• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include "nfit.h"
27 
28 /*
29  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
30  * irrelevant.
31  */
32 #include <linux/io-64-nonatomic-hi-lo.h>
33 
34 static bool force_enable_dimms;
35 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
36 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
37 
38 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
39 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
40 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
41 
42 /* after three payloads of overflow, it's dead jim */
43 static unsigned int scrub_overflow_abort = 3;
44 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
45 MODULE_PARM_DESC(scrub_overflow_abort,
46 		"Number of times we overflow ARS results before abort");
47 
48 static bool disable_vendor_specific;
49 module_param(disable_vendor_specific, bool, S_IRUGO);
50 MODULE_PARM_DESC(disable_vendor_specific,
51 		"Limit commands to the publicly specified set");
52 
53 static unsigned long override_dsm_mask;
54 module_param(override_dsm_mask, ulong, S_IRUGO);
55 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
56 
57 static int default_dsm_family = -1;
58 module_param(default_dsm_family, int, S_IRUGO);
59 MODULE_PARM_DESC(default_dsm_family,
60 		"Try this DSM type first when identifying NVDIMM family");
61 
62 LIST_HEAD(acpi_descs);
63 DEFINE_MUTEX(acpi_desc_lock);
64 
65 static struct workqueue_struct *nfit_wq;
66 
67 struct nfit_table_prev {
68 	struct list_head spas;
69 	struct list_head memdevs;
70 	struct list_head dcrs;
71 	struct list_head bdws;
72 	struct list_head idts;
73 	struct list_head flushes;
74 };
75 
76 static guid_t nfit_uuid[NFIT_UUID_MAX];
77 
to_nfit_uuid(enum nfit_uuids id)78 const guid_t *to_nfit_uuid(enum nfit_uuids id)
79 {
80 	return &nfit_uuid[id];
81 }
82 EXPORT_SYMBOL(to_nfit_uuid);
83 
to_acpi_nfit_desc(struct nvdimm_bus_descriptor * nd_desc)84 static struct acpi_nfit_desc *to_acpi_nfit_desc(
85 		struct nvdimm_bus_descriptor *nd_desc)
86 {
87 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
88 }
89 
to_acpi_dev(struct acpi_nfit_desc * acpi_desc)90 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
91 {
92 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
93 
94 	/*
95 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
96 	 * acpi_device.
97 	 */
98 	if (!nd_desc->provider_name
99 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
100 		return NULL;
101 
102 	return to_acpi_device(acpi_desc->dev);
103 }
104 
xlat_bus_status(void * buf,unsigned int cmd,u32 status)105 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
106 {
107 	struct nd_cmd_clear_error *clear_err;
108 	struct nd_cmd_ars_status *ars_status;
109 	u16 flags;
110 
111 	switch (cmd) {
112 	case ND_CMD_ARS_CAP:
113 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
114 			return -ENOTTY;
115 
116 		/* Command failed */
117 		if (status & 0xffff)
118 			return -EIO;
119 
120 		/* No supported scan types for this range */
121 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
122 		if ((status >> 16 & flags) == 0)
123 			return -ENOTTY;
124 		return 0;
125 	case ND_CMD_ARS_START:
126 		/* ARS is in progress */
127 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
128 			return -EBUSY;
129 
130 		/* Command failed */
131 		if (status & 0xffff)
132 			return -EIO;
133 		return 0;
134 	case ND_CMD_ARS_STATUS:
135 		ars_status = buf;
136 		/* Command failed */
137 		if (status & 0xffff)
138 			return -EIO;
139 		/* Check extended status (Upper two bytes) */
140 		if (status == NFIT_ARS_STATUS_DONE)
141 			return 0;
142 
143 		/* ARS is in progress */
144 		if (status == NFIT_ARS_STATUS_BUSY)
145 			return -EBUSY;
146 
147 		/* No ARS performed for the current boot */
148 		if (status == NFIT_ARS_STATUS_NONE)
149 			return -EAGAIN;
150 
151 		/*
152 		 * ARS interrupted, either we overflowed or some other
153 		 * agent wants the scan to stop.  If we didn't overflow
154 		 * then just continue with the returned results.
155 		 */
156 		if (status == NFIT_ARS_STATUS_INTR) {
157 			if (ars_status->out_length >= 40 && (ars_status->flags
158 						& NFIT_ARS_F_OVERFLOW))
159 				return -ENOSPC;
160 			return 0;
161 		}
162 
163 		/* Unknown status */
164 		if (status >> 16)
165 			return -EIO;
166 		return 0;
167 	case ND_CMD_CLEAR_ERROR:
168 		clear_err = buf;
169 		if (status & 0xffff)
170 			return -EIO;
171 		if (!clear_err->cleared)
172 			return -EIO;
173 		if (clear_err->length > clear_err->cleared)
174 			return clear_err->cleared;
175 		return 0;
176 	default:
177 		break;
178 	}
179 
180 	/* all other non-zero status results in an error */
181 	if (status)
182 		return -EIO;
183 	return 0;
184 }
185 
xlat_nvdimm_status(void * buf,unsigned int cmd,u32 status)186 static int xlat_nvdimm_status(void *buf, unsigned int cmd, u32 status)
187 {
188 	switch (cmd) {
189 	case ND_CMD_GET_CONFIG_SIZE:
190 		if (status >> 16 & ND_CONFIG_LOCKED)
191 			return -EACCES;
192 		break;
193 	default:
194 		break;
195 	}
196 
197 	/* all other non-zero status results in an error */
198 	if (status)
199 		return -EIO;
200 	return 0;
201 }
202 
xlat_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)203 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
204 		u32 status)
205 {
206 	if (!nvdimm)
207 		return xlat_bus_status(buf, cmd, status);
208 	return xlat_nvdimm_status(buf, cmd, status);
209 }
210 
cmd_to_func(struct nfit_mem * nfit_mem,unsigned int cmd,struct nd_cmd_pkg * call_pkg)211 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
212 		struct nd_cmd_pkg *call_pkg)
213 {
214 	if (call_pkg) {
215 		int i;
216 
217 		if (nfit_mem->family != call_pkg->nd_family)
218 			return -ENOTTY;
219 
220 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
221 			if (call_pkg->nd_reserved2[i])
222 				return -EINVAL;
223 		return call_pkg->nd_command;
224 	}
225 
226 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
227 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
228 		return cmd;
229 
230 	/*
231 	 * Force function number validation to fail since 0 is never
232 	 * published as a valid function in dsm_mask.
233 	 */
234 	return 0;
235 }
236 
acpi_nfit_ctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)237 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
238 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
239 {
240 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
241 	union acpi_object in_obj, in_buf, *out_obj;
242 	const struct nd_cmd_desc *desc = NULL;
243 	struct device *dev = acpi_desc->dev;
244 	struct nd_cmd_pkg *call_pkg = NULL;
245 	const char *cmd_name, *dimm_name;
246 	unsigned long cmd_mask, dsm_mask;
247 	u32 offset, fw_status = 0;
248 	acpi_handle handle;
249 	const guid_t *guid;
250 	int func, rc, i;
251 
252 	if (cmd_rc)
253 		*cmd_rc = -EINVAL;
254 
255 	if (nvdimm) {
256 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
257 		struct acpi_device *adev = nfit_mem->adev;
258 
259 		if (!adev)
260 			return -ENOTTY;
261 
262 		if (cmd == ND_CMD_CALL)
263 			call_pkg = buf;
264 		func = cmd_to_func(nfit_mem, cmd, call_pkg);
265 		if (func < 0)
266 			return func;
267 		dimm_name = nvdimm_name(nvdimm);
268 		cmd_name = nvdimm_cmd_name(cmd);
269 		cmd_mask = nvdimm_cmd_mask(nvdimm);
270 		dsm_mask = nfit_mem->dsm_mask;
271 		desc = nd_cmd_dimm_desc(cmd);
272 		guid = to_nfit_uuid(nfit_mem->family);
273 		handle = adev->handle;
274 	} else {
275 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
276 
277 		func = cmd;
278 		cmd_name = nvdimm_bus_cmd_name(cmd);
279 		cmd_mask = nd_desc->cmd_mask;
280 		dsm_mask = cmd_mask;
281 		if (cmd == ND_CMD_CALL)
282 			dsm_mask = nd_desc->bus_dsm_mask;
283 		desc = nd_cmd_bus_desc(cmd);
284 		guid = to_nfit_uuid(NFIT_DEV_BUS);
285 		handle = adev->handle;
286 		dimm_name = "bus";
287 	}
288 
289 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
290 		return -ENOTTY;
291 
292 	/*
293 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
294 	 * make sure that the DSM function is supported.
295 	 */
296 	if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask))
297 		return -ENOTTY;
298 	else if (!test_bit(cmd, &cmd_mask))
299 		return -ENOTTY;
300 
301 	in_obj.type = ACPI_TYPE_PACKAGE;
302 	in_obj.package.count = 1;
303 	in_obj.package.elements = &in_buf;
304 	in_buf.type = ACPI_TYPE_BUFFER;
305 	in_buf.buffer.pointer = buf;
306 	in_buf.buffer.length = 0;
307 
308 	/* libnvdimm has already validated the input envelope */
309 	for (i = 0; i < desc->in_num; i++)
310 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
311 				i, buf);
312 
313 	if (call_pkg) {
314 		/* skip over package wrapper */
315 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
316 		in_buf.buffer.length = call_pkg->nd_size_in;
317 	}
318 
319 	dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n",
320 			__func__, dimm_name, cmd, func, in_buf.buffer.length);
321 	print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
322 			in_buf.buffer.pointer,
323 			min_t(u32, 256, in_buf.buffer.length), true);
324 
325 	out_obj = acpi_evaluate_dsm(handle, guid, 1, func, &in_obj);
326 	if (!out_obj) {
327 		dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
328 				cmd_name);
329 		return -EINVAL;
330 	}
331 
332 	if (out_obj->type != ACPI_TYPE_BUFFER) {
333 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
334 				dimm_name, cmd_name, out_obj->type);
335 		rc = -EINVAL;
336 		goto out;
337 	}
338 
339 	if (call_pkg) {
340 		call_pkg->nd_fw_size = out_obj->buffer.length;
341 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
342 			out_obj->buffer.pointer,
343 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
344 
345 		ACPI_FREE(out_obj);
346 		/*
347 		 * Need to support FW function w/o known size in advance.
348 		 * Caller can determine required size based upon nd_fw_size.
349 		 * If we return an error (like elsewhere) then caller wouldn't
350 		 * be able to rely upon data returned to make calculation.
351 		 */
352 		if (cmd_rc)
353 			*cmd_rc = 0;
354 		return 0;
355 	}
356 
357 	dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__, dimm_name,
358 			cmd_name, out_obj->buffer.length);
359 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
360 			out_obj->buffer.pointer,
361 			min_t(u32, 128, out_obj->buffer.length), true);
362 
363 	for (i = 0, offset = 0; i < desc->out_num; i++) {
364 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
365 				(u32 *) out_obj->buffer.pointer,
366 				out_obj->buffer.length - offset);
367 
368 		if (offset + out_size > out_obj->buffer.length) {
369 			dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
370 					__func__, dimm_name, cmd_name, i);
371 			break;
372 		}
373 
374 		if (in_buf.buffer.length + offset + out_size > buf_len) {
375 			dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
376 					__func__, dimm_name, cmd_name, i);
377 			rc = -ENXIO;
378 			goto out;
379 		}
380 		memcpy(buf + in_buf.buffer.length + offset,
381 				out_obj->buffer.pointer + offset, out_size);
382 		offset += out_size;
383 	}
384 
385 	/*
386 	 * Set fw_status for all the commands with a known format to be
387 	 * later interpreted by xlat_status().
388 	 */
389 	if (i >= 1 && ((cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR)
390 			|| (cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR)))
391 		fw_status = *(u32 *) out_obj->buffer.pointer;
392 
393 	if (offset + in_buf.buffer.length < buf_len) {
394 		if (i >= 1) {
395 			/*
396 			 * status valid, return the number of bytes left
397 			 * unfilled in the output buffer
398 			 */
399 			rc = buf_len - offset - in_buf.buffer.length;
400 			if (cmd_rc)
401 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
402 						fw_status);
403 		} else {
404 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
405 					__func__, dimm_name, cmd_name, buf_len,
406 					offset);
407 			rc = -ENXIO;
408 		}
409 	} else {
410 		rc = 0;
411 		if (cmd_rc)
412 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
413 	}
414 
415  out:
416 	ACPI_FREE(out_obj);
417 
418 	return rc;
419 }
420 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
421 
spa_type_name(u16 type)422 static const char *spa_type_name(u16 type)
423 {
424 	static const char *to_name[] = {
425 		[NFIT_SPA_VOLATILE] = "volatile",
426 		[NFIT_SPA_PM] = "pmem",
427 		[NFIT_SPA_DCR] = "dimm-control-region",
428 		[NFIT_SPA_BDW] = "block-data-window",
429 		[NFIT_SPA_VDISK] = "volatile-disk",
430 		[NFIT_SPA_VCD] = "volatile-cd",
431 		[NFIT_SPA_PDISK] = "persistent-disk",
432 		[NFIT_SPA_PCD] = "persistent-cd",
433 
434 	};
435 
436 	if (type > NFIT_SPA_PCD)
437 		return "unknown";
438 
439 	return to_name[type];
440 }
441 
nfit_spa_type(struct acpi_nfit_system_address * spa)442 int nfit_spa_type(struct acpi_nfit_system_address *spa)
443 {
444 	int i;
445 
446 	for (i = 0; i < NFIT_UUID_MAX; i++)
447 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
448 			return i;
449 	return -1;
450 }
451 
add_spa(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_system_address * spa)452 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
453 		struct nfit_table_prev *prev,
454 		struct acpi_nfit_system_address *spa)
455 {
456 	struct device *dev = acpi_desc->dev;
457 	struct nfit_spa *nfit_spa;
458 
459 	if (spa->header.length != sizeof(*spa))
460 		return false;
461 
462 	list_for_each_entry(nfit_spa, &prev->spas, list) {
463 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
464 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
465 			return true;
466 		}
467 	}
468 
469 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
470 			GFP_KERNEL);
471 	if (!nfit_spa)
472 		return false;
473 	INIT_LIST_HEAD(&nfit_spa->list);
474 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
475 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
476 	dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
477 			spa->range_index,
478 			spa_type_name(nfit_spa_type(spa)));
479 	return true;
480 }
481 
add_memdev(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_memory_map * memdev)482 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
483 		struct nfit_table_prev *prev,
484 		struct acpi_nfit_memory_map *memdev)
485 {
486 	struct device *dev = acpi_desc->dev;
487 	struct nfit_memdev *nfit_memdev;
488 
489 	if (memdev->header.length != sizeof(*memdev))
490 		return false;
491 
492 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
493 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
494 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
495 			return true;
496 		}
497 
498 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
499 			GFP_KERNEL);
500 	if (!nfit_memdev)
501 		return false;
502 	INIT_LIST_HEAD(&nfit_memdev->list);
503 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
504 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
505 	dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
506 			__func__, memdev->device_handle, memdev->range_index,
507 			memdev->region_index, memdev->flags);
508 	return true;
509 }
510 
511 /*
512  * An implementation may provide a truncated control region if no block windows
513  * are defined.
514  */
sizeof_dcr(struct acpi_nfit_control_region * dcr)515 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
516 {
517 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
518 				window_size))
519 		return 0;
520 	if (dcr->windows)
521 		return sizeof(*dcr);
522 	return offsetof(struct acpi_nfit_control_region, window_size);
523 }
524 
add_dcr(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_control_region * dcr)525 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
526 		struct nfit_table_prev *prev,
527 		struct acpi_nfit_control_region *dcr)
528 {
529 	struct device *dev = acpi_desc->dev;
530 	struct nfit_dcr *nfit_dcr;
531 
532 	if (!sizeof_dcr(dcr))
533 		return false;
534 
535 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
536 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
537 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
538 			return true;
539 		}
540 
541 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
542 			GFP_KERNEL);
543 	if (!nfit_dcr)
544 		return false;
545 	INIT_LIST_HEAD(&nfit_dcr->list);
546 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
547 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
548 	dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
549 			dcr->region_index, dcr->windows);
550 	return true;
551 }
552 
add_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_data_region * bdw)553 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
554 		struct nfit_table_prev *prev,
555 		struct acpi_nfit_data_region *bdw)
556 {
557 	struct device *dev = acpi_desc->dev;
558 	struct nfit_bdw *nfit_bdw;
559 
560 	if (bdw->header.length != sizeof(*bdw))
561 		return false;
562 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
563 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
564 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
565 			return true;
566 		}
567 
568 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
569 			GFP_KERNEL);
570 	if (!nfit_bdw)
571 		return false;
572 	INIT_LIST_HEAD(&nfit_bdw->list);
573 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
574 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
575 	dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
576 			bdw->region_index, bdw->windows);
577 	return true;
578 }
579 
sizeof_idt(struct acpi_nfit_interleave * idt)580 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
581 {
582 	if (idt->header.length < sizeof(*idt))
583 		return 0;
584 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
585 }
586 
add_idt(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_interleave * idt)587 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
588 		struct nfit_table_prev *prev,
589 		struct acpi_nfit_interleave *idt)
590 {
591 	struct device *dev = acpi_desc->dev;
592 	struct nfit_idt *nfit_idt;
593 
594 	if (!sizeof_idt(idt))
595 		return false;
596 
597 	list_for_each_entry(nfit_idt, &prev->idts, list) {
598 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
599 			continue;
600 
601 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
602 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
603 			return true;
604 		}
605 	}
606 
607 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
608 			GFP_KERNEL);
609 	if (!nfit_idt)
610 		return false;
611 	INIT_LIST_HEAD(&nfit_idt->list);
612 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
613 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
614 	dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
615 			idt->interleave_index, idt->line_count);
616 	return true;
617 }
618 
sizeof_flush(struct acpi_nfit_flush_address * flush)619 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
620 {
621 	if (flush->header.length < sizeof(*flush))
622 		return 0;
623 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
624 }
625 
add_flush(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_flush_address * flush)626 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
627 		struct nfit_table_prev *prev,
628 		struct acpi_nfit_flush_address *flush)
629 {
630 	struct device *dev = acpi_desc->dev;
631 	struct nfit_flush *nfit_flush;
632 
633 	if (!sizeof_flush(flush))
634 		return false;
635 
636 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
637 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
638 			continue;
639 
640 		if (memcmp(nfit_flush->flush, flush,
641 					sizeof_flush(flush)) == 0) {
642 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
643 			return true;
644 		}
645 	}
646 
647 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
648 			+ sizeof_flush(flush), GFP_KERNEL);
649 	if (!nfit_flush)
650 		return false;
651 	INIT_LIST_HEAD(&nfit_flush->list);
652 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
653 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
654 	dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
655 			flush->device_handle, flush->hint_count);
656 	return true;
657 }
658 
add_table(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,void * table,const void * end)659 static void *add_table(struct acpi_nfit_desc *acpi_desc,
660 		struct nfit_table_prev *prev, void *table, const void *end)
661 {
662 	struct device *dev = acpi_desc->dev;
663 	struct acpi_nfit_header *hdr;
664 	void *err = ERR_PTR(-ENOMEM);
665 
666 	if (table >= end)
667 		return NULL;
668 
669 	hdr = table;
670 	if (!hdr->length) {
671 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
672 			hdr->type);
673 		return NULL;
674 	}
675 
676 	switch (hdr->type) {
677 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
678 		if (!add_spa(acpi_desc, prev, table))
679 			return err;
680 		break;
681 	case ACPI_NFIT_TYPE_MEMORY_MAP:
682 		if (!add_memdev(acpi_desc, prev, table))
683 			return err;
684 		break;
685 	case ACPI_NFIT_TYPE_CONTROL_REGION:
686 		if (!add_dcr(acpi_desc, prev, table))
687 			return err;
688 		break;
689 	case ACPI_NFIT_TYPE_DATA_REGION:
690 		if (!add_bdw(acpi_desc, prev, table))
691 			return err;
692 		break;
693 	case ACPI_NFIT_TYPE_INTERLEAVE:
694 		if (!add_idt(acpi_desc, prev, table))
695 			return err;
696 		break;
697 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
698 		if (!add_flush(acpi_desc, prev, table))
699 			return err;
700 		break;
701 	case ACPI_NFIT_TYPE_SMBIOS:
702 		dev_dbg(dev, "%s: smbios\n", __func__);
703 		break;
704 	default:
705 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
706 		break;
707 	}
708 
709 	return table + hdr->length;
710 }
711 
nfit_mem_find_spa_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem)712 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
713 		struct nfit_mem *nfit_mem)
714 {
715 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
716 	u16 dcr = nfit_mem->dcr->region_index;
717 	struct nfit_spa *nfit_spa;
718 
719 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
720 		u16 range_index = nfit_spa->spa->range_index;
721 		int type = nfit_spa_type(nfit_spa->spa);
722 		struct nfit_memdev *nfit_memdev;
723 
724 		if (type != NFIT_SPA_BDW)
725 			continue;
726 
727 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
728 			if (nfit_memdev->memdev->range_index != range_index)
729 				continue;
730 			if (nfit_memdev->memdev->device_handle != device_handle)
731 				continue;
732 			if (nfit_memdev->memdev->region_index != dcr)
733 				continue;
734 
735 			nfit_mem->spa_bdw = nfit_spa->spa;
736 			return;
737 		}
738 	}
739 
740 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
741 			nfit_mem->spa_dcr->range_index);
742 	nfit_mem->bdw = NULL;
743 }
744 
nfit_mem_init_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,struct acpi_nfit_system_address * spa)745 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
746 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
747 {
748 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
749 	struct nfit_memdev *nfit_memdev;
750 	struct nfit_bdw *nfit_bdw;
751 	struct nfit_idt *nfit_idt;
752 	u16 idt_idx, range_index;
753 
754 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
755 		if (nfit_bdw->bdw->region_index != dcr)
756 			continue;
757 		nfit_mem->bdw = nfit_bdw->bdw;
758 		break;
759 	}
760 
761 	if (!nfit_mem->bdw)
762 		return;
763 
764 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
765 
766 	if (!nfit_mem->spa_bdw)
767 		return;
768 
769 	range_index = nfit_mem->spa_bdw->range_index;
770 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
771 		if (nfit_memdev->memdev->range_index != range_index ||
772 				nfit_memdev->memdev->region_index != dcr)
773 			continue;
774 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
775 		idt_idx = nfit_memdev->memdev->interleave_index;
776 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
777 			if (nfit_idt->idt->interleave_index != idt_idx)
778 				continue;
779 			nfit_mem->idt_bdw = nfit_idt->idt;
780 			break;
781 		}
782 		break;
783 	}
784 }
785 
__nfit_mem_init(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_system_address * spa)786 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
787 		struct acpi_nfit_system_address *spa)
788 {
789 	struct nfit_mem *nfit_mem, *found;
790 	struct nfit_memdev *nfit_memdev;
791 	int type = spa ? nfit_spa_type(spa) : 0;
792 
793 	switch (type) {
794 	case NFIT_SPA_DCR:
795 	case NFIT_SPA_PM:
796 		break;
797 	default:
798 		if (spa)
799 			return 0;
800 	}
801 
802 	/*
803 	 * This loop runs in two modes, when a dimm is mapped the loop
804 	 * adds memdev associations to an existing dimm, or creates a
805 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
806 	 * instances with an invalid / zero range_index and adds those
807 	 * dimms without spa associations.
808 	 */
809 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
810 		struct nfit_flush *nfit_flush;
811 		struct nfit_dcr *nfit_dcr;
812 		u32 device_handle;
813 		u16 dcr;
814 
815 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
816 			continue;
817 		if (!spa && nfit_memdev->memdev->range_index)
818 			continue;
819 		found = NULL;
820 		dcr = nfit_memdev->memdev->region_index;
821 		device_handle = nfit_memdev->memdev->device_handle;
822 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
823 			if (__to_nfit_memdev(nfit_mem)->device_handle
824 					== device_handle) {
825 				found = nfit_mem;
826 				break;
827 			}
828 
829 		if (found)
830 			nfit_mem = found;
831 		else {
832 			nfit_mem = devm_kzalloc(acpi_desc->dev,
833 					sizeof(*nfit_mem), GFP_KERNEL);
834 			if (!nfit_mem)
835 				return -ENOMEM;
836 			INIT_LIST_HEAD(&nfit_mem->list);
837 			nfit_mem->acpi_desc = acpi_desc;
838 			list_add(&nfit_mem->list, &acpi_desc->dimms);
839 		}
840 
841 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
842 			if (nfit_dcr->dcr->region_index != dcr)
843 				continue;
844 			/*
845 			 * Record the control region for the dimm.  For
846 			 * the ACPI 6.1 case, where there are separate
847 			 * control regions for the pmem vs blk
848 			 * interfaces, be sure to record the extended
849 			 * blk details.
850 			 */
851 			if (!nfit_mem->dcr)
852 				nfit_mem->dcr = nfit_dcr->dcr;
853 			else if (nfit_mem->dcr->windows == 0
854 					&& nfit_dcr->dcr->windows)
855 				nfit_mem->dcr = nfit_dcr->dcr;
856 			break;
857 		}
858 
859 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
860 			struct acpi_nfit_flush_address *flush;
861 			u16 i;
862 
863 			if (nfit_flush->flush->device_handle != device_handle)
864 				continue;
865 			nfit_mem->nfit_flush = nfit_flush;
866 			flush = nfit_flush->flush;
867 			nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
868 					flush->hint_count
869 					* sizeof(struct resource), GFP_KERNEL);
870 			if (!nfit_mem->flush_wpq)
871 				return -ENOMEM;
872 			for (i = 0; i < flush->hint_count; i++) {
873 				struct resource *res = &nfit_mem->flush_wpq[i];
874 
875 				res->start = flush->hint_address[i];
876 				res->end = res->start + 8 - 1;
877 			}
878 			break;
879 		}
880 
881 		if (dcr && !nfit_mem->dcr) {
882 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
883 					spa->range_index, dcr);
884 			return -ENODEV;
885 		}
886 
887 		if (type == NFIT_SPA_DCR) {
888 			struct nfit_idt *nfit_idt;
889 			u16 idt_idx;
890 
891 			/* multiple dimms may share a SPA when interleaved */
892 			nfit_mem->spa_dcr = spa;
893 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
894 			idt_idx = nfit_memdev->memdev->interleave_index;
895 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
896 				if (nfit_idt->idt->interleave_index != idt_idx)
897 					continue;
898 				nfit_mem->idt_dcr = nfit_idt->idt;
899 				break;
900 			}
901 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
902 		} else if (type == NFIT_SPA_PM) {
903 			/*
904 			 * A single dimm may belong to multiple SPA-PM
905 			 * ranges, record at least one in addition to
906 			 * any SPA-DCR range.
907 			 */
908 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
909 		} else
910 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
911 	}
912 
913 	return 0;
914 }
915 
nfit_mem_cmp(void * priv,struct list_head * _a,struct list_head * _b)916 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
917 {
918 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
919 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
920 	u32 handleA, handleB;
921 
922 	handleA = __to_nfit_memdev(a)->device_handle;
923 	handleB = __to_nfit_memdev(b)->device_handle;
924 	if (handleA < handleB)
925 		return -1;
926 	else if (handleA > handleB)
927 		return 1;
928 	return 0;
929 }
930 
nfit_mem_init(struct acpi_nfit_desc * acpi_desc)931 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
932 {
933 	struct nfit_spa *nfit_spa;
934 	int rc;
935 
936 
937 	/*
938 	 * For each SPA-DCR or SPA-PMEM address range find its
939 	 * corresponding MEMDEV(s).  From each MEMDEV find the
940 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
941 	 * try to find a SPA-BDW and a corresponding BDW that references
942 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
943 	 * BDWs are optional.
944 	 */
945 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
946 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
947 		if (rc)
948 			return rc;
949 	}
950 
951 	/*
952 	 * If a DIMM has failed to be mapped into SPA there will be no
953 	 * SPA entries above. Find and register all the unmapped DIMMs
954 	 * for reporting and recovery purposes.
955 	 */
956 	rc = __nfit_mem_init(acpi_desc, NULL);
957 	if (rc)
958 		return rc;
959 
960 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
961 
962 	return 0;
963 }
964 
bus_dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)965 static ssize_t bus_dsm_mask_show(struct device *dev,
966 		struct device_attribute *attr, char *buf)
967 {
968 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
969 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
970 
971 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
972 }
973 static struct device_attribute dev_attr_bus_dsm_mask =
974 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
975 
revision_show(struct device * dev,struct device_attribute * attr,char * buf)976 static ssize_t revision_show(struct device *dev,
977 		struct device_attribute *attr, char *buf)
978 {
979 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
980 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
981 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
982 
983 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
984 }
985 static DEVICE_ATTR_RO(revision);
986 
hw_error_scrub_show(struct device * dev,struct device_attribute * attr,char * buf)987 static ssize_t hw_error_scrub_show(struct device *dev,
988 		struct device_attribute *attr, char *buf)
989 {
990 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
991 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
992 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
993 
994 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
995 }
996 
997 /*
998  * The 'hw_error_scrub' attribute can have the following values written to it:
999  * '0': Switch to the default mode where an exception will only insert
1000  *      the address of the memory error into the poison and badblocks lists.
1001  * '1': Enable a full scrub to happen if an exception for a memory error is
1002  *      received.
1003  */
hw_error_scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1004 static ssize_t hw_error_scrub_store(struct device *dev,
1005 		struct device_attribute *attr, const char *buf, size_t size)
1006 {
1007 	struct nvdimm_bus_descriptor *nd_desc;
1008 	ssize_t rc;
1009 	long val;
1010 
1011 	rc = kstrtol(buf, 0, &val);
1012 	if (rc)
1013 		return rc;
1014 
1015 	device_lock(dev);
1016 	nd_desc = dev_get_drvdata(dev);
1017 	if (nd_desc) {
1018 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1019 
1020 		switch (val) {
1021 		case HW_ERROR_SCRUB_ON:
1022 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1023 			break;
1024 		case HW_ERROR_SCRUB_OFF:
1025 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1026 			break;
1027 		default:
1028 			rc = -EINVAL;
1029 			break;
1030 		}
1031 	}
1032 	device_unlock(dev);
1033 	if (rc)
1034 		return rc;
1035 	return size;
1036 }
1037 static DEVICE_ATTR_RW(hw_error_scrub);
1038 
1039 /*
1040  * This shows the number of full Address Range Scrubs that have been
1041  * completed since driver load time. Userspace can wait on this using
1042  * select/poll etc. A '+' at the end indicates an ARS is in progress
1043  */
scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1044 static ssize_t scrub_show(struct device *dev,
1045 		struct device_attribute *attr, char *buf)
1046 {
1047 	struct nvdimm_bus_descriptor *nd_desc;
1048 	ssize_t rc = -ENXIO;
1049 
1050 	device_lock(dev);
1051 	nd_desc = dev_get_drvdata(dev);
1052 	if (nd_desc) {
1053 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1054 
1055 		mutex_lock(&acpi_desc->init_mutex);
1056 		rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
1057 				work_busy(&acpi_desc->work)
1058 				&& !acpi_desc->cancel ? "+\n" : "\n");
1059 		mutex_unlock(&acpi_desc->init_mutex);
1060 	}
1061 	device_unlock(dev);
1062 	return rc;
1063 }
1064 
scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1065 static ssize_t scrub_store(struct device *dev,
1066 		struct device_attribute *attr, const char *buf, size_t size)
1067 {
1068 	struct nvdimm_bus_descriptor *nd_desc;
1069 	ssize_t rc;
1070 	long val;
1071 
1072 	rc = kstrtol(buf, 0, &val);
1073 	if (rc)
1074 		return rc;
1075 	if (val != 1)
1076 		return -EINVAL;
1077 
1078 	device_lock(dev);
1079 	nd_desc = dev_get_drvdata(dev);
1080 	if (nd_desc) {
1081 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1082 
1083 		rc = acpi_nfit_ars_rescan(acpi_desc, 0);
1084 	}
1085 	device_unlock(dev);
1086 	if (rc)
1087 		return rc;
1088 	return size;
1089 }
1090 static DEVICE_ATTR_RW(scrub);
1091 
ars_supported(struct nvdimm_bus * nvdimm_bus)1092 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1093 {
1094 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1095 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1096 		| 1 << ND_CMD_ARS_STATUS;
1097 
1098 	return (nd_desc->cmd_mask & mask) == mask;
1099 }
1100 
nfit_visible(struct kobject * kobj,struct attribute * a,int n)1101 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1102 {
1103 	struct device *dev = container_of(kobj, struct device, kobj);
1104 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1105 
1106 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1107 		return 0;
1108 	return a->mode;
1109 }
1110 
1111 static struct attribute *acpi_nfit_attributes[] = {
1112 	&dev_attr_revision.attr,
1113 	&dev_attr_scrub.attr,
1114 	&dev_attr_hw_error_scrub.attr,
1115 	&dev_attr_bus_dsm_mask.attr,
1116 	NULL,
1117 };
1118 
1119 static const struct attribute_group acpi_nfit_attribute_group = {
1120 	.name = "nfit",
1121 	.attrs = acpi_nfit_attributes,
1122 	.is_visible = nfit_visible,
1123 };
1124 
1125 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1126 	&nvdimm_bus_attribute_group,
1127 	&acpi_nfit_attribute_group,
1128 	NULL,
1129 };
1130 
to_nfit_memdev(struct device * dev)1131 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1132 {
1133 	struct nvdimm *nvdimm = to_nvdimm(dev);
1134 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1135 
1136 	return __to_nfit_memdev(nfit_mem);
1137 }
1138 
to_nfit_dcr(struct device * dev)1139 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1140 {
1141 	struct nvdimm *nvdimm = to_nvdimm(dev);
1142 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1143 
1144 	return nfit_mem->dcr;
1145 }
1146 
handle_show(struct device * dev,struct device_attribute * attr,char * buf)1147 static ssize_t handle_show(struct device *dev,
1148 		struct device_attribute *attr, char *buf)
1149 {
1150 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1151 
1152 	return sprintf(buf, "%#x\n", memdev->device_handle);
1153 }
1154 static DEVICE_ATTR_RO(handle);
1155 
phys_id_show(struct device * dev,struct device_attribute * attr,char * buf)1156 static ssize_t phys_id_show(struct device *dev,
1157 		struct device_attribute *attr, char *buf)
1158 {
1159 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1160 
1161 	return sprintf(buf, "%#x\n", memdev->physical_id);
1162 }
1163 static DEVICE_ATTR_RO(phys_id);
1164 
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1165 static ssize_t vendor_show(struct device *dev,
1166 		struct device_attribute *attr, char *buf)
1167 {
1168 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1169 
1170 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1171 }
1172 static DEVICE_ATTR_RO(vendor);
1173 
rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1174 static ssize_t rev_id_show(struct device *dev,
1175 		struct device_attribute *attr, char *buf)
1176 {
1177 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1178 
1179 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1180 }
1181 static DEVICE_ATTR_RO(rev_id);
1182 
device_show(struct device * dev,struct device_attribute * attr,char * buf)1183 static ssize_t device_show(struct device *dev,
1184 		struct device_attribute *attr, char *buf)
1185 {
1186 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1187 
1188 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1189 }
1190 static DEVICE_ATTR_RO(device);
1191 
subsystem_vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1192 static ssize_t subsystem_vendor_show(struct device *dev,
1193 		struct device_attribute *attr, char *buf)
1194 {
1195 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1196 
1197 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1198 }
1199 static DEVICE_ATTR_RO(subsystem_vendor);
1200 
subsystem_rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1201 static ssize_t subsystem_rev_id_show(struct device *dev,
1202 		struct device_attribute *attr, char *buf)
1203 {
1204 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1205 
1206 	return sprintf(buf, "0x%04x\n",
1207 			be16_to_cpu(dcr->subsystem_revision_id));
1208 }
1209 static DEVICE_ATTR_RO(subsystem_rev_id);
1210 
subsystem_device_show(struct device * dev,struct device_attribute * attr,char * buf)1211 static ssize_t subsystem_device_show(struct device *dev,
1212 		struct device_attribute *attr, char *buf)
1213 {
1214 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1215 
1216 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1217 }
1218 static DEVICE_ATTR_RO(subsystem_device);
1219 
num_nvdimm_formats(struct nvdimm * nvdimm)1220 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1221 {
1222 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1223 	int formats = 0;
1224 
1225 	if (nfit_mem->memdev_pmem)
1226 		formats++;
1227 	if (nfit_mem->memdev_bdw)
1228 		formats++;
1229 	return formats;
1230 }
1231 
format_show(struct device * dev,struct device_attribute * attr,char * buf)1232 static ssize_t format_show(struct device *dev,
1233 		struct device_attribute *attr, char *buf)
1234 {
1235 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1236 
1237 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1238 }
1239 static DEVICE_ATTR_RO(format);
1240 
format1_show(struct device * dev,struct device_attribute * attr,char * buf)1241 static ssize_t format1_show(struct device *dev,
1242 		struct device_attribute *attr, char *buf)
1243 {
1244 	u32 handle;
1245 	ssize_t rc = -ENXIO;
1246 	struct nfit_mem *nfit_mem;
1247 	struct nfit_memdev *nfit_memdev;
1248 	struct acpi_nfit_desc *acpi_desc;
1249 	struct nvdimm *nvdimm = to_nvdimm(dev);
1250 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1251 
1252 	nfit_mem = nvdimm_provider_data(nvdimm);
1253 	acpi_desc = nfit_mem->acpi_desc;
1254 	handle = to_nfit_memdev(dev)->device_handle;
1255 
1256 	/* assumes DIMMs have at most 2 published interface codes */
1257 	mutex_lock(&acpi_desc->init_mutex);
1258 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1259 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1260 		struct nfit_dcr *nfit_dcr;
1261 
1262 		if (memdev->device_handle != handle)
1263 			continue;
1264 
1265 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1266 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1267 				continue;
1268 			if (nfit_dcr->dcr->code == dcr->code)
1269 				continue;
1270 			rc = sprintf(buf, "0x%04x\n",
1271 					le16_to_cpu(nfit_dcr->dcr->code));
1272 			break;
1273 		}
1274 		if (rc != ENXIO)
1275 			break;
1276 	}
1277 	mutex_unlock(&acpi_desc->init_mutex);
1278 	return rc;
1279 }
1280 static DEVICE_ATTR_RO(format1);
1281 
formats_show(struct device * dev,struct device_attribute * attr,char * buf)1282 static ssize_t formats_show(struct device *dev,
1283 		struct device_attribute *attr, char *buf)
1284 {
1285 	struct nvdimm *nvdimm = to_nvdimm(dev);
1286 
1287 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1288 }
1289 static DEVICE_ATTR_RO(formats);
1290 
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1291 static ssize_t serial_show(struct device *dev,
1292 		struct device_attribute *attr, char *buf)
1293 {
1294 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1295 
1296 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1297 }
1298 static DEVICE_ATTR_RO(serial);
1299 
family_show(struct device * dev,struct device_attribute * attr,char * buf)1300 static ssize_t family_show(struct device *dev,
1301 		struct device_attribute *attr, char *buf)
1302 {
1303 	struct nvdimm *nvdimm = to_nvdimm(dev);
1304 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1305 
1306 	if (nfit_mem->family < 0)
1307 		return -ENXIO;
1308 	return sprintf(buf, "%d\n", nfit_mem->family);
1309 }
1310 static DEVICE_ATTR_RO(family);
1311 
dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1312 static ssize_t dsm_mask_show(struct device *dev,
1313 		struct device_attribute *attr, char *buf)
1314 {
1315 	struct nvdimm *nvdimm = to_nvdimm(dev);
1316 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1317 
1318 	if (nfit_mem->family < 0)
1319 		return -ENXIO;
1320 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1321 }
1322 static DEVICE_ATTR_RO(dsm_mask);
1323 
flags_show(struct device * dev,struct device_attribute * attr,char * buf)1324 static ssize_t flags_show(struct device *dev,
1325 		struct device_attribute *attr, char *buf)
1326 {
1327 	u16 flags = to_nfit_memdev(dev)->flags;
1328 
1329 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1330 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1331 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1332 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1333 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1334 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1335 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1336 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1337 }
1338 static DEVICE_ATTR_RO(flags);
1339 
id_show(struct device * dev,struct device_attribute * attr,char * buf)1340 static ssize_t id_show(struct device *dev,
1341 		struct device_attribute *attr, char *buf)
1342 {
1343 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1344 
1345 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1346 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1347 				be16_to_cpu(dcr->vendor_id),
1348 				dcr->manufacturing_location,
1349 				be16_to_cpu(dcr->manufacturing_date),
1350 				be32_to_cpu(dcr->serial_number));
1351 	else
1352 		return sprintf(buf, "%04x-%08x\n",
1353 				be16_to_cpu(dcr->vendor_id),
1354 				be32_to_cpu(dcr->serial_number));
1355 }
1356 static DEVICE_ATTR_RO(id);
1357 
1358 static struct attribute *acpi_nfit_dimm_attributes[] = {
1359 	&dev_attr_handle.attr,
1360 	&dev_attr_phys_id.attr,
1361 	&dev_attr_vendor.attr,
1362 	&dev_attr_device.attr,
1363 	&dev_attr_rev_id.attr,
1364 	&dev_attr_subsystem_vendor.attr,
1365 	&dev_attr_subsystem_device.attr,
1366 	&dev_attr_subsystem_rev_id.attr,
1367 	&dev_attr_format.attr,
1368 	&dev_attr_formats.attr,
1369 	&dev_attr_format1.attr,
1370 	&dev_attr_serial.attr,
1371 	&dev_attr_flags.attr,
1372 	&dev_attr_id.attr,
1373 	&dev_attr_family.attr,
1374 	&dev_attr_dsm_mask.attr,
1375 	NULL,
1376 };
1377 
acpi_nfit_dimm_attr_visible(struct kobject * kobj,struct attribute * a,int n)1378 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1379 		struct attribute *a, int n)
1380 {
1381 	struct device *dev = container_of(kobj, struct device, kobj);
1382 	struct nvdimm *nvdimm = to_nvdimm(dev);
1383 
1384 	if (!to_nfit_dcr(dev)) {
1385 		/* Without a dcr only the memdev attributes can be surfaced */
1386 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1387 				|| a == &dev_attr_flags.attr
1388 				|| a == &dev_attr_family.attr
1389 				|| a == &dev_attr_dsm_mask.attr)
1390 			return a->mode;
1391 		return 0;
1392 	}
1393 
1394 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1395 		return 0;
1396 	return a->mode;
1397 }
1398 
1399 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1400 	.name = "nfit",
1401 	.attrs = acpi_nfit_dimm_attributes,
1402 	.is_visible = acpi_nfit_dimm_attr_visible,
1403 };
1404 
1405 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1406 	&nvdimm_attribute_group,
1407 	&nd_device_attribute_group,
1408 	&acpi_nfit_dimm_attribute_group,
1409 	NULL,
1410 };
1411 
acpi_nfit_dimm_by_handle(struct acpi_nfit_desc * acpi_desc,u32 device_handle)1412 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1413 		u32 device_handle)
1414 {
1415 	struct nfit_mem *nfit_mem;
1416 
1417 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1418 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1419 			return nfit_mem->nvdimm;
1420 
1421 	return NULL;
1422 }
1423 
__acpi_nvdimm_notify(struct device * dev,u32 event)1424 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1425 {
1426 	struct nfit_mem *nfit_mem;
1427 	struct acpi_nfit_desc *acpi_desc;
1428 
1429 	dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__,
1430 			event);
1431 
1432 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1433 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1434 				event);
1435 		return;
1436 	}
1437 
1438 	acpi_desc = dev_get_drvdata(dev->parent);
1439 	if (!acpi_desc)
1440 		return;
1441 
1442 	/*
1443 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1444 	 * is still valid.
1445 	 */
1446 	nfit_mem = dev_get_drvdata(dev);
1447 	if (nfit_mem && nfit_mem->flags_attr)
1448 		sysfs_notify_dirent(nfit_mem->flags_attr);
1449 }
1450 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1451 
acpi_nvdimm_notify(acpi_handle handle,u32 event,void * data)1452 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1453 {
1454 	struct acpi_device *adev = data;
1455 	struct device *dev = &adev->dev;
1456 
1457 	device_lock(dev->parent);
1458 	__acpi_nvdimm_notify(dev, event);
1459 	device_unlock(dev->parent);
1460 }
1461 
acpi_nfit_add_dimm(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,u32 device_handle)1462 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1463 		struct nfit_mem *nfit_mem, u32 device_handle)
1464 {
1465 	struct acpi_device *adev, *adev_dimm;
1466 	struct device *dev = acpi_desc->dev;
1467 	unsigned long dsm_mask;
1468 	const guid_t *guid;
1469 	int i;
1470 	int family = -1;
1471 
1472 	/* nfit test assumes 1:1 relationship between commands and dsms */
1473 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1474 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1475 	adev = to_acpi_dev(acpi_desc);
1476 	if (!adev)
1477 		return 0;
1478 
1479 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1480 	nfit_mem->adev = adev_dimm;
1481 	if (!adev_dimm) {
1482 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1483 				device_handle);
1484 		return force_enable_dimms ? 0 : -ENODEV;
1485 	}
1486 
1487 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1488 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1489 		dev_err(dev, "%s: notification registration failed\n",
1490 				dev_name(&adev_dimm->dev));
1491 		return -ENXIO;
1492 	}
1493 	/*
1494 	 * Record nfit_mem for the notification path to track back to
1495 	 * the nfit sysfs attributes for this dimm device object.
1496 	 */
1497 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1498 
1499 	/*
1500 	 * Until standardization materializes we need to consider 4
1501 	 * different command sets.  Note, that checking for function0 (bit0)
1502 	 * tells us if any commands are reachable through this GUID.
1503 	 */
1504 	for (i = NVDIMM_FAMILY_INTEL; i <= NVDIMM_FAMILY_MSFT; i++)
1505 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1506 			if (family < 0 || i == default_dsm_family)
1507 				family = i;
1508 
1509 	/* limit the supported commands to those that are publicly documented */
1510 	nfit_mem->family = family;
1511 	if (override_dsm_mask && !disable_vendor_specific)
1512 		dsm_mask = override_dsm_mask;
1513 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1514 		dsm_mask = 0x3fe;
1515 		if (disable_vendor_specific)
1516 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1517 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1518 		dsm_mask = 0x1c3c76;
1519 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1520 		dsm_mask = 0x1fe;
1521 		if (disable_vendor_specific)
1522 			dsm_mask &= ~(1 << 8);
1523 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1524 		dsm_mask = 0xffffffff;
1525 	} else {
1526 		dev_dbg(dev, "unknown dimm command family\n");
1527 		nfit_mem->family = -1;
1528 		/* DSMs are optional, continue loading the driver... */
1529 		return 0;
1530 	}
1531 
1532 	/*
1533 	 * Function 0 is the command interrogation function, don't
1534 	 * export it to potential userspace use, and enable it to be
1535 	 * used as an error value in acpi_nfit_ctl().
1536 	 */
1537 	dsm_mask &= ~1UL;
1538 
1539 	guid = to_nfit_uuid(nfit_mem->family);
1540 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1541 		if (acpi_check_dsm(adev_dimm->handle, guid, 1, 1ULL << i))
1542 			set_bit(i, &nfit_mem->dsm_mask);
1543 
1544 	return 0;
1545 }
1546 
shutdown_dimm_notify(void * data)1547 static void shutdown_dimm_notify(void *data)
1548 {
1549 	struct acpi_nfit_desc *acpi_desc = data;
1550 	struct nfit_mem *nfit_mem;
1551 
1552 	mutex_lock(&acpi_desc->init_mutex);
1553 	/*
1554 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1555 	 * notifications.
1556 	 */
1557 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1558 		struct acpi_device *adev_dimm = nfit_mem->adev;
1559 
1560 		if (nfit_mem->flags_attr) {
1561 			sysfs_put(nfit_mem->flags_attr);
1562 			nfit_mem->flags_attr = NULL;
1563 		}
1564 		if (adev_dimm) {
1565 			acpi_remove_notify_handler(adev_dimm->handle,
1566 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1567 			dev_set_drvdata(&adev_dimm->dev, NULL);
1568 		}
1569 	}
1570 	mutex_unlock(&acpi_desc->init_mutex);
1571 }
1572 
acpi_nfit_register_dimms(struct acpi_nfit_desc * acpi_desc)1573 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1574 {
1575 	struct nfit_mem *nfit_mem;
1576 	int dimm_count = 0, rc;
1577 	struct nvdimm *nvdimm;
1578 
1579 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1580 		struct acpi_nfit_flush_address *flush;
1581 		unsigned long flags = 0, cmd_mask;
1582 		struct nfit_memdev *nfit_memdev;
1583 		u32 device_handle;
1584 		u16 mem_flags;
1585 
1586 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1587 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1588 		if (nvdimm) {
1589 			dimm_count++;
1590 			continue;
1591 		}
1592 
1593 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1594 			set_bit(NDD_ALIASING, &flags);
1595 
1596 		/* collate flags across all memdevs for this dimm */
1597 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1598 			struct acpi_nfit_memory_map *dimm_memdev;
1599 
1600 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1601 			if (dimm_memdev->device_handle
1602 					!= nfit_memdev->memdev->device_handle)
1603 				continue;
1604 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1605 		}
1606 
1607 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1608 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1609 			set_bit(NDD_UNARMED, &flags);
1610 
1611 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1612 		if (rc)
1613 			continue;
1614 
1615 		/*
1616 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1617 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1618 		 * userspace interface.
1619 		 */
1620 		cmd_mask = 1UL << ND_CMD_CALL;
1621 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1622 			cmd_mask |= nfit_mem->dsm_mask;
1623 
1624 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1625 			: NULL;
1626 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1627 				acpi_nfit_dimm_attribute_groups,
1628 				flags, cmd_mask, flush ? flush->hint_count : 0,
1629 				nfit_mem->flush_wpq);
1630 		if (!nvdimm)
1631 			return -ENOMEM;
1632 
1633 		nfit_mem->nvdimm = nvdimm;
1634 		dimm_count++;
1635 
1636 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1637 			continue;
1638 
1639 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
1640 				nvdimm_name(nvdimm),
1641 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1642 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1643 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1644 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
1645 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
1646 
1647 	}
1648 
1649 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1650 	if (rc)
1651 		return rc;
1652 
1653 	/*
1654 	 * Now that dimms are successfully registered, and async registration
1655 	 * is flushed, attempt to enable event notification.
1656 	 */
1657 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1658 		struct kernfs_node *nfit_kernfs;
1659 
1660 		nvdimm = nfit_mem->nvdimm;
1661 		if (!nvdimm)
1662 			continue;
1663 
1664 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1665 		if (nfit_kernfs)
1666 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1667 					"flags");
1668 		sysfs_put(nfit_kernfs);
1669 		if (!nfit_mem->flags_attr)
1670 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1671 					nvdimm_name(nvdimm));
1672 	}
1673 
1674 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1675 			acpi_desc);
1676 }
1677 
1678 /*
1679  * These constants are private because there are no kernel consumers of
1680  * these commands.
1681  */
1682 enum nfit_aux_cmds {
1683         NFIT_CMD_TRANSLATE_SPA = 5,
1684         NFIT_CMD_ARS_INJECT_SET = 7,
1685         NFIT_CMD_ARS_INJECT_CLEAR = 8,
1686         NFIT_CMD_ARS_INJECT_GET = 9,
1687 };
1688 
acpi_nfit_init_dsms(struct acpi_nfit_desc * acpi_desc)1689 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1690 {
1691 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1692 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
1693 	struct acpi_device *adev;
1694 	unsigned long dsm_mask;
1695 	int i;
1696 
1697 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1698 	adev = to_acpi_dev(acpi_desc);
1699 	if (!adev)
1700 		return;
1701 
1702 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1703 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1704 			set_bit(i, &nd_desc->cmd_mask);
1705 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
1706 
1707 	dsm_mask =
1708 		(1 << ND_CMD_ARS_CAP) |
1709 		(1 << ND_CMD_ARS_START) |
1710 		(1 << ND_CMD_ARS_STATUS) |
1711 		(1 << ND_CMD_CLEAR_ERROR) |
1712 		(1 << NFIT_CMD_TRANSLATE_SPA) |
1713 		(1 << NFIT_CMD_ARS_INJECT_SET) |
1714 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
1715 		(1 << NFIT_CMD_ARS_INJECT_GET);
1716 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1717 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
1718 			set_bit(i, &nd_desc->bus_dsm_mask);
1719 }
1720 
range_index_show(struct device * dev,struct device_attribute * attr,char * buf)1721 static ssize_t range_index_show(struct device *dev,
1722 		struct device_attribute *attr, char *buf)
1723 {
1724 	struct nd_region *nd_region = to_nd_region(dev);
1725 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1726 
1727 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1728 }
1729 static DEVICE_ATTR_RO(range_index);
1730 
ecc_unit_size_show(struct device * dev,struct device_attribute * attr,char * buf)1731 static ssize_t ecc_unit_size_show(struct device *dev,
1732 		struct device_attribute *attr, char *buf)
1733 {
1734 	struct nd_region *nd_region = to_nd_region(dev);
1735 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1736 
1737 	return sprintf(buf, "%d\n", nfit_spa->clear_err_unit);
1738 }
1739 static DEVICE_ATTR_RO(ecc_unit_size);
1740 
1741 static struct attribute *acpi_nfit_region_attributes[] = {
1742 	&dev_attr_range_index.attr,
1743 	&dev_attr_ecc_unit_size.attr,
1744 	NULL,
1745 };
1746 
1747 static const struct attribute_group acpi_nfit_region_attribute_group = {
1748 	.name = "nfit",
1749 	.attrs = acpi_nfit_region_attributes,
1750 };
1751 
1752 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1753 	&nd_region_attribute_group,
1754 	&nd_mapping_attribute_group,
1755 	&nd_device_attribute_group,
1756 	&nd_numa_attribute_group,
1757 	&acpi_nfit_region_attribute_group,
1758 	NULL,
1759 };
1760 
1761 /* enough info to uniquely specify an interleave set */
1762 struct nfit_set_info {
1763 	struct nfit_set_info_map {
1764 		u64 region_offset;
1765 		u32 serial_number;
1766 		u32 pad;
1767 	} mapping[0];
1768 };
1769 
1770 struct nfit_set_info2 {
1771 	struct nfit_set_info_map2 {
1772 		u64 region_offset;
1773 		u32 serial_number;
1774 		u16 vendor_id;
1775 		u16 manufacturing_date;
1776 		u8  manufacturing_location;
1777 		u8  reserved[31];
1778 	} mapping[0];
1779 };
1780 
sizeof_nfit_set_info(int num_mappings)1781 static size_t sizeof_nfit_set_info(int num_mappings)
1782 {
1783 	return sizeof(struct nfit_set_info)
1784 		+ num_mappings * sizeof(struct nfit_set_info_map);
1785 }
1786 
sizeof_nfit_set_info2(int num_mappings)1787 static size_t sizeof_nfit_set_info2(int num_mappings)
1788 {
1789 	return sizeof(struct nfit_set_info2)
1790 		+ num_mappings * sizeof(struct nfit_set_info_map2);
1791 }
1792 
cmp_map_compat(const void * m0,const void * m1)1793 static int cmp_map_compat(const void *m0, const void *m1)
1794 {
1795 	const struct nfit_set_info_map *map0 = m0;
1796 	const struct nfit_set_info_map *map1 = m1;
1797 
1798 	return memcmp(&map0->region_offset, &map1->region_offset,
1799 			sizeof(u64));
1800 }
1801 
cmp_map(const void * m0,const void * m1)1802 static int cmp_map(const void *m0, const void *m1)
1803 {
1804 	const struct nfit_set_info_map *map0 = m0;
1805 	const struct nfit_set_info_map *map1 = m1;
1806 
1807 	if (map0->region_offset < map1->region_offset)
1808 		return -1;
1809 	else if (map0->region_offset > map1->region_offset)
1810 		return 1;
1811 	return 0;
1812 }
1813 
cmp_map2(const void * m0,const void * m1)1814 static int cmp_map2(const void *m0, const void *m1)
1815 {
1816 	const struct nfit_set_info_map2 *map0 = m0;
1817 	const struct nfit_set_info_map2 *map1 = m1;
1818 
1819 	if (map0->region_offset < map1->region_offset)
1820 		return -1;
1821 	else if (map0->region_offset > map1->region_offset)
1822 		return 1;
1823 	return 0;
1824 }
1825 
1826 /* Retrieve the nth entry referencing this spa */
memdev_from_spa(struct acpi_nfit_desc * acpi_desc,u16 range_index,int n)1827 static struct acpi_nfit_memory_map *memdev_from_spa(
1828 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
1829 {
1830 	struct nfit_memdev *nfit_memdev;
1831 
1832 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
1833 		if (nfit_memdev->memdev->range_index == range_index)
1834 			if (n-- == 0)
1835 				return nfit_memdev->memdev;
1836 	return NULL;
1837 }
1838 
acpi_nfit_init_interleave_set(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc,struct acpi_nfit_system_address * spa)1839 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
1840 		struct nd_region_desc *ndr_desc,
1841 		struct acpi_nfit_system_address *spa)
1842 {
1843 	struct device *dev = acpi_desc->dev;
1844 	struct nd_interleave_set *nd_set;
1845 	u16 nr = ndr_desc->num_mappings;
1846 	struct nfit_set_info2 *info2;
1847 	struct nfit_set_info *info;
1848 	int i;
1849 
1850 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
1851 	if (!nd_set)
1852 		return -ENOMEM;
1853 	ndr_desc->nd_set = nd_set;
1854 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
1855 
1856 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
1857 	if (!info)
1858 		return -ENOMEM;
1859 
1860 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
1861 	if (!info2)
1862 		return -ENOMEM;
1863 
1864 	for (i = 0; i < nr; i++) {
1865 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1866 		struct nfit_set_info_map *map = &info->mapping[i];
1867 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
1868 		struct nvdimm *nvdimm = mapping->nvdimm;
1869 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1870 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
1871 				spa->range_index, i);
1872 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1873 
1874 		if (!memdev || !nfit_mem->dcr) {
1875 			dev_err(dev, "%s: failed to find DCR\n", __func__);
1876 			return -ENODEV;
1877 		}
1878 
1879 		map->region_offset = memdev->region_offset;
1880 		map->serial_number = dcr->serial_number;
1881 
1882 		map2->region_offset = memdev->region_offset;
1883 		map2->serial_number = dcr->serial_number;
1884 		map2->vendor_id = dcr->vendor_id;
1885 		map2->manufacturing_date = dcr->manufacturing_date;
1886 		map2->manufacturing_location = dcr->manufacturing_location;
1887 	}
1888 
1889 	/* v1.1 namespaces */
1890 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1891 			cmp_map, NULL);
1892 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1893 
1894 	/* v1.2 namespaces */
1895 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
1896 			cmp_map2, NULL);
1897 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
1898 
1899 	/* support v1.1 namespaces created with the wrong sort order */
1900 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1901 			cmp_map_compat, NULL);
1902 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1903 
1904 	/* record the result of the sort for the mapping position */
1905 	for (i = 0; i < nr; i++) {
1906 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
1907 		int j;
1908 
1909 		for (j = 0; j < nr; j++) {
1910 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
1911 			struct nvdimm *nvdimm = mapping->nvdimm;
1912 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1913 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
1914 
1915 			if (map2->serial_number == dcr->serial_number &&
1916 			    map2->vendor_id == dcr->vendor_id &&
1917 			    map2->manufacturing_date == dcr->manufacturing_date &&
1918 			    map2->manufacturing_location
1919 				    == dcr->manufacturing_location) {
1920 				mapping->position = i;
1921 				break;
1922 			}
1923 		}
1924 	}
1925 
1926 	ndr_desc->nd_set = nd_set;
1927 	devm_kfree(dev, info);
1928 	devm_kfree(dev, info2);
1929 
1930 	return 0;
1931 }
1932 
to_interleave_offset(u64 offset,struct nfit_blk_mmio * mmio)1933 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
1934 {
1935 	struct acpi_nfit_interleave *idt = mmio->idt;
1936 	u32 sub_line_offset, line_index, line_offset;
1937 	u64 line_no, table_skip_count, table_offset;
1938 
1939 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
1940 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
1941 	line_offset = idt->line_offset[line_index]
1942 		* mmio->line_size;
1943 	table_offset = table_skip_count * mmio->table_size;
1944 
1945 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
1946 }
1947 
read_blk_stat(struct nfit_blk * nfit_blk,unsigned int bw)1948 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
1949 {
1950 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1951 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
1952 	const u32 STATUS_MASK = 0x80000037;
1953 
1954 	if (mmio->num_lines)
1955 		offset = to_interleave_offset(offset, mmio);
1956 
1957 	return readl(mmio->addr.base + offset) & STATUS_MASK;
1958 }
1959 
write_blk_ctl(struct nfit_blk * nfit_blk,unsigned int bw,resource_size_t dpa,unsigned int len,unsigned int write)1960 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
1961 		resource_size_t dpa, unsigned int len, unsigned int write)
1962 {
1963 	u64 cmd, offset;
1964 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1965 
1966 	enum {
1967 		BCW_OFFSET_MASK = (1ULL << 48)-1,
1968 		BCW_LEN_SHIFT = 48,
1969 		BCW_LEN_MASK = (1ULL << 8) - 1,
1970 		BCW_CMD_SHIFT = 56,
1971 	};
1972 
1973 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
1974 	len = len >> L1_CACHE_SHIFT;
1975 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
1976 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
1977 
1978 	offset = nfit_blk->cmd_offset + mmio->size * bw;
1979 	if (mmio->num_lines)
1980 		offset = to_interleave_offset(offset, mmio);
1981 
1982 	writeq(cmd, mmio->addr.base + offset);
1983 	nvdimm_flush(nfit_blk->nd_region);
1984 
1985 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
1986 		readq(mmio->addr.base + offset);
1987 }
1988 
acpi_nfit_blk_single_io(struct nfit_blk * nfit_blk,resource_size_t dpa,void * iobuf,size_t len,int rw,unsigned int lane)1989 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
1990 		resource_size_t dpa, void *iobuf, size_t len, int rw,
1991 		unsigned int lane)
1992 {
1993 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1994 	unsigned int copied = 0;
1995 	u64 base_offset;
1996 	int rc;
1997 
1998 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
1999 		+ lane * mmio->size;
2000 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2001 	while (len) {
2002 		unsigned int c;
2003 		u64 offset;
2004 
2005 		if (mmio->num_lines) {
2006 			u32 line_offset;
2007 
2008 			offset = to_interleave_offset(base_offset + copied,
2009 					mmio);
2010 			div_u64_rem(offset, mmio->line_size, &line_offset);
2011 			c = min_t(size_t, len, mmio->line_size - line_offset);
2012 		} else {
2013 			offset = base_offset + nfit_blk->bdw_offset;
2014 			c = len;
2015 		}
2016 
2017 		if (rw)
2018 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2019 		else {
2020 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2021 				arch_invalidate_pmem((void __force *)
2022 					mmio->addr.aperture + offset, c);
2023 
2024 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2025 		}
2026 
2027 		copied += c;
2028 		len -= c;
2029 	}
2030 
2031 	if (rw)
2032 		nvdimm_flush(nfit_blk->nd_region);
2033 
2034 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2035 	return rc;
2036 }
2037 
acpi_nfit_blk_region_do_io(struct nd_blk_region * ndbr,resource_size_t dpa,void * iobuf,u64 len,int rw)2038 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2039 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2040 {
2041 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2042 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2043 	struct nd_region *nd_region = nfit_blk->nd_region;
2044 	unsigned int lane, copied = 0;
2045 	int rc = 0;
2046 
2047 	lane = nd_region_acquire_lane(nd_region);
2048 	while (len) {
2049 		u64 c = min(len, mmio->size);
2050 
2051 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2052 				iobuf + copied, c, rw, lane);
2053 		if (rc)
2054 			break;
2055 
2056 		copied += c;
2057 		len -= c;
2058 	}
2059 	nd_region_release_lane(nd_region, lane);
2060 
2061 	return rc;
2062 }
2063 
nfit_blk_init_interleave(struct nfit_blk_mmio * mmio,struct acpi_nfit_interleave * idt,u16 interleave_ways)2064 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2065 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2066 {
2067 	if (idt) {
2068 		mmio->num_lines = idt->line_count;
2069 		mmio->line_size = idt->line_size;
2070 		if (interleave_ways == 0)
2071 			return -ENXIO;
2072 		mmio->table_size = mmio->num_lines * interleave_ways
2073 			* mmio->line_size;
2074 	}
2075 
2076 	return 0;
2077 }
2078 
acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,struct nfit_blk * nfit_blk)2079 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2080 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2081 {
2082 	struct nd_cmd_dimm_flags flags;
2083 	int rc;
2084 
2085 	memset(&flags, 0, sizeof(flags));
2086 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2087 			sizeof(flags), NULL);
2088 
2089 	if (rc >= 0 && flags.status == 0)
2090 		nfit_blk->dimm_flags = flags.flags;
2091 	else if (rc == -ENOTTY) {
2092 		/* fall back to a conservative default */
2093 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2094 		rc = 0;
2095 	} else
2096 		rc = -ENXIO;
2097 
2098 	return rc;
2099 }
2100 
acpi_nfit_blk_region_enable(struct nvdimm_bus * nvdimm_bus,struct device * dev)2101 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2102 		struct device *dev)
2103 {
2104 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2105 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2106 	struct nfit_blk_mmio *mmio;
2107 	struct nfit_blk *nfit_blk;
2108 	struct nfit_mem *nfit_mem;
2109 	struct nvdimm *nvdimm;
2110 	int rc;
2111 
2112 	nvdimm = nd_blk_region_to_dimm(ndbr);
2113 	nfit_mem = nvdimm_provider_data(nvdimm);
2114 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2115 		dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
2116 				nfit_mem ? "" : " nfit_mem",
2117 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2118 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2119 		return -ENXIO;
2120 	}
2121 
2122 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2123 	if (!nfit_blk)
2124 		return -ENOMEM;
2125 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2126 	nfit_blk->nd_region = to_nd_region(dev);
2127 
2128 	/* map block aperture memory */
2129 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2130 	mmio = &nfit_blk->mmio[BDW];
2131 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2132                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2133 	if (!mmio->addr.base) {
2134 		dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
2135 				nvdimm_name(nvdimm));
2136 		return -ENOMEM;
2137 	}
2138 	mmio->size = nfit_mem->bdw->size;
2139 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2140 	mmio->idt = nfit_mem->idt_bdw;
2141 	mmio->spa = nfit_mem->spa_bdw;
2142 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2143 			nfit_mem->memdev_bdw->interleave_ways);
2144 	if (rc) {
2145 		dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
2146 				__func__, nvdimm_name(nvdimm));
2147 		return rc;
2148 	}
2149 
2150 	/* map block control memory */
2151 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2152 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2153 	mmio = &nfit_blk->mmio[DCR];
2154 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2155 			nfit_mem->spa_dcr->length);
2156 	if (!mmio->addr.base) {
2157 		dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
2158 				nvdimm_name(nvdimm));
2159 		return -ENOMEM;
2160 	}
2161 	mmio->size = nfit_mem->dcr->window_size;
2162 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2163 	mmio->idt = nfit_mem->idt_dcr;
2164 	mmio->spa = nfit_mem->spa_dcr;
2165 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2166 			nfit_mem->memdev_dcr->interleave_ways);
2167 	if (rc) {
2168 		dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
2169 				__func__, nvdimm_name(nvdimm));
2170 		return rc;
2171 	}
2172 
2173 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2174 	if (rc < 0) {
2175 		dev_dbg(dev, "%s: %s failed get DIMM flags\n",
2176 				__func__, nvdimm_name(nvdimm));
2177 		return rc;
2178 	}
2179 
2180 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2181 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2182 
2183 	if (mmio->line_size == 0)
2184 		return 0;
2185 
2186 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2187 			+ 8 > mmio->line_size) {
2188 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2189 		return -ENXIO;
2190 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2191 			+ 8 > mmio->line_size) {
2192 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2193 		return -ENXIO;
2194 	}
2195 
2196 	return 0;
2197 }
2198 
ars_get_cap(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_cap * cmd,struct nfit_spa * nfit_spa)2199 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2200 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2201 {
2202 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2203 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2204 	int cmd_rc, rc;
2205 
2206 	cmd->address = spa->address;
2207 	cmd->length = spa->length;
2208 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2209 			sizeof(*cmd), &cmd_rc);
2210 	if (rc < 0)
2211 		return rc;
2212 	return cmd_rc;
2213 }
2214 
ars_start(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2215 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
2216 {
2217 	int rc;
2218 	int cmd_rc;
2219 	struct nd_cmd_ars_start ars_start;
2220 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2221 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2222 
2223 	memset(&ars_start, 0, sizeof(ars_start));
2224 	ars_start.address = spa->address;
2225 	ars_start.length = spa->length;
2226 	ars_start.flags = acpi_desc->ars_start_flags;
2227 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2228 		ars_start.type = ND_ARS_PERSISTENT;
2229 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2230 		ars_start.type = ND_ARS_VOLATILE;
2231 	else
2232 		return -ENOTTY;
2233 
2234 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2235 			sizeof(ars_start), &cmd_rc);
2236 
2237 	if (rc < 0)
2238 		return rc;
2239 	return cmd_rc;
2240 }
2241 
ars_continue(struct acpi_nfit_desc * acpi_desc)2242 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2243 {
2244 	int rc, cmd_rc;
2245 	struct nd_cmd_ars_start ars_start;
2246 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2247 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2248 
2249 	memset(&ars_start, 0, sizeof(ars_start));
2250 	ars_start.address = ars_status->restart_address;
2251 	ars_start.length = ars_status->restart_length;
2252 	ars_start.type = ars_status->type;
2253 	ars_start.flags = acpi_desc->ars_start_flags;
2254 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2255 			sizeof(ars_start), &cmd_rc);
2256 	if (rc < 0)
2257 		return rc;
2258 	return cmd_rc;
2259 }
2260 
ars_get_status(struct acpi_nfit_desc * acpi_desc)2261 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2262 {
2263 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2264 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2265 	int rc, cmd_rc;
2266 
2267 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2268 			acpi_desc->ars_status_size, &cmd_rc);
2269 	if (rc < 0)
2270 		return rc;
2271 	return cmd_rc;
2272 }
2273 
ars_status_process_records(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_status * ars_status)2274 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc,
2275 		struct nd_cmd_ars_status *ars_status)
2276 {
2277 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2278 	int rc;
2279 	u32 i;
2280 
2281 	/*
2282 	 * First record starts at 44 byte offset from the start of the
2283 	 * payload.
2284 	 */
2285 	if (ars_status->out_length < 44)
2286 		return 0;
2287 	for (i = 0; i < ars_status->num_records; i++) {
2288 		/* only process full records */
2289 		if (ars_status->out_length
2290 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2291 			break;
2292 		rc = nvdimm_bus_add_poison(nvdimm_bus,
2293 				ars_status->records[i].err_address,
2294 				ars_status->records[i].length);
2295 		if (rc)
2296 			return rc;
2297 	}
2298 	if (i < ars_status->num_records)
2299 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2300 
2301 	return 0;
2302 }
2303 
acpi_nfit_remove_resource(void * data)2304 static void acpi_nfit_remove_resource(void *data)
2305 {
2306 	struct resource *res = data;
2307 
2308 	remove_resource(res);
2309 }
2310 
acpi_nfit_insert_resource(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc)2311 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2312 		struct nd_region_desc *ndr_desc)
2313 {
2314 	struct resource *res, *nd_res = ndr_desc->res;
2315 	int is_pmem, ret;
2316 
2317 	/* No operation if the region is already registered as PMEM */
2318 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2319 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2320 	if (is_pmem == REGION_INTERSECTS)
2321 		return 0;
2322 
2323 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2324 	if (!res)
2325 		return -ENOMEM;
2326 
2327 	res->name = "Persistent Memory";
2328 	res->start = nd_res->start;
2329 	res->end = nd_res->end;
2330 	res->flags = IORESOURCE_MEM;
2331 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2332 
2333 	ret = insert_resource(&iomem_resource, res);
2334 	if (ret)
2335 		return ret;
2336 
2337 	ret = devm_add_action_or_reset(acpi_desc->dev,
2338 					acpi_nfit_remove_resource,
2339 					res);
2340 	if (ret)
2341 		return ret;
2342 
2343 	return 0;
2344 }
2345 
acpi_nfit_init_mapping(struct acpi_nfit_desc * acpi_desc,struct nd_mapping_desc * mapping,struct nd_region_desc * ndr_desc,struct acpi_nfit_memory_map * memdev,struct nfit_spa * nfit_spa)2346 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2347 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2348 		struct acpi_nfit_memory_map *memdev,
2349 		struct nfit_spa *nfit_spa)
2350 {
2351 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2352 			memdev->device_handle);
2353 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2354 	struct nd_blk_region_desc *ndbr_desc;
2355 	struct nfit_mem *nfit_mem;
2356 	int rc;
2357 
2358 	if (!nvdimm) {
2359 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2360 				spa->range_index, memdev->device_handle);
2361 		return -ENODEV;
2362 	}
2363 
2364 	mapping->nvdimm = nvdimm;
2365 	switch (nfit_spa_type(spa)) {
2366 	case NFIT_SPA_PM:
2367 	case NFIT_SPA_VOLATILE:
2368 		mapping->start = memdev->address;
2369 		mapping->size = memdev->region_size;
2370 		break;
2371 	case NFIT_SPA_DCR:
2372 		nfit_mem = nvdimm_provider_data(nvdimm);
2373 		if (!nfit_mem || !nfit_mem->bdw) {
2374 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2375 					spa->range_index, nvdimm_name(nvdimm));
2376 			break;
2377 		}
2378 
2379 		mapping->size = nfit_mem->bdw->capacity;
2380 		mapping->start = nfit_mem->bdw->start_address;
2381 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2382 		ndr_desc->mapping = mapping;
2383 		ndr_desc->num_mappings = 1;
2384 		ndbr_desc = to_blk_region_desc(ndr_desc);
2385 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2386 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2387 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2388 		if (rc)
2389 			return rc;
2390 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2391 				ndr_desc);
2392 		if (!nfit_spa->nd_region)
2393 			return -ENOMEM;
2394 		break;
2395 	}
2396 
2397 	return 0;
2398 }
2399 
nfit_spa_is_virtual(struct acpi_nfit_system_address * spa)2400 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2401 {
2402 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2403 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2404 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2405 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2406 }
2407 
nfit_spa_is_volatile(struct acpi_nfit_system_address * spa)2408 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2409 {
2410 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2411 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2412 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2413 }
2414 
acpi_nfit_register_region(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2415 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2416 		struct nfit_spa *nfit_spa)
2417 {
2418 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2419 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2420 	struct nd_blk_region_desc ndbr_desc;
2421 	struct nd_region_desc *ndr_desc;
2422 	struct nfit_memdev *nfit_memdev;
2423 	struct nvdimm_bus *nvdimm_bus;
2424 	struct resource res;
2425 	int count = 0, rc;
2426 
2427 	if (nfit_spa->nd_region)
2428 		return 0;
2429 
2430 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2431 		dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
2432 				__func__);
2433 		return 0;
2434 	}
2435 
2436 	memset(&res, 0, sizeof(res));
2437 	memset(&mappings, 0, sizeof(mappings));
2438 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2439 	res.start = spa->address;
2440 	res.end = res.start + spa->length - 1;
2441 	ndr_desc = &ndbr_desc.ndr_desc;
2442 	ndr_desc->res = &res;
2443 	ndr_desc->provider_data = nfit_spa;
2444 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2445 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2446 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2447 						spa->proximity_domain);
2448 	else
2449 		ndr_desc->numa_node = NUMA_NO_NODE;
2450 
2451 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2452 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2453 		struct nd_mapping_desc *mapping;
2454 
2455 		if (memdev->range_index != spa->range_index)
2456 			continue;
2457 		if (count >= ND_MAX_MAPPINGS) {
2458 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2459 					spa->range_index, ND_MAX_MAPPINGS);
2460 			return -ENXIO;
2461 		}
2462 		mapping = &mappings[count++];
2463 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2464 				memdev, nfit_spa);
2465 		if (rc)
2466 			goto out;
2467 	}
2468 
2469 	ndr_desc->mapping = mappings;
2470 	ndr_desc->num_mappings = count;
2471 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2472 	if (rc)
2473 		goto out;
2474 
2475 	nvdimm_bus = acpi_desc->nvdimm_bus;
2476 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2477 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2478 		if (rc) {
2479 			dev_warn(acpi_desc->dev,
2480 				"failed to insert pmem resource to iomem: %d\n",
2481 				rc);
2482 			goto out;
2483 		}
2484 
2485 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2486 				ndr_desc);
2487 		if (!nfit_spa->nd_region)
2488 			rc = -ENOMEM;
2489 	} else if (nfit_spa_is_volatile(spa)) {
2490 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2491 				ndr_desc);
2492 		if (!nfit_spa->nd_region)
2493 			rc = -ENOMEM;
2494 	} else if (nfit_spa_is_virtual(spa)) {
2495 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2496 				ndr_desc);
2497 		if (!nfit_spa->nd_region)
2498 			rc = -ENOMEM;
2499 	}
2500 
2501  out:
2502 	if (rc)
2503 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2504 				nfit_spa->spa->range_index);
2505 	return rc;
2506 }
2507 
ars_status_alloc(struct acpi_nfit_desc * acpi_desc,u32 max_ars)2508 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2509 		u32 max_ars)
2510 {
2511 	struct device *dev = acpi_desc->dev;
2512 	struct nd_cmd_ars_status *ars_status;
2513 
2514 	if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2515 		memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2516 		return 0;
2517 	}
2518 
2519 	if (acpi_desc->ars_status)
2520 		devm_kfree(dev, acpi_desc->ars_status);
2521 	acpi_desc->ars_status = NULL;
2522 	ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2523 	if (!ars_status)
2524 		return -ENOMEM;
2525 	acpi_desc->ars_status = ars_status;
2526 	acpi_desc->ars_status_size = max_ars;
2527 	return 0;
2528 }
2529 
acpi_nfit_query_poison(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2530 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2531 		struct nfit_spa *nfit_spa)
2532 {
2533 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2534 	int rc;
2535 
2536 	if (!nfit_spa->max_ars) {
2537 		struct nd_cmd_ars_cap ars_cap;
2538 
2539 		memset(&ars_cap, 0, sizeof(ars_cap));
2540 		rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2541 		if (rc < 0)
2542 			return rc;
2543 		nfit_spa->max_ars = ars_cap.max_ars_out;
2544 		nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2545 		/* check that the supported scrub types match the spa type */
2546 		if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2547 				((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2548 			return -ENOTTY;
2549 		else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2550 				((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2551 			return -ENOTTY;
2552 	}
2553 
2554 	if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2555 		return -ENOMEM;
2556 
2557 	rc = ars_get_status(acpi_desc);
2558 	if (rc < 0 && rc != -ENOSPC)
2559 		return rc;
2560 
2561 	if (ars_status_process_records(acpi_desc, acpi_desc->ars_status))
2562 		return -ENOMEM;
2563 
2564 	return 0;
2565 }
2566 
acpi_nfit_async_scrub(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2567 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2568 		struct nfit_spa *nfit_spa)
2569 {
2570 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2571 	unsigned int overflow_retry = scrub_overflow_abort;
2572 	u64 init_ars_start = 0, init_ars_len = 0;
2573 	struct device *dev = acpi_desc->dev;
2574 	unsigned int tmo = scrub_timeout;
2575 	int rc;
2576 
2577 	if (!nfit_spa->ars_required || !nfit_spa->nd_region)
2578 		return;
2579 
2580 	rc = ars_start(acpi_desc, nfit_spa);
2581 	/*
2582 	 * If we timed out the initial scan we'll still be busy here,
2583 	 * and will wait another timeout before giving up permanently.
2584 	 */
2585 	if (rc < 0 && rc != -EBUSY)
2586 		return;
2587 
2588 	do {
2589 		u64 ars_start, ars_len;
2590 
2591 		if (acpi_desc->cancel)
2592 			break;
2593 		rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2594 		if (rc == -ENOTTY)
2595 			break;
2596 		if (rc == -EBUSY && !tmo) {
2597 			dev_warn(dev, "range %d ars timeout, aborting\n",
2598 					spa->range_index);
2599 			break;
2600 		}
2601 
2602 		if (rc == -EBUSY) {
2603 			/*
2604 			 * Note, entries may be appended to the list
2605 			 * while the lock is dropped, but the workqueue
2606 			 * being active prevents entries being deleted /
2607 			 * freed.
2608 			 */
2609 			mutex_unlock(&acpi_desc->init_mutex);
2610 			ssleep(1);
2611 			tmo--;
2612 			mutex_lock(&acpi_desc->init_mutex);
2613 			continue;
2614 		}
2615 
2616 		/* we got some results, but there are more pending... */
2617 		if (rc == -ENOSPC && overflow_retry--) {
2618 			if (!init_ars_len) {
2619 				init_ars_len = acpi_desc->ars_status->length;
2620 				init_ars_start = acpi_desc->ars_status->address;
2621 			}
2622 			rc = ars_continue(acpi_desc);
2623 		}
2624 
2625 		if (rc < 0) {
2626 			dev_warn(dev, "range %d ars continuation failed\n",
2627 					spa->range_index);
2628 			break;
2629 		}
2630 
2631 		if (init_ars_len) {
2632 			ars_start = init_ars_start;
2633 			ars_len = init_ars_len;
2634 		} else {
2635 			ars_start = acpi_desc->ars_status->address;
2636 			ars_len = acpi_desc->ars_status->length;
2637 		}
2638 		dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2639 				spa->range_index, ars_start, ars_len);
2640 		/* notify the region about new poison entries */
2641 		nvdimm_region_notify(nfit_spa->nd_region,
2642 				NVDIMM_REVALIDATE_POISON);
2643 		break;
2644 	} while (1);
2645 }
2646 
acpi_nfit_scrub(struct work_struct * work)2647 static void acpi_nfit_scrub(struct work_struct *work)
2648 {
2649 	struct device *dev;
2650 	u64 init_scrub_length = 0;
2651 	struct nfit_spa *nfit_spa;
2652 	u64 init_scrub_address = 0;
2653 	bool init_ars_done = false;
2654 	struct acpi_nfit_desc *acpi_desc;
2655 	unsigned int tmo = scrub_timeout;
2656 	unsigned int overflow_retry = scrub_overflow_abort;
2657 
2658 	acpi_desc = container_of(work, typeof(*acpi_desc), work);
2659 	dev = acpi_desc->dev;
2660 
2661 	/*
2662 	 * We scrub in 2 phases.  The first phase waits for any platform
2663 	 * firmware initiated scrubs to complete and then we go search for the
2664 	 * affected spa regions to mark them scanned.  In the second phase we
2665 	 * initiate a directed scrub for every range that was not scrubbed in
2666 	 * phase 1. If we're called for a 'rescan', we harmlessly pass through
2667 	 * the first phase, but really only care about running phase 2, where
2668 	 * regions can be notified of new poison.
2669 	 */
2670 
2671 	/* process platform firmware initiated scrubs */
2672  retry:
2673 	mutex_lock(&acpi_desc->init_mutex);
2674 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2675 		struct nd_cmd_ars_status *ars_status;
2676 		struct acpi_nfit_system_address *spa;
2677 		u64 ars_start, ars_len;
2678 		int rc;
2679 
2680 		if (acpi_desc->cancel)
2681 			break;
2682 
2683 		if (nfit_spa->nd_region)
2684 			continue;
2685 
2686 		if (init_ars_done) {
2687 			/*
2688 			 * No need to re-query, we're now just
2689 			 * reconciling all the ranges covered by the
2690 			 * initial scrub
2691 			 */
2692 			rc = 0;
2693 		} else
2694 			rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2695 
2696 		if (rc == -ENOTTY) {
2697 			/* no ars capability, just register spa and move on */
2698 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2699 			continue;
2700 		}
2701 
2702 		if (rc == -EBUSY && !tmo) {
2703 			/* fallthrough to directed scrub in phase 2 */
2704 			dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2705 			break;
2706 		} else if (rc == -EBUSY) {
2707 			mutex_unlock(&acpi_desc->init_mutex);
2708 			ssleep(1);
2709 			tmo--;
2710 			goto retry;
2711 		}
2712 
2713 		/* we got some results, but there are more pending... */
2714 		if (rc == -ENOSPC && overflow_retry--) {
2715 			ars_status = acpi_desc->ars_status;
2716 			/*
2717 			 * Record the original scrub range, so that we
2718 			 * can recall all the ranges impacted by the
2719 			 * initial scrub.
2720 			 */
2721 			if (!init_scrub_length) {
2722 				init_scrub_length = ars_status->length;
2723 				init_scrub_address = ars_status->address;
2724 			}
2725 			rc = ars_continue(acpi_desc);
2726 			if (rc == 0) {
2727 				mutex_unlock(&acpi_desc->init_mutex);
2728 				goto retry;
2729 			}
2730 		}
2731 
2732 		if (rc < 0) {
2733 			/*
2734 			 * Initial scrub failed, we'll give it one more
2735 			 * try below...
2736 			 */
2737 			break;
2738 		}
2739 
2740 		/* We got some final results, record completed ranges */
2741 		ars_status = acpi_desc->ars_status;
2742 		if (init_scrub_length) {
2743 			ars_start = init_scrub_address;
2744 			ars_len = ars_start + init_scrub_length;
2745 		} else {
2746 			ars_start = ars_status->address;
2747 			ars_len = ars_status->length;
2748 		}
2749 		spa = nfit_spa->spa;
2750 
2751 		if (!init_ars_done) {
2752 			init_ars_done = true;
2753 			dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2754 					ars_start, ars_len);
2755 		}
2756 		if (ars_start <= spa->address && ars_start + ars_len
2757 				>= spa->address + spa->length)
2758 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2759 	}
2760 
2761 	/*
2762 	 * For all the ranges not covered by an initial scrub we still
2763 	 * want to see if there are errors, but it's ok to discover them
2764 	 * asynchronously.
2765 	 */
2766 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2767 		/*
2768 		 * Flag all the ranges that still need scrubbing, but
2769 		 * register them now to make data available.
2770 		 */
2771 		if (!nfit_spa->nd_region) {
2772 			nfit_spa->ars_required = 1;
2773 			acpi_nfit_register_region(acpi_desc, nfit_spa);
2774 		}
2775 	}
2776 	acpi_desc->init_complete = 1;
2777 
2778 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2779 		acpi_nfit_async_scrub(acpi_desc, nfit_spa);
2780 	acpi_desc->scrub_count++;
2781 	acpi_desc->ars_start_flags = 0;
2782 	if (acpi_desc->scrub_count_state)
2783 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
2784 	mutex_unlock(&acpi_desc->init_mutex);
2785 }
2786 
acpi_nfit_register_regions(struct acpi_nfit_desc * acpi_desc)2787 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2788 {
2789 	struct nfit_spa *nfit_spa;
2790 
2791 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2792 		int rc, type = nfit_spa_type(nfit_spa->spa);
2793 
2794 		/* PMEM and VMEM will be registered by the ARS workqueue */
2795 		if (type == NFIT_SPA_PM || type == NFIT_SPA_VOLATILE)
2796 			continue;
2797 		/* BLK apertures belong to BLK region registration below */
2798 		if (type == NFIT_SPA_BDW)
2799 			continue;
2800 		/* BLK regions don't need to wait for ARS results */
2801 		rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
2802 		if (rc)
2803 			return rc;
2804 	}
2805 
2806 	acpi_desc->ars_start_flags = 0;
2807 	if (!acpi_desc->cancel)
2808 		queue_work(nfit_wq, &acpi_desc->work);
2809 	return 0;
2810 }
2811 
acpi_nfit_check_deletions(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev)2812 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
2813 		struct nfit_table_prev *prev)
2814 {
2815 	struct device *dev = acpi_desc->dev;
2816 
2817 	if (!list_empty(&prev->spas) ||
2818 			!list_empty(&prev->memdevs) ||
2819 			!list_empty(&prev->dcrs) ||
2820 			!list_empty(&prev->bdws) ||
2821 			!list_empty(&prev->idts) ||
2822 			!list_empty(&prev->flushes)) {
2823 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
2824 		return -ENXIO;
2825 	}
2826 	return 0;
2827 }
2828 
acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc * acpi_desc)2829 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
2830 {
2831 	struct device *dev = acpi_desc->dev;
2832 	struct kernfs_node *nfit;
2833 	struct device *bus_dev;
2834 
2835 	if (!ars_supported(acpi_desc->nvdimm_bus))
2836 		return 0;
2837 
2838 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2839 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
2840 	if (!nfit) {
2841 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
2842 		return -ENODEV;
2843 	}
2844 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
2845 	sysfs_put(nfit);
2846 	if (!acpi_desc->scrub_count_state) {
2847 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
2848 		return -ENODEV;
2849 	}
2850 
2851 	return 0;
2852 }
2853 
acpi_nfit_unregister(void * data)2854 static void acpi_nfit_unregister(void *data)
2855 {
2856 	struct acpi_nfit_desc *acpi_desc = data;
2857 
2858 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
2859 }
2860 
acpi_nfit_init(struct acpi_nfit_desc * acpi_desc,void * data,acpi_size sz)2861 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
2862 {
2863 	struct device *dev = acpi_desc->dev;
2864 	struct nfit_table_prev prev;
2865 	const void *end;
2866 	int rc;
2867 
2868 	if (!acpi_desc->nvdimm_bus) {
2869 		acpi_nfit_init_dsms(acpi_desc);
2870 
2871 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
2872 				&acpi_desc->nd_desc);
2873 		if (!acpi_desc->nvdimm_bus)
2874 			return -ENOMEM;
2875 
2876 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
2877 				acpi_desc);
2878 		if (rc)
2879 			return rc;
2880 
2881 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
2882 		if (rc)
2883 			return rc;
2884 
2885 		/* register this acpi_desc for mce notifications */
2886 		mutex_lock(&acpi_desc_lock);
2887 		list_add_tail(&acpi_desc->list, &acpi_descs);
2888 		mutex_unlock(&acpi_desc_lock);
2889 	}
2890 
2891 	mutex_lock(&acpi_desc->init_mutex);
2892 
2893 	INIT_LIST_HEAD(&prev.spas);
2894 	INIT_LIST_HEAD(&prev.memdevs);
2895 	INIT_LIST_HEAD(&prev.dcrs);
2896 	INIT_LIST_HEAD(&prev.bdws);
2897 	INIT_LIST_HEAD(&prev.idts);
2898 	INIT_LIST_HEAD(&prev.flushes);
2899 
2900 	list_cut_position(&prev.spas, &acpi_desc->spas,
2901 				acpi_desc->spas.prev);
2902 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
2903 				acpi_desc->memdevs.prev);
2904 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
2905 				acpi_desc->dcrs.prev);
2906 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
2907 				acpi_desc->bdws.prev);
2908 	list_cut_position(&prev.idts, &acpi_desc->idts,
2909 				acpi_desc->idts.prev);
2910 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
2911 				acpi_desc->flushes.prev);
2912 
2913 	end = data + sz;
2914 	while (!IS_ERR_OR_NULL(data))
2915 		data = add_table(acpi_desc, &prev, data, end);
2916 
2917 	if (IS_ERR(data)) {
2918 		dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
2919 				PTR_ERR(data));
2920 		rc = PTR_ERR(data);
2921 		goto out_unlock;
2922 	}
2923 
2924 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
2925 	if (rc)
2926 		goto out_unlock;
2927 
2928 	rc = nfit_mem_init(acpi_desc);
2929 	if (rc)
2930 		goto out_unlock;
2931 
2932 	rc = acpi_nfit_register_dimms(acpi_desc);
2933 	if (rc)
2934 		goto out_unlock;
2935 
2936 	rc = acpi_nfit_register_regions(acpi_desc);
2937 
2938  out_unlock:
2939 	mutex_unlock(&acpi_desc->init_mutex);
2940 	return rc;
2941 }
2942 EXPORT_SYMBOL_GPL(acpi_nfit_init);
2943 
2944 struct acpi_nfit_flush_work {
2945 	struct work_struct work;
2946 	struct completion cmp;
2947 };
2948 
flush_probe(struct work_struct * work)2949 static void flush_probe(struct work_struct *work)
2950 {
2951 	struct acpi_nfit_flush_work *flush;
2952 
2953 	flush = container_of(work, typeof(*flush), work);
2954 	complete(&flush->cmp);
2955 }
2956 
acpi_nfit_flush_probe(struct nvdimm_bus_descriptor * nd_desc)2957 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
2958 {
2959 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2960 	struct device *dev = acpi_desc->dev;
2961 	struct acpi_nfit_flush_work flush;
2962 	int rc;
2963 
2964 	/* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
2965 	device_lock(dev);
2966 	device_unlock(dev);
2967 
2968 	/* bounce the init_mutex to make init_complete valid */
2969 	mutex_lock(&acpi_desc->init_mutex);
2970 	if (acpi_desc->cancel || acpi_desc->init_complete) {
2971 		mutex_unlock(&acpi_desc->init_mutex);
2972 		return 0;
2973 	}
2974 
2975 	/*
2976 	 * Scrub work could take 10s of seconds, userspace may give up so we
2977 	 * need to be interruptible while waiting.
2978 	 */
2979 	INIT_WORK_ONSTACK(&flush.work, flush_probe);
2980 	init_completion(&flush.cmp);
2981 	queue_work(nfit_wq, &flush.work);
2982 	mutex_unlock(&acpi_desc->init_mutex);
2983 
2984 	rc = wait_for_completion_interruptible(&flush.cmp);
2985 	cancel_work_sync(&flush.work);
2986 	return rc;
2987 }
2988 
acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd)2989 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
2990 		struct nvdimm *nvdimm, unsigned int cmd)
2991 {
2992 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2993 
2994 	if (nvdimm)
2995 		return 0;
2996 	if (cmd != ND_CMD_ARS_START)
2997 		return 0;
2998 
2999 	/*
3000 	 * The kernel and userspace may race to initiate a scrub, but
3001 	 * the scrub thread is prepared to lose that initial race.  It
3002 	 * just needs guarantees that any ars it initiates are not
3003 	 * interrupted by any intervening start reqeusts from userspace.
3004 	 */
3005 	if (work_busy(&acpi_desc->work))
3006 		return -EBUSY;
3007 
3008 	return 0;
3009 }
3010 
acpi_nfit_ars_rescan(struct acpi_nfit_desc * acpi_desc,u8 flags)3011 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc, u8 flags)
3012 {
3013 	struct device *dev = acpi_desc->dev;
3014 	struct nfit_spa *nfit_spa;
3015 
3016 	if (work_busy(&acpi_desc->work))
3017 		return -EBUSY;
3018 
3019 	mutex_lock(&acpi_desc->init_mutex);
3020 	if (acpi_desc->cancel) {
3021 		mutex_unlock(&acpi_desc->init_mutex);
3022 		return 0;
3023 	}
3024 
3025 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3026 		struct acpi_nfit_system_address *spa = nfit_spa->spa;
3027 
3028 		if (nfit_spa_type(spa) != NFIT_SPA_PM)
3029 			continue;
3030 
3031 		nfit_spa->ars_required = 1;
3032 	}
3033 	acpi_desc->ars_start_flags = flags;
3034 	queue_work(nfit_wq, &acpi_desc->work);
3035 	dev_dbg(dev, "%s: ars_scan triggered\n", __func__);
3036 	mutex_unlock(&acpi_desc->init_mutex);
3037 
3038 	return 0;
3039 }
3040 
acpi_nfit_desc_init(struct acpi_nfit_desc * acpi_desc,struct device * dev)3041 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3042 {
3043 	struct nvdimm_bus_descriptor *nd_desc;
3044 
3045 	dev_set_drvdata(dev, acpi_desc);
3046 	acpi_desc->dev = dev;
3047 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3048 	nd_desc = &acpi_desc->nd_desc;
3049 	nd_desc->provider_name = "ACPI.NFIT";
3050 	nd_desc->module = THIS_MODULE;
3051 	nd_desc->ndctl = acpi_nfit_ctl;
3052 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3053 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3054 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3055 
3056 	INIT_LIST_HEAD(&acpi_desc->spas);
3057 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3058 	INIT_LIST_HEAD(&acpi_desc->bdws);
3059 	INIT_LIST_HEAD(&acpi_desc->idts);
3060 	INIT_LIST_HEAD(&acpi_desc->flushes);
3061 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3062 	INIT_LIST_HEAD(&acpi_desc->dimms);
3063 	INIT_LIST_HEAD(&acpi_desc->list);
3064 	mutex_init(&acpi_desc->init_mutex);
3065 	INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
3066 }
3067 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3068 
acpi_nfit_put_table(void * table)3069 static void acpi_nfit_put_table(void *table)
3070 {
3071 	acpi_put_table(table);
3072 }
3073 
acpi_nfit_shutdown(void * data)3074 void acpi_nfit_shutdown(void *data)
3075 {
3076 	struct acpi_nfit_desc *acpi_desc = data;
3077 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3078 
3079 	/*
3080 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3081 	 * race teardown
3082 	 */
3083 	mutex_lock(&acpi_desc_lock);
3084 	list_del(&acpi_desc->list);
3085 	mutex_unlock(&acpi_desc_lock);
3086 
3087 	mutex_lock(&acpi_desc->init_mutex);
3088 	acpi_desc->cancel = 1;
3089 	mutex_unlock(&acpi_desc->init_mutex);
3090 
3091 	/*
3092 	 * Bounce the nvdimm bus lock to make sure any in-flight
3093 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3094 	 * either submit or see ->cancel set.
3095 	 */
3096 	device_lock(bus_dev);
3097 	device_unlock(bus_dev);
3098 
3099 	flush_workqueue(nfit_wq);
3100 }
3101 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3102 
acpi_nfit_add(struct acpi_device * adev)3103 static int acpi_nfit_add(struct acpi_device *adev)
3104 {
3105 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3106 	struct acpi_nfit_desc *acpi_desc;
3107 	struct device *dev = &adev->dev;
3108 	struct acpi_table_header *tbl;
3109 	acpi_status status = AE_OK;
3110 	acpi_size sz;
3111 	int rc = 0;
3112 
3113 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3114 	if (ACPI_FAILURE(status)) {
3115 		/* This is ok, we could have an nvdimm hotplugged later */
3116 		dev_dbg(dev, "failed to find NFIT at startup\n");
3117 		return 0;
3118 	}
3119 
3120 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3121 	if (rc)
3122 		return rc;
3123 	sz = tbl->length;
3124 
3125 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3126 	if (!acpi_desc)
3127 		return -ENOMEM;
3128 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3129 
3130 	/* Save the acpi header for exporting the revision via sysfs */
3131 	acpi_desc->acpi_header = *tbl;
3132 
3133 	/* Evaluate _FIT and override with that if present */
3134 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3135 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3136 		union acpi_object *obj = buf.pointer;
3137 
3138 		if (obj->type == ACPI_TYPE_BUFFER)
3139 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3140 					obj->buffer.length);
3141 		else
3142 			dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
3143 				 __func__, (int) obj->type);
3144 		kfree(buf.pointer);
3145 	} else
3146 		/* skip over the lead-in header table */
3147 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3148 				+ sizeof(struct acpi_table_nfit),
3149 				sz - sizeof(struct acpi_table_nfit));
3150 
3151 	if (rc)
3152 		return rc;
3153 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3154 }
3155 
acpi_nfit_remove(struct acpi_device * adev)3156 static int acpi_nfit_remove(struct acpi_device *adev)
3157 {
3158 	/* see acpi_nfit_unregister */
3159 	return 0;
3160 }
3161 
acpi_nfit_update_notify(struct device * dev,acpi_handle handle)3162 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3163 {
3164 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3165 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3166 	union acpi_object *obj;
3167 	acpi_status status;
3168 	int ret;
3169 
3170 	if (!dev->driver) {
3171 		/* dev->driver may be null if we're being removed */
3172 		dev_dbg(dev, "%s: no driver found for dev\n", __func__);
3173 		return;
3174 	}
3175 
3176 	if (!acpi_desc) {
3177 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3178 		if (!acpi_desc)
3179 			return;
3180 		acpi_nfit_desc_init(acpi_desc, dev);
3181 	} else {
3182 		/*
3183 		 * Finish previous registration before considering new
3184 		 * regions.
3185 		 */
3186 		flush_workqueue(nfit_wq);
3187 	}
3188 
3189 	/* Evaluate _FIT */
3190 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3191 	if (ACPI_FAILURE(status)) {
3192 		dev_err(dev, "failed to evaluate _FIT\n");
3193 		return;
3194 	}
3195 
3196 	obj = buf.pointer;
3197 	if (obj->type == ACPI_TYPE_BUFFER) {
3198 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3199 				obj->buffer.length);
3200 		if (ret)
3201 			dev_err(dev, "failed to merge updated NFIT\n");
3202 	} else
3203 		dev_err(dev, "Invalid _FIT\n");
3204 	kfree(buf.pointer);
3205 }
3206 
acpi_nfit_uc_error_notify(struct device * dev,acpi_handle handle)3207 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3208 {
3209 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3210 	u8 flags = (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON) ?
3211 			0 : ND_ARS_RETURN_PREV_DATA;
3212 
3213 	acpi_nfit_ars_rescan(acpi_desc, flags);
3214 }
3215 
__acpi_nfit_notify(struct device * dev,acpi_handle handle,u32 event)3216 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3217 {
3218 	dev_dbg(dev, "%s: event: 0x%x\n", __func__, event);
3219 
3220 	switch (event) {
3221 	case NFIT_NOTIFY_UPDATE:
3222 		return acpi_nfit_update_notify(dev, handle);
3223 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3224 		return acpi_nfit_uc_error_notify(dev, handle);
3225 	default:
3226 		return;
3227 	}
3228 }
3229 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3230 
acpi_nfit_notify(struct acpi_device * adev,u32 event)3231 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3232 {
3233 	device_lock(&adev->dev);
3234 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3235 	device_unlock(&adev->dev);
3236 }
3237 
3238 static const struct acpi_device_id acpi_nfit_ids[] = {
3239 	{ "ACPI0012", 0 },
3240 	{ "", 0 },
3241 };
3242 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3243 
3244 static struct acpi_driver acpi_nfit_driver = {
3245 	.name = KBUILD_MODNAME,
3246 	.ids = acpi_nfit_ids,
3247 	.ops = {
3248 		.add = acpi_nfit_add,
3249 		.remove = acpi_nfit_remove,
3250 		.notify = acpi_nfit_notify,
3251 	},
3252 };
3253 
nfit_init(void)3254 static __init int nfit_init(void)
3255 {
3256 	int ret;
3257 
3258 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3259 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3260 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3261 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3262 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3263 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3264 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3265 
3266 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3267 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3268 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3269 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3270 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3271 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3272 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3273 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3274 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3275 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3276 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3277 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3278 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3279 
3280 	nfit_wq = create_singlethread_workqueue("nfit");
3281 	if (!nfit_wq)
3282 		return -ENOMEM;
3283 
3284 	nfit_mce_register();
3285 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3286 	if (ret) {
3287 		nfit_mce_unregister();
3288 		destroy_workqueue(nfit_wq);
3289 	}
3290 
3291 	return ret;
3292 
3293 }
3294 
nfit_exit(void)3295 static __exit void nfit_exit(void)
3296 {
3297 	nfit_mce_unregister();
3298 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3299 	destroy_workqueue(nfit_wq);
3300 	WARN_ON(!list_empty(&acpi_descs));
3301 }
3302 
3303 module_init(nfit_init);
3304 module_exit(nfit_exit);
3305 MODULE_LICENSE("GPL v2");
3306 MODULE_AUTHOR("Intel Corporation");
3307