• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Software multibuffer async crypto daemon.
3  *
4  * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5  *
6  * Adapted from crypto daemon.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  */
14 
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/sched/stat.h>
28 #include <linux/slab.h>
29 #include <linux/hardirq.h>
30 
31 #define MCRYPTD_MAX_CPU_QLEN 100
32 #define MCRYPTD_BATCH 9
33 
34 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
35 				   unsigned int tail);
36 
37 struct mcryptd_flush_list {
38 	struct list_head list;
39 	struct mutex lock;
40 };
41 
42 static struct mcryptd_flush_list __percpu *mcryptd_flist;
43 
44 struct hashd_instance_ctx {
45 	struct crypto_ahash_spawn spawn;
46 	struct mcryptd_queue *queue;
47 };
48 
49 static void mcryptd_queue_worker(struct work_struct *work);
50 
mcryptd_arm_flusher(struct mcryptd_alg_cstate * cstate,unsigned long delay)51 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
52 {
53 	struct mcryptd_flush_list *flist;
54 
55 	if (!cstate->flusher_engaged) {
56 		/* put the flusher on the flush list */
57 		flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
58 		mutex_lock(&flist->lock);
59 		list_add_tail(&cstate->flush_list, &flist->list);
60 		cstate->flusher_engaged = true;
61 		cstate->next_flush = jiffies + delay;
62 		queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
63 			&cstate->flush, delay);
64 		mutex_unlock(&flist->lock);
65 	}
66 }
67 EXPORT_SYMBOL(mcryptd_arm_flusher);
68 
mcryptd_init_queue(struct mcryptd_queue * queue,unsigned int max_cpu_qlen)69 static int mcryptd_init_queue(struct mcryptd_queue *queue,
70 			     unsigned int max_cpu_qlen)
71 {
72 	int cpu;
73 	struct mcryptd_cpu_queue *cpu_queue;
74 
75 	queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
76 	pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
77 	if (!queue->cpu_queue)
78 		return -ENOMEM;
79 	for_each_possible_cpu(cpu) {
80 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
81 		pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
82 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
83 		INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
84 		spin_lock_init(&cpu_queue->q_lock);
85 	}
86 	return 0;
87 }
88 
mcryptd_fini_queue(struct mcryptd_queue * queue)89 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
90 {
91 	int cpu;
92 	struct mcryptd_cpu_queue *cpu_queue;
93 
94 	for_each_possible_cpu(cpu) {
95 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
96 		BUG_ON(cpu_queue->queue.qlen);
97 	}
98 	free_percpu(queue->cpu_queue);
99 }
100 
mcryptd_enqueue_request(struct mcryptd_queue * queue,struct crypto_async_request * request,struct mcryptd_hash_request_ctx * rctx)101 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
102 				  struct crypto_async_request *request,
103 				  struct mcryptd_hash_request_ctx *rctx)
104 {
105 	int cpu, err;
106 	struct mcryptd_cpu_queue *cpu_queue;
107 
108 	cpu_queue = raw_cpu_ptr(queue->cpu_queue);
109 	spin_lock(&cpu_queue->q_lock);
110 	cpu = smp_processor_id();
111 	rctx->tag.cpu = smp_processor_id();
112 
113 	err = crypto_enqueue_request(&cpu_queue->queue, request);
114 	pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
115 		 cpu, cpu_queue, request);
116 	spin_unlock(&cpu_queue->q_lock);
117 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
118 
119 	return err;
120 }
121 
122 /*
123  * Try to opportunisticlly flush the partially completed jobs if
124  * crypto daemon is the only task running.
125  */
mcryptd_opportunistic_flush(void)126 static void mcryptd_opportunistic_flush(void)
127 {
128 	struct mcryptd_flush_list *flist;
129 	struct mcryptd_alg_cstate *cstate;
130 
131 	flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
132 	while (single_task_running()) {
133 		mutex_lock(&flist->lock);
134 		cstate = list_first_entry_or_null(&flist->list,
135 				struct mcryptd_alg_cstate, flush_list);
136 		if (!cstate || !cstate->flusher_engaged) {
137 			mutex_unlock(&flist->lock);
138 			return;
139 		}
140 		list_del(&cstate->flush_list);
141 		cstate->flusher_engaged = false;
142 		mutex_unlock(&flist->lock);
143 		cstate->alg_state->flusher(cstate);
144 	}
145 }
146 
147 /*
148  * Called in workqueue context, do one real cryption work (via
149  * req->complete) and reschedule itself if there are more work to
150  * do.
151  */
mcryptd_queue_worker(struct work_struct * work)152 static void mcryptd_queue_worker(struct work_struct *work)
153 {
154 	struct mcryptd_cpu_queue *cpu_queue;
155 	struct crypto_async_request *req, *backlog;
156 	int i;
157 
158 	/*
159 	 * Need to loop through more than once for multi-buffer to
160 	 * be effective.
161 	 */
162 
163 	cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
164 	i = 0;
165 	while (i < MCRYPTD_BATCH || single_task_running()) {
166 
167 		spin_lock_bh(&cpu_queue->q_lock);
168 		backlog = crypto_get_backlog(&cpu_queue->queue);
169 		req = crypto_dequeue_request(&cpu_queue->queue);
170 		spin_unlock_bh(&cpu_queue->q_lock);
171 
172 		if (!req) {
173 			mcryptd_opportunistic_flush();
174 			return;
175 		}
176 
177 		if (backlog)
178 			backlog->complete(backlog, -EINPROGRESS);
179 		req->complete(req, 0);
180 		if (!cpu_queue->queue.qlen)
181 			return;
182 		++i;
183 	}
184 	if (cpu_queue->queue.qlen)
185 		queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
186 }
187 
mcryptd_flusher(struct work_struct * __work)188 void mcryptd_flusher(struct work_struct *__work)
189 {
190 	struct	mcryptd_alg_cstate	*alg_cpu_state;
191 	struct	mcryptd_alg_state	*alg_state;
192 	struct	mcryptd_flush_list	*flist;
193 	int	cpu;
194 
195 	cpu = smp_processor_id();
196 	alg_cpu_state = container_of(to_delayed_work(__work),
197 				     struct mcryptd_alg_cstate, flush);
198 	alg_state = alg_cpu_state->alg_state;
199 	if (alg_cpu_state->cpu != cpu)
200 		pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
201 				cpu, alg_cpu_state->cpu);
202 
203 	if (alg_cpu_state->flusher_engaged) {
204 		flist = per_cpu_ptr(mcryptd_flist, cpu);
205 		mutex_lock(&flist->lock);
206 		list_del(&alg_cpu_state->flush_list);
207 		alg_cpu_state->flusher_engaged = false;
208 		mutex_unlock(&flist->lock);
209 		alg_state->flusher(alg_cpu_state);
210 	}
211 }
212 EXPORT_SYMBOL_GPL(mcryptd_flusher);
213 
mcryptd_get_queue(struct crypto_tfm * tfm)214 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
215 {
216 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
217 	struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
218 
219 	return ictx->queue;
220 }
221 
mcryptd_alloc_instance(struct crypto_alg * alg,unsigned int head,unsigned int tail)222 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
223 				   unsigned int tail)
224 {
225 	char *p;
226 	struct crypto_instance *inst;
227 	int err;
228 
229 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
230 	if (!p)
231 		return ERR_PTR(-ENOMEM);
232 
233 	inst = (void *)(p + head);
234 
235 	err = -ENAMETOOLONG;
236 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
237 		    "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
238 		goto out_free_inst;
239 
240 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
241 
242 	inst->alg.cra_priority = alg->cra_priority + 50;
243 	inst->alg.cra_blocksize = alg->cra_blocksize;
244 	inst->alg.cra_alignmask = alg->cra_alignmask;
245 
246 out:
247 	return p;
248 
249 out_free_inst:
250 	kfree(p);
251 	p = ERR_PTR(err);
252 	goto out;
253 }
254 
mcryptd_check_internal(struct rtattr ** tb,u32 * type,u32 * mask)255 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
256 					  u32 *mask)
257 {
258 	struct crypto_attr_type *algt;
259 
260 	algt = crypto_get_attr_type(tb);
261 	if (IS_ERR(algt))
262 		return false;
263 
264 	*type |= algt->type & CRYPTO_ALG_INTERNAL;
265 	*mask |= algt->mask & CRYPTO_ALG_INTERNAL;
266 
267 	if (*type & *mask & CRYPTO_ALG_INTERNAL)
268 		return true;
269 	else
270 		return false;
271 }
272 
mcryptd_hash_init_tfm(struct crypto_tfm * tfm)273 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
274 {
275 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
276 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
277 	struct crypto_ahash_spawn *spawn = &ictx->spawn;
278 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
279 	struct crypto_ahash *hash;
280 
281 	hash = crypto_spawn_ahash(spawn);
282 	if (IS_ERR(hash))
283 		return PTR_ERR(hash);
284 
285 	ctx->child = hash;
286 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
287 				 sizeof(struct mcryptd_hash_request_ctx) +
288 				 crypto_ahash_reqsize(hash));
289 	return 0;
290 }
291 
mcryptd_hash_exit_tfm(struct crypto_tfm * tfm)292 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
293 {
294 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
295 
296 	crypto_free_ahash(ctx->child);
297 }
298 
mcryptd_hash_setkey(struct crypto_ahash * parent,const u8 * key,unsigned int keylen)299 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
300 				   const u8 *key, unsigned int keylen)
301 {
302 	struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
303 	struct crypto_ahash *child = ctx->child;
304 	int err;
305 
306 	crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
307 	crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
308 				      CRYPTO_TFM_REQ_MASK);
309 	err = crypto_ahash_setkey(child, key, keylen);
310 	crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
311 				       CRYPTO_TFM_RES_MASK);
312 	return err;
313 }
314 
mcryptd_hash_enqueue(struct ahash_request * req,crypto_completion_t complete)315 static int mcryptd_hash_enqueue(struct ahash_request *req,
316 				crypto_completion_t complete)
317 {
318 	int ret;
319 
320 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
321 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
322 	struct mcryptd_queue *queue =
323 		mcryptd_get_queue(crypto_ahash_tfm(tfm));
324 
325 	rctx->complete = req->base.complete;
326 	req->base.complete = complete;
327 
328 	ret = mcryptd_enqueue_request(queue, &req->base, rctx);
329 
330 	return ret;
331 }
332 
mcryptd_hash_init(struct crypto_async_request * req_async,int err)333 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
334 {
335 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
336 	struct crypto_ahash *child = ctx->child;
337 	struct ahash_request *req = ahash_request_cast(req_async);
338 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
339 	struct ahash_request *desc = &rctx->areq;
340 
341 	if (unlikely(err == -EINPROGRESS))
342 		goto out;
343 
344 	ahash_request_set_tfm(desc, child);
345 	ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
346 						rctx->complete, req_async);
347 
348 	rctx->out = req->result;
349 	err = crypto_ahash_init(desc);
350 
351 out:
352 	local_bh_disable();
353 	rctx->complete(&req->base, err);
354 	local_bh_enable();
355 }
356 
mcryptd_hash_init_enqueue(struct ahash_request * req)357 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
358 {
359 	return mcryptd_hash_enqueue(req, mcryptd_hash_init);
360 }
361 
mcryptd_hash_update(struct crypto_async_request * req_async,int err)362 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
363 {
364 	struct ahash_request *req = ahash_request_cast(req_async);
365 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
366 
367 	if (unlikely(err == -EINPROGRESS))
368 		goto out;
369 
370 	rctx->out = req->result;
371 	err = ahash_mcryptd_update(&rctx->areq);
372 	if (err) {
373 		req->base.complete = rctx->complete;
374 		goto out;
375 	}
376 
377 	return;
378 out:
379 	local_bh_disable();
380 	rctx->complete(&req->base, err);
381 	local_bh_enable();
382 }
383 
mcryptd_hash_update_enqueue(struct ahash_request * req)384 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
385 {
386 	return mcryptd_hash_enqueue(req, mcryptd_hash_update);
387 }
388 
mcryptd_hash_final(struct crypto_async_request * req_async,int err)389 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
390 {
391 	struct ahash_request *req = ahash_request_cast(req_async);
392 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
393 
394 	if (unlikely(err == -EINPROGRESS))
395 		goto out;
396 
397 	rctx->out = req->result;
398 	err = ahash_mcryptd_final(&rctx->areq);
399 	if (err) {
400 		req->base.complete = rctx->complete;
401 		goto out;
402 	}
403 
404 	return;
405 out:
406 	local_bh_disable();
407 	rctx->complete(&req->base, err);
408 	local_bh_enable();
409 }
410 
mcryptd_hash_final_enqueue(struct ahash_request * req)411 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
412 {
413 	return mcryptd_hash_enqueue(req, mcryptd_hash_final);
414 }
415 
mcryptd_hash_finup(struct crypto_async_request * req_async,int err)416 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
417 {
418 	struct ahash_request *req = ahash_request_cast(req_async);
419 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
420 
421 	if (unlikely(err == -EINPROGRESS))
422 		goto out;
423 	rctx->out = req->result;
424 	err = ahash_mcryptd_finup(&rctx->areq);
425 
426 	if (err) {
427 		req->base.complete = rctx->complete;
428 		goto out;
429 	}
430 
431 	return;
432 out:
433 	local_bh_disable();
434 	rctx->complete(&req->base, err);
435 	local_bh_enable();
436 }
437 
mcryptd_hash_finup_enqueue(struct ahash_request * req)438 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
439 {
440 	return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
441 }
442 
mcryptd_hash_digest(struct crypto_async_request * req_async,int err)443 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
444 {
445 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
446 	struct crypto_ahash *child = ctx->child;
447 	struct ahash_request *req = ahash_request_cast(req_async);
448 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
449 	struct ahash_request *desc = &rctx->areq;
450 
451 	if (unlikely(err == -EINPROGRESS))
452 		goto out;
453 
454 	ahash_request_set_tfm(desc, child);
455 	ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
456 						rctx->complete, req_async);
457 
458 	rctx->out = req->result;
459 	err = ahash_mcryptd_digest(desc);
460 
461 out:
462 	local_bh_disable();
463 	rctx->complete(&req->base, err);
464 	local_bh_enable();
465 }
466 
mcryptd_hash_digest_enqueue(struct ahash_request * req)467 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
468 {
469 	return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
470 }
471 
mcryptd_hash_export(struct ahash_request * req,void * out)472 static int mcryptd_hash_export(struct ahash_request *req, void *out)
473 {
474 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
475 
476 	return crypto_ahash_export(&rctx->areq, out);
477 }
478 
mcryptd_hash_import(struct ahash_request * req,const void * in)479 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
480 {
481 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
482 
483 	return crypto_ahash_import(&rctx->areq, in);
484 }
485 
mcryptd_create_hash(struct crypto_template * tmpl,struct rtattr ** tb,struct mcryptd_queue * queue)486 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
487 			      struct mcryptd_queue *queue)
488 {
489 	struct hashd_instance_ctx *ctx;
490 	struct ahash_instance *inst;
491 	struct hash_alg_common *halg;
492 	struct crypto_alg *alg;
493 	u32 type = 0;
494 	u32 mask = 0;
495 	int err;
496 
497 	if (!mcryptd_check_internal(tb, &type, &mask))
498 		return -EINVAL;
499 
500 	halg = ahash_attr_alg(tb[1], type, mask);
501 	if (IS_ERR(halg))
502 		return PTR_ERR(halg);
503 
504 	alg = &halg->base;
505 	pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
506 	inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
507 					sizeof(*ctx));
508 	err = PTR_ERR(inst);
509 	if (IS_ERR(inst))
510 		goto out_put_alg;
511 
512 	ctx = ahash_instance_ctx(inst);
513 	ctx->queue = queue;
514 
515 	err = crypto_init_ahash_spawn(&ctx->spawn, halg,
516 				      ahash_crypto_instance(inst));
517 	if (err)
518 		goto out_free_inst;
519 
520 	inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
521 		(alg->cra_flags & (CRYPTO_ALG_INTERNAL |
522 				   CRYPTO_ALG_OPTIONAL_KEY));
523 
524 	inst->alg.halg.digestsize = halg->digestsize;
525 	inst->alg.halg.statesize = halg->statesize;
526 	inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
527 
528 	inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
529 	inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
530 
531 	inst->alg.init   = mcryptd_hash_init_enqueue;
532 	inst->alg.update = mcryptd_hash_update_enqueue;
533 	inst->alg.final  = mcryptd_hash_final_enqueue;
534 	inst->alg.finup  = mcryptd_hash_finup_enqueue;
535 	inst->alg.export = mcryptd_hash_export;
536 	inst->alg.import = mcryptd_hash_import;
537 	if (crypto_hash_alg_has_setkey(halg))
538 		inst->alg.setkey = mcryptd_hash_setkey;
539 	inst->alg.digest = mcryptd_hash_digest_enqueue;
540 
541 	err = ahash_register_instance(tmpl, inst);
542 	if (err) {
543 		crypto_drop_ahash(&ctx->spawn);
544 out_free_inst:
545 		kfree(inst);
546 	}
547 
548 out_put_alg:
549 	crypto_mod_put(alg);
550 	return err;
551 }
552 
553 static struct mcryptd_queue mqueue;
554 
mcryptd_create(struct crypto_template * tmpl,struct rtattr ** tb)555 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
556 {
557 	struct crypto_attr_type *algt;
558 
559 	algt = crypto_get_attr_type(tb);
560 	if (IS_ERR(algt))
561 		return PTR_ERR(algt);
562 
563 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
564 	case CRYPTO_ALG_TYPE_DIGEST:
565 		return mcryptd_create_hash(tmpl, tb, &mqueue);
566 	break;
567 	}
568 
569 	return -EINVAL;
570 }
571 
mcryptd_free(struct crypto_instance * inst)572 static void mcryptd_free(struct crypto_instance *inst)
573 {
574 	struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
575 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
576 
577 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
578 	case CRYPTO_ALG_TYPE_AHASH:
579 		crypto_drop_ahash(&hctx->spawn);
580 		kfree(ahash_instance(inst));
581 		return;
582 	default:
583 		crypto_drop_spawn(&ctx->spawn);
584 		kfree(inst);
585 	}
586 }
587 
588 static struct crypto_template mcryptd_tmpl = {
589 	.name = "mcryptd",
590 	.create = mcryptd_create,
591 	.free = mcryptd_free,
592 	.module = THIS_MODULE,
593 };
594 
mcryptd_alloc_ahash(const char * alg_name,u32 type,u32 mask)595 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
596 					u32 type, u32 mask)
597 {
598 	char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
599 	struct crypto_ahash *tfm;
600 
601 	if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
602 		     "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
603 		return ERR_PTR(-EINVAL);
604 	tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
605 	if (IS_ERR(tfm))
606 		return ERR_CAST(tfm);
607 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
608 		crypto_free_ahash(tfm);
609 		return ERR_PTR(-EINVAL);
610 	}
611 
612 	return __mcryptd_ahash_cast(tfm);
613 }
614 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
615 
ahash_mcryptd_digest(struct ahash_request * desc)616 int ahash_mcryptd_digest(struct ahash_request *desc)
617 {
618 	return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc);
619 }
620 
ahash_mcryptd_update(struct ahash_request * desc)621 int ahash_mcryptd_update(struct ahash_request *desc)
622 {
623 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
624 
625 	return crypto_ahash_update(desc);
626 }
627 
ahash_mcryptd_finup(struct ahash_request * desc)628 int ahash_mcryptd_finup(struct ahash_request *desc)
629 {
630 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
631 
632 	return crypto_ahash_finup(desc);
633 }
634 
ahash_mcryptd_final(struct ahash_request * desc)635 int ahash_mcryptd_final(struct ahash_request *desc)
636 {
637 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
638 
639 	return crypto_ahash_final(desc);
640 }
641 
mcryptd_ahash_child(struct mcryptd_ahash * tfm)642 struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
643 {
644 	struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
645 
646 	return ctx->child;
647 }
648 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
649 
mcryptd_ahash_desc(struct ahash_request * req)650 struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
651 {
652 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
653 	return &rctx->areq;
654 }
655 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
656 
mcryptd_free_ahash(struct mcryptd_ahash * tfm)657 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
658 {
659 	crypto_free_ahash(&tfm->base);
660 }
661 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
662 
mcryptd_init(void)663 static int __init mcryptd_init(void)
664 {
665 	int err, cpu;
666 	struct mcryptd_flush_list *flist;
667 
668 	mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
669 	for_each_possible_cpu(cpu) {
670 		flist = per_cpu_ptr(mcryptd_flist, cpu);
671 		INIT_LIST_HEAD(&flist->list);
672 		mutex_init(&flist->lock);
673 	}
674 
675 	err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
676 	if (err) {
677 		free_percpu(mcryptd_flist);
678 		return err;
679 	}
680 
681 	err = crypto_register_template(&mcryptd_tmpl);
682 	if (err) {
683 		mcryptd_fini_queue(&mqueue);
684 		free_percpu(mcryptd_flist);
685 	}
686 
687 	return err;
688 }
689 
mcryptd_exit(void)690 static void __exit mcryptd_exit(void)
691 {
692 	mcryptd_fini_queue(&mqueue);
693 	crypto_unregister_template(&mcryptd_tmpl);
694 	free_percpu(mcryptd_flist);
695 }
696 
697 subsys_initcall(mcryptd_init);
698 module_exit(mcryptd_exit);
699 
700 MODULE_LICENSE("GPL");
701 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
702 MODULE_ALIAS_CRYPTO("mcryptd");
703