, &dt);
7785 dt.size = sregs->gdt.limit;
7786 dt.address = sregs->gdt.base;
7787 kvm_x86_ops->set_gdt(vcpu, &dt);
7788
7789 vcpu->arch.cr2 = sregs->cr2;
7790 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7791 vcpu->arch.cr3 = sregs->cr3;
7792 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7793
7794 kvm_set_cr8(vcpu, sregs->cr8);
7795
7796 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7797 kvm_x86_ops->set_efer(vcpu, sregs->efer);
7798
7799 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7800 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7801 vcpu->arch.cr0 = sregs->cr0;
7802
7803 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7804 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
7805 (X86_CR4_OSXSAVE | X86_CR4_PKE));
7806 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7807 if (cpuid_update_needed)
7808 kvm_update_cpuid(vcpu);
7809
7810 idx = srcu_read_lock(&vcpu->kvm->srcu);
7811 if (is_pae_paging(vcpu)) {
7812 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7813 mmu_reset_needed = 1;
7814 }
7815 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7816
7817 if (mmu_reset_needed)
7818 kvm_mmu_reset_context(vcpu);
7819
7820 max_bits = KVM_NR_INTERRUPTS;
7821 pending_vec = find_first_bit(
7822 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7823 if (pending_vec < max_bits) {
7824 kvm_queue_interrupt(vcpu, pending_vec, false);
7825 pr_debug("Set back pending irq %d\n", pending_vec);
7826 }
7827
7828 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7829 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7830 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7831 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7832 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7833 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7834
7835 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7836 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7837
7838 update_cr8_intercept(vcpu);
7839
7840 /* Older userspace won't unhalt the vcpu on reset. */
7841 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7842 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7843 !is_protmode(vcpu))
7844 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7845
7846 kvm_make_request(KVM_REQ_EVENT, vcpu);
7847
7848 return 0;
7849 }
7850
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)7851 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7852 struct kvm_guest_debug *dbg)
7853 {
7854 unsigned long rflags;
7855 int i, r;
7856
7857 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7858 r = -EBUSY;
7859 if (vcpu->arch.exception.pending)
7860 goto out;
7861 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7862 kvm_queue_exception(vcpu, DB_VECTOR);
7863 else
7864 kvm_queue_exception(vcpu, BP_VECTOR);
7865 }
7866
7867 /*
7868 * Read rflags as long as potentially injected trace flags are still
7869 * filtered out.
7870 */
7871 rflags = kvm_get_rflags(vcpu);
7872
7873 vcpu->guest_debug = dbg->control;
7874 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7875 vcpu->guest_debug = 0;
7876
7877 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7878 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7879 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7880 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7881 } else {
7882 for (i = 0; i < KVM_NR_DB_REGS; i++)
7883 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7884 }
7885 kvm_update_dr7(vcpu);
7886
7887 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7888 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7889 get_segment_base(vcpu, VCPU_SREG_CS);
7890
7891 /*
7892 * Trigger an rflags update that will inject or remove the trace
7893 * flags.
7894 */
7895 kvm_set_rflags(vcpu, rflags);
7896
7897 kvm_x86_ops->update_bp_intercept(vcpu);
7898
7899 r = 0;
7900
7901 out:
7902
7903 return r;
7904 }
7905
7906 /*
7907 * Translate a guest virtual address to a guest physical address.
7908 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)7909 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7910 struct kvm_translation *tr)
7911 {
7912 unsigned long vaddr = tr->linear_address;
7913 gpa_t gpa;
7914 int idx;
7915
7916 idx = srcu_read_lock(&vcpu->kvm->srcu);
7917 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7918 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7919 tr->physical_address = gpa;
7920 tr->valid = gpa != UNMAPPED_GVA;
7921 tr->writeable = 1;
7922 tr->usermode = 0;
7923
7924 return 0;
7925 }
7926
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7927 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7928 {
7929 struct fxregs_state *fxsave =
7930 &vcpu->arch.guest_fpu.state.fxsave;
7931
7932 memcpy(fpu->fpr, fxsave->st_space, 128);
7933 fpu->fcw = fxsave->cwd;
7934 fpu->fsw = fxsave->swd;
7935 fpu->ftwx = fxsave->twd;
7936 fpu->last_opcode = fxsave->fop;
7937 fpu->last_ip = fxsave->rip;
7938 fpu->last_dp = fxsave->rdp;
7939 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7940
7941 return 0;
7942 }
7943
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7944 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7945 {
7946 struct fxregs_state *fxsave =
7947 &vcpu->arch.guest_fpu.state.fxsave;
7948
7949 memcpy(fxsave->st_space, fpu->fpr, 128);
7950 fxsave->cwd = fpu->fcw;
7951 fxsave->swd = fpu->fsw;
7952 fxsave->twd = fpu->ftwx;
7953 fxsave->fop = fpu->last_opcode;
7954 fxsave->rip = fpu->last_ip;
7955 fxsave->rdp = fpu->last_dp;
7956 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7957
7958 return 0;
7959 }
7960
fx_init(struct kvm_vcpu * vcpu)7961 static void fx_init(struct kvm_vcpu *vcpu)
7962 {
7963 fpstate_init(&vcpu->arch.guest_fpu.state);
7964 if (boot_cpu_has(X86_FEATURE_XSAVES))
7965 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7966 host_xcr0 | XSTATE_COMPACTION_ENABLED;
7967
7968 /*
7969 * Ensure guest xcr0 is valid for loading
7970 */
7971 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7972
7973 vcpu->arch.cr0 |= X86_CR0_ET;
7974 }
7975
7976 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)7977 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7978 {
7979 preempt_disable();
7980 copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7981 /* PKRU is separately restored in kvm_x86_ops->run. */
7982 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7983 ~XFEATURE_MASK_PKRU);
7984 preempt_enable();
7985 trace_kvm_fpu(1);
7986 }
7987
7988 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)7989 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7990 {
7991 preempt_disable();
7992 copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7993 copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7994 preempt_enable();
7995 ++vcpu->stat.fpu_reload;
7996 trace_kvm_fpu(0);
7997 }
7998
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)7999 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8000 {
8001 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8002
8003 kvmclock_reset(vcpu);
8004
8005 kvm_x86_ops->vcpu_free(vcpu);
8006 free_cpumask_var(wbinvd_dirty_mask);
8007 }
8008
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)8009 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8010 unsigned int id)
8011 {
8012 struct kvm_vcpu *vcpu;
8013
8014 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8015 printk_once(KERN_WARNING
8016 "kvm: SMP vm created on host with unstable TSC; "
8017 "guest TSC will not be reliable\n");
8018
8019 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8020
8021 return vcpu;
8022 }
8023
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)8024 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8025 {
8026 int r;
8027
8028 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8029 kvm_vcpu_mtrr_init(vcpu);
8030 r = vcpu_load(vcpu);
8031 if (r)
8032 return r;
8033 kvm_vcpu_reset(vcpu, false);
8034 kvm_mmu_setup(vcpu);
8035 vcpu_put(vcpu);
8036 return r;
8037 }
8038
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)8039 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8040 {
8041 struct msr_data msr;
8042 struct kvm *kvm = vcpu->kvm;
8043
8044 kvm_hv_vcpu_postcreate(vcpu);
8045
8046 if (vcpu_load(vcpu))
8047 return;
8048 msr.data = 0x0;
8049 msr.index = MSR_IA32_TSC;
8050 msr.host_initiated = true;
8051 kvm_write_tsc(vcpu, &msr);
8052 vcpu_put(vcpu);
8053
8054 if (!kvmclock_periodic_sync)
8055 return;
8056
8057 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8058 KVMCLOCK_SYNC_PERIOD);
8059 }
8060
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)8061 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8062 {
8063 int r;
8064 vcpu->arch.apf.msr_val = 0;
8065
8066 r = vcpu_load(vcpu);
8067 BUG_ON(r);
8068 kvm_mmu_unload(vcpu);
8069 vcpu_put(vcpu);
8070
8071 kvm_arch_vcpu_free(vcpu);
8072 }
8073
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)8074 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8075 {
8076 kvm_lapic_reset(vcpu, init_event);
8077
8078 vcpu->arch.hflags = 0;
8079
8080 vcpu->arch.smi_pending = 0;
8081 atomic_set(&vcpu->arch.nmi_queued, 0);
8082 vcpu->arch.nmi_pending = 0;
8083 vcpu->arch.nmi_injected = false;
8084 kvm_clear_interrupt_queue(vcpu);
8085 kvm_clear_exception_queue(vcpu);
8086 vcpu->arch.exception.pending = false;
8087
8088 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8089 kvm_update_dr0123(vcpu);
8090 vcpu->arch.dr6 = DR6_INIT;
8091 kvm_update_dr6(vcpu);
8092 vcpu->arch.dr7 = DR7_FIXED_1;
8093 kvm_update_dr7(vcpu);
8094
8095 vcpu->arch.cr2 = 0;
8096
8097 kvm_make_request(KVM_REQ_EVENT, vcpu);
8098 vcpu->arch.apf.msr_val = 0;
8099 vcpu->arch.st.msr_val = 0;
8100
8101 kvmclock_reset(vcpu);
8102
8103 kvm_clear_async_pf_completion_queue(vcpu);
8104 kvm_async_pf_hash_reset(vcpu);
8105 vcpu->arch.apf.halted = false;
8106
8107 if (!init_event) {
8108 kvm_pmu_reset(vcpu);
8109 vcpu->arch.smbase = 0x30000;
8110
8111 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8112 vcpu->arch.msr_misc_features_enables = 0;
8113 }
8114
8115 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8116 vcpu->arch.regs_avail = ~0;
8117 vcpu->arch.regs_dirty = ~0;
8118
8119 kvm_x86_ops->vcpu_reset(vcpu, init_event);
8120 }
8121
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)8122 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8123 {
8124 struct kvm_segment cs;
8125
8126 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8127 cs.selector = vector << 8;
8128 cs.base = vector << 12;
8129 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8130 kvm_rip_write(vcpu, 0);
8131 }
8132
kvm_arch_hardware_enable(void)8133 int kvm_arch_hardware_enable(void)
8134 {
8135 struct kvm *kvm;
8136 struct kvm_vcpu *vcpu;
8137 int i;
8138 int ret;
8139 u64 local_tsc;
8140 u64 max_tsc = 0;
8141 bool stable, backwards_tsc = false;
8142
8143 kvm_shared_msr_cpu_online();
8144 ret = kvm_x86_ops->hardware_enable();
8145 if (ret != 0)
8146 return ret;
8147
8148 local_tsc = rdtsc();
8149 stable = !check_tsc_unstable();
8150 list_for_each_entry(kvm, &vm_list, vm_list) {
8151 kvm_for_each_vcpu(i, vcpu, kvm) {
8152 if (!stable && vcpu->cpu == smp_processor_id())
8153 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8154 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8155 backwards_tsc = true;
8156 if (vcpu->arch.last_host_tsc > max_tsc)
8157 max_tsc = vcpu->arch.last_host_tsc;
8158 }
8159 }
8160 }
8161
8162 /*
8163 * Sometimes, even reliable TSCs go backwards. This happens on
8164 * platforms that reset TSC during suspend or hibernate actions, but
8165 * maintain synchronization. We must compensate. Fortunately, we can
8166 * detect that condition here, which happens early in CPU bringup,
8167 * before any KVM threads can be running. Unfortunately, we can't
8168 * bring the TSCs fully up to date with real time, as we aren't yet far
8169 * enough into CPU bringup that we know how much real time has actually
8170 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8171 * variables that haven't been updated yet.
8172 *
8173 * So we simply find the maximum observed TSC above, then record the
8174 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
8175 * the adjustment will be applied. Note that we accumulate
8176 * adjustments, in case multiple suspend cycles happen before some VCPU
8177 * gets a chance to run again. In the event that no KVM threads get a
8178 * chance to run, we will miss the entire elapsed period, as we'll have
8179 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8180 * loose cycle time. This isn't too big a deal, since the loss will be
8181 * uniform across all VCPUs (not to mention the scenario is extremely
8182 * unlikely). It is possible that a second hibernate recovery happens
8183 * much faster than a first, causing the observed TSC here to be
8184 * smaller; this would require additional padding adjustment, which is
8185 * why we set last_host_tsc to the local tsc observed here.
8186 *
8187 * N.B. - this code below runs only on platforms with reliable TSC,
8188 * as that is the only way backwards_tsc is set above. Also note
8189 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8190 * have the same delta_cyc adjustment applied if backwards_tsc
8191 * is detected. Note further, this adjustment is only done once,
8192 * as we reset last_host_tsc on all VCPUs to stop this from being
8193 * called multiple times (one for each physical CPU bringup).
8194 *
8195 * Platforms with unreliable TSCs don't have to deal with this, they
8196 * will be compensated by the logic in vcpu_load, which sets the TSC to
8197 * catchup mode. This will catchup all VCPUs to real time, but cannot
8198 * guarantee that they stay in perfect synchronization.
8199 */
8200 if (backwards_tsc) {
8201 u64 delta_cyc = max_tsc - local_tsc;
8202 list_for_each_entry(kvm, &vm_list, vm_list) {
8203 kvm->arch.backwards_tsc_observed = true;
8204 kvm_for_each_vcpu(i, vcpu, kvm) {
8205 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8206 vcpu->arch.last_host_tsc = local_tsc;
8207 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8208 }
8209
8210 /*
8211 * We have to disable TSC offset matching.. if you were
8212 * booting a VM while issuing an S4 host suspend....
8213 * you may have some problem. Solving this issue is
8214 * left as an exercise to the reader.
8215 */
8216 kvm->arch.last_tsc_nsec = 0;
8217 kvm->arch.last_tsc_write = 0;
8218 }
8219
8220 }
8221 return 0;
8222 }
8223
kvm_arch_hardware_disable(void)8224 void kvm_arch_hardware_disable(void)
8225 {
8226 kvm_x86_ops->hardware_disable();
8227 drop_user_return_notifiers();
8228 }
8229
kvm_arch_hardware_setup(void)8230 int kvm_arch_hardware_setup(void)
8231 {
8232 int r;
8233
8234 r = kvm_x86_ops->hardware_setup();
8235 if (r != 0)
8236 return r;
8237
8238 if (kvm_has_tsc_control) {
8239 /*
8240 * Make sure the user can only configure tsc_khz values that
8241 * fit into a signed integer.
8242 * A min value is not calculated needed because it will always
8243 * be 1 on all machines.
8244 */
8245 u64 max = min(0x7fffffffULL,
8246 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8247 kvm_max_guest_tsc_khz = max;
8248
8249 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8250 }
8251
8252 kvm_init_msr_list();
8253 return 0;
8254 }
8255
kvm_arch_hardware_unsetup(void)8256 void kvm_arch_hardware_unsetup(void)
8257 {
8258 kvm_x86_ops->hardware_unsetup();
8259 }
8260
kvm_arch_check_processor_compat(void * rtn)8261 void kvm_arch_check_processor_compat(void *rtn)
8262 {
8263 kvm_x86_ops->check_processor_compatibility(rtn);
8264 }
8265
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)8266 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8267 {
8268 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8269 }
8270 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8271
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)8272 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8273 {
8274 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8275 }
8276
8277 struct static_key kvm_no_apic_vcpu __read_mostly;
8278 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8279
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)8280 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8281 {
8282 struct page *page;
8283 struct kvm *kvm;
8284 int r;
8285
8286 BUG_ON(vcpu->kvm == NULL);
8287 kvm = vcpu->kvm;
8288
8289 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8290 vcpu->arch.pv.pv_unhalted = false;
8291 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8292 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8293 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8294 else
8295 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8296
8297 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8298 if (!page) {
8299 r = -ENOMEM;
8300 goto fail;
8301 }
8302 vcpu->arch.pio_data = page_address(page);
8303
8304 kvm_set_tsc_khz(vcpu, max_tsc_khz);
8305
8306 r = kvm_mmu_create(vcpu);
8307 if (r < 0)
8308 goto fail_free_pio_data;
8309
8310 if (irqchip_in_kernel(kvm)) {
8311 r = kvm_create_lapic(vcpu);
8312 if (r < 0)
8313 goto fail_mmu_destroy;
8314 } else
8315 static_key_slow_inc(&kvm_no_apic_vcpu);
8316
8317 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8318 GFP_KERNEL);
8319 if (!vcpu->arch.mce_banks) {
8320 r = -ENOMEM;
8321 goto fail_free_lapic;
8322 }
8323 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8324
8325 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8326 r = -ENOMEM;
8327 goto fail_free_mce_banks;
8328 }
8329
8330 fx_init(vcpu);
8331
8332 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
8333 vcpu->arch.pv_time_enabled = false;
8334
8335 vcpu->arch.guest_supported_xcr0 = 0;
8336 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8337
8338 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8339
8340 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8341
8342 kvm_async_pf_hash_reset(vcpu);
8343 kvm_pmu_init(vcpu);
8344
8345 vcpu->arch.pending_external_vector = -1;
8346 vcpu->arch.preempted_in_kernel = false;
8347
8348 kvm_hv_vcpu_init(vcpu);
8349
8350 return 0;
8351
8352 fail_free_mce_banks:
8353 kfree(vcpu->arch.mce_banks);
8354 fail_free_lapic:
8355 kvm_free_lapic(vcpu);
8356 fail_mmu_destroy:
8357 kvm_mmu_destroy(vcpu);
8358 fail_free_pio_data:
8359 free_page((unsigned long)vcpu->arch.pio_data);
8360 fail:
8361 return r;
8362 }
8363
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)8364 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8365 {
8366 int idx;
8367
8368 kvm_hv_vcpu_uninit(vcpu);
8369 kvm_pmu_destroy(vcpu);
8370 kfree(vcpu->arch.mce_banks);
8371 kvm_free_lapic(vcpu);
8372 idx = srcu_read_lock(&vcpu->kvm->srcu);
8373 kvm_mmu_destroy(vcpu);
8374 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8375 free_page((unsigned long)vcpu->arch.pio_data);
8376 if (!lapic_in_kernel(vcpu))
8377 static_key_slow_dec(&kvm_no_apic_vcpu);
8378 }
8379
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)8380 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8381 {
8382 vcpu->arch.l1tf_flush_l1d = true;
8383 kvm_x86_ops->sched_in(vcpu, cpu);
8384 }
8385
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)8386 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8387 {
8388 if (type)
8389 return -EINVAL;
8390
8391 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8392 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8393 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8394 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
8395 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8396 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8397
8398 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8399 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8400 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8401 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8402 &kvm->arch.irq_sources_bitmap);
8403
8404 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8405 mutex_init(&kvm->arch.apic_map_lock);
8406 mutex_init(&kvm->arch.hyperv.hv_lock);
8407 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8408
8409 kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8410 pvclock_update_vm_gtod_copy(kvm);
8411
8412 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8413 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8414
8415 kvm_page_track_init(kvm);
8416 kvm_mmu_init_vm(kvm);
8417
8418 if (kvm_x86_ops->vm_init)
8419 return kvm_x86_ops->vm_init(kvm);
8420
8421 return 0;
8422 }
8423
kvm_arch_post_init_vm(struct kvm * kvm)8424 int kvm_arch_post_init_vm(struct kvm *kvm)
8425 {
8426 return kvm_mmu_post_init_vm(kvm);
8427 }
8428
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)8429 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8430 {
8431 int r;
8432 r = vcpu_load(vcpu);
8433 BUG_ON(r);
8434 kvm_mmu_unload(vcpu);
8435 vcpu_put(vcpu);
8436 }
8437
kvm_free_vcpus(struct kvm * kvm)8438 static void kvm_free_vcpus(struct kvm *kvm)
8439 {
8440 unsigned int i;
8441 struct kvm_vcpu *vcpu;
8442
8443 /*
8444 * Unpin any mmu pages first.
8445 */
8446 kvm_for_each_vcpu(i, vcpu, kvm) {
8447 kvm_clear_async_pf_completion_queue(vcpu);
8448 kvm_unload_vcpu_mmu(vcpu);
8449 }
8450 kvm_for_each_vcpu(i, vcpu, kvm)
8451 kvm_arch_vcpu_free(vcpu);
8452
8453 mutex_lock(&kvm->lock);
8454 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8455 kvm->vcpus[i] = NULL;
8456
8457 atomic_set(&kvm->online_vcpus, 0);
8458 mutex_unlock(&kvm->lock);
8459 }
8460
kvm_arch_sync_events(struct kvm * kvm)8461 void kvm_arch_sync_events(struct kvm *kvm)
8462 {
8463 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8464 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8465 kvm_free_pit(kvm);
8466 }
8467
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)8468 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8469 {
8470 int i, r;
8471 unsigned long hva;
8472 struct kvm_memslots *slots = kvm_memslots(kvm);
8473 struct kvm_memory_slot *slot, old;
8474
8475 /* Called with kvm->slots_lock held. */
8476 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8477 return -EINVAL;
8478
8479 slot = id_to_memslot(slots, id);
8480 if (size) {
8481 if (slot->npages)
8482 return -EEXIST;
8483
8484 /*
8485 * MAP_SHARED to prevent internal slot pages from being moved
8486 * by fork()/COW.
8487 */
8488 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8489 MAP_SHARED | MAP_ANONYMOUS, 0);
8490 if (IS_ERR((void *)hva))
8491 return PTR_ERR((void *)hva);
8492 } else {
8493 if (!slot->npages)
8494 return 0;
8495
8496 hva = 0;
8497 }
8498
8499 old = *slot;
8500 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8501 struct kvm_userspace_memory_region m;
8502
8503 m.slot = id | (i << 16);
8504 m.flags = 0;
8505 m.guest_phys_addr = gpa;
8506 m.userspace_addr = hva;
8507 m.memory_size = size;
8508 r = __kvm_set_memory_region(kvm, &m);
8509 if (r < 0)
8510 return r;
8511 }
8512
8513 if (!size)
8514 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8515
8516 return 0;
8517 }
8518 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8519
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)8520 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8521 {
8522 int r;
8523
8524 mutex_lock(&kvm->slots_lock);
8525 r = __x86_set_memory_region(kvm, id, gpa, size);
8526 mutex_unlock(&kvm->slots_lock);
8527
8528 return r;
8529 }
8530 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8531
kvm_arch_pre_destroy_vm(struct kvm * kvm)8532 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
8533 {
8534 kvm_mmu_pre_destroy_vm(kvm);
8535 }
8536
kvm_arch_destroy_vm(struct kvm * kvm)8537 void kvm_arch_destroy_vm(struct kvm *kvm)
8538 {
8539 if (current->mm == kvm->mm) {
8540 /*
8541 * Free memory regions allocated on behalf of userspace,
8542 * unless the the memory map has changed due to process exit
8543 * or fd copying.
8544 */
8545 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8546 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8547 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8548 }
8549 if (kvm_x86_ops->vm_destroy)
8550 kvm_x86_ops->vm_destroy(kvm);
8551 kvm_pic_destroy(kvm);
8552 kvm_ioapic_destroy(kvm);
8553 kvm_free_vcpus(kvm);
8554 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8555 kvm_mmu_uninit_vm(kvm);
8556 kvm_page_track_cleanup(kvm);
8557 }
8558
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)8559 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8560 struct kvm_memory_slot *dont)
8561 {
8562 int i;
8563
8564 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8565 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8566 kvfree(free->arch.rmap[i]);
8567 free->arch.rmap[i] = NULL;
8568 }
8569 if (i == 0)
8570 continue;
8571
8572 if (!dont || free->arch.lpage_info[i - 1] !=
8573 dont->arch.lpage_info[i - 1]) {
8574 kvfree(free->arch.lpage_info[i - 1]);
8575 free->arch.lpage_info[i - 1] = NULL;
8576 }
8577 }
8578
8579 kvm_page_track_free_memslot(free, dont);
8580 }
8581
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)8582 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8583 unsigned long npages)
8584 {
8585 int i;
8586
8587 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8588 struct kvm_lpage_info *linfo;
8589 unsigned long ugfn;
8590 int lpages;
8591 int level = i + 1;
8592
8593 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8594 slot->base_gfn, level) + 1;
8595
8596 slot->arch.rmap[i] =
8597 kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8598 if (!slot->arch.rmap[i])
8599 goto out_free;
8600 if (i == 0)
8601 continue;
8602
8603 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8604 if (!linfo)
8605 goto out_free;
8606
8607 slot->arch.lpage_info[i - 1] = linfo;
8608
8609 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8610 linfo[0].disallow_lpage = 1;
8611 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8612 linfo[lpages - 1].disallow_lpage = 1;
8613 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8614 /*
8615 * If the gfn and userspace address are not aligned wrt each
8616 * other, or if explicitly asked to, disable large page
8617 * support for this slot
8618 */
8619 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8620 !kvm_largepages_enabled()) {
8621 unsigned long j;
8622
8623 for (j = 0; j < lpages; ++j)
8624 linfo[j].disallow_lpage = 1;
8625 }
8626 }
8627
8628 if (kvm_page_track_create_memslot(slot, npages))
8629 goto out_free;
8630
8631 return 0;
8632
8633 out_free:
8634 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8635 kvfree(slot->arch.rmap[i]);
8636 slot->arch.rmap[i] = NULL;
8637 if (i == 0)
8638 continue;
8639
8640 kvfree(slot->arch.lpage_info[i - 1]);
8641 slot->arch.lpage_info[i - 1] = NULL;
8642 }
8643 return -ENOMEM;
8644 }
8645
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)8646 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
8647 {
8648 /*
8649 * memslots->generation has been incremented.
8650 * mmio generation may have reached its maximum value.
8651 */
8652 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
8653 }
8654
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)8655 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8656 struct kvm_memory_slot *memslot,
8657 const struct kvm_userspace_memory_region *mem,
8658 enum kvm_mr_change change)
8659 {
8660 return 0;
8661 }
8662
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)8663 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8664 struct kvm_memory_slot *new)
8665 {
8666 /* Still write protect RO slot */
8667 if (new->flags & KVM_MEM_READONLY) {
8668 kvm_mmu_slot_remove_write_access(kvm, new);
8669 return;
8670 }
8671
8672 /*
8673 * Call kvm_x86_ops dirty logging hooks when they are valid.
8674 *
8675 * kvm_x86_ops->slot_disable_log_dirty is called when:
8676 *
8677 * - KVM_MR_CREATE with dirty logging is disabled
8678 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8679 *
8680 * The reason is, in case of PML, we need to set D-bit for any slots
8681 * with dirty logging disabled in order to eliminate unnecessary GPA
8682 * logging in PML buffer (and potential PML buffer full VMEXT). This
8683 * guarantees leaving PML enabled during guest's lifetime won't have
8684 * any additonal overhead from PML when guest is running with dirty
8685 * logging disabled for memory slots.
8686 *
8687 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8688 * to dirty logging mode.
8689 *
8690 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8691 *
8692 * In case of write protect:
8693 *
8694 * Write protect all pages for dirty logging.
8695 *
8696 * All the sptes including the large sptes which point to this
8697 * slot are set to readonly. We can not create any new large
8698 * spte on this slot until the end of the logging.
8699 *
8700 * See the comments in fast_page_fault().
8701 */
8702 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8703 if (kvm_x86_ops->slot_enable_log_dirty)
8704 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8705 else
8706 kvm_mmu_slot_remove_write_access(kvm, new);
8707 } else {
8708 if (kvm_x86_ops->slot_disable_log_dirty)
8709 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8710 }
8711 }
8712
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)8713 void kvm_arch_commit_memory_region(struct kvm *kvm,
8714 const struct kvm_userspace_memory_region *mem,
8715 const struct kvm_memory_slot *old,
8716 const struct kvm_memory_slot *new,
8717 enum kvm_mr_change change)
8718 {
8719 int nr_mmu_pages = 0;
8720
8721 if (!kvm->arch.n_requested_mmu_pages)
8722 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8723
8724 if (nr_mmu_pages)
8725 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8726
8727 /*
8728 * Dirty logging tracks sptes in 4k granularity, meaning that large
8729 * sptes have to be split. If live migration is successful, the guest
8730 * in the source machine will be destroyed and large sptes will be
8731 * created in the destination. However, if the guest continues to run
8732 * in the source machine (for example if live migration fails), small
8733 * sptes will remain around and cause bad performance.
8734 *
8735 * Scan sptes if dirty logging has been stopped, dropping those
8736 * which can be collapsed into a single large-page spte. Later
8737 * page faults will create the large-page sptes.
8738 */
8739 if ((change != KVM_MR_DELETE) &&
8740 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8741 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8742 kvm_mmu_zap_collapsible_sptes(kvm, new);
8743
8744 /*
8745 * Set up write protection and/or dirty logging for the new slot.
8746 *
8747 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8748 * been zapped so no dirty logging staff is needed for old slot. For
8749 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8750 * new and it's also covered when dealing with the new slot.
8751 *
8752 * FIXME: const-ify all uses of struct kvm_memory_slot.
8753 */
8754 if (change != KVM_MR_DELETE)
8755 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8756 }
8757
kvm_arch_flush_shadow_all(struct kvm * kvm)8758 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8759 {
8760 kvm_mmu_invalidate_zap_all_pages(kvm);
8761 }
8762
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)8763 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8764 struct kvm_memory_slot *slot)
8765 {
8766 kvm_page_track_flush_slot(kvm, slot);
8767 }
8768
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)8769 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8770 {
8771 if (!list_empty_careful(&vcpu->async_pf.done))
8772 return true;
8773
8774 if (kvm_apic_has_events(vcpu))
8775 return true;
8776
8777 if (vcpu->arch.pv.pv_unhalted)
8778 return true;
8779
8780 if (vcpu->arch.exception.pending)
8781 return true;
8782
8783 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8784 (vcpu->arch.nmi_pending &&
8785 kvm_x86_ops->nmi_allowed(vcpu)))
8786 return true;
8787
8788 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8789 (vcpu->arch.smi_pending && !is_smm(vcpu)))
8790 return true;
8791
8792 if (kvm_arch_interrupt_allowed(vcpu) &&
8793 kvm_cpu_has_interrupt(vcpu))
8794 return true;
8795
8796 if (kvm_hv_has_stimer_pending(vcpu))
8797 return true;
8798
8799 return false;
8800 }
8801
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)8802 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8803 {
8804 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8805 }
8806
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)8807 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
8808 {
8809 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
8810 return true;
8811
8812 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8813 kvm_test_request(KVM_REQ_SMI, vcpu) ||
8814 kvm_test_request(KVM_REQ_EVENT, vcpu))
8815 return true;
8816
8817 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
8818 return true;
8819
8820 return false;
8821 }
8822
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)8823 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8824 {
8825 return vcpu->arch.preempted_in_kernel;
8826 }
8827
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)8828 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8829 {
8830 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8831 }
8832
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)8833 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8834 {
8835 return kvm_x86_ops->interrupt_allowed(vcpu);
8836 }
8837
kvm_get_linear_rip(struct kvm_vcpu * vcpu)8838 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8839 {
8840 if (is_64_bit_mode(vcpu))
8841 return kvm_rip_read(vcpu);
8842 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8843 kvm_rip_read(vcpu));
8844 }
8845 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8846
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)8847 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8848 {
8849 return kvm_get_linear_rip(vcpu) == linear_rip;
8850 }
8851 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8852
kvm_get_rflags(struct kvm_vcpu * vcpu)8853 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8854 {
8855 unsigned long rflags;
8856
8857 rflags = kvm_x86_ops->get_rflags(vcpu);
8858 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8859 rflags &= ~X86_EFLAGS_TF;
8860 return rflags;
8861 }
8862 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8863
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8864 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8865 {
8866 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8867 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8868 rflags |= X86_EFLAGS_TF;
8869 kvm_x86_ops->set_rflags(vcpu, rflags);
8870 }
8871
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8872 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8873 {
8874 __kvm_set_rflags(vcpu, rflags);
8875 kvm_make_request(KVM_REQ_EVENT, vcpu);
8876 }
8877 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8878
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8879 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8880 {
8881 int r;
8882
8883 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8884 work->wakeup_all)
8885 return;
8886
8887 r = kvm_mmu_reload(vcpu);
8888 if (unlikely(r))
8889 return;
8890
8891 if (!vcpu->arch.mmu.direct_map &&
8892 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8893 return;
8894
8895 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8896 }
8897
kvm_async_pf_hash_fn(gfn_t gfn)8898 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8899 {
8900 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8901 }
8902
kvm_async_pf_next_probe(u32 key)8903 static inline u32 kvm_async_pf_next_probe(u32 key)
8904 {
8905 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8906 }
8907
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8908 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8909 {
8910 u32 key = kvm_async_pf_hash_fn(gfn);
8911
8912 while (vcpu->arch.apf.gfns[key] != ~0)
8913 key = kvm_async_pf_next_probe(key);
8914
8915 vcpu->arch.apf.gfns[key] = gfn;
8916 }
8917
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)8918 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8919 {
8920 int i;
8921 u32 key = kvm_async_pf_hash_fn(gfn);
8922
8923 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8924 (vcpu->arch.apf.gfns[key] != gfn &&
8925 vcpu->arch.apf.gfns[key] != ~0); i++)
8926 key = kvm_async_pf_next_probe(key);
8927
8928 return key;
8929 }
8930
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8931 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8932 {
8933 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8934 }
8935
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8936 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8937 {
8938 u32 i, j, k;
8939
8940 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8941 while (true) {
8942 vcpu->arch.apf.gfns[i] = ~0;
8943 do {
8944 j = kvm_async_pf_next_probe(j);
8945 if (vcpu->arch.apf.gfns[j] == ~0)
8946 return;
8947 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8948 /*
8949 * k lies cyclically in ]i,j]
8950 * | i.k.j |
8951 * |....j i.k.| or |.k..j i...|
8952 */
8953 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8954 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8955 i = j;
8956 }
8957 }
8958
apf_put_user(struct kvm_vcpu * vcpu,u32 val)8959 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8960 {
8961
8962 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8963 sizeof(val));
8964 }
8965
apf_get_user(struct kvm_vcpu * vcpu,u32 * val)8966 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8967 {
8968
8969 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8970 sizeof(u32));
8971 }
8972
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8973 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8974 struct kvm_async_pf *work)
8975 {
8976 struct x86_exception fault;
8977
8978 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8979 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8980
8981 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8982 (vcpu->arch.apf.send_user_only &&
8983 kvm_x86_ops->get_cpl(vcpu) == 0))
8984 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8985 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8986 fault.vector = PF_VECTOR;
8987 fault.error_code_valid = true;
8988 fault.error_code = 0;
8989 fault.nested_page_fault = false;
8990 fault.address = work->arch.token;
8991 fault.async_page_fault = true;
8992 kvm_inject_page_fault(vcpu, &fault);
8993 }
8994 }
8995
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8996 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8997 struct kvm_async_pf *work)
8998 {
8999 struct x86_exception fault;
9000 u32 val;
9001
9002 if (work->wakeup_all)
9003 work->arch.token = ~0; /* broadcast wakeup */
9004 else
9005 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9006 trace_kvm_async_pf_ready(work->arch.token, work->gva);
9007
9008 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9009 !apf_get_user(vcpu, &val)) {
9010 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9011 vcpu->arch.exception.pending &&
9012 vcpu->arch.exception.nr == PF_VECTOR &&
9013 !apf_put_user(vcpu, 0)) {
9014 vcpu->arch.exception.injected = false;
9015 vcpu->arch.exception.pending = false;
9016 vcpu->arch.exception.nr = 0;
9017 vcpu->arch.exception.has_error_code = false;
9018 vcpu->arch.exception.error_code = 0;
9019 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9020 fault.vector = PF_VECTOR;
9021 fault.error_code_valid = true;
9022 fault.error_code = 0;
9023 fault.nested_page_fault = false;
9024 fault.address = work->arch.token;
9025 fault.async_page_fault = true;
9026 kvm_inject_page_fault(vcpu, &fault);
9027 }
9028 }
9029 vcpu->arch.apf.halted = false;
9030 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9031 }
9032
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)9033 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9034 {
9035 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9036 return true;
9037 else
9038 return kvm_can_do_async_pf(vcpu);
9039 }
9040
kvm_arch_start_assignment(struct kvm * kvm)9041 void kvm_arch_start_assignment(struct kvm *kvm)
9042 {
9043 atomic_inc(&kvm->arch.assigned_device_count);
9044 }
9045 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9046
kvm_arch_end_assignment(struct kvm * kvm)9047 void kvm_arch_end_assignment(struct kvm *kvm)
9048 {
9049 atomic_dec(&kvm->arch.assigned_device_count);
9050 }
9051 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9052
kvm_arch_has_assigned_device(struct kvm * kvm)9053 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9054 {
9055 return atomic_read(&kvm->arch.assigned_device_count);
9056 }
9057 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9058
kvm_arch_register_noncoherent_dma(struct kvm * kvm)9059 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9060 {
9061 atomic_inc(&kvm->arch.noncoherent_dma_count);
9062 }
9063 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9064
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)9065 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9066 {
9067 atomic_dec(&kvm->arch.noncoherent_dma_count);
9068 }
9069 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9070
kvm_arch_has_noncoherent_dma(struct kvm * kvm)9071 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9072 {
9073 return atomic_read(&kvm->arch.noncoherent_dma_count);
9074 }
9075 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9076
kvm_arch_has_irq_bypass(void)9077 bool kvm_arch_has_irq_bypass(void)
9078 {
9079 return kvm_x86_ops->update_pi_irte != NULL;
9080 }
9081
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)9082 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9083 struct irq_bypass_producer *prod)
9084 {
9085 struct kvm_kernel_irqfd *irqfd =
9086 container_of(cons, struct kvm_kernel_irqfd, consumer);
9087
9088 irqfd->producer = prod;
9089
9090 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9091 prod->irq, irqfd->gsi, 1);
9092 }
9093
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)9094 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9095 struct irq_bypass_producer *prod)
9096 {
9097 int ret;
9098 struct kvm_kernel_irqfd *irqfd =
9099 container_of(cons, struct kvm_kernel_irqfd, consumer);
9100
9101 WARN_ON(irqfd->producer != prod);
9102 irqfd->producer = NULL;
9103
9104 /*
9105 * When producer of consumer is unregistered, we change back to
9106 * remapped mode, so we can re-use the current implementation
9107 * when the irq is masked/disabled or the consumer side (KVM
9108 * int this case doesn't want to receive the interrupts.
9109 */
9110 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9111 if (ret)
9112 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9113 " fails: %d\n", irqfd->consumer.token, ret);
9114 }
9115
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)9116 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9117 uint32_t guest_irq, bool set)
9118 {
9119 if (!kvm_x86_ops->update_pi_irte)
9120 return -EINVAL;
9121
9122 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9123 }
9124
kvm_vector_hashing_enabled(void)9125 bool kvm_vector_hashing_enabled(void)
9126 {
9127 return vector_hashing;
9128 }
9129 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9130
9131 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9132 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9133 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9134 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9135 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9136 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9137 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9138 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9139 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9140 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9141 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9142 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9143 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9144 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9145 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9146 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9147 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9148 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9149 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
9150