1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Machine specific setup for xen
4 *
5 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
6 */
7
8 #include <linux/init.h>
9 #include <linux/sched.h>
10 #include <linux/mm.h>
11 #include <linux/pm.h>
12 #include <linux/memblock.h>
13 #include <linux/cpuidle.h>
14 #include <linux/cpufreq.h>
15
16 #include <asm/elf.h>
17 #include <asm/vdso.h>
18 #include <asm/e820/api.h>
19 #include <asm/setup.h>
20 #include <asm/acpi.h>
21 #include <asm/numa.h>
22 #include <asm/xen/hypervisor.h>
23 #include <asm/xen/hypercall.h>
24
25 #include <xen/xen.h>
26 #include <xen/page.h>
27 #include <xen/interface/callback.h>
28 #include <xen/interface/memory.h>
29 #include <xen/interface/physdev.h>
30 #include <xen/features.h>
31 #include <xen/hvc-console.h>
32 #include "xen-ops.h"
33 #include "vdso.h"
34 #include "mmu.h"
35
36 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
37
38 /* Amount of extra memory space we add to the e820 ranges */
39 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
40
41 /* Number of pages released from the initial allocation. */
42 unsigned long xen_released_pages;
43
44 /* E820 map used during setting up memory. */
45 static struct e820_table xen_e820_table __initdata;
46
47 /*
48 * Buffer used to remap identity mapped pages. We only need the virtual space.
49 * The physical page behind this address is remapped as needed to different
50 * buffer pages.
51 */
52 #define REMAP_SIZE (P2M_PER_PAGE - 3)
53 static struct {
54 unsigned long next_area_mfn;
55 unsigned long target_pfn;
56 unsigned long size;
57 unsigned long mfns[REMAP_SIZE];
58 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
59 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
60
61 /*
62 * The maximum amount of extra memory compared to the base size. The
63 * main scaling factor is the size of struct page. At extreme ratios
64 * of base:extra, all the base memory can be filled with page
65 * structures for the extra memory, leaving no space for anything
66 * else.
67 *
68 * 10x seems like a reasonable balance between scaling flexibility and
69 * leaving a practically usable system.
70 */
71 #define EXTRA_MEM_RATIO (10)
72
73 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
74
xen_parse_512gb(void)75 static void __init xen_parse_512gb(void)
76 {
77 bool val = false;
78 char *arg;
79
80 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
81 if (!arg)
82 return;
83
84 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
85 if (!arg)
86 val = true;
87 else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
88 return;
89
90 xen_512gb_limit = val;
91 }
92
xen_add_extra_mem(unsigned long start_pfn,unsigned long n_pfns)93 static void __init xen_add_extra_mem(unsigned long start_pfn,
94 unsigned long n_pfns)
95 {
96 int i;
97
98 /*
99 * No need to check for zero size, should happen rarely and will only
100 * write a new entry regarded to be unused due to zero size.
101 */
102 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
103 /* Add new region. */
104 if (xen_extra_mem[i].n_pfns == 0) {
105 xen_extra_mem[i].start_pfn = start_pfn;
106 xen_extra_mem[i].n_pfns = n_pfns;
107 break;
108 }
109 /* Append to existing region. */
110 if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns ==
111 start_pfn) {
112 xen_extra_mem[i].n_pfns += n_pfns;
113 break;
114 }
115 }
116 if (i == XEN_EXTRA_MEM_MAX_REGIONS)
117 printk(KERN_WARNING "Warning: not enough extra memory regions\n");
118
119 memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
120 }
121
xen_del_extra_mem(unsigned long start_pfn,unsigned long n_pfns)122 static void __init xen_del_extra_mem(unsigned long start_pfn,
123 unsigned long n_pfns)
124 {
125 int i;
126 unsigned long start_r, size_r;
127
128 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
129 start_r = xen_extra_mem[i].start_pfn;
130 size_r = xen_extra_mem[i].n_pfns;
131
132 /* Start of region. */
133 if (start_r == start_pfn) {
134 BUG_ON(n_pfns > size_r);
135 xen_extra_mem[i].start_pfn += n_pfns;
136 xen_extra_mem[i].n_pfns -= n_pfns;
137 break;
138 }
139 /* End of region. */
140 if (start_r + size_r == start_pfn + n_pfns) {
141 BUG_ON(n_pfns > size_r);
142 xen_extra_mem[i].n_pfns -= n_pfns;
143 break;
144 }
145 /* Mid of region. */
146 if (start_pfn > start_r && start_pfn < start_r + size_r) {
147 BUG_ON(start_pfn + n_pfns > start_r + size_r);
148 xen_extra_mem[i].n_pfns = start_pfn - start_r;
149 /* Calling memblock_reserve() again is okay. */
150 xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r -
151 (start_pfn + n_pfns));
152 break;
153 }
154 }
155 memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
156 }
157
158 /*
159 * Called during boot before the p2m list can take entries beyond the
160 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
161 * invalid.
162 */
xen_chk_extra_mem(unsigned long pfn)163 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
164 {
165 int i;
166
167 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
168 if (pfn >= xen_extra_mem[i].start_pfn &&
169 pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns)
170 return INVALID_P2M_ENTRY;
171 }
172
173 return IDENTITY_FRAME(pfn);
174 }
175
176 /*
177 * Mark all pfns of extra mem as invalid in p2m list.
178 */
xen_inv_extra_mem(void)179 void __init xen_inv_extra_mem(void)
180 {
181 unsigned long pfn, pfn_s, pfn_e;
182 int i;
183
184 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
185 if (!xen_extra_mem[i].n_pfns)
186 continue;
187 pfn_s = xen_extra_mem[i].start_pfn;
188 pfn_e = pfn_s + xen_extra_mem[i].n_pfns;
189 for (pfn = pfn_s; pfn < pfn_e; pfn++)
190 set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
191 }
192 }
193
194 /*
195 * Finds the next RAM pfn available in the E820 map after min_pfn.
196 * This function updates min_pfn with the pfn found and returns
197 * the size of that range or zero if not found.
198 */
xen_find_pfn_range(unsigned long * min_pfn)199 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
200 {
201 const struct e820_entry *entry = xen_e820_table.entries;
202 unsigned int i;
203 unsigned long done = 0;
204
205 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
206 unsigned long s_pfn;
207 unsigned long e_pfn;
208
209 if (entry->type != E820_TYPE_RAM)
210 continue;
211
212 e_pfn = PFN_DOWN(entry->addr + entry->size);
213
214 /* We only care about E820 after this */
215 if (e_pfn <= *min_pfn)
216 continue;
217
218 s_pfn = PFN_UP(entry->addr);
219
220 /* If min_pfn falls within the E820 entry, we want to start
221 * at the min_pfn PFN.
222 */
223 if (s_pfn <= *min_pfn) {
224 done = e_pfn - *min_pfn;
225 } else {
226 done = e_pfn - s_pfn;
227 *min_pfn = s_pfn;
228 }
229 break;
230 }
231
232 return done;
233 }
234
xen_free_mfn(unsigned long mfn)235 static int __init xen_free_mfn(unsigned long mfn)
236 {
237 struct xen_memory_reservation reservation = {
238 .address_bits = 0,
239 .extent_order = 0,
240 .domid = DOMID_SELF
241 };
242
243 set_xen_guest_handle(reservation.extent_start, &mfn);
244 reservation.nr_extents = 1;
245
246 return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
247 }
248
249 /*
250 * This releases a chunk of memory and then does the identity map. It's used
251 * as a fallback if the remapping fails.
252 */
xen_set_identity_and_release_chunk(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages)253 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
254 unsigned long end_pfn, unsigned long nr_pages)
255 {
256 unsigned long pfn, end;
257 int ret;
258
259 WARN_ON(start_pfn > end_pfn);
260
261 /* Release pages first. */
262 end = min(end_pfn, nr_pages);
263 for (pfn = start_pfn; pfn < end; pfn++) {
264 unsigned long mfn = pfn_to_mfn(pfn);
265
266 /* Make sure pfn exists to start with */
267 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
268 continue;
269
270 ret = xen_free_mfn(mfn);
271 WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
272
273 if (ret == 1) {
274 xen_released_pages++;
275 if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
276 break;
277 } else
278 break;
279 }
280
281 set_phys_range_identity(start_pfn, end_pfn);
282 }
283
284 /*
285 * Helper function to update the p2m and m2p tables and kernel mapping.
286 */
xen_update_mem_tables(unsigned long pfn,unsigned long mfn)287 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
288 {
289 struct mmu_update update = {
290 .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
291 .val = pfn
292 };
293
294 /* Update p2m */
295 if (!set_phys_to_machine(pfn, mfn)) {
296 WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
297 pfn, mfn);
298 BUG();
299 }
300
301 /* Update m2p */
302 if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
303 WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
304 mfn, pfn);
305 BUG();
306 }
307
308 /* Update kernel mapping, but not for highmem. */
309 if (pfn >= PFN_UP(__pa(high_memory - 1)))
310 return;
311
312 if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
313 mfn_pte(mfn, PAGE_KERNEL), 0)) {
314 WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
315 mfn, pfn);
316 BUG();
317 }
318 }
319
320 /*
321 * This function updates the p2m and m2p tables with an identity map from
322 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
323 * original allocation at remap_pfn. The information needed for remapping is
324 * saved in the memory itself to avoid the need for allocating buffers. The
325 * complete remap information is contained in a list of MFNs each containing
326 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
327 * This enables us to preserve the original mfn sequence while doing the
328 * remapping at a time when the memory management is capable of allocating
329 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
330 * its callers.
331 */
xen_do_set_identity_and_remap_chunk(unsigned long start_pfn,unsigned long size,unsigned long remap_pfn)332 static void __init xen_do_set_identity_and_remap_chunk(
333 unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
334 {
335 unsigned long buf = (unsigned long)&xen_remap_buf;
336 unsigned long mfn_save, mfn;
337 unsigned long ident_pfn_iter, remap_pfn_iter;
338 unsigned long ident_end_pfn = start_pfn + size;
339 unsigned long left = size;
340 unsigned int i, chunk;
341
342 WARN_ON(size == 0);
343
344 mfn_save = virt_to_mfn(buf);
345
346 for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
347 ident_pfn_iter < ident_end_pfn;
348 ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
349 chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
350
351 /* Map first pfn to xen_remap_buf */
352 mfn = pfn_to_mfn(ident_pfn_iter);
353 set_pte_mfn(buf, mfn, PAGE_KERNEL);
354
355 /* Save mapping information in page */
356 xen_remap_buf.next_area_mfn = xen_remap_mfn;
357 xen_remap_buf.target_pfn = remap_pfn_iter;
358 xen_remap_buf.size = chunk;
359 for (i = 0; i < chunk; i++)
360 xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
361
362 /* Put remap buf into list. */
363 xen_remap_mfn = mfn;
364
365 /* Set identity map */
366 set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
367
368 left -= chunk;
369 }
370
371 /* Restore old xen_remap_buf mapping */
372 set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
373 }
374
375 /*
376 * This function takes a contiguous pfn range that needs to be identity mapped
377 * and:
378 *
379 * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
380 * 2) Calls the do_ function to actually do the mapping/remapping work.
381 *
382 * The goal is to not allocate additional memory but to remap the existing
383 * pages. In the case of an error the underlying memory is simply released back
384 * to Xen and not remapped.
385 */
xen_set_identity_and_remap_chunk(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages,unsigned long remap_pfn)386 static unsigned long __init xen_set_identity_and_remap_chunk(
387 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
388 unsigned long remap_pfn)
389 {
390 unsigned long pfn;
391 unsigned long i = 0;
392 unsigned long n = end_pfn - start_pfn;
393
394 if (remap_pfn == 0)
395 remap_pfn = nr_pages;
396
397 while (i < n) {
398 unsigned long cur_pfn = start_pfn + i;
399 unsigned long left = n - i;
400 unsigned long size = left;
401 unsigned long remap_range_size;
402
403 /* Do not remap pages beyond the current allocation */
404 if (cur_pfn >= nr_pages) {
405 /* Identity map remaining pages */
406 set_phys_range_identity(cur_pfn, cur_pfn + size);
407 break;
408 }
409 if (cur_pfn + size > nr_pages)
410 size = nr_pages - cur_pfn;
411
412 remap_range_size = xen_find_pfn_range(&remap_pfn);
413 if (!remap_range_size) {
414 pr_warning("Unable to find available pfn range, not remapping identity pages\n");
415 xen_set_identity_and_release_chunk(cur_pfn,
416 cur_pfn + left, nr_pages);
417 break;
418 }
419 /* Adjust size to fit in current e820 RAM region */
420 if (size > remap_range_size)
421 size = remap_range_size;
422
423 xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
424
425 /* Update variables to reflect new mappings. */
426 i += size;
427 remap_pfn += size;
428 }
429
430 /*
431 * If the PFNs are currently mapped, the VA mapping also needs
432 * to be updated to be 1:1.
433 */
434 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
435 (void)HYPERVISOR_update_va_mapping(
436 (unsigned long)__va(pfn << PAGE_SHIFT),
437 mfn_pte(pfn, PAGE_KERNEL_IO), 0);
438
439 return remap_pfn;
440 }
441
xen_count_remap_pages(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages,unsigned long remap_pages)442 static unsigned long __init xen_count_remap_pages(
443 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
444 unsigned long remap_pages)
445 {
446 if (start_pfn >= nr_pages)
447 return remap_pages;
448
449 return remap_pages + min(end_pfn, nr_pages) - start_pfn;
450 }
451
xen_foreach_remap_area(unsigned long nr_pages,unsigned long (* func)(unsigned long start_pfn,unsigned long end_pfn,unsigned long nr_pages,unsigned long last_val))452 static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages,
453 unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn,
454 unsigned long nr_pages, unsigned long last_val))
455 {
456 phys_addr_t start = 0;
457 unsigned long ret_val = 0;
458 const struct e820_entry *entry = xen_e820_table.entries;
459 int i;
460
461 /*
462 * Combine non-RAM regions and gaps until a RAM region (or the
463 * end of the map) is reached, then call the provided function
464 * to perform its duty on the non-RAM region.
465 *
466 * The combined non-RAM regions are rounded to a whole number
467 * of pages so any partial pages are accessible via the 1:1
468 * mapping. This is needed for some BIOSes that put (for
469 * example) the DMI tables in a reserved region that begins on
470 * a non-page boundary.
471 */
472 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
473 phys_addr_t end = entry->addr + entry->size;
474 if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) {
475 unsigned long start_pfn = PFN_DOWN(start);
476 unsigned long end_pfn = PFN_UP(end);
477
478 if (entry->type == E820_TYPE_RAM)
479 end_pfn = PFN_UP(entry->addr);
480
481 if (start_pfn < end_pfn)
482 ret_val = func(start_pfn, end_pfn, nr_pages,
483 ret_val);
484 start = end;
485 }
486 }
487
488 return ret_val;
489 }
490
491 /*
492 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
493 * The remap information (which mfn remap to which pfn) is contained in the
494 * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
495 * This scheme allows to remap the different chunks in arbitrary order while
496 * the resulting mapping will be independant from the order.
497 */
xen_remap_memory(void)498 void __init xen_remap_memory(void)
499 {
500 unsigned long buf = (unsigned long)&xen_remap_buf;
501 unsigned long mfn_save, pfn;
502 unsigned long remapped = 0;
503 unsigned int i;
504 unsigned long pfn_s = ~0UL;
505 unsigned long len = 0;
506
507 mfn_save = virt_to_mfn(buf);
508
509 while (xen_remap_mfn != INVALID_P2M_ENTRY) {
510 /* Map the remap information */
511 set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
512
513 BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
514
515 pfn = xen_remap_buf.target_pfn;
516 for (i = 0; i < xen_remap_buf.size; i++) {
517 xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]);
518 remapped++;
519 pfn++;
520 }
521 if (pfn_s == ~0UL || pfn == pfn_s) {
522 pfn_s = xen_remap_buf.target_pfn;
523 len += xen_remap_buf.size;
524 } else if (pfn_s + len == xen_remap_buf.target_pfn) {
525 len += xen_remap_buf.size;
526 } else {
527 xen_del_extra_mem(pfn_s, len);
528 pfn_s = xen_remap_buf.target_pfn;
529 len = xen_remap_buf.size;
530 }
531 xen_remap_mfn = xen_remap_buf.next_area_mfn;
532 }
533
534 if (pfn_s != ~0UL && len)
535 xen_del_extra_mem(pfn_s, len);
536
537 set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
538
539 pr_info("Remapped %ld page(s)\n", remapped);
540 }
541
xen_get_pages_limit(void)542 static unsigned long __init xen_get_pages_limit(void)
543 {
544 unsigned long limit;
545
546 #ifdef CONFIG_X86_32
547 limit = GB(64) / PAGE_SIZE;
548 #else
549 limit = MAXMEM / PAGE_SIZE;
550 if (!xen_initial_domain() && xen_512gb_limit)
551 limit = GB(512) / PAGE_SIZE;
552 #endif
553 return limit;
554 }
555
xen_get_max_pages(void)556 static unsigned long __init xen_get_max_pages(void)
557 {
558 unsigned long max_pages, limit;
559 domid_t domid = DOMID_SELF;
560 long ret;
561
562 limit = xen_get_pages_limit();
563 max_pages = limit;
564
565 /*
566 * For the initial domain we use the maximum reservation as
567 * the maximum page.
568 *
569 * For guest domains the current maximum reservation reflects
570 * the current maximum rather than the static maximum. In this
571 * case the e820 map provided to us will cover the static
572 * maximum region.
573 */
574 if (xen_initial_domain()) {
575 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
576 if (ret > 0)
577 max_pages = ret;
578 }
579
580 return min(max_pages, limit);
581 }
582
xen_align_and_add_e820_region(phys_addr_t start,phys_addr_t size,int type)583 static void __init xen_align_and_add_e820_region(phys_addr_t start,
584 phys_addr_t size, int type)
585 {
586 phys_addr_t end = start + size;
587
588 /* Align RAM regions to page boundaries. */
589 if (type == E820_TYPE_RAM) {
590 start = PAGE_ALIGN(start);
591 end &= ~((phys_addr_t)PAGE_SIZE - 1);
592 }
593
594 e820__range_add(start, end - start, type);
595 }
596
xen_ignore_unusable(void)597 static void __init xen_ignore_unusable(void)
598 {
599 struct e820_entry *entry = xen_e820_table.entries;
600 unsigned int i;
601
602 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
603 if (entry->type == E820_TYPE_UNUSABLE)
604 entry->type = E820_TYPE_RAM;
605 }
606 }
607
xen_is_e820_reserved(phys_addr_t start,phys_addr_t size)608 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
609 {
610 struct e820_entry *entry;
611 unsigned mapcnt;
612 phys_addr_t end;
613
614 if (!size)
615 return false;
616
617 end = start + size;
618 entry = xen_e820_table.entries;
619
620 for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) {
621 if (entry->type == E820_TYPE_RAM && entry->addr <= start &&
622 (entry->addr + entry->size) >= end)
623 return false;
624
625 entry++;
626 }
627
628 return true;
629 }
630
631 /*
632 * Find a free area in physical memory not yet reserved and compliant with
633 * E820 map.
634 * Used to relocate pre-allocated areas like initrd or p2m list which are in
635 * conflict with the to be used E820 map.
636 * In case no area is found, return 0. Otherwise return the physical address
637 * of the area which is already reserved for convenience.
638 */
xen_find_free_area(phys_addr_t size)639 phys_addr_t __init xen_find_free_area(phys_addr_t size)
640 {
641 unsigned mapcnt;
642 phys_addr_t addr, start;
643 struct e820_entry *entry = xen_e820_table.entries;
644
645 for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) {
646 if (entry->type != E820_TYPE_RAM || entry->size < size)
647 continue;
648 start = entry->addr;
649 for (addr = start; addr < start + size; addr += PAGE_SIZE) {
650 if (!memblock_is_reserved(addr))
651 continue;
652 start = addr + PAGE_SIZE;
653 if (start + size > entry->addr + entry->size)
654 break;
655 }
656 if (addr >= start + size) {
657 memblock_reserve(start, size);
658 return start;
659 }
660 }
661
662 return 0;
663 }
664
665 /*
666 * Like memcpy, but with physical addresses for dest and src.
667 */
xen_phys_memcpy(phys_addr_t dest,phys_addr_t src,phys_addr_t n)668 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
669 phys_addr_t n)
670 {
671 phys_addr_t dest_off, src_off, dest_len, src_len, len;
672 void *from, *to;
673
674 while (n) {
675 dest_off = dest & ~PAGE_MASK;
676 src_off = src & ~PAGE_MASK;
677 dest_len = n;
678 if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
679 dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
680 src_len = n;
681 if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
682 src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
683 len = min(dest_len, src_len);
684 to = early_memremap(dest - dest_off, dest_len + dest_off);
685 from = early_memremap(src - src_off, src_len + src_off);
686 memcpy(to, from, len);
687 early_memunmap(to, dest_len + dest_off);
688 early_memunmap(from, src_len + src_off);
689 n -= len;
690 dest += len;
691 src += len;
692 }
693 }
694
695 /*
696 * Reserve Xen mfn_list.
697 */
xen_reserve_xen_mfnlist(void)698 static void __init xen_reserve_xen_mfnlist(void)
699 {
700 phys_addr_t start, size;
701
702 if (xen_start_info->mfn_list >= __START_KERNEL_map) {
703 start = __pa(xen_start_info->mfn_list);
704 size = PFN_ALIGN(xen_start_info->nr_pages *
705 sizeof(unsigned long));
706 } else {
707 start = PFN_PHYS(xen_start_info->first_p2m_pfn);
708 size = PFN_PHYS(xen_start_info->nr_p2m_frames);
709 }
710
711 memblock_reserve(start, size);
712 if (!xen_is_e820_reserved(start, size))
713 return;
714
715 #ifdef CONFIG_X86_32
716 /*
717 * Relocating the p2m on 32 bit system to an arbitrary virtual address
718 * is not supported, so just give up.
719 */
720 xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
721 BUG();
722 #else
723 xen_relocate_p2m();
724 memblock_free(start, size);
725 #endif
726 }
727
728 /**
729 * machine_specific_memory_setup - Hook for machine specific memory setup.
730 **/
xen_memory_setup(void)731 char * __init xen_memory_setup(void)
732 {
733 unsigned long max_pfn, pfn_s, n_pfns;
734 phys_addr_t mem_end, addr, size, chunk_size;
735 u32 type;
736 int rc;
737 struct xen_memory_map memmap;
738 unsigned long max_pages;
739 unsigned long extra_pages = 0;
740 int i;
741 int op;
742
743 xen_parse_512gb();
744 max_pfn = xen_get_pages_limit();
745 max_pfn = min(max_pfn, xen_start_info->nr_pages);
746 mem_end = PFN_PHYS(max_pfn);
747
748 memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries);
749 set_xen_guest_handle(memmap.buffer, xen_e820_table.entries);
750
751 op = xen_initial_domain() ?
752 XENMEM_machine_memory_map :
753 XENMEM_memory_map;
754 rc = HYPERVISOR_memory_op(op, &memmap);
755 if (rc == -ENOSYS) {
756 BUG_ON(xen_initial_domain());
757 memmap.nr_entries = 1;
758 xen_e820_table.entries[0].addr = 0ULL;
759 xen_e820_table.entries[0].size = mem_end;
760 /* 8MB slack (to balance backend allocations). */
761 xen_e820_table.entries[0].size += 8ULL << 20;
762 xen_e820_table.entries[0].type = E820_TYPE_RAM;
763 rc = 0;
764 }
765 BUG_ON(rc);
766 BUG_ON(memmap.nr_entries == 0);
767 xen_e820_table.nr_entries = memmap.nr_entries;
768
769 /*
770 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
771 * regions, so if we're using the machine memory map leave the
772 * region as RAM as it is in the pseudo-physical map.
773 *
774 * UNUSABLE regions in domUs are not handled and will need
775 * a patch in the future.
776 */
777 if (xen_initial_domain())
778 xen_ignore_unusable();
779
780 /* Make sure the Xen-supplied memory map is well-ordered. */
781 e820__update_table(&xen_e820_table);
782
783 max_pages = xen_get_max_pages();
784
785 /* How many extra pages do we need due to remapping? */
786 max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages);
787
788 if (max_pages > max_pfn)
789 extra_pages += max_pages - max_pfn;
790
791 /*
792 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
793 * factor the base size. On non-highmem systems, the base
794 * size is the full initial memory allocation; on highmem it
795 * is limited to the max size of lowmem, so that it doesn't
796 * get completely filled.
797 *
798 * Make sure we have no memory above max_pages, as this area
799 * isn't handled by the p2m management.
800 *
801 * In principle there could be a problem in lowmem systems if
802 * the initial memory is also very large with respect to
803 * lowmem, but we won't try to deal with that here.
804 */
805 extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
806 extra_pages, max_pages - max_pfn);
807 i = 0;
808 addr = xen_e820_table.entries[0].addr;
809 size = xen_e820_table.entries[0].size;
810 while (i < xen_e820_table.nr_entries) {
811 bool discard = false;
812
813 chunk_size = size;
814 type = xen_e820_table.entries[i].type;
815
816 if (type == E820_TYPE_RAM) {
817 if (addr < mem_end) {
818 chunk_size = min(size, mem_end - addr);
819 } else if (extra_pages) {
820 chunk_size = min(size, PFN_PHYS(extra_pages));
821 pfn_s = PFN_UP(addr);
822 n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s;
823 extra_pages -= n_pfns;
824 xen_add_extra_mem(pfn_s, n_pfns);
825 xen_max_p2m_pfn = pfn_s + n_pfns;
826 } else
827 discard = true;
828 }
829
830 if (!discard)
831 xen_align_and_add_e820_region(addr, chunk_size, type);
832
833 addr += chunk_size;
834 size -= chunk_size;
835 if (size == 0) {
836 i++;
837 if (i < xen_e820_table.nr_entries) {
838 addr = xen_e820_table.entries[i].addr;
839 size = xen_e820_table.entries[i].size;
840 }
841 }
842 }
843
844 /*
845 * Set the rest as identity mapped, in case PCI BARs are
846 * located here.
847 */
848 set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
849
850 /*
851 * In domU, the ISA region is normal, usable memory, but we
852 * reserve ISA memory anyway because too many things poke
853 * about in there.
854 */
855 e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED);
856
857 e820__update_table(e820_table);
858
859 /*
860 * Check whether the kernel itself conflicts with the target E820 map.
861 * Failing now is better than running into weird problems later due
862 * to relocating (and even reusing) pages with kernel text or data.
863 */
864 if (xen_is_e820_reserved(__pa_symbol(_text),
865 __pa_symbol(__bss_stop) - __pa_symbol(_text))) {
866 xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
867 BUG();
868 }
869
870 /*
871 * Check for a conflict of the hypervisor supplied page tables with
872 * the target E820 map.
873 */
874 xen_pt_check_e820();
875
876 xen_reserve_xen_mfnlist();
877
878 /* Check for a conflict of the initrd with the target E820 map. */
879 if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
880 boot_params.hdr.ramdisk_size)) {
881 phys_addr_t new_area, start, size;
882
883 new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
884 if (!new_area) {
885 xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
886 BUG();
887 }
888
889 start = boot_params.hdr.ramdisk_image;
890 size = boot_params.hdr.ramdisk_size;
891 xen_phys_memcpy(new_area, start, size);
892 pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
893 start, start + size, new_area, new_area + size);
894 memblock_free(start, size);
895 boot_params.hdr.ramdisk_image = new_area;
896 boot_params.ext_ramdisk_image = new_area >> 32;
897 }
898
899 /*
900 * Set identity map on non-RAM pages and prepare remapping the
901 * underlying RAM.
902 */
903 xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk);
904
905 pr_info("Released %ld page(s)\n", xen_released_pages);
906
907 return "Xen";
908 }
909
910 /*
911 * Machine specific memory setup for auto-translated guests.
912 */
xen_auto_xlated_memory_setup(void)913 char * __init xen_auto_xlated_memory_setup(void)
914 {
915 struct xen_memory_map memmap;
916 int i;
917 int rc;
918
919 memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries);
920 set_xen_guest_handle(memmap.buffer, xen_e820_table.entries);
921
922 rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
923 if (rc < 0)
924 panic("No memory map (%d)\n", rc);
925
926 xen_e820_table.nr_entries = memmap.nr_entries;
927
928 e820__update_table(&xen_e820_table);
929
930 for (i = 0; i < xen_e820_table.nr_entries; i++)
931 e820__range_add(xen_e820_table.entries[i].addr, xen_e820_table.entries[i].size, xen_e820_table.entries[i].type);
932
933 /* Remove p2m info, it is not needed. */
934 xen_start_info->mfn_list = 0;
935 xen_start_info->first_p2m_pfn = 0;
936 xen_start_info->nr_p2m_frames = 0;
937
938 return "Xen";
939 }
940
941 /*
942 * Set the bit indicating "nosegneg" library variants should be used.
943 * We only need to bother in pure 32-bit mode; compat 32-bit processes
944 * can have un-truncated segments, so wrapping around is allowed.
945 */
fiddle_vdso(void)946 static void __init fiddle_vdso(void)
947 {
948 #ifdef CONFIG_X86_32
949 u32 *mask = vdso_image_32.data +
950 vdso_image_32.sym_VDSO32_NOTE_MASK;
951 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
952 #endif
953 }
954
register_callback(unsigned type,const void * func)955 static int register_callback(unsigned type, const void *func)
956 {
957 struct callback_register callback = {
958 .type = type,
959 .address = XEN_CALLBACK(__KERNEL_CS, func),
960 .flags = CALLBACKF_mask_events,
961 };
962
963 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
964 }
965
xen_enable_sysenter(void)966 void xen_enable_sysenter(void)
967 {
968 int ret;
969 unsigned sysenter_feature;
970
971 #ifdef CONFIG_X86_32
972 sysenter_feature = X86_FEATURE_SEP;
973 #else
974 sysenter_feature = X86_FEATURE_SYSENTER32;
975 #endif
976
977 if (!boot_cpu_has(sysenter_feature))
978 return;
979
980 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
981 if(ret != 0)
982 setup_clear_cpu_cap(sysenter_feature);
983 }
984
xen_enable_syscall(void)985 void xen_enable_syscall(void)
986 {
987 #ifdef CONFIG_X86_64
988 int ret;
989
990 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
991 if (ret != 0) {
992 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
993 /* Pretty fatal; 64-bit userspace has no other
994 mechanism for syscalls. */
995 }
996
997 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
998 ret = register_callback(CALLBACKTYPE_syscall32,
999 xen_syscall32_target);
1000 if (ret != 0)
1001 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
1002 }
1003 #endif /* CONFIG_X86_64 */
1004 }
1005
xen_pvmmu_arch_setup(void)1006 void __init xen_pvmmu_arch_setup(void)
1007 {
1008 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
1009 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
1010
1011 HYPERVISOR_vm_assist(VMASST_CMD_enable,
1012 VMASST_TYPE_pae_extended_cr3);
1013
1014 if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
1015 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
1016 BUG();
1017
1018 xen_enable_sysenter();
1019 xen_enable_syscall();
1020 }
1021
1022 /* This function is not called for HVM domains */
xen_arch_setup(void)1023 void __init xen_arch_setup(void)
1024 {
1025 xen_panic_handler_init();
1026 xen_pvmmu_arch_setup();
1027
1028 #ifdef CONFIG_ACPI
1029 if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1030 printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1031 disable_acpi();
1032 }
1033 #endif
1034
1035 memcpy(boot_command_line, xen_start_info->cmd_line,
1036 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1037 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1038
1039 /* Set up idle, making sure it calls safe_halt() pvop */
1040 disable_cpuidle();
1041 disable_cpufreq();
1042 WARN_ON(xen_set_default_idle());
1043 fiddle_vdso();
1044 #ifdef CONFIG_NUMA
1045 numa_off = 1;
1046 #endif
1047 }
1048