• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/xtensa/kernel/process.c
3  *
4  * Xtensa Processor version.
5  *
6  * This file is subject to the terms and conditions of the GNU General Public
7  * License.  See the file "COPYING" in the main directory of this archive
8  * for more details.
9  *
10  * Copyright (C) 2001 - 2005 Tensilica Inc.
11  *
12  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13  * Chris Zankel <chris@zankel.net>
14  * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15  * Kevin Chea
16  */
17 
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/smp.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/elf.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/init.h>
32 #include <linux/prctl.h>
33 #include <linux/init_task.h>
34 #include <linux/module.h>
35 #include <linux/mqueue.h>
36 #include <linux/fs.h>
37 #include <linux/slab.h>
38 #include <linux/rcupdate.h>
39 
40 #include <asm/pgtable.h>
41 #include <linux/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/processor.h>
44 #include <asm/platform.h>
45 #include <asm/mmu.h>
46 #include <asm/irq.h>
47 #include <linux/atomic.h>
48 #include <asm/asm-offsets.h>
49 #include <asm/regs.h>
50 #include <asm/hw_breakpoint.h>
51 
52 extern void ret_from_fork(void);
53 extern void ret_from_kernel_thread(void);
54 
55 struct task_struct *current_set[NR_CPUS] = {&init_task, };
56 
57 void (*pm_power_off)(void) = NULL;
58 EXPORT_SYMBOL(pm_power_off);
59 
60 
61 #if XTENSA_HAVE_COPROCESSORS
62 
coprocessor_release_all(struct thread_info * ti)63 void coprocessor_release_all(struct thread_info *ti)
64 {
65 	unsigned long cpenable;
66 	int i;
67 
68 	/* Make sure we don't switch tasks during this operation. */
69 
70 	preempt_disable();
71 
72 	/* Walk through all cp owners and release it for the requested one. */
73 
74 	cpenable = ti->cpenable;
75 
76 	for (i = 0; i < XCHAL_CP_MAX; i++) {
77 		if (coprocessor_owner[i] == ti) {
78 			coprocessor_owner[i] = 0;
79 			cpenable &= ~(1 << i);
80 		}
81 	}
82 
83 	ti->cpenable = cpenable;
84 	coprocessor_clear_cpenable();
85 
86 	preempt_enable();
87 }
88 
coprocessor_flush_all(struct thread_info * ti)89 void coprocessor_flush_all(struct thread_info *ti)
90 {
91 	unsigned long cpenable, old_cpenable;
92 	int i;
93 
94 	preempt_disable();
95 
96 	RSR_CPENABLE(old_cpenable);
97 	cpenable = ti->cpenable;
98 	WSR_CPENABLE(cpenable);
99 
100 	for (i = 0; i < XCHAL_CP_MAX; i++) {
101 		if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
102 			coprocessor_flush(ti, i);
103 		cpenable >>= 1;
104 	}
105 	WSR_CPENABLE(old_cpenable);
106 
107 	preempt_enable();
108 }
109 
110 #endif
111 
112 
113 /*
114  * Powermanagement idle function, if any is provided by the platform.
115  */
arch_cpu_idle(void)116 void arch_cpu_idle(void)
117 {
118 	platform_idle();
119 }
120 
121 /*
122  * This is called when the thread calls exit().
123  */
exit_thread(struct task_struct * tsk)124 void exit_thread(struct task_struct *tsk)
125 {
126 #if XTENSA_HAVE_COPROCESSORS
127 	coprocessor_release_all(task_thread_info(tsk));
128 #endif
129 }
130 
131 /*
132  * Flush thread state. This is called when a thread does an execve()
133  * Note that we flush coprocessor registers for the case execve fails.
134  */
flush_thread(void)135 void flush_thread(void)
136 {
137 #if XTENSA_HAVE_COPROCESSORS
138 	struct thread_info *ti = current_thread_info();
139 	coprocessor_flush_all(ti);
140 	coprocessor_release_all(ti);
141 #endif
142 	flush_ptrace_hw_breakpoint(current);
143 }
144 
145 /*
146  * this gets called so that we can store coprocessor state into memory and
147  * copy the current task into the new thread.
148  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)149 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
150 {
151 #if XTENSA_HAVE_COPROCESSORS
152 	coprocessor_flush_all(task_thread_info(src));
153 #endif
154 	*dst = *src;
155 	return 0;
156 }
157 
158 /*
159  * Copy thread.
160  *
161  * There are two modes in which this function is called:
162  * 1) Userspace thread creation,
163  *    regs != NULL, usp_thread_fn is userspace stack pointer.
164  *    It is expected to copy parent regs (in case CLONE_VM is not set
165  *    in the clone_flags) and set up passed usp in the childregs.
166  * 2) Kernel thread creation,
167  *    regs == NULL, usp_thread_fn is the function to run in the new thread
168  *    and thread_fn_arg is its parameter.
169  *    childregs are not used for the kernel threads.
170  *
171  * The stack layout for the new thread looks like this:
172  *
173  *	+------------------------+
174  *	|       childregs        |
175  *	+------------------------+ <- thread.sp = sp in dummy-frame
176  *	|      dummy-frame       |    (saved in dummy-frame spill-area)
177  *	+------------------------+
178  *
179  * We create a dummy frame to return to either ret_from_fork or
180  *   ret_from_kernel_thread:
181  *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
182  *   sp points to itself (thread.sp)
183  *   a2, a3 are unused for userspace threads,
184  *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
185  *
186  * Note: This is a pristine frame, so we don't need any spill region on top of
187  *       childregs.
188  *
189  * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
190  * not an entire process), we're normally given a new usp, and we CANNOT share
191  * any live address register windows.  If we just copy those live frames over,
192  * the two threads (parent and child) will overflow the same frames onto the
193  * parent stack at different times, likely corrupting the parent stack (esp.
194  * if the parent returns from functions that called clone() and calls new
195  * ones, before the child overflows its now old copies of its parent windows).
196  * One solution is to spill windows to the parent stack, but that's fairly
197  * involved.  Much simpler to just not copy those live frames across.
198  */
199 
copy_thread(unsigned long clone_flags,unsigned long usp_thread_fn,unsigned long thread_fn_arg,struct task_struct * p)200 int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
201 		unsigned long thread_fn_arg, struct task_struct *p)
202 {
203 	struct pt_regs *childregs = task_pt_regs(p);
204 
205 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
206 	struct thread_info *ti;
207 #endif
208 
209 	/* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
210 	SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
211 	SPILL_SLOT(childregs, 0) = 0;
212 
213 	p->thread.sp = (unsigned long)childregs;
214 
215 	if (!(p->flags & PF_KTHREAD)) {
216 		struct pt_regs *regs = current_pt_regs();
217 		unsigned long usp = usp_thread_fn ?
218 			usp_thread_fn : regs->areg[1];
219 
220 		p->thread.ra = MAKE_RA_FOR_CALL(
221 				(unsigned long)ret_from_fork, 0x1);
222 
223 		/* This does not copy all the regs.
224 		 * In a bout of brilliance or madness,
225 		 * ARs beyond a0-a15 exist past the end of the struct.
226 		 */
227 		*childregs = *regs;
228 		childregs->areg[1] = usp;
229 		childregs->areg[2] = 0;
230 
231 		/* When sharing memory with the parent thread, the child
232 		   usually starts on a pristine stack, so we have to reset
233 		   windowbase, windowstart and wmask.
234 		   (Note that such a new thread is required to always create
235 		   an initial call4 frame)
236 		   The exception is vfork, where the new thread continues to
237 		   run on the parent's stack until it calls execve. This could
238 		   be a call8 or call12, which requires a legal stack frame
239 		   of the previous caller for the overflow handlers to work.
240 		   (Note that it's always legal to overflow live registers).
241 		   In this case, ensure to spill at least the stack pointer
242 		   of that frame. */
243 
244 		if (clone_flags & CLONE_VM) {
245 			/* check that caller window is live and same stack */
246 			int len = childregs->wmask & ~0xf;
247 			if (regs->areg[1] == usp && len != 0) {
248 				int callinc = (regs->areg[0] >> 30) & 3;
249 				int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
250 				put_user(regs->areg[caller_ars+1],
251 					 (unsigned __user*)(usp - 12));
252 			}
253 			childregs->wmask = 1;
254 			childregs->windowstart = 1;
255 			childregs->windowbase = 0;
256 		} else {
257 			int len = childregs->wmask & ~0xf;
258 			memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
259 			       &regs->areg[XCHAL_NUM_AREGS - len/4], len);
260 		}
261 
262 		/* The thread pointer is passed in the '4th argument' (= a5) */
263 		if (clone_flags & CLONE_SETTLS)
264 			childregs->threadptr = childregs->areg[5];
265 	} else {
266 		p->thread.ra = MAKE_RA_FOR_CALL(
267 				(unsigned long)ret_from_kernel_thread, 1);
268 
269 		/* pass parameters to ret_from_kernel_thread:
270 		 * a2 = thread_fn, a3 = thread_fn arg
271 		 */
272 		SPILL_SLOT(childregs, 3) = thread_fn_arg;
273 		SPILL_SLOT(childregs, 2) = usp_thread_fn;
274 
275 		/* Childregs are only used when we're going to userspace
276 		 * in which case start_thread will set them up.
277 		 */
278 	}
279 
280 #if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
281 	ti = task_thread_info(p);
282 	ti->cpenable = 0;
283 #endif
284 
285 	clear_ptrace_hw_breakpoint(p);
286 
287 	return 0;
288 }
289 
290 
291 /*
292  * These bracket the sleeping functions..
293  */
294 
get_wchan(struct task_struct * p)295 unsigned long get_wchan(struct task_struct *p)
296 {
297 	unsigned long sp, pc;
298 	unsigned long stack_page = (unsigned long) task_stack_page(p);
299 	int count = 0;
300 
301 	if (!p || p == current || p->state == TASK_RUNNING)
302 		return 0;
303 
304 	sp = p->thread.sp;
305 	pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
306 
307 	do {
308 		if (sp < stack_page + sizeof(struct task_struct) ||
309 		    sp >= (stack_page + THREAD_SIZE) ||
310 		    pc == 0)
311 			return 0;
312 		if (!in_sched_functions(pc))
313 			return pc;
314 
315 		/* Stack layout: sp-4: ra, sp-3: sp' */
316 
317 		pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
318 		sp = SPILL_SLOT(sp, 1);
319 	} while (count++ < 16);
320 	return 0;
321 }
322 
323 /*
324  * xtensa_gregset_t and 'struct pt_regs' are vastly different formats
325  * of processor registers.  Besides different ordering,
326  * xtensa_gregset_t contains non-live register information that
327  * 'struct pt_regs' does not.  Exception handling (primarily) uses
328  * 'struct pt_regs'.  Core files and ptrace use xtensa_gregset_t.
329  *
330  */
331 
xtensa_elf_core_copy_regs(xtensa_gregset_t * elfregs,struct pt_regs * regs)332 void xtensa_elf_core_copy_regs (xtensa_gregset_t *elfregs, struct pt_regs *regs)
333 {
334 	unsigned long wb, ws, wm;
335 	int live, last;
336 
337 	wb = regs->windowbase;
338 	ws = regs->windowstart;
339 	wm = regs->wmask;
340 	ws = ((ws >> wb) | (ws << (WSBITS - wb))) & ((1 << WSBITS) - 1);
341 
342 	/* Don't leak any random bits. */
343 
344 	memset(elfregs, 0, sizeof(*elfregs));
345 
346 	/* Note:  PS.EXCM is not set while user task is running; its
347 	 * being set in regs->ps is for exception handling convenience.
348 	 */
349 
350 	elfregs->pc		= regs->pc;
351 	elfregs->ps		= (regs->ps & ~(1 << PS_EXCM_BIT));
352 	elfregs->lbeg		= regs->lbeg;
353 	elfregs->lend		= regs->lend;
354 	elfregs->lcount		= regs->lcount;
355 	elfregs->sar		= regs->sar;
356 	elfregs->windowstart	= ws;
357 
358 	live = (wm & 2) ? 4 : (wm & 4) ? 8 : (wm & 8) ? 12 : 16;
359 	last = XCHAL_NUM_AREGS - (wm >> 4) * 4;
360 	memcpy(elfregs->a, regs->areg, live * 4);
361 	memcpy(elfregs->a + last, regs->areg + last, (wm >> 4) * 16);
362 }
363 
dump_fpu(void)364 int dump_fpu(void)
365 {
366 	return 0;
367 }
368