1 /*
2 * Copyright (C) 2016, Semihalf
3 * Author: Tomasz Nowicki <tn@semihalf.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * This file implements early detection/parsing of I/O mapping
15 * reported to OS through firmware via I/O Remapping Table (IORT)
16 * IORT document number: ARM DEN 0049A
17 */
18
19 #define pr_fmt(fmt) "ACPI: IORT: " fmt
20
21 #include <linux/acpi_iort.h>
22 #include <linux/iommu.h>
23 #include <linux/kernel.h>
24 #include <linux/list.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #define IORT_TYPE_MASK(type) (1 << (type))
30 #define IORT_MSI_TYPE (1 << ACPI_IORT_NODE_ITS_GROUP)
31 #define IORT_IOMMU_TYPE ((1 << ACPI_IORT_NODE_SMMU) | \
32 (1 << ACPI_IORT_NODE_SMMU_V3))
33
34 /* Until ACPICA headers cover IORT rev. C */
35 #ifndef ACPI_IORT_SMMU_V3_CAVIUM_CN99XX
36 #define ACPI_IORT_SMMU_V3_CAVIUM_CN99XX 0x2
37 #endif
38
39 struct iort_its_msi_chip {
40 struct list_head list;
41 struct fwnode_handle *fw_node;
42 u32 translation_id;
43 };
44
45 struct iort_fwnode {
46 struct list_head list;
47 struct acpi_iort_node *iort_node;
48 struct fwnode_handle *fwnode;
49 };
50 static LIST_HEAD(iort_fwnode_list);
51 static DEFINE_SPINLOCK(iort_fwnode_lock);
52
53 /**
54 * iort_set_fwnode() - Create iort_fwnode and use it to register
55 * iommu data in the iort_fwnode_list
56 *
57 * @node: IORT table node associated with the IOMMU
58 * @fwnode: fwnode associated with the IORT node
59 *
60 * Returns: 0 on success
61 * <0 on failure
62 */
iort_set_fwnode(struct acpi_iort_node * iort_node,struct fwnode_handle * fwnode)63 static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
64 struct fwnode_handle *fwnode)
65 {
66 struct iort_fwnode *np;
67
68 np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
69
70 if (WARN_ON(!np))
71 return -ENOMEM;
72
73 INIT_LIST_HEAD(&np->list);
74 np->iort_node = iort_node;
75 np->fwnode = fwnode;
76
77 spin_lock(&iort_fwnode_lock);
78 list_add_tail(&np->list, &iort_fwnode_list);
79 spin_unlock(&iort_fwnode_lock);
80
81 return 0;
82 }
83
84 /**
85 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
86 *
87 * @node: IORT table node to be looked-up
88 *
89 * Returns: fwnode_handle pointer on success, NULL on failure
90 */
91 static inline
iort_get_fwnode(struct acpi_iort_node * node)92 struct fwnode_handle *iort_get_fwnode(struct acpi_iort_node *node)
93 {
94 struct iort_fwnode *curr;
95 struct fwnode_handle *fwnode = NULL;
96
97 spin_lock(&iort_fwnode_lock);
98 list_for_each_entry(curr, &iort_fwnode_list, list) {
99 if (curr->iort_node == node) {
100 fwnode = curr->fwnode;
101 break;
102 }
103 }
104 spin_unlock(&iort_fwnode_lock);
105
106 return fwnode;
107 }
108
109 /**
110 * iort_delete_fwnode() - Delete fwnode associated with an IORT node
111 *
112 * @node: IORT table node associated with fwnode to delete
113 */
iort_delete_fwnode(struct acpi_iort_node * node)114 static inline void iort_delete_fwnode(struct acpi_iort_node *node)
115 {
116 struct iort_fwnode *curr, *tmp;
117
118 spin_lock(&iort_fwnode_lock);
119 list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
120 if (curr->iort_node == node) {
121 list_del(&curr->list);
122 kfree(curr);
123 break;
124 }
125 }
126 spin_unlock(&iort_fwnode_lock);
127 }
128
129 typedef acpi_status (*iort_find_node_callback)
130 (struct acpi_iort_node *node, void *context);
131
132 /* Root pointer to the mapped IORT table */
133 static struct acpi_table_header *iort_table;
134
135 static LIST_HEAD(iort_msi_chip_list);
136 static DEFINE_SPINLOCK(iort_msi_chip_lock);
137
138 /**
139 * iort_register_domain_token() - register domain token and related ITS ID
140 * to the list from where we can get it back later on.
141 * @trans_id: ITS ID.
142 * @fw_node: Domain token.
143 *
144 * Returns: 0 on success, -ENOMEM if no memory when allocating list element
145 */
iort_register_domain_token(int trans_id,struct fwnode_handle * fw_node)146 int iort_register_domain_token(int trans_id, struct fwnode_handle *fw_node)
147 {
148 struct iort_its_msi_chip *its_msi_chip;
149
150 its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
151 if (!its_msi_chip)
152 return -ENOMEM;
153
154 its_msi_chip->fw_node = fw_node;
155 its_msi_chip->translation_id = trans_id;
156
157 spin_lock(&iort_msi_chip_lock);
158 list_add(&its_msi_chip->list, &iort_msi_chip_list);
159 spin_unlock(&iort_msi_chip_lock);
160
161 return 0;
162 }
163
164 /**
165 * iort_deregister_domain_token() - Deregister domain token based on ITS ID
166 * @trans_id: ITS ID.
167 *
168 * Returns: none.
169 */
iort_deregister_domain_token(int trans_id)170 void iort_deregister_domain_token(int trans_id)
171 {
172 struct iort_its_msi_chip *its_msi_chip, *t;
173
174 spin_lock(&iort_msi_chip_lock);
175 list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
176 if (its_msi_chip->translation_id == trans_id) {
177 list_del(&its_msi_chip->list);
178 kfree(its_msi_chip);
179 break;
180 }
181 }
182 spin_unlock(&iort_msi_chip_lock);
183 }
184
185 /**
186 * iort_find_domain_token() - Find domain token based on given ITS ID
187 * @trans_id: ITS ID.
188 *
189 * Returns: domain token when find on the list, NULL otherwise
190 */
iort_find_domain_token(int trans_id)191 struct fwnode_handle *iort_find_domain_token(int trans_id)
192 {
193 struct fwnode_handle *fw_node = NULL;
194 struct iort_its_msi_chip *its_msi_chip;
195
196 spin_lock(&iort_msi_chip_lock);
197 list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
198 if (its_msi_chip->translation_id == trans_id) {
199 fw_node = its_msi_chip->fw_node;
200 break;
201 }
202 }
203 spin_unlock(&iort_msi_chip_lock);
204
205 return fw_node;
206 }
207
iort_scan_node(enum acpi_iort_node_type type,iort_find_node_callback callback,void * context)208 static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
209 iort_find_node_callback callback,
210 void *context)
211 {
212 struct acpi_iort_node *iort_node, *iort_end;
213 struct acpi_table_iort *iort;
214 int i;
215
216 if (!iort_table)
217 return NULL;
218
219 /* Get the first IORT node */
220 iort = (struct acpi_table_iort *)iort_table;
221 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
222 iort->node_offset);
223 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
224 iort_table->length);
225
226 for (i = 0; i < iort->node_count; i++) {
227 if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
228 "IORT node pointer overflows, bad table!\n"))
229 return NULL;
230
231 if (iort_node->type == type &&
232 ACPI_SUCCESS(callback(iort_node, context)))
233 return iort_node;
234
235 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
236 iort_node->length);
237 }
238
239 return NULL;
240 }
241
iort_match_node_callback(struct acpi_iort_node * node,void * context)242 static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
243 void *context)
244 {
245 struct device *dev = context;
246 acpi_status status = AE_NOT_FOUND;
247
248 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
249 struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
250 struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
251 struct acpi_iort_named_component *ncomp;
252
253 if (!adev)
254 goto out;
255
256 status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
257 if (ACPI_FAILURE(status)) {
258 dev_warn(dev, "Can't get device full path name\n");
259 goto out;
260 }
261
262 ncomp = (struct acpi_iort_named_component *)node->node_data;
263 status = !strcmp(ncomp->device_name, buf.pointer) ?
264 AE_OK : AE_NOT_FOUND;
265 acpi_os_free(buf.pointer);
266 } else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
267 struct acpi_iort_root_complex *pci_rc;
268 struct pci_bus *bus;
269
270 bus = to_pci_bus(dev);
271 pci_rc = (struct acpi_iort_root_complex *)node->node_data;
272
273 /*
274 * It is assumed that PCI segment numbers maps one-to-one
275 * with root complexes. Each segment number can represent only
276 * one root complex.
277 */
278 status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
279 AE_OK : AE_NOT_FOUND;
280 }
281 out:
282 return status;
283 }
284
iort_id_map(struct acpi_iort_id_mapping * map,u8 type,u32 rid_in,u32 * rid_out)285 static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
286 u32 *rid_out)
287 {
288 /* Single mapping does not care for input id */
289 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
290 if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
291 type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
292 *rid_out = map->output_base;
293 return 0;
294 }
295
296 pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
297 map, type);
298 return -ENXIO;
299 }
300
301 if (rid_in < map->input_base ||
302 (rid_in >= map->input_base + map->id_count))
303 return -ENXIO;
304
305 *rid_out = map->output_base + (rid_in - map->input_base);
306 return 0;
307 }
308
309 static
iort_node_get_id(struct acpi_iort_node * node,u32 * id_out,int index)310 struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
311 u32 *id_out, int index)
312 {
313 struct acpi_iort_node *parent;
314 struct acpi_iort_id_mapping *map;
315
316 if (!node->mapping_offset || !node->mapping_count ||
317 index >= node->mapping_count)
318 return NULL;
319
320 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
321 node->mapping_offset + index * sizeof(*map));
322
323 /* Firmware bug! */
324 if (!map->output_reference) {
325 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
326 node, node->type);
327 return NULL;
328 }
329
330 parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
331 map->output_reference);
332
333 if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
334 if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
335 node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
336 *id_out = map->output_base;
337 return parent;
338 }
339 }
340
341 return NULL;
342 }
343
iort_node_map_id(struct acpi_iort_node * node,u32 id_in,u32 * id_out,u8 type_mask)344 static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
345 u32 id_in, u32 *id_out,
346 u8 type_mask)
347 {
348 u32 id = id_in;
349
350 /* Parse the ID mapping tree to find specified node type */
351 while (node) {
352 struct acpi_iort_id_mapping *map;
353 int i;
354
355 if (IORT_TYPE_MASK(node->type) & type_mask) {
356 if (id_out)
357 *id_out = id;
358 return node;
359 }
360
361 if (!node->mapping_offset || !node->mapping_count)
362 goto fail_map;
363
364 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
365 node->mapping_offset);
366
367 /* Firmware bug! */
368 if (!map->output_reference) {
369 pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
370 node, node->type);
371 goto fail_map;
372 }
373
374 /* Do the ID translation */
375 for (i = 0; i < node->mapping_count; i++, map++) {
376 if (!iort_id_map(map, node->type, id, &id))
377 break;
378 }
379
380 if (i == node->mapping_count)
381 goto fail_map;
382
383 node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
384 map->output_reference);
385 }
386
387 fail_map:
388 /* Map input ID to output ID unchanged on mapping failure */
389 if (id_out)
390 *id_out = id_in;
391
392 return NULL;
393 }
394
395 static
iort_node_map_platform_id(struct acpi_iort_node * node,u32 * id_out,u8 type_mask,int index)396 struct acpi_iort_node *iort_node_map_platform_id(struct acpi_iort_node *node,
397 u32 *id_out, u8 type_mask,
398 int index)
399 {
400 struct acpi_iort_node *parent;
401 u32 id;
402
403 /* step 1: retrieve the initial dev id */
404 parent = iort_node_get_id(node, &id, index);
405 if (!parent)
406 return NULL;
407
408 /*
409 * optional step 2: map the initial dev id if its parent is not
410 * the target type we want, map it again for the use cases such
411 * as NC (named component) -> SMMU -> ITS. If the type is matched,
412 * return the initial dev id and its parent pointer directly.
413 */
414 if (!(IORT_TYPE_MASK(parent->type) & type_mask))
415 parent = iort_node_map_id(parent, id, id_out, type_mask);
416 else
417 if (id_out)
418 *id_out = id;
419
420 return parent;
421 }
422
iort_find_dev_node(struct device * dev)423 static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
424 {
425 struct pci_bus *pbus;
426
427 if (!dev_is_pci(dev))
428 return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
429 iort_match_node_callback, dev);
430
431 /* Find a PCI root bus */
432 pbus = to_pci_dev(dev)->bus;
433 while (!pci_is_root_bus(pbus))
434 pbus = pbus->parent;
435
436 return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
437 iort_match_node_callback, &pbus->dev);
438 }
439
440 /**
441 * iort_msi_map_rid() - Map a MSI requester ID for a device
442 * @dev: The device for which the mapping is to be done.
443 * @req_id: The device requester ID.
444 *
445 * Returns: mapped MSI RID on success, input requester ID otherwise
446 */
iort_msi_map_rid(struct device * dev,u32 req_id)447 u32 iort_msi_map_rid(struct device *dev, u32 req_id)
448 {
449 struct acpi_iort_node *node;
450 u32 dev_id;
451
452 node = iort_find_dev_node(dev);
453 if (!node)
454 return req_id;
455
456 iort_node_map_id(node, req_id, &dev_id, IORT_MSI_TYPE);
457 return dev_id;
458 }
459
460 /**
461 * iort_pmsi_get_dev_id() - Get the device id for a device
462 * @dev: The device for which the mapping is to be done.
463 * @dev_id: The device ID found.
464 *
465 * Returns: 0 for successful find a dev id, -ENODEV on error
466 */
iort_pmsi_get_dev_id(struct device * dev,u32 * dev_id)467 int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
468 {
469 int i;
470 struct acpi_iort_node *node;
471
472 node = iort_find_dev_node(dev);
473 if (!node)
474 return -ENODEV;
475
476 for (i = 0; i < node->mapping_count; i++) {
477 if (iort_node_map_platform_id(node, dev_id, IORT_MSI_TYPE, i))
478 return 0;
479 }
480
481 return -ENODEV;
482 }
483
484 /**
485 * iort_dev_find_its_id() - Find the ITS identifier for a device
486 * @dev: The device.
487 * @req_id: Device's requester ID
488 * @idx: Index of the ITS identifier list.
489 * @its_id: ITS identifier.
490 *
491 * Returns: 0 on success, appropriate error value otherwise
492 */
iort_dev_find_its_id(struct device * dev,u32 req_id,unsigned int idx,int * its_id)493 static int iort_dev_find_its_id(struct device *dev, u32 req_id,
494 unsigned int idx, int *its_id)
495 {
496 struct acpi_iort_its_group *its;
497 struct acpi_iort_node *node;
498
499 node = iort_find_dev_node(dev);
500 if (!node)
501 return -ENXIO;
502
503 node = iort_node_map_id(node, req_id, NULL, IORT_MSI_TYPE);
504 if (!node)
505 return -ENXIO;
506
507 /* Move to ITS specific data */
508 its = (struct acpi_iort_its_group *)node->node_data;
509 if (idx >= its->its_count) {
510 dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
511 idx, its->its_count);
512 return -ENXIO;
513 }
514
515 *its_id = its->identifiers[idx];
516 return 0;
517 }
518
519 /**
520 * iort_get_device_domain() - Find MSI domain related to a device
521 * @dev: The device.
522 * @req_id: Requester ID for the device.
523 *
524 * Returns: the MSI domain for this device, NULL otherwise
525 */
iort_get_device_domain(struct device * dev,u32 req_id)526 struct irq_domain *iort_get_device_domain(struct device *dev, u32 req_id)
527 {
528 struct fwnode_handle *handle;
529 int its_id;
530
531 if (iort_dev_find_its_id(dev, req_id, 0, &its_id))
532 return NULL;
533
534 handle = iort_find_domain_token(its_id);
535 if (!handle)
536 return NULL;
537
538 return irq_find_matching_fwnode(handle, DOMAIN_BUS_PCI_MSI);
539 }
540
541 /**
542 * iort_get_platform_device_domain() - Find MSI domain related to a
543 * platform device
544 * @dev: the dev pointer associated with the platform device
545 *
546 * Returns: the MSI domain for this device, NULL otherwise
547 */
iort_get_platform_device_domain(struct device * dev)548 static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
549 {
550 struct acpi_iort_node *node, *msi_parent = NULL;
551 struct fwnode_handle *iort_fwnode;
552 struct acpi_iort_its_group *its;
553 int i;
554
555 /* find its associated iort node */
556 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
557 iort_match_node_callback, dev);
558 if (!node)
559 return NULL;
560
561 /* then find its msi parent node */
562 for (i = 0; i < node->mapping_count; i++) {
563 msi_parent = iort_node_map_platform_id(node, NULL,
564 IORT_MSI_TYPE, i);
565 if (msi_parent)
566 break;
567 }
568
569 if (!msi_parent)
570 return NULL;
571
572 /* Move to ITS specific data */
573 its = (struct acpi_iort_its_group *)msi_parent->node_data;
574
575 iort_fwnode = iort_find_domain_token(its->identifiers[0]);
576 if (!iort_fwnode)
577 return NULL;
578
579 return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
580 }
581
acpi_configure_pmsi_domain(struct device * dev)582 void acpi_configure_pmsi_domain(struct device *dev)
583 {
584 struct irq_domain *msi_domain;
585
586 msi_domain = iort_get_platform_device_domain(dev);
587 if (msi_domain)
588 dev_set_msi_domain(dev, msi_domain);
589 }
590
__get_pci_rid(struct pci_dev * pdev,u16 alias,void * data)591 static int __maybe_unused __get_pci_rid(struct pci_dev *pdev, u16 alias,
592 void *data)
593 {
594 u32 *rid = data;
595
596 *rid = alias;
597 return 0;
598 }
599
arm_smmu_iort_xlate(struct device * dev,u32 streamid,struct fwnode_handle * fwnode,const struct iommu_ops * ops)600 static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
601 struct fwnode_handle *fwnode,
602 const struct iommu_ops *ops)
603 {
604 int ret = iommu_fwspec_init(dev, fwnode, ops);
605
606 if (!ret)
607 ret = iommu_fwspec_add_ids(dev, &streamid, 1);
608
609 return ret;
610 }
611
iort_iommu_driver_enabled(u8 type)612 static inline bool iort_iommu_driver_enabled(u8 type)
613 {
614 switch (type) {
615 case ACPI_IORT_NODE_SMMU_V3:
616 return IS_BUILTIN(CONFIG_ARM_SMMU_V3);
617 case ACPI_IORT_NODE_SMMU:
618 return IS_BUILTIN(CONFIG_ARM_SMMU);
619 default:
620 pr_warn("IORT node type %u does not describe an SMMU\n", type);
621 return false;
622 }
623 }
624
625 #ifdef CONFIG_IOMMU_API
626 static inline
iort_fwspec_iommu_ops(struct iommu_fwspec * fwspec)627 const struct iommu_ops *iort_fwspec_iommu_ops(struct iommu_fwspec *fwspec)
628 {
629 return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
630 }
631
632 static inline
iort_add_device_replay(const struct iommu_ops * ops,struct device * dev)633 int iort_add_device_replay(const struct iommu_ops *ops, struct device *dev)
634 {
635 int err = 0;
636
637 if (ops->add_device && dev->bus && !dev->iommu_group)
638 err = ops->add_device(dev);
639
640 return err;
641 }
642 #else
643 static inline
iort_fwspec_iommu_ops(struct iommu_fwspec * fwspec)644 const struct iommu_ops *iort_fwspec_iommu_ops(struct iommu_fwspec *fwspec)
645 { return NULL; }
646 static inline
iort_add_device_replay(const struct iommu_ops * ops,struct device * dev)647 int iort_add_device_replay(const struct iommu_ops *ops, struct device *dev)
648 { return 0; }
649 #endif
650
iort_iommu_xlate(struct device * dev,struct acpi_iort_node * node,u32 streamid)651 static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
652 u32 streamid)
653 {
654 const struct iommu_ops *ops;
655 struct fwnode_handle *iort_fwnode;
656
657 if (!node)
658 return -ENODEV;
659
660 iort_fwnode = iort_get_fwnode(node);
661 if (!iort_fwnode)
662 return -ENODEV;
663
664 /*
665 * If the ops look-up fails, this means that either
666 * the SMMU drivers have not been probed yet or that
667 * the SMMU drivers are not built in the kernel;
668 * Depending on whether the SMMU drivers are built-in
669 * in the kernel or not, defer the IOMMU configuration
670 * or just abort it.
671 */
672 ops = iommu_ops_from_fwnode(iort_fwnode);
673 if (!ops)
674 return iort_iommu_driver_enabled(node->type) ?
675 -EPROBE_DEFER : -ENODEV;
676
677 return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
678 }
679
680 struct iort_pci_alias_info {
681 struct device *dev;
682 struct acpi_iort_node *node;
683 };
684
iort_pci_iommu_init(struct pci_dev * pdev,u16 alias,void * data)685 static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
686 {
687 struct iort_pci_alias_info *info = data;
688 struct acpi_iort_node *parent;
689 u32 streamid;
690
691 parent = iort_node_map_id(info->node, alias, &streamid,
692 IORT_IOMMU_TYPE);
693 return iort_iommu_xlate(info->dev, parent, streamid);
694 }
695
nc_dma_get_range(struct device * dev,u64 * size)696 static int nc_dma_get_range(struct device *dev, u64 *size)
697 {
698 struct acpi_iort_node *node;
699 struct acpi_iort_named_component *ncomp;
700
701 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
702 iort_match_node_callback, dev);
703 if (!node)
704 return -ENODEV;
705
706 ncomp = (struct acpi_iort_named_component *)node->node_data;
707
708 *size = ncomp->memory_address_limit >= 64 ? U64_MAX :
709 1ULL<<ncomp->memory_address_limit;
710
711 return 0;
712 }
713
714 /**
715 * iort_dma_setup() - Set-up device DMA parameters.
716 *
717 * @dev: device to configure
718 * @dma_addr: device DMA address result pointer
719 * @size: DMA range size result pointer
720 */
iort_dma_setup(struct device * dev,u64 * dma_addr,u64 * dma_size)721 void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
722 {
723 u64 mask, dmaaddr = 0, size = 0, offset = 0;
724 int ret, msb;
725
726 /*
727 * Set default coherent_dma_mask to 32 bit. Drivers are expected to
728 * setup the correct supported mask.
729 */
730 if (!dev->coherent_dma_mask)
731 dev->coherent_dma_mask = DMA_BIT_MASK(32);
732
733 /*
734 * Set it to coherent_dma_mask by default if the architecture
735 * code has not set it.
736 */
737 if (!dev->dma_mask)
738 dev->dma_mask = &dev->coherent_dma_mask;
739
740 size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
741
742 if (dev_is_pci(dev))
743 ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
744 else
745 ret = nc_dma_get_range(dev, &size);
746
747 if (!ret) {
748 msb = fls64(dmaaddr + size - 1);
749 /*
750 * Round-up to the power-of-two mask or set
751 * the mask to the whole 64-bit address space
752 * in case the DMA region covers the full
753 * memory window.
754 */
755 mask = msb == 64 ? U64_MAX : (1ULL << msb) - 1;
756 /*
757 * Limit coherent and dma mask based on size
758 * retrieved from firmware.
759 */
760 dev->coherent_dma_mask = mask;
761 *dev->dma_mask = mask;
762 }
763
764 *dma_addr = dmaaddr;
765 *dma_size = size;
766
767 dev->dma_pfn_offset = PFN_DOWN(offset);
768 dev_dbg(dev, "dma_pfn_offset(%#08llx)\n", offset);
769 }
770
771 /**
772 * iort_iommu_configure - Set-up IOMMU configuration for a device.
773 *
774 * @dev: device to configure
775 *
776 * Returns: iommu_ops pointer on configuration success
777 * NULL on configuration failure
778 */
iort_iommu_configure(struct device * dev)779 const struct iommu_ops *iort_iommu_configure(struct device *dev)
780 {
781 struct acpi_iort_node *node, *parent;
782 const struct iommu_ops *ops;
783 u32 streamid = 0;
784 int err = -ENODEV;
785
786 /*
787 * If we already translated the fwspec there
788 * is nothing left to do, return the iommu_ops.
789 */
790 ops = iort_fwspec_iommu_ops(dev->iommu_fwspec);
791 if (ops)
792 return ops;
793
794 if (dev_is_pci(dev)) {
795 struct pci_bus *bus = to_pci_dev(dev)->bus;
796 struct iort_pci_alias_info info = { .dev = dev };
797
798 node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
799 iort_match_node_callback, &bus->dev);
800 if (!node)
801 return NULL;
802
803 info.node = node;
804 err = pci_for_each_dma_alias(to_pci_dev(dev),
805 iort_pci_iommu_init, &info);
806 } else {
807 int i = 0;
808
809 node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
810 iort_match_node_callback, dev);
811 if (!node)
812 return NULL;
813
814 do {
815 parent = iort_node_map_platform_id(node, &streamid,
816 IORT_IOMMU_TYPE,
817 i++);
818
819 if (parent)
820 err = iort_iommu_xlate(dev, parent, streamid);
821 } while (parent && !err);
822 }
823
824 /*
825 * If we have reason to believe the IOMMU driver missed the initial
826 * add_device callback for dev, replay it to get things in order.
827 */
828 if (!err) {
829 ops = iort_fwspec_iommu_ops(dev->iommu_fwspec);
830 err = iort_add_device_replay(ops, dev);
831 }
832
833 /* Ignore all other errors apart from EPROBE_DEFER */
834 if (err == -EPROBE_DEFER) {
835 ops = ERR_PTR(err);
836 } else if (err) {
837 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
838 ops = NULL;
839 }
840
841 return ops;
842 }
843
acpi_iort_register_irq(int hwirq,const char * name,int trigger,struct resource * res)844 static void __init acpi_iort_register_irq(int hwirq, const char *name,
845 int trigger,
846 struct resource *res)
847 {
848 int irq = acpi_register_gsi(NULL, hwirq, trigger,
849 ACPI_ACTIVE_HIGH);
850
851 if (irq <= 0) {
852 pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
853 name);
854 return;
855 }
856
857 res->start = irq;
858 res->end = irq;
859 res->flags = IORESOURCE_IRQ;
860 res->name = name;
861 }
862
arm_smmu_v3_count_resources(struct acpi_iort_node * node)863 static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
864 {
865 struct acpi_iort_smmu_v3 *smmu;
866 /* Always present mem resource */
867 int num_res = 1;
868
869 /* Retrieve SMMUv3 specific data */
870 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
871
872 if (smmu->event_gsiv)
873 num_res++;
874
875 if (smmu->pri_gsiv)
876 num_res++;
877
878 if (smmu->gerr_gsiv)
879 num_res++;
880
881 if (smmu->sync_gsiv)
882 num_res++;
883
884 return num_res;
885 }
886
arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 * smmu)887 static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
888 {
889 /*
890 * Cavium ThunderX2 implementation doesn't not support unique
891 * irq line. Use single irq line for all the SMMUv3 interrupts.
892 */
893 if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
894 return false;
895
896 /*
897 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
898 * SPI numbers here.
899 */
900 return smmu->event_gsiv == smmu->pri_gsiv &&
901 smmu->event_gsiv == smmu->gerr_gsiv &&
902 smmu->event_gsiv == smmu->sync_gsiv;
903 }
904
arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 * smmu)905 static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
906 {
907 /*
908 * Override the size, for Cavium ThunderX2 implementation
909 * which doesn't support the page 1 SMMU register space.
910 */
911 if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
912 return SZ_64K;
913
914 return SZ_128K;
915 }
916
arm_smmu_v3_init_resources(struct resource * res,struct acpi_iort_node * node)917 static void __init arm_smmu_v3_init_resources(struct resource *res,
918 struct acpi_iort_node *node)
919 {
920 struct acpi_iort_smmu_v3 *smmu;
921 int num_res = 0;
922
923 /* Retrieve SMMUv3 specific data */
924 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
925
926 res[num_res].start = smmu->base_address;
927 res[num_res].end = smmu->base_address +
928 arm_smmu_v3_resource_size(smmu) - 1;
929 res[num_res].flags = IORESOURCE_MEM;
930
931 num_res++;
932 if (arm_smmu_v3_is_combined_irq(smmu)) {
933 if (smmu->event_gsiv)
934 acpi_iort_register_irq(smmu->event_gsiv, "combined",
935 ACPI_EDGE_SENSITIVE,
936 &res[num_res++]);
937 } else {
938
939 if (smmu->event_gsiv)
940 acpi_iort_register_irq(smmu->event_gsiv, "eventq",
941 ACPI_EDGE_SENSITIVE,
942 &res[num_res++]);
943
944 if (smmu->pri_gsiv)
945 acpi_iort_register_irq(smmu->pri_gsiv, "priq",
946 ACPI_EDGE_SENSITIVE,
947 &res[num_res++]);
948
949 if (smmu->gerr_gsiv)
950 acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
951 ACPI_EDGE_SENSITIVE,
952 &res[num_res++]);
953
954 if (smmu->sync_gsiv)
955 acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
956 ACPI_EDGE_SENSITIVE,
957 &res[num_res++]);
958 }
959 }
960
arm_smmu_v3_is_coherent(struct acpi_iort_node * node)961 static bool __init arm_smmu_v3_is_coherent(struct acpi_iort_node *node)
962 {
963 struct acpi_iort_smmu_v3 *smmu;
964
965 /* Retrieve SMMUv3 specific data */
966 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
967
968 return smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE;
969 }
970
971 #if defined(CONFIG_ACPI_NUMA) && defined(ACPI_IORT_SMMU_V3_PXM_VALID)
972 /*
973 * set numa proximity domain for smmuv3 device
974 */
arm_smmu_v3_set_proximity(struct device * dev,struct acpi_iort_node * node)975 static void __init arm_smmu_v3_set_proximity(struct device *dev,
976 struct acpi_iort_node *node)
977 {
978 struct acpi_iort_smmu_v3 *smmu;
979
980 smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
981 if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
982 set_dev_node(dev, acpi_map_pxm_to_node(smmu->pxm));
983 pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
984 smmu->base_address,
985 smmu->pxm);
986 }
987 }
988 #else
989 #define arm_smmu_v3_set_proximity NULL
990 #endif
991
arm_smmu_count_resources(struct acpi_iort_node * node)992 static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
993 {
994 struct acpi_iort_smmu *smmu;
995
996 /* Retrieve SMMU specific data */
997 smmu = (struct acpi_iort_smmu *)node->node_data;
998
999 /*
1000 * Only consider the global fault interrupt and ignore the
1001 * configuration access interrupt.
1002 *
1003 * MMIO address and global fault interrupt resources are always
1004 * present so add them to the context interrupt count as a static
1005 * value.
1006 */
1007 return smmu->context_interrupt_count + 2;
1008 }
1009
arm_smmu_init_resources(struct resource * res,struct acpi_iort_node * node)1010 static void __init arm_smmu_init_resources(struct resource *res,
1011 struct acpi_iort_node *node)
1012 {
1013 struct acpi_iort_smmu *smmu;
1014 int i, hw_irq, trigger, num_res = 0;
1015 u64 *ctx_irq, *glb_irq;
1016
1017 /* Retrieve SMMU specific data */
1018 smmu = (struct acpi_iort_smmu *)node->node_data;
1019
1020 res[num_res].start = smmu->base_address;
1021 res[num_res].end = smmu->base_address + smmu->span - 1;
1022 res[num_res].flags = IORESOURCE_MEM;
1023 num_res++;
1024
1025 glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1026 /* Global IRQs */
1027 hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1028 trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1029
1030 acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1031 &res[num_res++]);
1032
1033 /* Context IRQs */
1034 ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1035 for (i = 0; i < smmu->context_interrupt_count; i++) {
1036 hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1037 trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1038
1039 acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1040 &res[num_res++]);
1041 }
1042 }
1043
arm_smmu_is_coherent(struct acpi_iort_node * node)1044 static bool __init arm_smmu_is_coherent(struct acpi_iort_node *node)
1045 {
1046 struct acpi_iort_smmu *smmu;
1047
1048 /* Retrieve SMMU specific data */
1049 smmu = (struct acpi_iort_smmu *)node->node_data;
1050
1051 return smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK;
1052 }
1053
1054 struct iort_iommu_config {
1055 const char *name;
1056 int (*iommu_init)(struct acpi_iort_node *node);
1057 bool (*iommu_is_coherent)(struct acpi_iort_node *node);
1058 int (*iommu_count_resources)(struct acpi_iort_node *node);
1059 void (*iommu_init_resources)(struct resource *res,
1060 struct acpi_iort_node *node);
1061 void (*iommu_set_proximity)(struct device *dev,
1062 struct acpi_iort_node *node);
1063 };
1064
1065 static const struct iort_iommu_config iort_arm_smmu_v3_cfg __initconst = {
1066 .name = "arm-smmu-v3",
1067 .iommu_is_coherent = arm_smmu_v3_is_coherent,
1068 .iommu_count_resources = arm_smmu_v3_count_resources,
1069 .iommu_init_resources = arm_smmu_v3_init_resources,
1070 .iommu_set_proximity = arm_smmu_v3_set_proximity,
1071 };
1072
1073 static const struct iort_iommu_config iort_arm_smmu_cfg __initconst = {
1074 .name = "arm-smmu",
1075 .iommu_is_coherent = arm_smmu_is_coherent,
1076 .iommu_count_resources = arm_smmu_count_resources,
1077 .iommu_init_resources = arm_smmu_init_resources
1078 };
1079
1080 static __init
iort_get_iommu_cfg(struct acpi_iort_node * node)1081 const struct iort_iommu_config *iort_get_iommu_cfg(struct acpi_iort_node *node)
1082 {
1083 switch (node->type) {
1084 case ACPI_IORT_NODE_SMMU_V3:
1085 return &iort_arm_smmu_v3_cfg;
1086 case ACPI_IORT_NODE_SMMU:
1087 return &iort_arm_smmu_cfg;
1088 default:
1089 return NULL;
1090 }
1091 }
1092
1093 /**
1094 * iort_add_smmu_platform_device() - Allocate a platform device for SMMU
1095 * @node: Pointer to SMMU ACPI IORT node
1096 *
1097 * Returns: 0 on success, <0 failure
1098 */
iort_add_smmu_platform_device(struct acpi_iort_node * node)1099 static int __init iort_add_smmu_platform_device(struct acpi_iort_node *node)
1100 {
1101 struct fwnode_handle *fwnode;
1102 struct platform_device *pdev;
1103 struct resource *r;
1104 enum dev_dma_attr attr;
1105 int ret, count;
1106 const struct iort_iommu_config *ops = iort_get_iommu_cfg(node);
1107
1108 if (!ops)
1109 return -ENODEV;
1110
1111 pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1112 if (!pdev)
1113 return -ENOMEM;
1114
1115 if (ops->iommu_set_proximity)
1116 ops->iommu_set_proximity(&pdev->dev, node);
1117
1118 count = ops->iommu_count_resources(node);
1119
1120 r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1121 if (!r) {
1122 ret = -ENOMEM;
1123 goto dev_put;
1124 }
1125
1126 ops->iommu_init_resources(r, node);
1127
1128 ret = platform_device_add_resources(pdev, r, count);
1129 /*
1130 * Resources are duplicated in platform_device_add_resources,
1131 * free their allocated memory
1132 */
1133 kfree(r);
1134
1135 if (ret)
1136 goto dev_put;
1137
1138 /*
1139 * Add a copy of IORT node pointer to platform_data to
1140 * be used to retrieve IORT data information.
1141 */
1142 ret = platform_device_add_data(pdev, &node, sizeof(node));
1143 if (ret)
1144 goto dev_put;
1145
1146 /*
1147 * We expect the dma masks to be equivalent for
1148 * all SMMUs set-ups
1149 */
1150 pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
1151
1152 fwnode = iort_get_fwnode(node);
1153
1154 if (!fwnode) {
1155 ret = -ENODEV;
1156 goto dev_put;
1157 }
1158
1159 pdev->dev.fwnode = fwnode;
1160
1161 attr = ops->iommu_is_coherent(node) ?
1162 DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1163
1164 /* Configure DMA for the page table walker */
1165 acpi_dma_configure(&pdev->dev, attr);
1166
1167 ret = platform_device_add(pdev);
1168 if (ret)
1169 goto dma_deconfigure;
1170
1171 return 0;
1172
1173 dma_deconfigure:
1174 acpi_dma_deconfigure(&pdev->dev);
1175 dev_put:
1176 platform_device_put(pdev);
1177
1178 return ret;
1179 }
1180
iort_enable_acs(struct acpi_iort_node * iort_node)1181 static bool __init iort_enable_acs(struct acpi_iort_node *iort_node)
1182 {
1183 if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1184 struct acpi_iort_node *parent;
1185 struct acpi_iort_id_mapping *map;
1186 int i;
1187
1188 map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1189 iort_node->mapping_offset);
1190
1191 for (i = 0; i < iort_node->mapping_count; i++, map++) {
1192 if (!map->output_reference)
1193 continue;
1194
1195 parent = ACPI_ADD_PTR(struct acpi_iort_node,
1196 iort_table, map->output_reference);
1197 /*
1198 * If we detect a RC->SMMU mapping, make sure
1199 * we enable ACS on the system.
1200 */
1201 if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1202 (parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1203 pci_request_acs();
1204 return true;
1205 }
1206 }
1207 }
1208
1209 return false;
1210 }
1211
iort_init_platform_devices(void)1212 static void __init iort_init_platform_devices(void)
1213 {
1214 struct acpi_iort_node *iort_node, *iort_end;
1215 struct acpi_table_iort *iort;
1216 struct fwnode_handle *fwnode;
1217 int i, ret;
1218 bool acs_enabled = false;
1219
1220 /*
1221 * iort_table and iort both point to the start of IORT table, but
1222 * have different struct types
1223 */
1224 iort = (struct acpi_table_iort *)iort_table;
1225
1226 /* Get the first IORT node */
1227 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1228 iort->node_offset);
1229 iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1230 iort_table->length);
1231
1232 for (i = 0; i < iort->node_count; i++) {
1233 if (iort_node >= iort_end) {
1234 pr_err("iort node pointer overflows, bad table\n");
1235 return;
1236 }
1237
1238 if (!acs_enabled)
1239 acs_enabled = iort_enable_acs(iort_node);
1240
1241 if ((iort_node->type == ACPI_IORT_NODE_SMMU) ||
1242 (iort_node->type == ACPI_IORT_NODE_SMMU_V3)) {
1243
1244 fwnode = acpi_alloc_fwnode_static();
1245 if (!fwnode)
1246 return;
1247
1248 iort_set_fwnode(iort_node, fwnode);
1249
1250 ret = iort_add_smmu_platform_device(iort_node);
1251 if (ret) {
1252 iort_delete_fwnode(iort_node);
1253 acpi_free_fwnode_static(fwnode);
1254 return;
1255 }
1256 }
1257
1258 iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1259 iort_node->length);
1260 }
1261 }
1262
acpi_iort_init(void)1263 void __init acpi_iort_init(void)
1264 {
1265 acpi_status status;
1266
1267 status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1268 if (ACPI_FAILURE(status)) {
1269 if (status != AE_NOT_FOUND) {
1270 const char *msg = acpi_format_exception(status);
1271
1272 pr_err("Failed to get table, %s\n", msg);
1273 }
1274
1275 return;
1276 }
1277
1278 iort_init_platform_devices();
1279 }
1280