1 /* bpf_jit_comp.c : BPF JIT compiler
2 *
3 * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
4 * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; version 2
9 * of the License.
10 */
11 #include <linux/netdevice.h>
12 #include <linux/filter.h>
13 #include <linux/if_vlan.h>
14 #include <asm/cacheflush.h>
15 #include <asm/set_memory.h>
16 #include <asm/nospec-branch.h>
17 #include <linux/bpf.h>
18
19 /*
20 * assembly code in arch/x86/net/bpf_jit.S
21 */
22 extern u8 sk_load_word[], sk_load_half[], sk_load_byte[];
23 extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
24 extern u8 sk_load_byte_positive_offset[];
25 extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
26 extern u8 sk_load_byte_negative_offset[];
27
emit_code(u8 * ptr,u32 bytes,unsigned int len)28 static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
29 {
30 if (len == 1)
31 *ptr = bytes;
32 else if (len == 2)
33 *(u16 *)ptr = bytes;
34 else {
35 *(u32 *)ptr = bytes;
36 barrier();
37 }
38 return ptr + len;
39 }
40
41 #define EMIT(bytes, len) \
42 do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
43
44 #define EMIT1(b1) EMIT(b1, 1)
45 #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
46 #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
47 #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
48 #define EMIT1_off32(b1, off) \
49 do {EMIT1(b1); EMIT(off, 4); } while (0)
50 #define EMIT2_off32(b1, b2, off) \
51 do {EMIT2(b1, b2); EMIT(off, 4); } while (0)
52 #define EMIT3_off32(b1, b2, b3, off) \
53 do {EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
54 #define EMIT4_off32(b1, b2, b3, b4, off) \
55 do {EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
56
is_imm8(int value)57 static bool is_imm8(int value)
58 {
59 return value <= 127 && value >= -128;
60 }
61
is_simm32(s64 value)62 static bool is_simm32(s64 value)
63 {
64 return value == (s64) (s32) value;
65 }
66
67 /* mov dst, src */
68 #define EMIT_mov(DST, SRC) \
69 do {if (DST != SRC) \
70 EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
71 } while (0)
72
bpf_size_to_x86_bytes(int bpf_size)73 static int bpf_size_to_x86_bytes(int bpf_size)
74 {
75 if (bpf_size == BPF_W)
76 return 4;
77 else if (bpf_size == BPF_H)
78 return 2;
79 else if (bpf_size == BPF_B)
80 return 1;
81 else if (bpf_size == BPF_DW)
82 return 4; /* imm32 */
83 else
84 return 0;
85 }
86
87 /* list of x86 cond jumps opcodes (. + s8)
88 * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
89 */
90 #define X86_JB 0x72
91 #define X86_JAE 0x73
92 #define X86_JE 0x74
93 #define X86_JNE 0x75
94 #define X86_JBE 0x76
95 #define X86_JA 0x77
96 #define X86_JL 0x7C
97 #define X86_JGE 0x7D
98 #define X86_JLE 0x7E
99 #define X86_JG 0x7F
100
bpf_flush_icache(void * start,void * end)101 static void bpf_flush_icache(void *start, void *end)
102 {
103 mm_segment_t old_fs = get_fs();
104
105 set_fs(KERNEL_DS);
106 smp_wmb();
107 flush_icache_range((unsigned long)start, (unsigned long)end);
108 set_fs(old_fs);
109 }
110
111 #define CHOOSE_LOAD_FUNC(K, func) \
112 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
113
114 /* pick a register outside of BPF range for JIT internal work */
115 #define AUX_REG (MAX_BPF_JIT_REG + 1)
116
117 /* The following table maps BPF registers to x64 registers.
118 *
119 * x64 register r12 is unused, since if used as base address
120 * register in load/store instructions, it always needs an
121 * extra byte of encoding and is callee saved.
122 *
123 * r9 caches skb->len - skb->data_len
124 * r10 caches skb->data, and used for blinding (if enabled)
125 */
126 static const int reg2hex[] = {
127 [BPF_REG_0] = 0, /* rax */
128 [BPF_REG_1] = 7, /* rdi */
129 [BPF_REG_2] = 6, /* rsi */
130 [BPF_REG_3] = 2, /* rdx */
131 [BPF_REG_4] = 1, /* rcx */
132 [BPF_REG_5] = 0, /* r8 */
133 [BPF_REG_6] = 3, /* rbx callee saved */
134 [BPF_REG_7] = 5, /* r13 callee saved */
135 [BPF_REG_8] = 6, /* r14 callee saved */
136 [BPF_REG_9] = 7, /* r15 callee saved */
137 [BPF_REG_FP] = 5, /* rbp readonly */
138 [BPF_REG_AX] = 2, /* r10 temp register */
139 [AUX_REG] = 3, /* r11 temp register */
140 };
141
142 /* is_ereg() == true if BPF register 'reg' maps to x64 r8..r15
143 * which need extra byte of encoding.
144 * rax,rcx,...,rbp have simpler encoding
145 */
is_ereg(u32 reg)146 static bool is_ereg(u32 reg)
147 {
148 return (1 << reg) & (BIT(BPF_REG_5) |
149 BIT(AUX_REG) |
150 BIT(BPF_REG_7) |
151 BIT(BPF_REG_8) |
152 BIT(BPF_REG_9) |
153 BIT(BPF_REG_AX));
154 }
155
156 /* add modifiers if 'reg' maps to x64 registers r8..r15 */
add_1mod(u8 byte,u32 reg)157 static u8 add_1mod(u8 byte, u32 reg)
158 {
159 if (is_ereg(reg))
160 byte |= 1;
161 return byte;
162 }
163
add_2mod(u8 byte,u32 r1,u32 r2)164 static u8 add_2mod(u8 byte, u32 r1, u32 r2)
165 {
166 if (is_ereg(r1))
167 byte |= 1;
168 if (is_ereg(r2))
169 byte |= 4;
170 return byte;
171 }
172
173 /* encode 'dst_reg' register into x64 opcode 'byte' */
add_1reg(u8 byte,u32 dst_reg)174 static u8 add_1reg(u8 byte, u32 dst_reg)
175 {
176 return byte + reg2hex[dst_reg];
177 }
178
179 /* encode 'dst_reg' and 'src_reg' registers into x64 opcode 'byte' */
add_2reg(u8 byte,u32 dst_reg,u32 src_reg)180 static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
181 {
182 return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
183 }
184
jit_fill_hole(void * area,unsigned int size)185 static void jit_fill_hole(void *area, unsigned int size)
186 {
187 /* fill whole space with int3 instructions */
188 memset(area, 0xcc, size);
189 }
190
191 struct jit_context {
192 int cleanup_addr; /* epilogue code offset */
193 bool seen_ld_abs;
194 bool seen_ax_reg;
195 };
196
197 /* maximum number of bytes emitted while JITing one eBPF insn */
198 #define BPF_MAX_INSN_SIZE 128
199 #define BPF_INSN_SAFETY 64
200
201 #define AUX_STACK_SPACE \
202 (32 /* space for rbx, r13, r14, r15 */ + \
203 8 /* space for skb_copy_bits() buffer */)
204
205 #define PROLOGUE_SIZE 37
206
207 /* emit x64 prologue code for BPF program and check it's size.
208 * bpf_tail_call helper will skip it while jumping into another program
209 */
emit_prologue(u8 ** pprog,u32 stack_depth)210 static void emit_prologue(u8 **pprog, u32 stack_depth)
211 {
212 u8 *prog = *pprog;
213 int cnt = 0;
214
215 EMIT1(0x55); /* push rbp */
216 EMIT3(0x48, 0x89, 0xE5); /* mov rbp,rsp */
217
218 /* sub rsp, rounded_stack_depth + AUX_STACK_SPACE */
219 EMIT3_off32(0x48, 0x81, 0xEC,
220 round_up(stack_depth, 8) + AUX_STACK_SPACE);
221
222 /* sub rbp, AUX_STACK_SPACE */
223 EMIT4(0x48, 0x83, 0xED, AUX_STACK_SPACE);
224
225 /* all classic BPF filters use R6(rbx) save it */
226
227 /* mov qword ptr [rbp+0],rbx */
228 EMIT4(0x48, 0x89, 0x5D, 0);
229
230 /* bpf_convert_filter() maps classic BPF register X to R7 and uses R8
231 * as temporary, so all tcpdump filters need to spill/fill R7(r13) and
232 * R8(r14). R9(r15) spill could be made conditional, but there is only
233 * one 'bpf_error' return path out of helper functions inside bpf_jit.S
234 * The overhead of extra spill is negligible for any filter other
235 * than synthetic ones. Therefore not worth adding complexity.
236 */
237
238 /* mov qword ptr [rbp+8],r13 */
239 EMIT4(0x4C, 0x89, 0x6D, 8);
240 /* mov qword ptr [rbp+16],r14 */
241 EMIT4(0x4C, 0x89, 0x75, 16);
242 /* mov qword ptr [rbp+24],r15 */
243 EMIT4(0x4C, 0x89, 0x7D, 24);
244
245 /* Clear the tail call counter (tail_call_cnt): for eBPF tail calls
246 * we need to reset the counter to 0. It's done in two instructions,
247 * resetting rax register to 0 (xor on eax gets 0 extended), and
248 * moving it to the counter location.
249 */
250
251 /* xor eax, eax */
252 EMIT2(0x31, 0xc0);
253 /* mov qword ptr [rbp+32], rax */
254 EMIT4(0x48, 0x89, 0x45, 32);
255
256 BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
257 *pprog = prog;
258 }
259
260 /* generate the following code:
261 * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
262 * if (index >= array->map.max_entries)
263 * goto out;
264 * if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
265 * goto out;
266 * prog = array->ptrs[index];
267 * if (prog == NULL)
268 * goto out;
269 * goto *(prog->bpf_func + prologue_size);
270 * out:
271 */
emit_bpf_tail_call(u8 ** pprog)272 static void emit_bpf_tail_call(u8 **pprog)
273 {
274 u8 *prog = *pprog;
275 int label1, label2, label3;
276 int cnt = 0;
277
278 /* rdi - pointer to ctx
279 * rsi - pointer to bpf_array
280 * rdx - index in bpf_array
281 */
282
283 /* if (index >= array->map.max_entries)
284 * goto out;
285 */
286 EMIT2(0x89, 0xD2); /* mov edx, edx */
287 EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
288 offsetof(struct bpf_array, map.max_entries));
289 #define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* number of bytes to jump */
290 EMIT2(X86_JBE, OFFSET1); /* jbe out */
291 label1 = cnt;
292
293 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
294 * goto out;
295 */
296 EMIT2_off32(0x8B, 0x85, 36); /* mov eax, dword ptr [rbp + 36] */
297 EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
298 #define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
299 EMIT2(X86_JA, OFFSET2); /* ja out */
300 label2 = cnt;
301 EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
302 EMIT2_off32(0x89, 0x85, 36); /* mov dword ptr [rbp + 36], eax */
303
304 /* prog = array->ptrs[index]; */
305 EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
306 offsetof(struct bpf_array, ptrs));
307
308 /* if (prog == NULL)
309 * goto out;
310 */
311 EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
312 #define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
313 EMIT2(X86_JE, OFFSET3); /* je out */
314 label3 = cnt;
315
316 /* goto *(prog->bpf_func + prologue_size); */
317 EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
318 offsetof(struct bpf_prog, bpf_func));
319 EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
320
321 /* now we're ready to jump into next BPF program
322 * rdi == ctx (1st arg)
323 * rax == prog->bpf_func + prologue_size
324 */
325 RETPOLINE_RAX_BPF_JIT();
326
327 /* out: */
328 BUILD_BUG_ON(cnt - label1 != OFFSET1);
329 BUILD_BUG_ON(cnt - label2 != OFFSET2);
330 BUILD_BUG_ON(cnt - label3 != OFFSET3);
331 *pprog = prog;
332 }
333
334
emit_load_skb_data_hlen(u8 ** pprog)335 static void emit_load_skb_data_hlen(u8 **pprog)
336 {
337 u8 *prog = *pprog;
338 int cnt = 0;
339
340 /* r9d = skb->len - skb->data_len (headlen)
341 * r10 = skb->data
342 */
343 /* mov %r9d, off32(%rdi) */
344 EMIT3_off32(0x44, 0x8b, 0x8f, offsetof(struct sk_buff, len));
345
346 /* sub %r9d, off32(%rdi) */
347 EMIT3_off32(0x44, 0x2b, 0x8f, offsetof(struct sk_buff, data_len));
348
349 /* mov %r10, off32(%rdi) */
350 EMIT3_off32(0x4c, 0x8b, 0x97, offsetof(struct sk_buff, data));
351 *pprog = prog;
352 }
353
do_jit(struct bpf_prog * bpf_prog,int * addrs,u8 * image,int oldproglen,struct jit_context * ctx)354 static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
355 int oldproglen, struct jit_context *ctx)
356 {
357 struct bpf_insn *insn = bpf_prog->insnsi;
358 int insn_cnt = bpf_prog->len;
359 bool seen_ld_abs = ctx->seen_ld_abs | (oldproglen == 0);
360 bool seen_ax_reg = ctx->seen_ax_reg | (oldproglen == 0);
361 bool seen_exit = false;
362 u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
363 int i, cnt = 0;
364 int proglen = 0;
365 u8 *prog = temp;
366
367 emit_prologue(&prog, bpf_prog->aux->stack_depth);
368
369 if (seen_ld_abs)
370 emit_load_skb_data_hlen(&prog);
371
372 for (i = 0; i < insn_cnt; i++, insn++) {
373 const s32 imm32 = insn->imm;
374 u32 dst_reg = insn->dst_reg;
375 u32 src_reg = insn->src_reg;
376 u8 b1 = 0, b2 = 0, b3 = 0;
377 s64 jmp_offset;
378 u8 jmp_cond;
379 bool reload_skb_data;
380 int ilen;
381 u8 *func;
382
383 if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
384 ctx->seen_ax_reg = seen_ax_reg = true;
385
386 switch (insn->code) {
387 /* ALU */
388 case BPF_ALU | BPF_ADD | BPF_X:
389 case BPF_ALU | BPF_SUB | BPF_X:
390 case BPF_ALU | BPF_AND | BPF_X:
391 case BPF_ALU | BPF_OR | BPF_X:
392 case BPF_ALU | BPF_XOR | BPF_X:
393 case BPF_ALU64 | BPF_ADD | BPF_X:
394 case BPF_ALU64 | BPF_SUB | BPF_X:
395 case BPF_ALU64 | BPF_AND | BPF_X:
396 case BPF_ALU64 | BPF_OR | BPF_X:
397 case BPF_ALU64 | BPF_XOR | BPF_X:
398 switch (BPF_OP(insn->code)) {
399 case BPF_ADD: b2 = 0x01; break;
400 case BPF_SUB: b2 = 0x29; break;
401 case BPF_AND: b2 = 0x21; break;
402 case BPF_OR: b2 = 0x09; break;
403 case BPF_XOR: b2 = 0x31; break;
404 }
405 if (BPF_CLASS(insn->code) == BPF_ALU64)
406 EMIT1(add_2mod(0x48, dst_reg, src_reg));
407 else if (is_ereg(dst_reg) || is_ereg(src_reg))
408 EMIT1(add_2mod(0x40, dst_reg, src_reg));
409 EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
410 break;
411
412 /* mov dst, src */
413 case BPF_ALU64 | BPF_MOV | BPF_X:
414 EMIT_mov(dst_reg, src_reg);
415 break;
416
417 /* mov32 dst, src */
418 case BPF_ALU | BPF_MOV | BPF_X:
419 if (is_ereg(dst_reg) || is_ereg(src_reg))
420 EMIT1(add_2mod(0x40, dst_reg, src_reg));
421 EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
422 break;
423
424 /* neg dst */
425 case BPF_ALU | BPF_NEG:
426 case BPF_ALU64 | BPF_NEG:
427 if (BPF_CLASS(insn->code) == BPF_ALU64)
428 EMIT1(add_1mod(0x48, dst_reg));
429 else if (is_ereg(dst_reg))
430 EMIT1(add_1mod(0x40, dst_reg));
431 EMIT2(0xF7, add_1reg(0xD8, dst_reg));
432 break;
433
434 case BPF_ALU | BPF_ADD | BPF_K:
435 case BPF_ALU | BPF_SUB | BPF_K:
436 case BPF_ALU | BPF_AND | BPF_K:
437 case BPF_ALU | BPF_OR | BPF_K:
438 case BPF_ALU | BPF_XOR | BPF_K:
439 case BPF_ALU64 | BPF_ADD | BPF_K:
440 case BPF_ALU64 | BPF_SUB | BPF_K:
441 case BPF_ALU64 | BPF_AND | BPF_K:
442 case BPF_ALU64 | BPF_OR | BPF_K:
443 case BPF_ALU64 | BPF_XOR | BPF_K:
444 if (BPF_CLASS(insn->code) == BPF_ALU64)
445 EMIT1(add_1mod(0x48, dst_reg));
446 else if (is_ereg(dst_reg))
447 EMIT1(add_1mod(0x40, dst_reg));
448
449 switch (BPF_OP(insn->code)) {
450 case BPF_ADD: b3 = 0xC0; break;
451 case BPF_SUB: b3 = 0xE8; break;
452 case BPF_AND: b3 = 0xE0; break;
453 case BPF_OR: b3 = 0xC8; break;
454 case BPF_XOR: b3 = 0xF0; break;
455 }
456
457 if (is_imm8(imm32))
458 EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
459 else
460 EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
461 break;
462
463 case BPF_ALU64 | BPF_MOV | BPF_K:
464 /* optimization: if imm32 is positive,
465 * use 'mov eax, imm32' (which zero-extends imm32)
466 * to save 2 bytes
467 */
468 if (imm32 < 0) {
469 /* 'mov rax, imm32' sign extends imm32 */
470 b1 = add_1mod(0x48, dst_reg);
471 b2 = 0xC7;
472 b3 = 0xC0;
473 EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
474 break;
475 }
476
477 case BPF_ALU | BPF_MOV | BPF_K:
478 /* optimization: if imm32 is zero, use 'xor <dst>,<dst>'
479 * to save 3 bytes.
480 */
481 if (imm32 == 0) {
482 if (is_ereg(dst_reg))
483 EMIT1(add_2mod(0x40, dst_reg, dst_reg));
484 b2 = 0x31; /* xor */
485 b3 = 0xC0;
486 EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
487 break;
488 }
489
490 /* mov %eax, imm32 */
491 if (is_ereg(dst_reg))
492 EMIT1(add_1mod(0x40, dst_reg));
493 EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
494 break;
495
496 case BPF_LD | BPF_IMM | BPF_DW:
497 /* optimization: if imm64 is zero, use 'xor <dst>,<dst>'
498 * to save 7 bytes.
499 */
500 if (insn[0].imm == 0 && insn[1].imm == 0) {
501 b1 = add_2mod(0x48, dst_reg, dst_reg);
502 b2 = 0x31; /* xor */
503 b3 = 0xC0;
504 EMIT3(b1, b2, add_2reg(b3, dst_reg, dst_reg));
505
506 insn++;
507 i++;
508 break;
509 }
510
511 /* movabsq %rax, imm64 */
512 EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
513 EMIT(insn[0].imm, 4);
514 EMIT(insn[1].imm, 4);
515
516 insn++;
517 i++;
518 break;
519
520 /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
521 case BPF_ALU | BPF_MOD | BPF_X:
522 case BPF_ALU | BPF_DIV | BPF_X:
523 case BPF_ALU | BPF_MOD | BPF_K:
524 case BPF_ALU | BPF_DIV | BPF_K:
525 case BPF_ALU64 | BPF_MOD | BPF_X:
526 case BPF_ALU64 | BPF_DIV | BPF_X:
527 case BPF_ALU64 | BPF_MOD | BPF_K:
528 case BPF_ALU64 | BPF_DIV | BPF_K:
529 EMIT1(0x50); /* push rax */
530 EMIT1(0x52); /* push rdx */
531
532 if (BPF_SRC(insn->code) == BPF_X)
533 /* mov r11, src_reg */
534 EMIT_mov(AUX_REG, src_reg);
535 else
536 /* mov r11, imm32 */
537 EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
538
539 /* mov rax, dst_reg */
540 EMIT_mov(BPF_REG_0, dst_reg);
541
542 /* xor edx, edx
543 * equivalent to 'xor rdx, rdx', but one byte less
544 */
545 EMIT2(0x31, 0xd2);
546
547 if (BPF_SRC(insn->code) == BPF_X) {
548 /* if (src_reg == 0) return 0 */
549
550 /* cmp r11, 0 */
551 EMIT4(0x49, 0x83, 0xFB, 0x00);
552
553 /* jne .+9 (skip over pop, pop, xor and jmp) */
554 EMIT2(X86_JNE, 1 + 1 + 2 + 5);
555 EMIT1(0x5A); /* pop rdx */
556 EMIT1(0x58); /* pop rax */
557 EMIT2(0x31, 0xc0); /* xor eax, eax */
558
559 /* jmp cleanup_addr
560 * addrs[i] - 11, because there are 11 bytes
561 * after this insn: div, mov, pop, pop, mov
562 */
563 jmp_offset = ctx->cleanup_addr - (addrs[i] - 11);
564 EMIT1_off32(0xE9, jmp_offset);
565 }
566
567 if (BPF_CLASS(insn->code) == BPF_ALU64)
568 /* div r11 */
569 EMIT3(0x49, 0xF7, 0xF3);
570 else
571 /* div r11d */
572 EMIT3(0x41, 0xF7, 0xF3);
573
574 if (BPF_OP(insn->code) == BPF_MOD)
575 /* mov r11, rdx */
576 EMIT3(0x49, 0x89, 0xD3);
577 else
578 /* mov r11, rax */
579 EMIT3(0x49, 0x89, 0xC3);
580
581 EMIT1(0x5A); /* pop rdx */
582 EMIT1(0x58); /* pop rax */
583
584 /* mov dst_reg, r11 */
585 EMIT_mov(dst_reg, AUX_REG);
586 break;
587
588 case BPF_ALU | BPF_MUL | BPF_K:
589 case BPF_ALU | BPF_MUL | BPF_X:
590 case BPF_ALU64 | BPF_MUL | BPF_K:
591 case BPF_ALU64 | BPF_MUL | BPF_X:
592 EMIT1(0x50); /* push rax */
593 EMIT1(0x52); /* push rdx */
594
595 /* mov r11, dst_reg */
596 EMIT_mov(AUX_REG, dst_reg);
597
598 if (BPF_SRC(insn->code) == BPF_X)
599 /* mov rax, src_reg */
600 EMIT_mov(BPF_REG_0, src_reg);
601 else
602 /* mov rax, imm32 */
603 EMIT3_off32(0x48, 0xC7, 0xC0, imm32);
604
605 if (BPF_CLASS(insn->code) == BPF_ALU64)
606 EMIT1(add_1mod(0x48, AUX_REG));
607 else if (is_ereg(AUX_REG))
608 EMIT1(add_1mod(0x40, AUX_REG));
609 /* mul(q) r11 */
610 EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
611
612 /* mov r11, rax */
613 EMIT_mov(AUX_REG, BPF_REG_0);
614
615 EMIT1(0x5A); /* pop rdx */
616 EMIT1(0x58); /* pop rax */
617
618 /* mov dst_reg, r11 */
619 EMIT_mov(dst_reg, AUX_REG);
620 break;
621
622 /* shifts */
623 case BPF_ALU | BPF_LSH | BPF_K:
624 case BPF_ALU | BPF_RSH | BPF_K:
625 case BPF_ALU | BPF_ARSH | BPF_K:
626 case BPF_ALU64 | BPF_LSH | BPF_K:
627 case BPF_ALU64 | BPF_RSH | BPF_K:
628 case BPF_ALU64 | BPF_ARSH | BPF_K:
629 if (BPF_CLASS(insn->code) == BPF_ALU64)
630 EMIT1(add_1mod(0x48, dst_reg));
631 else if (is_ereg(dst_reg))
632 EMIT1(add_1mod(0x40, dst_reg));
633
634 switch (BPF_OP(insn->code)) {
635 case BPF_LSH: b3 = 0xE0; break;
636 case BPF_RSH: b3 = 0xE8; break;
637 case BPF_ARSH: b3 = 0xF8; break;
638 }
639 EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
640 break;
641
642 case BPF_ALU | BPF_LSH | BPF_X:
643 case BPF_ALU | BPF_RSH | BPF_X:
644 case BPF_ALU | BPF_ARSH | BPF_X:
645 case BPF_ALU64 | BPF_LSH | BPF_X:
646 case BPF_ALU64 | BPF_RSH | BPF_X:
647 case BPF_ALU64 | BPF_ARSH | BPF_X:
648
649 /* check for bad case when dst_reg == rcx */
650 if (dst_reg == BPF_REG_4) {
651 /* mov r11, dst_reg */
652 EMIT_mov(AUX_REG, dst_reg);
653 dst_reg = AUX_REG;
654 }
655
656 if (src_reg != BPF_REG_4) { /* common case */
657 EMIT1(0x51); /* push rcx */
658
659 /* mov rcx, src_reg */
660 EMIT_mov(BPF_REG_4, src_reg);
661 }
662
663 /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
664 if (BPF_CLASS(insn->code) == BPF_ALU64)
665 EMIT1(add_1mod(0x48, dst_reg));
666 else if (is_ereg(dst_reg))
667 EMIT1(add_1mod(0x40, dst_reg));
668
669 switch (BPF_OP(insn->code)) {
670 case BPF_LSH: b3 = 0xE0; break;
671 case BPF_RSH: b3 = 0xE8; break;
672 case BPF_ARSH: b3 = 0xF8; break;
673 }
674 EMIT2(0xD3, add_1reg(b3, dst_reg));
675
676 if (src_reg != BPF_REG_4)
677 EMIT1(0x59); /* pop rcx */
678
679 if (insn->dst_reg == BPF_REG_4)
680 /* mov dst_reg, r11 */
681 EMIT_mov(insn->dst_reg, AUX_REG);
682 break;
683
684 case BPF_ALU | BPF_END | BPF_FROM_BE:
685 switch (imm32) {
686 case 16:
687 /* emit 'ror %ax, 8' to swap lower 2 bytes */
688 EMIT1(0x66);
689 if (is_ereg(dst_reg))
690 EMIT1(0x41);
691 EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
692
693 /* emit 'movzwl eax, ax' */
694 if (is_ereg(dst_reg))
695 EMIT3(0x45, 0x0F, 0xB7);
696 else
697 EMIT2(0x0F, 0xB7);
698 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
699 break;
700 case 32:
701 /* emit 'bswap eax' to swap lower 4 bytes */
702 if (is_ereg(dst_reg))
703 EMIT2(0x41, 0x0F);
704 else
705 EMIT1(0x0F);
706 EMIT1(add_1reg(0xC8, dst_reg));
707 break;
708 case 64:
709 /* emit 'bswap rax' to swap 8 bytes */
710 EMIT3(add_1mod(0x48, dst_reg), 0x0F,
711 add_1reg(0xC8, dst_reg));
712 break;
713 }
714 break;
715
716 case BPF_ALU | BPF_END | BPF_FROM_LE:
717 switch (imm32) {
718 case 16:
719 /* emit 'movzwl eax, ax' to zero extend 16-bit
720 * into 64 bit
721 */
722 if (is_ereg(dst_reg))
723 EMIT3(0x45, 0x0F, 0xB7);
724 else
725 EMIT2(0x0F, 0xB7);
726 EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
727 break;
728 case 32:
729 /* emit 'mov eax, eax' to clear upper 32-bits */
730 if (is_ereg(dst_reg))
731 EMIT1(0x45);
732 EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
733 break;
734 case 64:
735 /* nop */
736 break;
737 }
738 break;
739
740 /* ST: *(u8*)(dst_reg + off) = imm */
741 case BPF_ST | BPF_MEM | BPF_B:
742 if (is_ereg(dst_reg))
743 EMIT2(0x41, 0xC6);
744 else
745 EMIT1(0xC6);
746 goto st;
747 case BPF_ST | BPF_MEM | BPF_H:
748 if (is_ereg(dst_reg))
749 EMIT3(0x66, 0x41, 0xC7);
750 else
751 EMIT2(0x66, 0xC7);
752 goto st;
753 case BPF_ST | BPF_MEM | BPF_W:
754 if (is_ereg(dst_reg))
755 EMIT2(0x41, 0xC7);
756 else
757 EMIT1(0xC7);
758 goto st;
759 case BPF_ST | BPF_MEM | BPF_DW:
760 EMIT2(add_1mod(0x48, dst_reg), 0xC7);
761
762 st: if (is_imm8(insn->off))
763 EMIT2(add_1reg(0x40, dst_reg), insn->off);
764 else
765 EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
766
767 EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
768 break;
769
770 /* STX: *(u8*)(dst_reg + off) = src_reg */
771 case BPF_STX | BPF_MEM | BPF_B:
772 /* emit 'mov byte ptr [rax + off], al' */
773 if (is_ereg(dst_reg) || is_ereg(src_reg) ||
774 /* have to add extra byte for x86 SIL, DIL regs */
775 src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
776 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
777 else
778 EMIT1(0x88);
779 goto stx;
780 case BPF_STX | BPF_MEM | BPF_H:
781 if (is_ereg(dst_reg) || is_ereg(src_reg))
782 EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
783 else
784 EMIT2(0x66, 0x89);
785 goto stx;
786 case BPF_STX | BPF_MEM | BPF_W:
787 if (is_ereg(dst_reg) || is_ereg(src_reg))
788 EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
789 else
790 EMIT1(0x89);
791 goto stx;
792 case BPF_STX | BPF_MEM | BPF_DW:
793 EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
794 stx: if (is_imm8(insn->off))
795 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
796 else
797 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
798 insn->off);
799 break;
800
801 /* LDX: dst_reg = *(u8*)(src_reg + off) */
802 case BPF_LDX | BPF_MEM | BPF_B:
803 /* emit 'movzx rax, byte ptr [rax + off]' */
804 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
805 goto ldx;
806 case BPF_LDX | BPF_MEM | BPF_H:
807 /* emit 'movzx rax, word ptr [rax + off]' */
808 EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
809 goto ldx;
810 case BPF_LDX | BPF_MEM | BPF_W:
811 /* emit 'mov eax, dword ptr [rax+0x14]' */
812 if (is_ereg(dst_reg) || is_ereg(src_reg))
813 EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
814 else
815 EMIT1(0x8B);
816 goto ldx;
817 case BPF_LDX | BPF_MEM | BPF_DW:
818 /* emit 'mov rax, qword ptr [rax+0x14]' */
819 EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
820 ldx: /* if insn->off == 0 we can save one extra byte, but
821 * special case of x86 r13 which always needs an offset
822 * is not worth the hassle
823 */
824 if (is_imm8(insn->off))
825 EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
826 else
827 EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
828 insn->off);
829 break;
830
831 /* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
832 case BPF_STX | BPF_XADD | BPF_W:
833 /* emit 'lock add dword ptr [rax + off], eax' */
834 if (is_ereg(dst_reg) || is_ereg(src_reg))
835 EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
836 else
837 EMIT2(0xF0, 0x01);
838 goto xadd;
839 case BPF_STX | BPF_XADD | BPF_DW:
840 EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
841 xadd: if (is_imm8(insn->off))
842 EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
843 else
844 EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
845 insn->off);
846 break;
847
848 /* call */
849 case BPF_JMP | BPF_CALL:
850 func = (u8 *) __bpf_call_base + imm32;
851 jmp_offset = func - (image + addrs[i]);
852 if (seen_ld_abs) {
853 reload_skb_data = bpf_helper_changes_pkt_data(func);
854 if (reload_skb_data) {
855 EMIT1(0x57); /* push %rdi */
856 jmp_offset += 22; /* pop, mov, sub, mov */
857 } else {
858 EMIT2(0x41, 0x52); /* push %r10 */
859 EMIT2(0x41, 0x51); /* push %r9 */
860 /* need to adjust jmp offset, since
861 * pop %r9, pop %r10 take 4 bytes after call insn
862 */
863 jmp_offset += 4;
864 }
865 }
866 if (!imm32 || !is_simm32(jmp_offset)) {
867 pr_err("unsupported bpf func %d addr %p image %p\n",
868 imm32, func, image);
869 return -EINVAL;
870 }
871 EMIT1_off32(0xE8, jmp_offset);
872 if (seen_ld_abs) {
873 if (reload_skb_data) {
874 EMIT1(0x5F); /* pop %rdi */
875 emit_load_skb_data_hlen(&prog);
876 } else {
877 EMIT2(0x41, 0x59); /* pop %r9 */
878 EMIT2(0x41, 0x5A); /* pop %r10 */
879 }
880 }
881 break;
882
883 case BPF_JMP | BPF_TAIL_CALL:
884 emit_bpf_tail_call(&prog);
885 break;
886
887 /* cond jump */
888 case BPF_JMP | BPF_JEQ | BPF_X:
889 case BPF_JMP | BPF_JNE | BPF_X:
890 case BPF_JMP | BPF_JGT | BPF_X:
891 case BPF_JMP | BPF_JLT | BPF_X:
892 case BPF_JMP | BPF_JGE | BPF_X:
893 case BPF_JMP | BPF_JLE | BPF_X:
894 case BPF_JMP | BPF_JSGT | BPF_X:
895 case BPF_JMP | BPF_JSLT | BPF_X:
896 case BPF_JMP | BPF_JSGE | BPF_X:
897 case BPF_JMP | BPF_JSLE | BPF_X:
898 /* cmp dst_reg, src_reg */
899 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x39,
900 add_2reg(0xC0, dst_reg, src_reg));
901 goto emit_cond_jmp;
902
903 case BPF_JMP | BPF_JSET | BPF_X:
904 /* test dst_reg, src_reg */
905 EMIT3(add_2mod(0x48, dst_reg, src_reg), 0x85,
906 add_2reg(0xC0, dst_reg, src_reg));
907 goto emit_cond_jmp;
908
909 case BPF_JMP | BPF_JSET | BPF_K:
910 /* test dst_reg, imm32 */
911 EMIT1(add_1mod(0x48, dst_reg));
912 EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
913 goto emit_cond_jmp;
914
915 case BPF_JMP | BPF_JEQ | BPF_K:
916 case BPF_JMP | BPF_JNE | BPF_K:
917 case BPF_JMP | BPF_JGT | BPF_K:
918 case BPF_JMP | BPF_JLT | BPF_K:
919 case BPF_JMP | BPF_JGE | BPF_K:
920 case BPF_JMP | BPF_JLE | BPF_K:
921 case BPF_JMP | BPF_JSGT | BPF_K:
922 case BPF_JMP | BPF_JSLT | BPF_K:
923 case BPF_JMP | BPF_JSGE | BPF_K:
924 case BPF_JMP | BPF_JSLE | BPF_K:
925 /* cmp dst_reg, imm8/32 */
926 EMIT1(add_1mod(0x48, dst_reg));
927
928 if (is_imm8(imm32))
929 EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
930 else
931 EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
932
933 emit_cond_jmp: /* convert BPF opcode to x86 */
934 switch (BPF_OP(insn->code)) {
935 case BPF_JEQ:
936 jmp_cond = X86_JE;
937 break;
938 case BPF_JSET:
939 case BPF_JNE:
940 jmp_cond = X86_JNE;
941 break;
942 case BPF_JGT:
943 /* GT is unsigned '>', JA in x86 */
944 jmp_cond = X86_JA;
945 break;
946 case BPF_JLT:
947 /* LT is unsigned '<', JB in x86 */
948 jmp_cond = X86_JB;
949 break;
950 case BPF_JGE:
951 /* GE is unsigned '>=', JAE in x86 */
952 jmp_cond = X86_JAE;
953 break;
954 case BPF_JLE:
955 /* LE is unsigned '<=', JBE in x86 */
956 jmp_cond = X86_JBE;
957 break;
958 case BPF_JSGT:
959 /* signed '>', GT in x86 */
960 jmp_cond = X86_JG;
961 break;
962 case BPF_JSLT:
963 /* signed '<', LT in x86 */
964 jmp_cond = X86_JL;
965 break;
966 case BPF_JSGE:
967 /* signed '>=', GE in x86 */
968 jmp_cond = X86_JGE;
969 break;
970 case BPF_JSLE:
971 /* signed '<=', LE in x86 */
972 jmp_cond = X86_JLE;
973 break;
974 default: /* to silence gcc warning */
975 return -EFAULT;
976 }
977 jmp_offset = addrs[i + insn->off] - addrs[i];
978 if (is_imm8(jmp_offset)) {
979 EMIT2(jmp_cond, jmp_offset);
980 } else if (is_simm32(jmp_offset)) {
981 EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
982 } else {
983 pr_err("cond_jmp gen bug %llx\n", jmp_offset);
984 return -EFAULT;
985 }
986
987 break;
988
989 case BPF_JMP | BPF_JA:
990 jmp_offset = addrs[i + insn->off] - addrs[i];
991 if (!jmp_offset)
992 /* optimize out nop jumps */
993 break;
994 emit_jmp:
995 if (is_imm8(jmp_offset)) {
996 EMIT2(0xEB, jmp_offset);
997 } else if (is_simm32(jmp_offset)) {
998 EMIT1_off32(0xE9, jmp_offset);
999 } else {
1000 pr_err("jmp gen bug %llx\n", jmp_offset);
1001 return -EFAULT;
1002 }
1003 break;
1004
1005 case BPF_LD | BPF_IND | BPF_W:
1006 func = sk_load_word;
1007 goto common_load;
1008 case BPF_LD | BPF_ABS | BPF_W:
1009 func = CHOOSE_LOAD_FUNC(imm32, sk_load_word);
1010 common_load:
1011 ctx->seen_ld_abs = seen_ld_abs = true;
1012 jmp_offset = func - (image + addrs[i]);
1013 if (!func || !is_simm32(jmp_offset)) {
1014 pr_err("unsupported bpf func %d addr %p image %p\n",
1015 imm32, func, image);
1016 return -EINVAL;
1017 }
1018 if (BPF_MODE(insn->code) == BPF_ABS) {
1019 /* mov %esi, imm32 */
1020 EMIT1_off32(0xBE, imm32);
1021 } else {
1022 /* mov %rsi, src_reg */
1023 EMIT_mov(BPF_REG_2, src_reg);
1024 if (imm32) {
1025 if (is_imm8(imm32))
1026 /* add %esi, imm8 */
1027 EMIT3(0x83, 0xC6, imm32);
1028 else
1029 /* add %esi, imm32 */
1030 EMIT2_off32(0x81, 0xC6, imm32);
1031 }
1032 }
1033 /* skb pointer is in R6 (%rbx), it will be copied into
1034 * %rdi if skb_copy_bits() call is necessary.
1035 * sk_load_* helpers also use %r10 and %r9d.
1036 * See bpf_jit.S
1037 */
1038 if (seen_ax_reg)
1039 /* r10 = skb->data, mov %r10, off32(%rbx) */
1040 EMIT3_off32(0x4c, 0x8b, 0x93,
1041 offsetof(struct sk_buff, data));
1042 EMIT1_off32(0xE8, jmp_offset); /* call */
1043 break;
1044
1045 case BPF_LD | BPF_IND | BPF_H:
1046 func = sk_load_half;
1047 goto common_load;
1048 case BPF_LD | BPF_ABS | BPF_H:
1049 func = CHOOSE_LOAD_FUNC(imm32, sk_load_half);
1050 goto common_load;
1051 case BPF_LD | BPF_IND | BPF_B:
1052 func = sk_load_byte;
1053 goto common_load;
1054 case BPF_LD | BPF_ABS | BPF_B:
1055 func = CHOOSE_LOAD_FUNC(imm32, sk_load_byte);
1056 goto common_load;
1057
1058 case BPF_JMP | BPF_EXIT:
1059 if (seen_exit) {
1060 jmp_offset = ctx->cleanup_addr - addrs[i];
1061 goto emit_jmp;
1062 }
1063 seen_exit = true;
1064 /* update cleanup_addr */
1065 ctx->cleanup_addr = proglen;
1066 /* mov rbx, qword ptr [rbp+0] */
1067 EMIT4(0x48, 0x8B, 0x5D, 0);
1068 /* mov r13, qword ptr [rbp+8] */
1069 EMIT4(0x4C, 0x8B, 0x6D, 8);
1070 /* mov r14, qword ptr [rbp+16] */
1071 EMIT4(0x4C, 0x8B, 0x75, 16);
1072 /* mov r15, qword ptr [rbp+24] */
1073 EMIT4(0x4C, 0x8B, 0x7D, 24);
1074
1075 /* add rbp, AUX_STACK_SPACE */
1076 EMIT4(0x48, 0x83, 0xC5, AUX_STACK_SPACE);
1077 EMIT1(0xC9); /* leave */
1078 EMIT1(0xC3); /* ret */
1079 break;
1080
1081 default:
1082 /* By design x64 JIT should support all BPF instructions
1083 * This error will be seen if new instruction was added
1084 * to interpreter, but not to JIT
1085 * or if there is junk in bpf_prog
1086 */
1087 pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
1088 return -EINVAL;
1089 }
1090
1091 ilen = prog - temp;
1092 if (ilen > BPF_MAX_INSN_SIZE) {
1093 pr_err("bpf_jit: fatal insn size error\n");
1094 return -EFAULT;
1095 }
1096
1097 if (image) {
1098 if (unlikely(proglen + ilen > oldproglen)) {
1099 pr_err("bpf_jit: fatal error\n");
1100 return -EFAULT;
1101 }
1102 memcpy(image + proglen, temp, ilen);
1103 }
1104 proglen += ilen;
1105 addrs[i] = proglen;
1106 prog = temp;
1107 }
1108 return proglen;
1109 }
1110
bpf_int_jit_compile(struct bpf_prog * prog)1111 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1112 {
1113 struct bpf_binary_header *header = NULL;
1114 struct bpf_prog *tmp, *orig_prog = prog;
1115 int proglen, oldproglen = 0;
1116 struct jit_context ctx = {};
1117 bool tmp_blinded = false;
1118 u8 *image = NULL;
1119 int *addrs;
1120 int pass;
1121 int i;
1122
1123 if (!bpf_jit_enable)
1124 return orig_prog;
1125
1126 tmp = bpf_jit_blind_constants(prog);
1127 /* If blinding was requested and we failed during blinding,
1128 * we must fall back to the interpreter.
1129 */
1130 if (IS_ERR(tmp))
1131 return orig_prog;
1132 if (tmp != prog) {
1133 tmp_blinded = true;
1134 prog = tmp;
1135 }
1136
1137 addrs = kmalloc(prog->len * sizeof(*addrs), GFP_KERNEL);
1138 if (!addrs) {
1139 prog = orig_prog;
1140 goto out;
1141 }
1142
1143 /* Before first pass, make a rough estimation of addrs[]
1144 * each bpf instruction is translated to less than 64 bytes
1145 */
1146 for (proglen = 0, i = 0; i < prog->len; i++) {
1147 proglen += 64;
1148 addrs[i] = proglen;
1149 }
1150 ctx.cleanup_addr = proglen;
1151
1152 /* JITed image shrinks with every pass and the loop iterates
1153 * until the image stops shrinking. Very large bpf programs
1154 * may converge on the last pass. In such case do one more
1155 * pass to emit the final image
1156 */
1157 for (pass = 0; pass < 20 || image; pass++) {
1158 proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
1159 if (proglen <= 0) {
1160 out_image:
1161 image = NULL;
1162 if (header)
1163 bpf_jit_binary_free(header);
1164 prog = orig_prog;
1165 goto out_addrs;
1166 }
1167 if (image) {
1168 if (proglen != oldproglen) {
1169 pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
1170 proglen, oldproglen);
1171 goto out_image;
1172 }
1173 break;
1174 }
1175 if (proglen == oldproglen) {
1176 header = bpf_jit_binary_alloc(proglen, &image,
1177 1, jit_fill_hole);
1178 if (!header) {
1179 prog = orig_prog;
1180 goto out_addrs;
1181 }
1182 }
1183 oldproglen = proglen;
1184 cond_resched();
1185 }
1186
1187 if (bpf_jit_enable > 1)
1188 bpf_jit_dump(prog->len, proglen, pass + 1, image);
1189
1190 if (image) {
1191 bpf_flush_icache(header, image + proglen);
1192 bpf_jit_binary_lock_ro(header);
1193 prog->bpf_func = (void *)image;
1194 prog->jited = 1;
1195 prog->jited_len = proglen;
1196 } else {
1197 prog = orig_prog;
1198 }
1199
1200 out_addrs:
1201 kfree(addrs);
1202 out:
1203 if (tmp_blinded)
1204 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1205 tmp : orig_prog);
1206 return prog;
1207 }
1208