• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
28 
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
31 #include <crypto/lrw.h>
32 
33 #define LRW_BUFFER_SIZE 128u
34 
35 struct priv {
36 	struct crypto_skcipher *child;
37 	struct lrw_table_ctx table;
38 };
39 
40 struct rctx {
41 	be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
42 
43 	be128 t;
44 
45 	be128 *ext;
46 
47 	struct scatterlist srcbuf[2];
48 	struct scatterlist dstbuf[2];
49 	struct scatterlist *src;
50 	struct scatterlist *dst;
51 
52 	unsigned int left;
53 
54 	struct skcipher_request subreq;
55 };
56 
setbit128_bbe(void * b,int bit)57 static inline void setbit128_bbe(void *b, int bit)
58 {
59 	__set_bit(bit ^ (0x80 -
60 #ifdef __BIG_ENDIAN
61 			 BITS_PER_LONG
62 #else
63 			 BITS_PER_BYTE
64 #endif
65 			), b);
66 }
67 
lrw_init_table(struct lrw_table_ctx * ctx,const u8 * tweak)68 int lrw_init_table(struct lrw_table_ctx *ctx, const u8 *tweak)
69 {
70 	be128 tmp = { 0 };
71 	int i;
72 
73 	if (ctx->table)
74 		gf128mul_free_64k(ctx->table);
75 
76 	/* initialize multiplication table for Key2 */
77 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
78 	if (!ctx->table)
79 		return -ENOMEM;
80 
81 	/* initialize optimization table */
82 	for (i = 0; i < 128; i++) {
83 		setbit128_bbe(&tmp, i);
84 		ctx->mulinc[i] = tmp;
85 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
86 	}
87 
88 	return 0;
89 }
90 EXPORT_SYMBOL_GPL(lrw_init_table);
91 
lrw_free_table(struct lrw_table_ctx * ctx)92 void lrw_free_table(struct lrw_table_ctx *ctx)
93 {
94 	if (ctx->table)
95 		gf128mul_free_64k(ctx->table);
96 }
97 EXPORT_SYMBOL_GPL(lrw_free_table);
98 
setkey(struct crypto_skcipher * parent,const u8 * key,unsigned int keylen)99 static int setkey(struct crypto_skcipher *parent, const u8 *key,
100 		  unsigned int keylen)
101 {
102 	struct priv *ctx = crypto_skcipher_ctx(parent);
103 	struct crypto_skcipher *child = ctx->child;
104 	int err, bsize = LRW_BLOCK_SIZE;
105 	const u8 *tweak = key + keylen - bsize;
106 
107 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
108 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
109 					 CRYPTO_TFM_REQ_MASK);
110 	err = crypto_skcipher_setkey(child, key, keylen - bsize);
111 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
112 					  CRYPTO_TFM_RES_MASK);
113 	if (err)
114 		return err;
115 
116 	return lrw_init_table(&ctx->table, tweak);
117 }
118 
inc(be128 * iv)119 static inline void inc(be128 *iv)
120 {
121 	be64_add_cpu(&iv->b, 1);
122 	if (!iv->b)
123 		be64_add_cpu(&iv->a, 1);
124 }
125 
126 /* this returns the number of consequative 1 bits starting
127  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
get_index128(be128 * block)128 static inline int get_index128(be128 *block)
129 {
130 	int x;
131 	__be32 *p = (__be32 *) block;
132 
133 	for (p += 3, x = 0; x < 128; p--, x += 32) {
134 		u32 val = be32_to_cpup(p);
135 
136 		if (!~val)
137 			continue;
138 
139 		return x + ffz(val);
140 	}
141 
142 	/*
143 	 * If we get here, then x == 128 and we are incrementing the counter
144 	 * from all ones to all zeros. This means we must return index 127, i.e.
145 	 * the one corresponding to key2*{ 1,...,1 }.
146 	 */
147 	return 127;
148 }
149 
post_crypt(struct skcipher_request * req)150 static int post_crypt(struct skcipher_request *req)
151 {
152 	struct rctx *rctx = skcipher_request_ctx(req);
153 	be128 *buf = rctx->ext ?: rctx->buf;
154 	struct skcipher_request *subreq;
155 	const int bs = LRW_BLOCK_SIZE;
156 	struct skcipher_walk w;
157 	struct scatterlist *sg;
158 	unsigned offset;
159 	int err;
160 
161 	subreq = &rctx->subreq;
162 	err = skcipher_walk_virt(&w, subreq, false);
163 
164 	while (w.nbytes) {
165 		unsigned int avail = w.nbytes;
166 		be128 *wdst;
167 
168 		wdst = w.dst.virt.addr;
169 
170 		do {
171 			be128_xor(wdst, buf++, wdst);
172 			wdst++;
173 		} while ((avail -= bs) >= bs);
174 
175 		err = skcipher_walk_done(&w, avail);
176 	}
177 
178 	rctx->left -= subreq->cryptlen;
179 
180 	if (err || !rctx->left)
181 		goto out;
182 
183 	rctx->dst = rctx->dstbuf;
184 
185 	scatterwalk_done(&w.out, 0, 1);
186 	sg = w.out.sg;
187 	offset = w.out.offset;
188 
189 	if (rctx->dst != sg) {
190 		rctx->dst[0] = *sg;
191 		sg_unmark_end(rctx->dst);
192 		scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
193 	}
194 	rctx->dst[0].length -= offset - sg->offset;
195 	rctx->dst[0].offset = offset;
196 
197 out:
198 	return err;
199 }
200 
pre_crypt(struct skcipher_request * req)201 static int pre_crypt(struct skcipher_request *req)
202 {
203 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
204 	struct rctx *rctx = skcipher_request_ctx(req);
205 	struct priv *ctx = crypto_skcipher_ctx(tfm);
206 	be128 *buf = rctx->ext ?: rctx->buf;
207 	struct skcipher_request *subreq;
208 	const int bs = LRW_BLOCK_SIZE;
209 	struct skcipher_walk w;
210 	struct scatterlist *sg;
211 	unsigned cryptlen;
212 	unsigned offset;
213 	be128 *iv;
214 	bool more;
215 	int err;
216 
217 	subreq = &rctx->subreq;
218 	skcipher_request_set_tfm(subreq, tfm);
219 
220 	cryptlen = subreq->cryptlen;
221 	more = rctx->left > cryptlen;
222 	if (!more)
223 		cryptlen = rctx->left;
224 
225 	skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
226 				   cryptlen, req->iv);
227 
228 	err = skcipher_walk_virt(&w, subreq, false);
229 	iv = w.iv;
230 
231 	while (w.nbytes) {
232 		unsigned int avail = w.nbytes;
233 		be128 *wsrc;
234 		be128 *wdst;
235 
236 		wsrc = w.src.virt.addr;
237 		wdst = w.dst.virt.addr;
238 
239 		do {
240 			*buf++ = rctx->t;
241 			be128_xor(wdst++, &rctx->t, wsrc++);
242 
243 			/* T <- I*Key2, using the optimization
244 			 * discussed in the specification */
245 			be128_xor(&rctx->t, &rctx->t,
246 				  &ctx->table.mulinc[get_index128(iv)]);
247 			inc(iv);
248 		} while ((avail -= bs) >= bs);
249 
250 		err = skcipher_walk_done(&w, avail);
251 	}
252 
253 	skcipher_request_set_tfm(subreq, ctx->child);
254 	skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
255 				   cryptlen, NULL);
256 
257 	if (err || !more)
258 		goto out;
259 
260 	rctx->src = rctx->srcbuf;
261 
262 	scatterwalk_done(&w.in, 0, 1);
263 	sg = w.in.sg;
264 	offset = w.in.offset;
265 
266 	if (rctx->src != sg) {
267 		rctx->src[0] = *sg;
268 		sg_unmark_end(rctx->src);
269 		scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
270 	}
271 	rctx->src[0].length -= offset - sg->offset;
272 	rctx->src[0].offset = offset;
273 
274 out:
275 	return err;
276 }
277 
init_crypt(struct skcipher_request * req,crypto_completion_t done)278 static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
279 {
280 	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
281 	struct rctx *rctx = skcipher_request_ctx(req);
282 	struct skcipher_request *subreq;
283 	gfp_t gfp;
284 
285 	subreq = &rctx->subreq;
286 	skcipher_request_set_callback(subreq, req->base.flags, done, req);
287 
288 	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
289 							   GFP_ATOMIC;
290 	rctx->ext = NULL;
291 
292 	subreq->cryptlen = LRW_BUFFER_SIZE;
293 	if (req->cryptlen > LRW_BUFFER_SIZE) {
294 		unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
295 
296 		rctx->ext = kmalloc(n, gfp);
297 		if (rctx->ext)
298 			subreq->cryptlen = n;
299 	}
300 
301 	rctx->src = req->src;
302 	rctx->dst = req->dst;
303 	rctx->left = req->cryptlen;
304 
305 	/* calculate first value of T */
306 	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
307 
308 	/* T <- I*Key2 */
309 	gf128mul_64k_bbe(&rctx->t, ctx->table.table);
310 
311 	return 0;
312 }
313 
exit_crypt(struct skcipher_request * req)314 static void exit_crypt(struct skcipher_request *req)
315 {
316 	struct rctx *rctx = skcipher_request_ctx(req);
317 
318 	rctx->left = 0;
319 
320 	if (rctx->ext)
321 		kzfree(rctx->ext);
322 }
323 
do_encrypt(struct skcipher_request * req,int err)324 static int do_encrypt(struct skcipher_request *req, int err)
325 {
326 	struct rctx *rctx = skcipher_request_ctx(req);
327 	struct skcipher_request *subreq;
328 
329 	subreq = &rctx->subreq;
330 
331 	while (!err && rctx->left) {
332 		err = pre_crypt(req) ?:
333 		      crypto_skcipher_encrypt(subreq) ?:
334 		      post_crypt(req);
335 
336 		if (err == -EINPROGRESS ||
337 		    (err == -EBUSY &&
338 		     req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
339 			return err;
340 	}
341 
342 	exit_crypt(req);
343 	return err;
344 }
345 
encrypt_done(struct crypto_async_request * areq,int err)346 static void encrypt_done(struct crypto_async_request *areq, int err)
347 {
348 	struct skcipher_request *req = areq->data;
349 	struct skcipher_request *subreq;
350 	struct rctx *rctx;
351 
352 	rctx = skcipher_request_ctx(req);
353 
354 	if (err == -EINPROGRESS) {
355 		if (rctx->left != req->cryptlen)
356 			return;
357 		goto out;
358 	}
359 
360 	subreq = &rctx->subreq;
361 	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
362 
363 	err = do_encrypt(req, err ?: post_crypt(req));
364 	if (rctx->left)
365 		return;
366 
367 out:
368 	skcipher_request_complete(req, err);
369 }
370 
encrypt(struct skcipher_request * req)371 static int encrypt(struct skcipher_request *req)
372 {
373 	return do_encrypt(req, init_crypt(req, encrypt_done));
374 }
375 
do_decrypt(struct skcipher_request * req,int err)376 static int do_decrypt(struct skcipher_request *req, int err)
377 {
378 	struct rctx *rctx = skcipher_request_ctx(req);
379 	struct skcipher_request *subreq;
380 
381 	subreq = &rctx->subreq;
382 
383 	while (!err && rctx->left) {
384 		err = pre_crypt(req) ?:
385 		      crypto_skcipher_decrypt(subreq) ?:
386 		      post_crypt(req);
387 
388 		if (err == -EINPROGRESS ||
389 		    (err == -EBUSY &&
390 		     req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))
391 			return err;
392 	}
393 
394 	exit_crypt(req);
395 	return err;
396 }
397 
decrypt_done(struct crypto_async_request * areq,int err)398 static void decrypt_done(struct crypto_async_request *areq, int err)
399 {
400 	struct skcipher_request *req = areq->data;
401 	struct skcipher_request *subreq;
402 	struct rctx *rctx;
403 
404 	rctx = skcipher_request_ctx(req);
405 
406 	if (err == -EINPROGRESS) {
407 		if (rctx->left != req->cryptlen)
408 			return;
409 		goto out;
410 	}
411 
412 	subreq = &rctx->subreq;
413 	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
414 
415 	err = do_decrypt(req, err ?: post_crypt(req));
416 	if (rctx->left)
417 		return;
418 
419 out:
420 	skcipher_request_complete(req, err);
421 }
422 
decrypt(struct skcipher_request * req)423 static int decrypt(struct skcipher_request *req)
424 {
425 	return do_decrypt(req, init_crypt(req, decrypt_done));
426 }
427 
lrw_crypt(struct blkcipher_desc * desc,struct scatterlist * sdst,struct scatterlist * ssrc,unsigned int nbytes,struct lrw_crypt_req * req)428 int lrw_crypt(struct blkcipher_desc *desc, struct scatterlist *sdst,
429 	      struct scatterlist *ssrc, unsigned int nbytes,
430 	      struct lrw_crypt_req *req)
431 {
432 	const unsigned int bsize = LRW_BLOCK_SIZE;
433 	const unsigned int max_blks = req->tbuflen / bsize;
434 	struct lrw_table_ctx *ctx = req->table_ctx;
435 	struct blkcipher_walk walk;
436 	unsigned int nblocks;
437 	be128 *iv, *src, *dst, *t;
438 	be128 *t_buf = req->tbuf;
439 	int err, i;
440 
441 	BUG_ON(max_blks < 1);
442 
443 	blkcipher_walk_init(&walk, sdst, ssrc, nbytes);
444 
445 	err = blkcipher_walk_virt(desc, &walk);
446 	nbytes = walk.nbytes;
447 	if (!nbytes)
448 		return err;
449 
450 	nblocks = min(walk.nbytes / bsize, max_blks);
451 	src = (be128 *)walk.src.virt.addr;
452 	dst = (be128 *)walk.dst.virt.addr;
453 
454 	/* calculate first value of T */
455 	iv = (be128 *)walk.iv;
456 	t_buf[0] = *iv;
457 
458 	/* T <- I*Key2 */
459 	gf128mul_64k_bbe(&t_buf[0], ctx->table);
460 
461 	i = 0;
462 	goto first;
463 
464 	for (;;) {
465 		do {
466 			for (i = 0; i < nblocks; i++) {
467 				/* T <- I*Key2, using the optimization
468 				 * discussed in the specification */
469 				be128_xor(&t_buf[i], t,
470 						&ctx->mulinc[get_index128(iv)]);
471 				inc(iv);
472 first:
473 				t = &t_buf[i];
474 
475 				/* PP <- T xor P */
476 				be128_xor(dst + i, t, src + i);
477 			}
478 
479 			/* CC <- E(Key2,PP) */
480 			req->crypt_fn(req->crypt_ctx, (u8 *)dst,
481 				      nblocks * bsize);
482 
483 			/* C <- T xor CC */
484 			for (i = 0; i < nblocks; i++)
485 				be128_xor(dst + i, dst + i, &t_buf[i]);
486 
487 			src += nblocks;
488 			dst += nblocks;
489 			nbytes -= nblocks * bsize;
490 			nblocks = min(nbytes / bsize, max_blks);
491 		} while (nblocks > 0);
492 
493 		err = blkcipher_walk_done(desc, &walk, nbytes);
494 		nbytes = walk.nbytes;
495 		if (!nbytes)
496 			break;
497 
498 		nblocks = min(nbytes / bsize, max_blks);
499 		src = (be128 *)walk.src.virt.addr;
500 		dst = (be128 *)walk.dst.virt.addr;
501 	}
502 
503 	return err;
504 }
505 EXPORT_SYMBOL_GPL(lrw_crypt);
506 
init_tfm(struct crypto_skcipher * tfm)507 static int init_tfm(struct crypto_skcipher *tfm)
508 {
509 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
510 	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
511 	struct priv *ctx = crypto_skcipher_ctx(tfm);
512 	struct crypto_skcipher *cipher;
513 
514 	cipher = crypto_spawn_skcipher(spawn);
515 	if (IS_ERR(cipher))
516 		return PTR_ERR(cipher);
517 
518 	ctx->child = cipher;
519 
520 	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
521 					 sizeof(struct rctx));
522 
523 	return 0;
524 }
525 
exit_tfm(struct crypto_skcipher * tfm)526 static void exit_tfm(struct crypto_skcipher *tfm)
527 {
528 	struct priv *ctx = crypto_skcipher_ctx(tfm);
529 
530 	lrw_free_table(&ctx->table);
531 	crypto_free_skcipher(ctx->child);
532 }
533 
free(struct skcipher_instance * inst)534 static void free(struct skcipher_instance *inst)
535 {
536 	crypto_drop_skcipher(skcipher_instance_ctx(inst));
537 	kfree(inst);
538 }
539 
create(struct crypto_template * tmpl,struct rtattr ** tb)540 static int create(struct crypto_template *tmpl, struct rtattr **tb)
541 {
542 	struct crypto_skcipher_spawn *spawn;
543 	struct skcipher_instance *inst;
544 	struct crypto_attr_type *algt;
545 	struct skcipher_alg *alg;
546 	const char *cipher_name;
547 	char ecb_name[CRYPTO_MAX_ALG_NAME];
548 	int err;
549 
550 	algt = crypto_get_attr_type(tb);
551 	if (IS_ERR(algt))
552 		return PTR_ERR(algt);
553 
554 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
555 		return -EINVAL;
556 
557 	cipher_name = crypto_attr_alg_name(tb[1]);
558 	if (IS_ERR(cipher_name))
559 		return PTR_ERR(cipher_name);
560 
561 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
562 	if (!inst)
563 		return -ENOMEM;
564 
565 	spawn = skcipher_instance_ctx(inst);
566 
567 	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
568 	err = crypto_grab_skcipher(spawn, cipher_name, 0,
569 				   crypto_requires_sync(algt->type,
570 							algt->mask));
571 	if (err == -ENOENT) {
572 		err = -ENAMETOOLONG;
573 		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
574 			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
575 			goto err_free_inst;
576 
577 		err = crypto_grab_skcipher(spawn, ecb_name, 0,
578 					   crypto_requires_sync(algt->type,
579 								algt->mask));
580 	}
581 
582 	if (err)
583 		goto err_free_inst;
584 
585 	alg = crypto_skcipher_spawn_alg(spawn);
586 
587 	err = -EINVAL;
588 	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
589 		goto err_drop_spawn;
590 
591 	if (crypto_skcipher_alg_ivsize(alg))
592 		goto err_drop_spawn;
593 
594 	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
595 				  &alg->base);
596 	if (err)
597 		goto err_drop_spawn;
598 
599 	err = -EINVAL;
600 	cipher_name = alg->base.cra_name;
601 
602 	/* Alas we screwed up the naming so we have to mangle the
603 	 * cipher name.
604 	 */
605 	if (!strncmp(cipher_name, "ecb(", 4)) {
606 		unsigned len;
607 
608 		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
609 		if (len < 2 || len >= sizeof(ecb_name))
610 			goto err_drop_spawn;
611 
612 		if (ecb_name[len - 1] != ')')
613 			goto err_drop_spawn;
614 
615 		ecb_name[len - 1] = 0;
616 
617 		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
618 			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
619 			err = -ENAMETOOLONG;
620 			goto err_drop_spawn;
621 		}
622 	}
623 
624 	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
625 	inst->alg.base.cra_priority = alg->base.cra_priority;
626 	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
627 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
628 				       (__alignof__(u64) - 1);
629 
630 	inst->alg.ivsize = LRW_BLOCK_SIZE;
631 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
632 				LRW_BLOCK_SIZE;
633 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
634 				LRW_BLOCK_SIZE;
635 
636 	inst->alg.base.cra_ctxsize = sizeof(struct priv);
637 
638 	inst->alg.init = init_tfm;
639 	inst->alg.exit = exit_tfm;
640 
641 	inst->alg.setkey = setkey;
642 	inst->alg.encrypt = encrypt;
643 	inst->alg.decrypt = decrypt;
644 
645 	inst->free = free;
646 
647 	err = skcipher_register_instance(tmpl, inst);
648 	if (err)
649 		goto err_drop_spawn;
650 
651 out:
652 	return err;
653 
654 err_drop_spawn:
655 	crypto_drop_skcipher(spawn);
656 err_free_inst:
657 	kfree(inst);
658 	goto out;
659 }
660 
661 static struct crypto_template crypto_tmpl = {
662 	.name = "lrw",
663 	.create = create,
664 	.module = THIS_MODULE,
665 };
666 
crypto_module_init(void)667 static int __init crypto_module_init(void)
668 {
669 	return crypto_register_template(&crypto_tmpl);
670 }
671 
crypto_module_exit(void)672 static void __exit crypto_module_exit(void)
673 {
674 	crypto_unregister_template(&crypto_tmpl);
675 }
676 
677 module_init(crypto_module_init);
678 module_exit(crypto_module_exit);
679 
680 MODULE_LICENSE("GPL");
681 MODULE_DESCRIPTION("LRW block cipher mode");
682 MODULE_ALIAS_CRYPTO("lrw");
683