1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78
79 #include "libata.h"
80 #include "libata-transport.h"
81
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87 const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93 };
94
95 const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100 };
101
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109
110 struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118 };
119
120 struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124 };
125
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179
ata_sstatus_online(u32 sstatus)180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 return (sstatus & 0xf) == 0x3;
183 }
184
185 /**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199 {
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242 }
243
244 /**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258 {
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295 }
296
297 /**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
ata_dev_phys_link(struct ata_device * dev)311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320 }
321
322 /**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
ata_force_cbl(struct ata_port * ap)335 void ata_force_cbl(struct ata_port *ap)
336 {
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352 }
353
354 /**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
ata_force_link_limits(struct ata_link * link)370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404 }
405
406 /**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
ata_force_xfermask(struct ata_device * dev)417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458 }
459
460 /**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
ata_force_horkage(struct ata_device * dev)471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501 }
502
503 /**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
atapi_cmd_type(u8 opcode)515 int atapi_cmd_type(u8 opcode)
516 {
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539 }
540
541 /**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584
585 /**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642 };
643
644 /**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683 }
684
685 /**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732 }
733
734 /**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag,int class)755 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758 {
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862 }
863
864 /**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)879 unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882 {
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886 }
887
888 /**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)898 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900 {
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907 }
908
909 static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912 } ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917 };
918
919 /**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
ata_xfer_mask2mode(unsigned long xfer_mask)932 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933 {
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941 }
942
943 /**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
ata_xfer_mode2mask(u8 xfer_mode)955 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956 {
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964 }
965
966 /**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
ata_xfer_mode2shift(unsigned long xfer_mode)978 int ata_xfer_mode2shift(unsigned long xfer_mode)
979 {
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986 }
987
988 /**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
ata_mode_string(unsigned long xfer_mask)1002 const char *ata_mode_string(unsigned long xfer_mask)
1003 {
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032 }
1033
sata_spd_string(unsigned int spd)1034 const char *sata_spd_string(unsigned int spd)
1035 {
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045 }
1046
1047 /**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
ata_dev_classify(const struct ata_taskfile * tf)1062 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063 {
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112 }
1113
1114 /**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1129 void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131 {
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148 }
1149
1150 /**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1164 void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166 {
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175 }
1176
ata_id_n_sectors(const u16 * id)1177 static u64 ata_id_n_sectors(const u16 *id)
1178 {
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192 }
1193
ata_tf_to_lba48(const struct ata_taskfile * tf)1194 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195 {
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206 }
1207
ata_tf_to_lba(const struct ata_taskfile * tf)1208 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209 {
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218 }
1219
1220 /**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1232 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233 {
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269 }
1270
1271 /**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1283 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284 {
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
ata_hpa_resize(struct ata_device * dev)1340 static int ata_hpa_resize(struct ata_device *dev)
1341 {
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
ata_dump_id(const u16 * id)1437 static inline void ata_dump_id(const u16 *id)
1438 {
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463 }
1464
1465 /**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
ata_id_xfermask(const u16 * id)1480 unsigned long ata_id_xfermask(const u16 *id)
1481 {
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532 }
1533
ata_qc_complete_internal(struct ata_queued_cmd * qc)1534 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535 {
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539 }
1540
1541 /**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1563 unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567 {
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
1601 qc = __ata_qc_from_tag(ap, tag);
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
1615 ap->qc_active = 0;
1616 ap->nr_active_links = 0;
1617
1618 /* prepare & issue qc */
1619 qc->tf = *tf;
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1633
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1636
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1639 }
1640
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1643
1644 ata_qc_issue(qc);
1645
1646 spin_unlock_irqrestore(ap->lock, flags);
1647
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
1656
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
1665 ata_sff_flush_pio_task(ap);
1666
1667 if (!rc) {
1668 spin_lock_irqsave(ap->lock, flags);
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1674 */
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
1682
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
1686 }
1687
1688 spin_unlock_irqrestore(ap->lock, flags);
1689 }
1690
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
1707 }
1708
1709 /* finish up */
1710 spin_lock_irqsave(ap->lock, flags);
1711
1712 *tf = qc->result_tf;
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
1718 ap->qc_active = preempted_qc_active;
1719 ap->nr_active_links = preempted_nr_active_links;
1720
1721 spin_unlock_irqrestore(ap->lock, flags);
1722
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
1726 return err_mask;
1727 }
1728
1729 /**
1730 * ata_exec_internal - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data transfer direction of the command
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
1737 * @timeout: Timeout in msecs (0 for default)
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1748 unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
1752 {
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
1755
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
1762
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
1765 }
1766
1767 /**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
ata_pio_need_iordy(const struct ata_device * adev)1774 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775 {
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 return 0;
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1796 return 1;
1797 return 0;
1798 }
1799
1800 /**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1807 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808 {
1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1818 }
1819 }
1820 return 3 << ATA_SHIFT_PIO;
1821 }
1822
1823 /**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1833 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835 {
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838 }
1839
1840 /**
1841 * ata_dev_read_id - Read ID data from the specified device
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
1844 * @flags: ATA_READID_* flags
1845 * @id: buffer to read IDENTIFY data into
1846 *
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1851 *
1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 * now we abort if we hit that case.
1854 *
1855 * LOCKING:
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1860 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1861 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 unsigned int flags, u16 *id)
1863 {
1864 struct ata_port *ap = dev->link->ap;
1865 unsigned int class = *p_class;
1866 struct ata_taskfile tf;
1867 unsigned int err_mask = 0;
1868 const char *reason;
1869 bool is_semb = class == ATA_DEV_SEMB;
1870 int may_fallback = 1, tried_spinup = 0;
1871 int rc;
1872
1873 if (ata_msg_ctl(ap))
1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876 retry:
1877 ata_tf_init(dev, &tf);
1878
1879 switch (class) {
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1882 case ATA_DEV_ATA:
1883 case ATA_DEV_ZAC:
1884 tf.command = ATA_CMD_ID_ATA;
1885 break;
1886 case ATA_DEV_ATAPI:
1887 tf.command = ATA_CMD_ID_ATAPI;
1888 break;
1889 default:
1890 rc = -ENODEV;
1891 reason = "unsupported class";
1892 goto err_out;
1893 }
1894
1895 tf.protocol = ATA_PROT_PIO;
1896
1897 /* Some devices choke if TF registers contain garbage. Make
1898 * sure those are properly initialized.
1899 */
1900 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902 /* Device presence detection is unreliable on some
1903 * controllers. Always poll IDENTIFY if available.
1904 */
1905 tf.flags |= ATA_TFLAG_POLLING;
1906
1907 if (ap->ops->read_id)
1908 err_mask = ap->ops->read_id(dev, &tf, id);
1909 else
1910 err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912 if (err_mask) {
1913 if (err_mask & AC_ERR_NODEV_HINT) {
1914 ata_dev_dbg(dev, "NODEV after polling detection\n");
1915 return -ENOENT;
1916 }
1917
1918 if (is_semb) {
1919 ata_dev_info(dev,
1920 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921 /* SEMB is not supported yet */
1922 *p_class = ATA_DEV_SEMB_UNSUP;
1923 return 0;
1924 }
1925
1926 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927 /* Device or controller might have reported
1928 * the wrong device class. Give a shot at the
1929 * other IDENTIFY if the current one is
1930 * aborted by the device.
1931 */
1932 if (may_fallback) {
1933 may_fallback = 0;
1934
1935 if (class == ATA_DEV_ATA)
1936 class = ATA_DEV_ATAPI;
1937 else
1938 class = ATA_DEV_ATA;
1939 goto retry;
1940 }
1941
1942 /* Control reaches here iff the device aborted
1943 * both flavors of IDENTIFYs which happens
1944 * sometimes with phantom devices.
1945 */
1946 ata_dev_dbg(dev,
1947 "both IDENTIFYs aborted, assuming NODEV\n");
1948 return -ENOENT;
1949 }
1950
1951 rc = -EIO;
1952 reason = "I/O error";
1953 goto err_out;
1954 }
1955
1956 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958 "class=%d may_fallback=%d tried_spinup=%d\n",
1959 class, may_fallback, tried_spinup);
1960 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962 }
1963
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
1969 swap_buf_le16(id, ATA_ID_WORDS);
1970
1971 /* sanity check */
1972 rc = -EINVAL;
1973 reason = "device reports invalid type";
1974
1975 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
1978 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979 ata_id_is_ata(id)) {
1980 ata_dev_dbg(dev,
1981 "host indicates ignore ATA devices, ignored\n");
1982 return -ENOENT;
1983 }
1984 } else {
1985 if (ata_id_is_ata(id))
1986 goto err_out;
1987 }
1988
1989 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990 tried_spinup = 1;
1991 /*
1992 * Drive powered-up in standby mode, and requires a specific
1993 * SET_FEATURES spin-up subcommand before it will accept
1994 * anything other than the original IDENTIFY command.
1995 */
1996 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997 if (err_mask && id[2] != 0x738c) {
1998 rc = -EIO;
1999 reason = "SPINUP failed";
2000 goto err_out;
2001 }
2002 /*
2003 * If the drive initially returned incomplete IDENTIFY info,
2004 * we now must reissue the IDENTIFY command.
2005 */
2006 if (id[2] == 0x37c8)
2007 goto retry;
2008 }
2009
2010 if ((flags & ATA_READID_POSTRESET) &&
2011 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2012 /*
2013 * The exact sequence expected by certain pre-ATA4 drives is:
2014 * SRST RESET
2015 * IDENTIFY (optional in early ATA)
2016 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017 * anything else..
2018 * Some drives were very specific about that exact sequence.
2019 *
2020 * Note that ATA4 says lba is mandatory so the second check
2021 * should never trigger.
2022 */
2023 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025 if (err_mask) {
2026 rc = -EIO;
2027 reason = "INIT_DEV_PARAMS failed";
2028 goto err_out;
2029 }
2030
2031 /* current CHS translation info (id[53-58]) might be
2032 * changed. reread the identify device info.
2033 */
2034 flags &= ~ATA_READID_POSTRESET;
2035 goto retry;
2036 }
2037 }
2038
2039 *p_class = class;
2040
2041 return 0;
2042
2043 err_out:
2044 if (ata_msg_warn(ap))
2045 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046 reason, err_mask);
2047 return rc;
2048 }
2049
2050 /**
2051 * ata_read_log_page - read a specific log page
2052 * @dev: target device
2053 * @log: log to read
2054 * @page: page to read
2055 * @buf: buffer to store read page
2056 * @sectors: number of sectors to read
2057 *
2058 * Read log page using READ_LOG_EXT command.
2059 *
2060 * LOCKING:
2061 * Kernel thread context (may sleep).
2062 *
2063 * RETURNS:
2064 * 0 on success, AC_ERR_* mask otherwise.
2065 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2066 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2067 u8 page, void *buf, unsigned int sectors)
2068 {
2069 unsigned long ap_flags = dev->link->ap->flags;
2070 struct ata_taskfile tf;
2071 unsigned int err_mask;
2072 bool dma = false;
2073
2074 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2075
2076 /*
2077 * Return error without actually issuing the command on controllers
2078 * which e.g. lockup on a read log page.
2079 */
2080 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2081 return AC_ERR_DEV;
2082
2083 retry:
2084 ata_tf_init(dev, &tf);
2085 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2086 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2087 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2088 tf.protocol = ATA_PROT_DMA;
2089 dma = true;
2090 } else {
2091 tf.command = ATA_CMD_READ_LOG_EXT;
2092 tf.protocol = ATA_PROT_PIO;
2093 dma = false;
2094 }
2095 tf.lbal = log;
2096 tf.lbam = page;
2097 tf.nsect = sectors;
2098 tf.hob_nsect = sectors >> 8;
2099 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2100
2101 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2102 buf, sectors * ATA_SECT_SIZE, 0);
2103
2104 if (err_mask && dma) {
2105 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2106 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2107 goto retry;
2108 }
2109
2110 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2111 return err_mask;
2112 }
2113
ata_log_supported(struct ata_device * dev,u8 log)2114 static bool ata_log_supported(struct ata_device *dev, u8 log)
2115 {
2116 struct ata_port *ap = dev->link->ap;
2117
2118 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2119 return false;
2120 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2121 }
2122
ata_identify_page_supported(struct ata_device * dev,u8 page)2123 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2124 {
2125 struct ata_port *ap = dev->link->ap;
2126 unsigned int err, i;
2127
2128 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2129 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2130 return false;
2131 }
2132
2133 /*
2134 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2135 * supported.
2136 */
2137 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2138 1);
2139 if (err) {
2140 ata_dev_info(dev,
2141 "failed to get Device Identify Log Emask 0x%x\n",
2142 err);
2143 return false;
2144 }
2145
2146 for (i = 0; i < ap->sector_buf[8]; i++) {
2147 if (ap->sector_buf[9 + i] == page)
2148 return true;
2149 }
2150
2151 return false;
2152 }
2153
ata_do_link_spd_horkage(struct ata_device * dev)2154 static int ata_do_link_spd_horkage(struct ata_device *dev)
2155 {
2156 struct ata_link *plink = ata_dev_phys_link(dev);
2157 u32 target, target_limit;
2158
2159 if (!sata_scr_valid(plink))
2160 return 0;
2161
2162 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2163 target = 1;
2164 else
2165 return 0;
2166
2167 target_limit = (1 << target) - 1;
2168
2169 /* if already on stricter limit, no need to push further */
2170 if (plink->sata_spd_limit <= target_limit)
2171 return 0;
2172
2173 plink->sata_spd_limit = target_limit;
2174
2175 /* Request another EH round by returning -EAGAIN if link is
2176 * going faster than the target speed. Forward progress is
2177 * guaranteed by setting sata_spd_limit to target_limit above.
2178 */
2179 if (plink->sata_spd > target) {
2180 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2181 sata_spd_string(target));
2182 return -EAGAIN;
2183 }
2184 return 0;
2185 }
2186
ata_dev_knobble(struct ata_device * dev)2187 static inline u8 ata_dev_knobble(struct ata_device *dev)
2188 {
2189 struct ata_port *ap = dev->link->ap;
2190
2191 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2192 return 0;
2193
2194 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2195 }
2196
ata_dev_config_ncq_send_recv(struct ata_device * dev)2197 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2198 {
2199 struct ata_port *ap = dev->link->ap;
2200 unsigned int err_mask;
2201
2202 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2203 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2204 return;
2205 }
2206 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2207 0, ap->sector_buf, 1);
2208 if (err_mask) {
2209 ata_dev_dbg(dev,
2210 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2211 err_mask);
2212 } else {
2213 u8 *cmds = dev->ncq_send_recv_cmds;
2214
2215 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2216 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2217
2218 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2219 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2220 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2221 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2222 }
2223 }
2224 }
2225
ata_dev_config_ncq_non_data(struct ata_device * dev)2226 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2227 {
2228 struct ata_port *ap = dev->link->ap;
2229 unsigned int err_mask;
2230
2231 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2232 ata_dev_warn(dev,
2233 "NCQ Send/Recv Log not supported\n");
2234 return;
2235 }
2236 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2237 0, ap->sector_buf, 1);
2238 if (err_mask) {
2239 ata_dev_dbg(dev,
2240 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2241 err_mask);
2242 } else {
2243 u8 *cmds = dev->ncq_non_data_cmds;
2244
2245 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2246 }
2247 }
2248
ata_dev_config_ncq_prio(struct ata_device * dev)2249 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2250 {
2251 struct ata_port *ap = dev->link->ap;
2252 unsigned int err_mask;
2253
2254 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2255 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2256 return;
2257 }
2258
2259 err_mask = ata_read_log_page(dev,
2260 ATA_LOG_IDENTIFY_DEVICE,
2261 ATA_LOG_SATA_SETTINGS,
2262 ap->sector_buf,
2263 1);
2264 if (err_mask) {
2265 ata_dev_dbg(dev,
2266 "failed to get Identify Device data, Emask 0x%x\n",
2267 err_mask);
2268 return;
2269 }
2270
2271 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2272 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2273 } else {
2274 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2275 ata_dev_dbg(dev, "SATA page does not support priority\n");
2276 }
2277
2278 }
2279
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2280 static int ata_dev_config_ncq(struct ata_device *dev,
2281 char *desc, size_t desc_sz)
2282 {
2283 struct ata_port *ap = dev->link->ap;
2284 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2285 unsigned int err_mask;
2286 char *aa_desc = "";
2287
2288 if (!ata_id_has_ncq(dev->id)) {
2289 desc[0] = '\0';
2290 return 0;
2291 }
2292 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2293 snprintf(desc, desc_sz, "NCQ (not used)");
2294 return 0;
2295 }
2296 if (ap->flags & ATA_FLAG_NCQ) {
2297 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2298 dev->flags |= ATA_DFLAG_NCQ;
2299 }
2300
2301 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2302 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2303 ata_id_has_fpdma_aa(dev->id)) {
2304 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2305 SATA_FPDMA_AA);
2306 if (err_mask) {
2307 ata_dev_err(dev,
2308 "failed to enable AA (error_mask=0x%x)\n",
2309 err_mask);
2310 if (err_mask != AC_ERR_DEV) {
2311 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2312 return -EIO;
2313 }
2314 } else
2315 aa_desc = ", AA";
2316 }
2317
2318 if (hdepth >= ddepth)
2319 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2320 else
2321 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2322 ddepth, aa_desc);
2323
2324 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2325 if (ata_id_has_ncq_send_and_recv(dev->id))
2326 ata_dev_config_ncq_send_recv(dev);
2327 if (ata_id_has_ncq_non_data(dev->id))
2328 ata_dev_config_ncq_non_data(dev);
2329 if (ata_id_has_ncq_prio(dev->id))
2330 ata_dev_config_ncq_prio(dev);
2331 }
2332
2333 return 0;
2334 }
2335
ata_dev_config_sense_reporting(struct ata_device * dev)2336 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2337 {
2338 unsigned int err_mask;
2339
2340 if (!ata_id_has_sense_reporting(dev->id))
2341 return;
2342
2343 if (ata_id_sense_reporting_enabled(dev->id))
2344 return;
2345
2346 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2347 if (err_mask) {
2348 ata_dev_dbg(dev,
2349 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2350 err_mask);
2351 }
2352 }
2353
ata_dev_config_zac(struct ata_device * dev)2354 static void ata_dev_config_zac(struct ata_device *dev)
2355 {
2356 struct ata_port *ap = dev->link->ap;
2357 unsigned int err_mask;
2358 u8 *identify_buf = ap->sector_buf;
2359
2360 dev->zac_zones_optimal_open = U32_MAX;
2361 dev->zac_zones_optimal_nonseq = U32_MAX;
2362 dev->zac_zones_max_open = U32_MAX;
2363
2364 /*
2365 * Always set the 'ZAC' flag for Host-managed devices.
2366 */
2367 if (dev->class == ATA_DEV_ZAC)
2368 dev->flags |= ATA_DFLAG_ZAC;
2369 else if (ata_id_zoned_cap(dev->id) == 0x01)
2370 /*
2371 * Check for host-aware devices.
2372 */
2373 dev->flags |= ATA_DFLAG_ZAC;
2374
2375 if (!(dev->flags & ATA_DFLAG_ZAC))
2376 return;
2377
2378 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2379 ata_dev_warn(dev,
2380 "ATA Zoned Information Log not supported\n");
2381 return;
2382 }
2383
2384 /*
2385 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2386 */
2387 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2388 ATA_LOG_ZONED_INFORMATION,
2389 identify_buf, 1);
2390 if (!err_mask) {
2391 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2392
2393 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2394 if ((zoned_cap >> 63))
2395 dev->zac_zoned_cap = (zoned_cap & 1);
2396 opt_open = get_unaligned_le64(&identify_buf[24]);
2397 if ((opt_open >> 63))
2398 dev->zac_zones_optimal_open = (u32)opt_open;
2399 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2400 if ((opt_nonseq >> 63))
2401 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2402 max_open = get_unaligned_le64(&identify_buf[40]);
2403 if ((max_open >> 63))
2404 dev->zac_zones_max_open = (u32)max_open;
2405 }
2406 }
2407
ata_dev_config_trusted(struct ata_device * dev)2408 static void ata_dev_config_trusted(struct ata_device *dev)
2409 {
2410 struct ata_port *ap = dev->link->ap;
2411 u64 trusted_cap;
2412 unsigned int err;
2413
2414 if (!ata_id_has_trusted(dev->id))
2415 return;
2416
2417 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2418 ata_dev_warn(dev,
2419 "Security Log not supported\n");
2420 return;
2421 }
2422
2423 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2424 ap->sector_buf, 1);
2425 if (err) {
2426 ata_dev_dbg(dev,
2427 "failed to read Security Log, Emask 0x%x\n", err);
2428 return;
2429 }
2430
2431 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2432 if (!(trusted_cap & (1ULL << 63))) {
2433 ata_dev_dbg(dev,
2434 "Trusted Computing capability qword not valid!\n");
2435 return;
2436 }
2437
2438 if (trusted_cap & (1 << 0))
2439 dev->flags |= ATA_DFLAG_TRUSTED;
2440 }
2441
2442 /**
2443 * ata_dev_configure - Configure the specified ATA/ATAPI device
2444 * @dev: Target device to configure
2445 *
2446 * Configure @dev according to @dev->id. Generic and low-level
2447 * driver specific fixups are also applied.
2448 *
2449 * LOCKING:
2450 * Kernel thread context (may sleep)
2451 *
2452 * RETURNS:
2453 * 0 on success, -errno otherwise
2454 */
ata_dev_configure(struct ata_device * dev)2455 int ata_dev_configure(struct ata_device *dev)
2456 {
2457 struct ata_port *ap = dev->link->ap;
2458 struct ata_eh_context *ehc = &dev->link->eh_context;
2459 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2460 const u16 *id = dev->id;
2461 unsigned long xfer_mask;
2462 unsigned int err_mask;
2463 char revbuf[7]; /* XYZ-99\0 */
2464 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2465 char modelbuf[ATA_ID_PROD_LEN+1];
2466 int rc;
2467
2468 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2469 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2470 return 0;
2471 }
2472
2473 if (ata_msg_probe(ap))
2474 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2475
2476 /* set horkage */
2477 dev->horkage |= ata_dev_blacklisted(dev);
2478 ata_force_horkage(dev);
2479
2480 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2481 ata_dev_info(dev, "unsupported device, disabling\n");
2482 ata_dev_disable(dev);
2483 return 0;
2484 }
2485
2486 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2487 dev->class == ATA_DEV_ATAPI) {
2488 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2489 atapi_enabled ? "not supported with this driver"
2490 : "disabled");
2491 ata_dev_disable(dev);
2492 return 0;
2493 }
2494
2495 rc = ata_do_link_spd_horkage(dev);
2496 if (rc)
2497 return rc;
2498
2499 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2500 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2501 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2502 dev->horkage |= ATA_HORKAGE_NOLPM;
2503
2504 if (ap->flags & ATA_FLAG_NO_LPM)
2505 dev->horkage |= ATA_HORKAGE_NOLPM;
2506
2507 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2508 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2509 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2510 }
2511
2512 /* let ACPI work its magic */
2513 rc = ata_acpi_on_devcfg(dev);
2514 if (rc)
2515 return rc;
2516
2517 /* massage HPA, do it early as it might change IDENTIFY data */
2518 rc = ata_hpa_resize(dev);
2519 if (rc)
2520 return rc;
2521
2522 /* print device capabilities */
2523 if (ata_msg_probe(ap))
2524 ata_dev_dbg(dev,
2525 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2526 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2527 __func__,
2528 id[49], id[82], id[83], id[84],
2529 id[85], id[86], id[87], id[88]);
2530
2531 /* initialize to-be-configured parameters */
2532 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2533 dev->max_sectors = 0;
2534 dev->cdb_len = 0;
2535 dev->n_sectors = 0;
2536 dev->cylinders = 0;
2537 dev->heads = 0;
2538 dev->sectors = 0;
2539 dev->multi_count = 0;
2540
2541 /*
2542 * common ATA, ATAPI feature tests
2543 */
2544
2545 /* find max transfer mode; for printk only */
2546 xfer_mask = ata_id_xfermask(id);
2547
2548 if (ata_msg_probe(ap))
2549 ata_dump_id(id);
2550
2551 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2552 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2553 sizeof(fwrevbuf));
2554
2555 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2556 sizeof(modelbuf));
2557
2558 /* ATA-specific feature tests */
2559 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2560 if (ata_id_is_cfa(id)) {
2561 /* CPRM may make this media unusable */
2562 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2563 ata_dev_warn(dev,
2564 "supports DRM functions and may not be fully accessible\n");
2565 snprintf(revbuf, 7, "CFA");
2566 } else {
2567 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2568 /* Warn the user if the device has TPM extensions */
2569 if (ata_id_has_tpm(id))
2570 ata_dev_warn(dev,
2571 "supports DRM functions and may not be fully accessible\n");
2572 }
2573
2574 dev->n_sectors = ata_id_n_sectors(id);
2575
2576 /* get current R/W Multiple count setting */
2577 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2578 unsigned int max = dev->id[47] & 0xff;
2579 unsigned int cnt = dev->id[59] & 0xff;
2580 /* only recognize/allow powers of two here */
2581 if (is_power_of_2(max) && is_power_of_2(cnt))
2582 if (cnt <= max)
2583 dev->multi_count = cnt;
2584 }
2585
2586 if (ata_id_has_lba(id)) {
2587 const char *lba_desc;
2588 char ncq_desc[24];
2589
2590 lba_desc = "LBA";
2591 dev->flags |= ATA_DFLAG_LBA;
2592 if (ata_id_has_lba48(id)) {
2593 dev->flags |= ATA_DFLAG_LBA48;
2594 lba_desc = "LBA48";
2595
2596 if (dev->n_sectors >= (1UL << 28) &&
2597 ata_id_has_flush_ext(id))
2598 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2599 }
2600
2601 /* config NCQ */
2602 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2603 if (rc)
2604 return rc;
2605
2606 /* print device info to dmesg */
2607 if (ata_msg_drv(ap) && print_info) {
2608 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2609 revbuf, modelbuf, fwrevbuf,
2610 ata_mode_string(xfer_mask));
2611 ata_dev_info(dev,
2612 "%llu sectors, multi %u: %s %s\n",
2613 (unsigned long long)dev->n_sectors,
2614 dev->multi_count, lba_desc, ncq_desc);
2615 }
2616 } else {
2617 /* CHS */
2618
2619 /* Default translation */
2620 dev->cylinders = id[1];
2621 dev->heads = id[3];
2622 dev->sectors = id[6];
2623
2624 if (ata_id_current_chs_valid(id)) {
2625 /* Current CHS translation is valid. */
2626 dev->cylinders = id[54];
2627 dev->heads = id[55];
2628 dev->sectors = id[56];
2629 }
2630
2631 /* print device info to dmesg */
2632 if (ata_msg_drv(ap) && print_info) {
2633 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2634 revbuf, modelbuf, fwrevbuf,
2635 ata_mode_string(xfer_mask));
2636 ata_dev_info(dev,
2637 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2638 (unsigned long long)dev->n_sectors,
2639 dev->multi_count, dev->cylinders,
2640 dev->heads, dev->sectors);
2641 }
2642 }
2643
2644 /* Check and mark DevSlp capability. Get DevSlp timing variables
2645 * from SATA Settings page of Identify Device Data Log.
2646 */
2647 if (ata_id_has_devslp(dev->id)) {
2648 u8 *sata_setting = ap->sector_buf;
2649 int i, j;
2650
2651 dev->flags |= ATA_DFLAG_DEVSLP;
2652 err_mask = ata_read_log_page(dev,
2653 ATA_LOG_IDENTIFY_DEVICE,
2654 ATA_LOG_SATA_SETTINGS,
2655 sata_setting,
2656 1);
2657 if (err_mask)
2658 ata_dev_dbg(dev,
2659 "failed to get Identify Device Data, Emask 0x%x\n",
2660 err_mask);
2661 else
2662 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2663 j = ATA_LOG_DEVSLP_OFFSET + i;
2664 dev->devslp_timing[i] = sata_setting[j];
2665 }
2666 }
2667 ata_dev_config_sense_reporting(dev);
2668 ata_dev_config_zac(dev);
2669 ata_dev_config_trusted(dev);
2670 dev->cdb_len = 32;
2671 }
2672
2673 /* ATAPI-specific feature tests */
2674 else if (dev->class == ATA_DEV_ATAPI) {
2675 const char *cdb_intr_string = "";
2676 const char *atapi_an_string = "";
2677 const char *dma_dir_string = "";
2678 u32 sntf;
2679
2680 rc = atapi_cdb_len(id);
2681 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2682 if (ata_msg_warn(ap))
2683 ata_dev_warn(dev, "unsupported CDB len\n");
2684 rc = -EINVAL;
2685 goto err_out_nosup;
2686 }
2687 dev->cdb_len = (unsigned int) rc;
2688
2689 /* Enable ATAPI AN if both the host and device have
2690 * the support. If PMP is attached, SNTF is required
2691 * to enable ATAPI AN to discern between PHY status
2692 * changed notifications and ATAPI ANs.
2693 */
2694 if (atapi_an &&
2695 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2696 (!sata_pmp_attached(ap) ||
2697 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2698 /* issue SET feature command to turn this on */
2699 err_mask = ata_dev_set_feature(dev,
2700 SETFEATURES_SATA_ENABLE, SATA_AN);
2701 if (err_mask)
2702 ata_dev_err(dev,
2703 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2704 err_mask);
2705 else {
2706 dev->flags |= ATA_DFLAG_AN;
2707 atapi_an_string = ", ATAPI AN";
2708 }
2709 }
2710
2711 if (ata_id_cdb_intr(dev->id)) {
2712 dev->flags |= ATA_DFLAG_CDB_INTR;
2713 cdb_intr_string = ", CDB intr";
2714 }
2715
2716 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2717 dev->flags |= ATA_DFLAG_DMADIR;
2718 dma_dir_string = ", DMADIR";
2719 }
2720
2721 if (ata_id_has_da(dev->id)) {
2722 dev->flags |= ATA_DFLAG_DA;
2723 zpodd_init(dev);
2724 }
2725
2726 /* print device info to dmesg */
2727 if (ata_msg_drv(ap) && print_info)
2728 ata_dev_info(dev,
2729 "ATAPI: %s, %s, max %s%s%s%s\n",
2730 modelbuf, fwrevbuf,
2731 ata_mode_string(xfer_mask),
2732 cdb_intr_string, atapi_an_string,
2733 dma_dir_string);
2734 }
2735
2736 /* determine max_sectors */
2737 dev->max_sectors = ATA_MAX_SECTORS;
2738 if (dev->flags & ATA_DFLAG_LBA48)
2739 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2740
2741 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2742 200 sectors */
2743 if (ata_dev_knobble(dev)) {
2744 if (ata_msg_drv(ap) && print_info)
2745 ata_dev_info(dev, "applying bridge limits\n");
2746 dev->udma_mask &= ATA_UDMA5;
2747 dev->max_sectors = ATA_MAX_SECTORS;
2748 }
2749
2750 if ((dev->class == ATA_DEV_ATAPI) &&
2751 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2752 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2753 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2754 }
2755
2756 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2757 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2758 dev->max_sectors);
2759
2760 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2761 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2762 dev->max_sectors);
2763
2764 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2765 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2766
2767 if (ap->ops->dev_config)
2768 ap->ops->dev_config(dev);
2769
2770 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2771 /* Let the user know. We don't want to disallow opens for
2772 rescue purposes, or in case the vendor is just a blithering
2773 idiot. Do this after the dev_config call as some controllers
2774 with buggy firmware may want to avoid reporting false device
2775 bugs */
2776
2777 if (print_info) {
2778 ata_dev_warn(dev,
2779 "Drive reports diagnostics failure. This may indicate a drive\n");
2780 ata_dev_warn(dev,
2781 "fault or invalid emulation. Contact drive vendor for information.\n");
2782 }
2783 }
2784
2785 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2786 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2787 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2788 }
2789
2790 return 0;
2791
2792 err_out_nosup:
2793 if (ata_msg_probe(ap))
2794 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2795 return rc;
2796 }
2797
2798 /**
2799 * ata_cable_40wire - return 40 wire cable type
2800 * @ap: port
2801 *
2802 * Helper method for drivers which want to hardwire 40 wire cable
2803 * detection.
2804 */
2805
ata_cable_40wire(struct ata_port * ap)2806 int ata_cable_40wire(struct ata_port *ap)
2807 {
2808 return ATA_CBL_PATA40;
2809 }
2810
2811 /**
2812 * ata_cable_80wire - return 80 wire cable type
2813 * @ap: port
2814 *
2815 * Helper method for drivers which want to hardwire 80 wire cable
2816 * detection.
2817 */
2818
ata_cable_80wire(struct ata_port * ap)2819 int ata_cable_80wire(struct ata_port *ap)
2820 {
2821 return ATA_CBL_PATA80;
2822 }
2823
2824 /**
2825 * ata_cable_unknown - return unknown PATA cable.
2826 * @ap: port
2827 *
2828 * Helper method for drivers which have no PATA cable detection.
2829 */
2830
ata_cable_unknown(struct ata_port * ap)2831 int ata_cable_unknown(struct ata_port *ap)
2832 {
2833 return ATA_CBL_PATA_UNK;
2834 }
2835
2836 /**
2837 * ata_cable_ignore - return ignored PATA cable.
2838 * @ap: port
2839 *
2840 * Helper method for drivers which don't use cable type to limit
2841 * transfer mode.
2842 */
ata_cable_ignore(struct ata_port * ap)2843 int ata_cable_ignore(struct ata_port *ap)
2844 {
2845 return ATA_CBL_PATA_IGN;
2846 }
2847
2848 /**
2849 * ata_cable_sata - return SATA cable type
2850 * @ap: port
2851 *
2852 * Helper method for drivers which have SATA cables
2853 */
2854
ata_cable_sata(struct ata_port * ap)2855 int ata_cable_sata(struct ata_port *ap)
2856 {
2857 return ATA_CBL_SATA;
2858 }
2859
2860 /**
2861 * ata_bus_probe - Reset and probe ATA bus
2862 * @ap: Bus to probe
2863 *
2864 * Master ATA bus probing function. Initiates a hardware-dependent
2865 * bus reset, then attempts to identify any devices found on
2866 * the bus.
2867 *
2868 * LOCKING:
2869 * PCI/etc. bus probe sem.
2870 *
2871 * RETURNS:
2872 * Zero on success, negative errno otherwise.
2873 */
2874
ata_bus_probe(struct ata_port * ap)2875 int ata_bus_probe(struct ata_port *ap)
2876 {
2877 unsigned int classes[ATA_MAX_DEVICES];
2878 int tries[ATA_MAX_DEVICES];
2879 int rc;
2880 struct ata_device *dev;
2881
2882 ata_for_each_dev(dev, &ap->link, ALL)
2883 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2884
2885 retry:
2886 ata_for_each_dev(dev, &ap->link, ALL) {
2887 /* If we issue an SRST then an ATA drive (not ATAPI)
2888 * may change configuration and be in PIO0 timing. If
2889 * we do a hard reset (or are coming from power on)
2890 * this is true for ATA or ATAPI. Until we've set a
2891 * suitable controller mode we should not touch the
2892 * bus as we may be talking too fast.
2893 */
2894 dev->pio_mode = XFER_PIO_0;
2895 dev->dma_mode = 0xff;
2896
2897 /* If the controller has a pio mode setup function
2898 * then use it to set the chipset to rights. Don't
2899 * touch the DMA setup as that will be dealt with when
2900 * configuring devices.
2901 */
2902 if (ap->ops->set_piomode)
2903 ap->ops->set_piomode(ap, dev);
2904 }
2905
2906 /* reset and determine device classes */
2907 ap->ops->phy_reset(ap);
2908
2909 ata_for_each_dev(dev, &ap->link, ALL) {
2910 if (dev->class != ATA_DEV_UNKNOWN)
2911 classes[dev->devno] = dev->class;
2912 else
2913 classes[dev->devno] = ATA_DEV_NONE;
2914
2915 dev->class = ATA_DEV_UNKNOWN;
2916 }
2917
2918 /* read IDENTIFY page and configure devices. We have to do the identify
2919 specific sequence bass-ackwards so that PDIAG- is released by
2920 the slave device */
2921
2922 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2923 if (tries[dev->devno])
2924 dev->class = classes[dev->devno];
2925
2926 if (!ata_dev_enabled(dev))
2927 continue;
2928
2929 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2930 dev->id);
2931 if (rc)
2932 goto fail;
2933 }
2934
2935 /* Now ask for the cable type as PDIAG- should have been released */
2936 if (ap->ops->cable_detect)
2937 ap->cbl = ap->ops->cable_detect(ap);
2938
2939 /* We may have SATA bridge glue hiding here irrespective of
2940 * the reported cable types and sensed types. When SATA
2941 * drives indicate we have a bridge, we don't know which end
2942 * of the link the bridge is which is a problem.
2943 */
2944 ata_for_each_dev(dev, &ap->link, ENABLED)
2945 if (ata_id_is_sata(dev->id))
2946 ap->cbl = ATA_CBL_SATA;
2947
2948 /* After the identify sequence we can now set up the devices. We do
2949 this in the normal order so that the user doesn't get confused */
2950
2951 ata_for_each_dev(dev, &ap->link, ENABLED) {
2952 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2953 rc = ata_dev_configure(dev);
2954 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2955 if (rc)
2956 goto fail;
2957 }
2958
2959 /* configure transfer mode */
2960 rc = ata_set_mode(&ap->link, &dev);
2961 if (rc)
2962 goto fail;
2963
2964 ata_for_each_dev(dev, &ap->link, ENABLED)
2965 return 0;
2966
2967 return -ENODEV;
2968
2969 fail:
2970 tries[dev->devno]--;
2971
2972 switch (rc) {
2973 case -EINVAL:
2974 /* eeek, something went very wrong, give up */
2975 tries[dev->devno] = 0;
2976 break;
2977
2978 case -ENODEV:
2979 /* give it just one more chance */
2980 tries[dev->devno] = min(tries[dev->devno], 1);
2981 case -EIO:
2982 if (tries[dev->devno] == 1) {
2983 /* This is the last chance, better to slow
2984 * down than lose it.
2985 */
2986 sata_down_spd_limit(&ap->link, 0);
2987 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2988 }
2989 }
2990
2991 if (!tries[dev->devno])
2992 ata_dev_disable(dev);
2993
2994 goto retry;
2995 }
2996
2997 /**
2998 * sata_print_link_status - Print SATA link status
2999 * @link: SATA link to printk link status about
3000 *
3001 * This function prints link speed and status of a SATA link.
3002 *
3003 * LOCKING:
3004 * None.
3005 */
sata_print_link_status(struct ata_link * link)3006 static void sata_print_link_status(struct ata_link *link)
3007 {
3008 u32 sstatus, scontrol, tmp;
3009
3010 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3011 return;
3012 sata_scr_read(link, SCR_CONTROL, &scontrol);
3013
3014 if (ata_phys_link_online(link)) {
3015 tmp = (sstatus >> 4) & 0xf;
3016 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3017 sata_spd_string(tmp), sstatus, scontrol);
3018 } else {
3019 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3020 sstatus, scontrol);
3021 }
3022 }
3023
3024 /**
3025 * ata_dev_pair - return other device on cable
3026 * @adev: device
3027 *
3028 * Obtain the other device on the same cable, or if none is
3029 * present NULL is returned
3030 */
3031
ata_dev_pair(struct ata_device * adev)3032 struct ata_device *ata_dev_pair(struct ata_device *adev)
3033 {
3034 struct ata_link *link = adev->link;
3035 struct ata_device *pair = &link->device[1 - adev->devno];
3036 if (!ata_dev_enabled(pair))
3037 return NULL;
3038 return pair;
3039 }
3040
3041 /**
3042 * sata_down_spd_limit - adjust SATA spd limit downward
3043 * @link: Link to adjust SATA spd limit for
3044 * @spd_limit: Additional limit
3045 *
3046 * Adjust SATA spd limit of @link downward. Note that this
3047 * function only adjusts the limit. The change must be applied
3048 * using sata_set_spd().
3049 *
3050 * If @spd_limit is non-zero, the speed is limited to equal to or
3051 * lower than @spd_limit if such speed is supported. If
3052 * @spd_limit is slower than any supported speed, only the lowest
3053 * supported speed is allowed.
3054 *
3055 * LOCKING:
3056 * Inherited from caller.
3057 *
3058 * RETURNS:
3059 * 0 on success, negative errno on failure
3060 */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)3061 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3062 {
3063 u32 sstatus, spd, mask;
3064 int rc, bit;
3065
3066 if (!sata_scr_valid(link))
3067 return -EOPNOTSUPP;
3068
3069 /* If SCR can be read, use it to determine the current SPD.
3070 * If not, use cached value in link->sata_spd.
3071 */
3072 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3073 if (rc == 0 && ata_sstatus_online(sstatus))
3074 spd = (sstatus >> 4) & 0xf;
3075 else
3076 spd = link->sata_spd;
3077
3078 mask = link->sata_spd_limit;
3079 if (mask <= 1)
3080 return -EINVAL;
3081
3082 /* unconditionally mask off the highest bit */
3083 bit = fls(mask) - 1;
3084 mask &= ~(1 << bit);
3085
3086 /* Mask off all speeds higher than or equal to the current
3087 * one. Force 1.5Gbps if current SPD is not available.
3088 */
3089 if (spd > 1)
3090 mask &= (1 << (spd - 1)) - 1;
3091 else
3092 mask &= 1;
3093
3094 /* were we already at the bottom? */
3095 if (!mask)
3096 return -EINVAL;
3097
3098 if (spd_limit) {
3099 if (mask & ((1 << spd_limit) - 1))
3100 mask &= (1 << spd_limit) - 1;
3101 else {
3102 bit = ffs(mask) - 1;
3103 mask = 1 << bit;
3104 }
3105 }
3106
3107 link->sata_spd_limit = mask;
3108
3109 ata_link_warn(link, "limiting SATA link speed to %s\n",
3110 sata_spd_string(fls(mask)));
3111
3112 return 0;
3113 }
3114
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)3115 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3116 {
3117 struct ata_link *host_link = &link->ap->link;
3118 u32 limit, target, spd;
3119
3120 limit = link->sata_spd_limit;
3121
3122 /* Don't configure downstream link faster than upstream link.
3123 * It doesn't speed up anything and some PMPs choke on such
3124 * configuration.
3125 */
3126 if (!ata_is_host_link(link) && host_link->sata_spd)
3127 limit &= (1 << host_link->sata_spd) - 1;
3128
3129 if (limit == UINT_MAX)
3130 target = 0;
3131 else
3132 target = fls(limit);
3133
3134 spd = (*scontrol >> 4) & 0xf;
3135 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3136
3137 return spd != target;
3138 }
3139
3140 /**
3141 * sata_set_spd_needed - is SATA spd configuration needed
3142 * @link: Link in question
3143 *
3144 * Test whether the spd limit in SControl matches
3145 * @link->sata_spd_limit. This function is used to determine
3146 * whether hardreset is necessary to apply SATA spd
3147 * configuration.
3148 *
3149 * LOCKING:
3150 * Inherited from caller.
3151 *
3152 * RETURNS:
3153 * 1 if SATA spd configuration is needed, 0 otherwise.
3154 */
sata_set_spd_needed(struct ata_link * link)3155 static int sata_set_spd_needed(struct ata_link *link)
3156 {
3157 u32 scontrol;
3158
3159 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3160 return 1;
3161
3162 return __sata_set_spd_needed(link, &scontrol);
3163 }
3164
3165 /**
3166 * sata_set_spd - set SATA spd according to spd limit
3167 * @link: Link to set SATA spd for
3168 *
3169 * Set SATA spd of @link according to sata_spd_limit.
3170 *
3171 * LOCKING:
3172 * Inherited from caller.
3173 *
3174 * RETURNS:
3175 * 0 if spd doesn't need to be changed, 1 if spd has been
3176 * changed. Negative errno if SCR registers are inaccessible.
3177 */
sata_set_spd(struct ata_link * link)3178 int sata_set_spd(struct ata_link *link)
3179 {
3180 u32 scontrol;
3181 int rc;
3182
3183 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3184 return rc;
3185
3186 if (!__sata_set_spd_needed(link, &scontrol))
3187 return 0;
3188
3189 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3190 return rc;
3191
3192 return 1;
3193 }
3194
3195 /*
3196 * This mode timing computation functionality is ported over from
3197 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3198 */
3199 /*
3200 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3201 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3202 * for UDMA6, which is currently supported only by Maxtor drives.
3203 *
3204 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3205 */
3206
3207 static const struct ata_timing ata_timing[] = {
3208 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3209 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3210 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3211 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3212 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3213 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3214 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3215 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3216
3217 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3218 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3219 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3220
3221 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3222 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3223 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3224 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3225 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3226
3227 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3228 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3229 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3230 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3231 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3232 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3233 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3234 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3235
3236 { 0xFF }
3237 };
3238
3239 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3240 #define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3241
ata_timing_quantize(const struct ata_timing * t,struct ata_timing * q,int T,int UT)3242 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3243 {
3244 q->setup = EZ(t->setup, T);
3245 q->act8b = EZ(t->act8b, T);
3246 q->rec8b = EZ(t->rec8b, T);
3247 q->cyc8b = EZ(t->cyc8b, T);
3248 q->active = EZ(t->active, T);
3249 q->recover = EZ(t->recover, T);
3250 q->dmack_hold = EZ(t->dmack_hold, T);
3251 q->cycle = EZ(t->cycle, T);
3252 q->udma = EZ(t->udma, UT);
3253 }
3254
ata_timing_merge(const struct ata_timing * a,const struct ata_timing * b,struct ata_timing * m,unsigned int what)3255 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3256 struct ata_timing *m, unsigned int what)
3257 {
3258 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3259 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3260 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3261 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3262 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3263 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3264 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3265 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3266 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3267 }
3268
ata_timing_find_mode(u8 xfer_mode)3269 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3270 {
3271 const struct ata_timing *t = ata_timing;
3272
3273 while (xfer_mode > t->mode)
3274 t++;
3275
3276 if (xfer_mode == t->mode)
3277 return t;
3278
3279 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3280 __func__, xfer_mode);
3281
3282 return NULL;
3283 }
3284
ata_timing_compute(struct ata_device * adev,unsigned short speed,struct ata_timing * t,int T,int UT)3285 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3286 struct ata_timing *t, int T, int UT)
3287 {
3288 const u16 *id = adev->id;
3289 const struct ata_timing *s;
3290 struct ata_timing p;
3291
3292 /*
3293 * Find the mode.
3294 */
3295
3296 if (!(s = ata_timing_find_mode(speed)))
3297 return -EINVAL;
3298
3299 memcpy(t, s, sizeof(*s));
3300
3301 /*
3302 * If the drive is an EIDE drive, it can tell us it needs extended
3303 * PIO/MW_DMA cycle timing.
3304 */
3305
3306 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3307 memset(&p, 0, sizeof(p));
3308
3309 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3310 if (speed <= XFER_PIO_2)
3311 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3312 else if ((speed <= XFER_PIO_4) ||
3313 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3314 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3315 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3316 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3317
3318 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3319 }
3320
3321 /*
3322 * Convert the timing to bus clock counts.
3323 */
3324
3325 ata_timing_quantize(t, t, T, UT);
3326
3327 /*
3328 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3329 * S.M.A.R.T * and some other commands. We have to ensure that the
3330 * DMA cycle timing is slower/equal than the fastest PIO timing.
3331 */
3332
3333 if (speed > XFER_PIO_6) {
3334 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3335 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3336 }
3337
3338 /*
3339 * Lengthen active & recovery time so that cycle time is correct.
3340 */
3341
3342 if (t->act8b + t->rec8b < t->cyc8b) {
3343 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3344 t->rec8b = t->cyc8b - t->act8b;
3345 }
3346
3347 if (t->active + t->recover < t->cycle) {
3348 t->active += (t->cycle - (t->active + t->recover)) / 2;
3349 t->recover = t->cycle - t->active;
3350 }
3351
3352 /* In a few cases quantisation may produce enough errors to
3353 leave t->cycle too low for the sum of active and recovery
3354 if so we must correct this */
3355 if (t->active + t->recover > t->cycle)
3356 t->cycle = t->active + t->recover;
3357
3358 return 0;
3359 }
3360
3361 /**
3362 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3363 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3364 * @cycle: cycle duration in ns
3365 *
3366 * Return matching xfer mode for @cycle. The returned mode is of
3367 * the transfer type specified by @xfer_shift. If @cycle is too
3368 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3369 * than the fastest known mode, the fasted mode is returned.
3370 *
3371 * LOCKING:
3372 * None.
3373 *
3374 * RETURNS:
3375 * Matching xfer_mode, 0xff if no match found.
3376 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3377 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3378 {
3379 u8 base_mode = 0xff, last_mode = 0xff;
3380 const struct ata_xfer_ent *ent;
3381 const struct ata_timing *t;
3382
3383 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3384 if (ent->shift == xfer_shift)
3385 base_mode = ent->base;
3386
3387 for (t = ata_timing_find_mode(base_mode);
3388 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3389 unsigned short this_cycle;
3390
3391 switch (xfer_shift) {
3392 case ATA_SHIFT_PIO:
3393 case ATA_SHIFT_MWDMA:
3394 this_cycle = t->cycle;
3395 break;
3396 case ATA_SHIFT_UDMA:
3397 this_cycle = t->udma;
3398 break;
3399 default:
3400 return 0xff;
3401 }
3402
3403 if (cycle > this_cycle)
3404 break;
3405
3406 last_mode = t->mode;
3407 }
3408
3409 return last_mode;
3410 }
3411
3412 /**
3413 * ata_down_xfermask_limit - adjust dev xfer masks downward
3414 * @dev: Device to adjust xfer masks
3415 * @sel: ATA_DNXFER_* selector
3416 *
3417 * Adjust xfer masks of @dev downward. Note that this function
3418 * does not apply the change. Invoking ata_set_mode() afterwards
3419 * will apply the limit.
3420 *
3421 * LOCKING:
3422 * Inherited from caller.
3423 *
3424 * RETURNS:
3425 * 0 on success, negative errno on failure
3426 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3427 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3428 {
3429 char buf[32];
3430 unsigned long orig_mask, xfer_mask;
3431 unsigned long pio_mask, mwdma_mask, udma_mask;
3432 int quiet, highbit;
3433
3434 quiet = !!(sel & ATA_DNXFER_QUIET);
3435 sel &= ~ATA_DNXFER_QUIET;
3436
3437 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3438 dev->mwdma_mask,
3439 dev->udma_mask);
3440 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3441
3442 switch (sel) {
3443 case ATA_DNXFER_PIO:
3444 highbit = fls(pio_mask) - 1;
3445 pio_mask &= ~(1 << highbit);
3446 break;
3447
3448 case ATA_DNXFER_DMA:
3449 if (udma_mask) {
3450 highbit = fls(udma_mask) - 1;
3451 udma_mask &= ~(1 << highbit);
3452 if (!udma_mask)
3453 return -ENOENT;
3454 } else if (mwdma_mask) {
3455 highbit = fls(mwdma_mask) - 1;
3456 mwdma_mask &= ~(1 << highbit);
3457 if (!mwdma_mask)
3458 return -ENOENT;
3459 }
3460 break;
3461
3462 case ATA_DNXFER_40C:
3463 udma_mask &= ATA_UDMA_MASK_40C;
3464 break;
3465
3466 case ATA_DNXFER_FORCE_PIO0:
3467 pio_mask &= 1;
3468 case ATA_DNXFER_FORCE_PIO:
3469 mwdma_mask = 0;
3470 udma_mask = 0;
3471 break;
3472
3473 default:
3474 BUG();
3475 }
3476
3477 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3478
3479 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3480 return -ENOENT;
3481
3482 if (!quiet) {
3483 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3484 snprintf(buf, sizeof(buf), "%s:%s",
3485 ata_mode_string(xfer_mask),
3486 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3487 else
3488 snprintf(buf, sizeof(buf), "%s",
3489 ata_mode_string(xfer_mask));
3490
3491 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3492 }
3493
3494 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3495 &dev->udma_mask);
3496
3497 return 0;
3498 }
3499
ata_dev_set_mode(struct ata_device * dev)3500 static int ata_dev_set_mode(struct ata_device *dev)
3501 {
3502 struct ata_port *ap = dev->link->ap;
3503 struct ata_eh_context *ehc = &dev->link->eh_context;
3504 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3505 const char *dev_err_whine = "";
3506 int ign_dev_err = 0;
3507 unsigned int err_mask = 0;
3508 int rc;
3509
3510 dev->flags &= ~ATA_DFLAG_PIO;
3511 if (dev->xfer_shift == ATA_SHIFT_PIO)
3512 dev->flags |= ATA_DFLAG_PIO;
3513
3514 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3515 dev_err_whine = " (SET_XFERMODE skipped)";
3516 else {
3517 if (nosetxfer)
3518 ata_dev_warn(dev,
3519 "NOSETXFER but PATA detected - can't "
3520 "skip SETXFER, might malfunction\n");
3521 err_mask = ata_dev_set_xfermode(dev);
3522 }
3523
3524 if (err_mask & ~AC_ERR_DEV)
3525 goto fail;
3526
3527 /* revalidate */
3528 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3529 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3530 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3531 if (rc)
3532 return rc;
3533
3534 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3535 /* Old CFA may refuse this command, which is just fine */
3536 if (ata_id_is_cfa(dev->id))
3537 ign_dev_err = 1;
3538 /* Catch several broken garbage emulations plus some pre
3539 ATA devices */
3540 if (ata_id_major_version(dev->id) == 0 &&
3541 dev->pio_mode <= XFER_PIO_2)
3542 ign_dev_err = 1;
3543 /* Some very old devices and some bad newer ones fail
3544 any kind of SET_XFERMODE request but support PIO0-2
3545 timings and no IORDY */
3546 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3547 ign_dev_err = 1;
3548 }
3549 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3550 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3551 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3552 dev->dma_mode == XFER_MW_DMA_0 &&
3553 (dev->id[63] >> 8) & 1)
3554 ign_dev_err = 1;
3555
3556 /* if the device is actually configured correctly, ignore dev err */
3557 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3558 ign_dev_err = 1;
3559
3560 if (err_mask & AC_ERR_DEV) {
3561 if (!ign_dev_err)
3562 goto fail;
3563 else
3564 dev_err_whine = " (device error ignored)";
3565 }
3566
3567 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3568 dev->xfer_shift, (int)dev->xfer_mode);
3569
3570 ata_dev_info(dev, "configured for %s%s\n",
3571 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3572 dev_err_whine);
3573
3574 return 0;
3575
3576 fail:
3577 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3578 return -EIO;
3579 }
3580
3581 /**
3582 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3583 * @link: link on which timings will be programmed
3584 * @r_failed_dev: out parameter for failed device
3585 *
3586 * Standard implementation of the function used to tune and set
3587 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3588 * ata_dev_set_mode() fails, pointer to the failing device is
3589 * returned in @r_failed_dev.
3590 *
3591 * LOCKING:
3592 * PCI/etc. bus probe sem.
3593 *
3594 * RETURNS:
3595 * 0 on success, negative errno otherwise
3596 */
3597
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3598 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3599 {
3600 struct ata_port *ap = link->ap;
3601 struct ata_device *dev;
3602 int rc = 0, used_dma = 0, found = 0;
3603
3604 /* step 1: calculate xfer_mask */
3605 ata_for_each_dev(dev, link, ENABLED) {
3606 unsigned long pio_mask, dma_mask;
3607 unsigned int mode_mask;
3608
3609 mode_mask = ATA_DMA_MASK_ATA;
3610 if (dev->class == ATA_DEV_ATAPI)
3611 mode_mask = ATA_DMA_MASK_ATAPI;
3612 else if (ata_id_is_cfa(dev->id))
3613 mode_mask = ATA_DMA_MASK_CFA;
3614
3615 ata_dev_xfermask(dev);
3616 ata_force_xfermask(dev);
3617
3618 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3619
3620 if (libata_dma_mask & mode_mask)
3621 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3622 dev->udma_mask);
3623 else
3624 dma_mask = 0;
3625
3626 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3627 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3628
3629 found = 1;
3630 if (ata_dma_enabled(dev))
3631 used_dma = 1;
3632 }
3633 if (!found)
3634 goto out;
3635
3636 /* step 2: always set host PIO timings */
3637 ata_for_each_dev(dev, link, ENABLED) {
3638 if (dev->pio_mode == 0xff) {
3639 ata_dev_warn(dev, "no PIO support\n");
3640 rc = -EINVAL;
3641 goto out;
3642 }
3643
3644 dev->xfer_mode = dev->pio_mode;
3645 dev->xfer_shift = ATA_SHIFT_PIO;
3646 if (ap->ops->set_piomode)
3647 ap->ops->set_piomode(ap, dev);
3648 }
3649
3650 /* step 3: set host DMA timings */
3651 ata_for_each_dev(dev, link, ENABLED) {
3652 if (!ata_dma_enabled(dev))
3653 continue;
3654
3655 dev->xfer_mode = dev->dma_mode;
3656 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3657 if (ap->ops->set_dmamode)
3658 ap->ops->set_dmamode(ap, dev);
3659 }
3660
3661 /* step 4: update devices' xfer mode */
3662 ata_for_each_dev(dev, link, ENABLED) {
3663 rc = ata_dev_set_mode(dev);
3664 if (rc)
3665 goto out;
3666 }
3667
3668 /* Record simplex status. If we selected DMA then the other
3669 * host channels are not permitted to do so.
3670 */
3671 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3672 ap->host->simplex_claimed = ap;
3673
3674 out:
3675 if (rc)
3676 *r_failed_dev = dev;
3677 return rc;
3678 }
3679
3680 /**
3681 * ata_wait_ready - wait for link to become ready
3682 * @link: link to be waited on
3683 * @deadline: deadline jiffies for the operation
3684 * @check_ready: callback to check link readiness
3685 *
3686 * Wait for @link to become ready. @check_ready should return
3687 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3688 * link doesn't seem to be occupied, other errno for other error
3689 * conditions.
3690 *
3691 * Transient -ENODEV conditions are allowed for
3692 * ATA_TMOUT_FF_WAIT.
3693 *
3694 * LOCKING:
3695 * EH context.
3696 *
3697 * RETURNS:
3698 * 0 if @link is ready before @deadline; otherwise, -errno.
3699 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3700 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3701 int (*check_ready)(struct ata_link *link))
3702 {
3703 unsigned long start = jiffies;
3704 unsigned long nodev_deadline;
3705 int warned = 0;
3706
3707 /* choose which 0xff timeout to use, read comment in libata.h */
3708 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3709 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3710 else
3711 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3712
3713 /* Slave readiness can't be tested separately from master. On
3714 * M/S emulation configuration, this function should be called
3715 * only on the master and it will handle both master and slave.
3716 */
3717 WARN_ON(link == link->ap->slave_link);
3718
3719 if (time_after(nodev_deadline, deadline))
3720 nodev_deadline = deadline;
3721
3722 while (1) {
3723 unsigned long now = jiffies;
3724 int ready, tmp;
3725
3726 ready = tmp = check_ready(link);
3727 if (ready > 0)
3728 return 0;
3729
3730 /*
3731 * -ENODEV could be transient. Ignore -ENODEV if link
3732 * is online. Also, some SATA devices take a long
3733 * time to clear 0xff after reset. Wait for
3734 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3735 * offline.
3736 *
3737 * Note that some PATA controllers (pata_ali) explode
3738 * if status register is read more than once when
3739 * there's no device attached.
3740 */
3741 if (ready == -ENODEV) {
3742 if (ata_link_online(link))
3743 ready = 0;
3744 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3745 !ata_link_offline(link) &&
3746 time_before(now, nodev_deadline))
3747 ready = 0;
3748 }
3749
3750 if (ready)
3751 return ready;
3752 if (time_after(now, deadline))
3753 return -EBUSY;
3754
3755 if (!warned && time_after(now, start + 5 * HZ) &&
3756 (deadline - now > 3 * HZ)) {
3757 ata_link_warn(link,
3758 "link is slow to respond, please be patient "
3759 "(ready=%d)\n", tmp);
3760 warned = 1;
3761 }
3762
3763 ata_msleep(link->ap, 50);
3764 }
3765 }
3766
3767 /**
3768 * ata_wait_after_reset - wait for link to become ready after reset
3769 * @link: link to be waited on
3770 * @deadline: deadline jiffies for the operation
3771 * @check_ready: callback to check link readiness
3772 *
3773 * Wait for @link to become ready after reset.
3774 *
3775 * LOCKING:
3776 * EH context.
3777 *
3778 * RETURNS:
3779 * 0 if @link is ready before @deadline; otherwise, -errno.
3780 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3781 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3782 int (*check_ready)(struct ata_link *link))
3783 {
3784 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3785
3786 return ata_wait_ready(link, deadline, check_ready);
3787 }
3788
3789 /**
3790 * sata_link_debounce - debounce SATA phy status
3791 * @link: ATA link to debounce SATA phy status for
3792 * @params: timing parameters { interval, duration, timeout } in msec
3793 * @deadline: deadline jiffies for the operation
3794 *
3795 * Make sure SStatus of @link reaches stable state, determined by
3796 * holding the same value where DET is not 1 for @duration polled
3797 * every @interval, before @timeout. Timeout constraints the
3798 * beginning of the stable state. Because DET gets stuck at 1 on
3799 * some controllers after hot unplugging, this functions waits
3800 * until timeout then returns 0 if DET is stable at 1.
3801 *
3802 * @timeout is further limited by @deadline. The sooner of the
3803 * two is used.
3804 *
3805 * LOCKING:
3806 * Kernel thread context (may sleep)
3807 *
3808 * RETURNS:
3809 * 0 on success, -errno on failure.
3810 */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)3811 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3812 unsigned long deadline)
3813 {
3814 unsigned long interval = params[0];
3815 unsigned long duration = params[1];
3816 unsigned long last_jiffies, t;
3817 u32 last, cur;
3818 int rc;
3819
3820 t = ata_deadline(jiffies, params[2]);
3821 if (time_before(t, deadline))
3822 deadline = t;
3823
3824 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3825 return rc;
3826 cur &= 0xf;
3827
3828 last = cur;
3829 last_jiffies = jiffies;
3830
3831 while (1) {
3832 ata_msleep(link->ap, interval);
3833 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3834 return rc;
3835 cur &= 0xf;
3836
3837 /* DET stable? */
3838 if (cur == last) {
3839 if (cur == 1 && time_before(jiffies, deadline))
3840 continue;
3841 if (time_after(jiffies,
3842 ata_deadline(last_jiffies, duration)))
3843 return 0;
3844 continue;
3845 }
3846
3847 /* unstable, start over */
3848 last = cur;
3849 last_jiffies = jiffies;
3850
3851 /* Check deadline. If debouncing failed, return
3852 * -EPIPE to tell upper layer to lower link speed.
3853 */
3854 if (time_after(jiffies, deadline))
3855 return -EPIPE;
3856 }
3857 }
3858
3859 /**
3860 * sata_link_resume - resume SATA link
3861 * @link: ATA link to resume SATA
3862 * @params: timing parameters { interval, duration, timeout } in msec
3863 * @deadline: deadline jiffies for the operation
3864 *
3865 * Resume SATA phy @link and debounce it.
3866 *
3867 * LOCKING:
3868 * Kernel thread context (may sleep)
3869 *
3870 * RETURNS:
3871 * 0 on success, -errno on failure.
3872 */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)3873 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3874 unsigned long deadline)
3875 {
3876 int tries = ATA_LINK_RESUME_TRIES;
3877 u32 scontrol, serror;
3878 int rc;
3879
3880 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3881 return rc;
3882
3883 /*
3884 * Writes to SControl sometimes get ignored under certain
3885 * controllers (ata_piix SIDPR). Make sure DET actually is
3886 * cleared.
3887 */
3888 do {
3889 scontrol = (scontrol & 0x0f0) | 0x300;
3890 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3891 return rc;
3892 /*
3893 * Some PHYs react badly if SStatus is pounded
3894 * immediately after resuming. Delay 200ms before
3895 * debouncing.
3896 */
3897 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3898 ata_msleep(link->ap, 200);
3899
3900 /* is SControl restored correctly? */
3901 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3902 return rc;
3903 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3904
3905 if ((scontrol & 0xf0f) != 0x300) {
3906 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3907 scontrol);
3908 return 0;
3909 }
3910
3911 if (tries < ATA_LINK_RESUME_TRIES)
3912 ata_link_warn(link, "link resume succeeded after %d retries\n",
3913 ATA_LINK_RESUME_TRIES - tries);
3914
3915 if ((rc = sata_link_debounce(link, params, deadline)))
3916 return rc;
3917
3918 /* clear SError, some PHYs require this even for SRST to work */
3919 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3920 rc = sata_scr_write(link, SCR_ERROR, serror);
3921
3922 return rc != -EINVAL ? rc : 0;
3923 }
3924
3925 /**
3926 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3927 * @link: ATA link to manipulate SControl for
3928 * @policy: LPM policy to configure
3929 * @spm_wakeup: initiate LPM transition to active state
3930 *
3931 * Manipulate the IPM field of the SControl register of @link
3932 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3933 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3934 * the link. This function also clears PHYRDY_CHG before
3935 * returning.
3936 *
3937 * LOCKING:
3938 * EH context.
3939 *
3940 * RETURNS:
3941 * 0 on success, -errno otherwise.
3942 */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)3943 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3944 bool spm_wakeup)
3945 {
3946 struct ata_eh_context *ehc = &link->eh_context;
3947 bool woken_up = false;
3948 u32 scontrol;
3949 int rc;
3950
3951 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3952 if (rc)
3953 return rc;
3954
3955 switch (policy) {
3956 case ATA_LPM_MAX_POWER:
3957 /* disable all LPM transitions */
3958 scontrol |= (0x7 << 8);
3959 /* initiate transition to active state */
3960 if (spm_wakeup) {
3961 scontrol |= (0x4 << 12);
3962 woken_up = true;
3963 }
3964 break;
3965 case ATA_LPM_MED_POWER:
3966 /* allow LPM to PARTIAL */
3967 scontrol &= ~(0x1 << 8);
3968 scontrol |= (0x6 << 8);
3969 break;
3970 case ATA_LPM_MIN_POWER:
3971 if (ata_link_nr_enabled(link) > 0)
3972 /* no restrictions on LPM transitions */
3973 scontrol &= ~(0x7 << 8);
3974 else {
3975 /* empty port, power off */
3976 scontrol &= ~0xf;
3977 scontrol |= (0x1 << 2);
3978 }
3979 break;
3980 default:
3981 WARN_ON(1);
3982 }
3983
3984 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3985 if (rc)
3986 return rc;
3987
3988 /* give the link time to transit out of LPM state */
3989 if (woken_up)
3990 msleep(10);
3991
3992 /* clear PHYRDY_CHG from SError */
3993 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3994 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3995 }
3996
3997 /**
3998 * ata_std_prereset - prepare for reset
3999 * @link: ATA link to be reset
4000 * @deadline: deadline jiffies for the operation
4001 *
4002 * @link is about to be reset. Initialize it. Failure from
4003 * prereset makes libata abort whole reset sequence and give up
4004 * that port, so prereset should be best-effort. It does its
4005 * best to prepare for reset sequence but if things go wrong, it
4006 * should just whine, not fail.
4007 *
4008 * LOCKING:
4009 * Kernel thread context (may sleep)
4010 *
4011 * RETURNS:
4012 * 0 on success, -errno otherwise.
4013 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)4014 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4015 {
4016 struct ata_port *ap = link->ap;
4017 struct ata_eh_context *ehc = &link->eh_context;
4018 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4019 int rc;
4020
4021 /* if we're about to do hardreset, nothing more to do */
4022 if (ehc->i.action & ATA_EH_HARDRESET)
4023 return 0;
4024
4025 /* if SATA, resume link */
4026 if (ap->flags & ATA_FLAG_SATA) {
4027 rc = sata_link_resume(link, timing, deadline);
4028 /* whine about phy resume failure but proceed */
4029 if (rc && rc != -EOPNOTSUPP)
4030 ata_link_warn(link,
4031 "failed to resume link for reset (errno=%d)\n",
4032 rc);
4033 }
4034
4035 /* no point in trying softreset on offline link */
4036 if (ata_phys_link_offline(link))
4037 ehc->i.action &= ~ATA_EH_SOFTRESET;
4038
4039 return 0;
4040 }
4041
4042 /**
4043 * sata_link_hardreset - reset link via SATA phy reset
4044 * @link: link to reset
4045 * @timing: timing parameters { interval, duration, timeout } in msec
4046 * @deadline: deadline jiffies for the operation
4047 * @online: optional out parameter indicating link onlineness
4048 * @check_ready: optional callback to check link readiness
4049 *
4050 * SATA phy-reset @link using DET bits of SControl register.
4051 * After hardreset, link readiness is waited upon using
4052 * ata_wait_ready() if @check_ready is specified. LLDs are
4053 * allowed to not specify @check_ready and wait itself after this
4054 * function returns. Device classification is LLD's
4055 * responsibility.
4056 *
4057 * *@online is set to one iff reset succeeded and @link is online
4058 * after reset.
4059 *
4060 * LOCKING:
4061 * Kernel thread context (may sleep)
4062 *
4063 * RETURNS:
4064 * 0 on success, -errno otherwise.
4065 */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))4066 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4067 unsigned long deadline,
4068 bool *online, int (*check_ready)(struct ata_link *))
4069 {
4070 u32 scontrol;
4071 int rc;
4072
4073 DPRINTK("ENTER\n");
4074
4075 if (online)
4076 *online = false;
4077
4078 if (sata_set_spd_needed(link)) {
4079 /* SATA spec says nothing about how to reconfigure
4080 * spd. To be on the safe side, turn off phy during
4081 * reconfiguration. This works for at least ICH7 AHCI
4082 * and Sil3124.
4083 */
4084 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4085 goto out;
4086
4087 scontrol = (scontrol & 0x0f0) | 0x304;
4088
4089 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4090 goto out;
4091
4092 sata_set_spd(link);
4093 }
4094
4095 /* issue phy wake/reset */
4096 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4097 goto out;
4098
4099 scontrol = (scontrol & 0x0f0) | 0x301;
4100
4101 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4102 goto out;
4103
4104 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4105 * 10.4.2 says at least 1 ms.
4106 */
4107 ata_msleep(link->ap, 1);
4108
4109 /* bring link back */
4110 rc = sata_link_resume(link, timing, deadline);
4111 if (rc)
4112 goto out;
4113 /* if link is offline nothing more to do */
4114 if (ata_phys_link_offline(link))
4115 goto out;
4116
4117 /* Link is online. From this point, -ENODEV too is an error. */
4118 if (online)
4119 *online = true;
4120
4121 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4122 /* If PMP is supported, we have to do follow-up SRST.
4123 * Some PMPs don't send D2H Reg FIS after hardreset if
4124 * the first port is empty. Wait only for
4125 * ATA_TMOUT_PMP_SRST_WAIT.
4126 */
4127 if (check_ready) {
4128 unsigned long pmp_deadline;
4129
4130 pmp_deadline = ata_deadline(jiffies,
4131 ATA_TMOUT_PMP_SRST_WAIT);
4132 if (time_after(pmp_deadline, deadline))
4133 pmp_deadline = deadline;
4134 ata_wait_ready(link, pmp_deadline, check_ready);
4135 }
4136 rc = -EAGAIN;
4137 goto out;
4138 }
4139
4140 rc = 0;
4141 if (check_ready)
4142 rc = ata_wait_ready(link, deadline, check_ready);
4143 out:
4144 if (rc && rc != -EAGAIN) {
4145 /* online is set iff link is online && reset succeeded */
4146 if (online)
4147 *online = false;
4148 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4149 }
4150 DPRINTK("EXIT, rc=%d\n", rc);
4151 return rc;
4152 }
4153
4154 /**
4155 * sata_std_hardreset - COMRESET w/o waiting or classification
4156 * @link: link to reset
4157 * @class: resulting class of attached device
4158 * @deadline: deadline jiffies for the operation
4159 *
4160 * Standard SATA COMRESET w/o waiting or classification.
4161 *
4162 * LOCKING:
4163 * Kernel thread context (may sleep)
4164 *
4165 * RETURNS:
4166 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4167 */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)4168 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4169 unsigned long deadline)
4170 {
4171 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4172 bool online;
4173 int rc;
4174
4175 /* do hardreset */
4176 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4177 return online ? -EAGAIN : rc;
4178 }
4179
4180 /**
4181 * ata_std_postreset - standard postreset callback
4182 * @link: the target ata_link
4183 * @classes: classes of attached devices
4184 *
4185 * This function is invoked after a successful reset. Note that
4186 * the device might have been reset more than once using
4187 * different reset methods before postreset is invoked.
4188 *
4189 * LOCKING:
4190 * Kernel thread context (may sleep)
4191 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)4192 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4193 {
4194 u32 serror;
4195
4196 DPRINTK("ENTER\n");
4197
4198 /* reset complete, clear SError */
4199 if (!sata_scr_read(link, SCR_ERROR, &serror))
4200 sata_scr_write(link, SCR_ERROR, serror);
4201
4202 /* print link status */
4203 sata_print_link_status(link);
4204
4205 DPRINTK("EXIT\n");
4206 }
4207
4208 /**
4209 * ata_dev_same_device - Determine whether new ID matches configured device
4210 * @dev: device to compare against
4211 * @new_class: class of the new device
4212 * @new_id: IDENTIFY page of the new device
4213 *
4214 * Compare @new_class and @new_id against @dev and determine
4215 * whether @dev is the device indicated by @new_class and
4216 * @new_id.
4217 *
4218 * LOCKING:
4219 * None.
4220 *
4221 * RETURNS:
4222 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4223 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)4224 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4225 const u16 *new_id)
4226 {
4227 const u16 *old_id = dev->id;
4228 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4229 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4230
4231 if (dev->class != new_class) {
4232 ata_dev_info(dev, "class mismatch %d != %d\n",
4233 dev->class, new_class);
4234 return 0;
4235 }
4236
4237 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4238 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4239 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4240 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4241
4242 if (strcmp(model[0], model[1])) {
4243 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4244 model[0], model[1]);
4245 return 0;
4246 }
4247
4248 if (strcmp(serial[0], serial[1])) {
4249 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4250 serial[0], serial[1]);
4251 return 0;
4252 }
4253
4254 return 1;
4255 }
4256
4257 /**
4258 * ata_dev_reread_id - Re-read IDENTIFY data
4259 * @dev: target ATA device
4260 * @readid_flags: read ID flags
4261 *
4262 * Re-read IDENTIFY page and make sure @dev is still attached to
4263 * the port.
4264 *
4265 * LOCKING:
4266 * Kernel thread context (may sleep)
4267 *
4268 * RETURNS:
4269 * 0 on success, negative errno otherwise
4270 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)4271 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4272 {
4273 unsigned int class = dev->class;
4274 u16 *id = (void *)dev->link->ap->sector_buf;
4275 int rc;
4276
4277 /* read ID data */
4278 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4279 if (rc)
4280 return rc;
4281
4282 /* is the device still there? */
4283 if (!ata_dev_same_device(dev, class, id))
4284 return -ENODEV;
4285
4286 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4287 return 0;
4288 }
4289
4290 /**
4291 * ata_dev_revalidate - Revalidate ATA device
4292 * @dev: device to revalidate
4293 * @new_class: new class code
4294 * @readid_flags: read ID flags
4295 *
4296 * Re-read IDENTIFY page, make sure @dev is still attached to the
4297 * port and reconfigure it according to the new IDENTIFY page.
4298 *
4299 * LOCKING:
4300 * Kernel thread context (may sleep)
4301 *
4302 * RETURNS:
4303 * 0 on success, negative errno otherwise
4304 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)4305 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4306 unsigned int readid_flags)
4307 {
4308 u64 n_sectors = dev->n_sectors;
4309 u64 n_native_sectors = dev->n_native_sectors;
4310 int rc;
4311
4312 if (!ata_dev_enabled(dev))
4313 return -ENODEV;
4314
4315 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4316 if (ata_class_enabled(new_class) &&
4317 new_class != ATA_DEV_ATA &&
4318 new_class != ATA_DEV_ATAPI &&
4319 new_class != ATA_DEV_ZAC &&
4320 new_class != ATA_DEV_SEMB) {
4321 ata_dev_info(dev, "class mismatch %u != %u\n",
4322 dev->class, new_class);
4323 rc = -ENODEV;
4324 goto fail;
4325 }
4326
4327 /* re-read ID */
4328 rc = ata_dev_reread_id(dev, readid_flags);
4329 if (rc)
4330 goto fail;
4331
4332 /* configure device according to the new ID */
4333 rc = ata_dev_configure(dev);
4334 if (rc)
4335 goto fail;
4336
4337 /* verify n_sectors hasn't changed */
4338 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4339 dev->n_sectors == n_sectors)
4340 return 0;
4341
4342 /* n_sectors has changed */
4343 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4344 (unsigned long long)n_sectors,
4345 (unsigned long long)dev->n_sectors);
4346
4347 /*
4348 * Something could have caused HPA to be unlocked
4349 * involuntarily. If n_native_sectors hasn't changed and the
4350 * new size matches it, keep the device.
4351 */
4352 if (dev->n_native_sectors == n_native_sectors &&
4353 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4354 ata_dev_warn(dev,
4355 "new n_sectors matches native, probably "
4356 "late HPA unlock, n_sectors updated\n");
4357 /* use the larger n_sectors */
4358 return 0;
4359 }
4360
4361 /*
4362 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4363 * unlocking HPA in those cases.
4364 *
4365 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4366 */
4367 if (dev->n_native_sectors == n_native_sectors &&
4368 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4369 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4370 ata_dev_warn(dev,
4371 "old n_sectors matches native, probably "
4372 "late HPA lock, will try to unlock HPA\n");
4373 /* try unlocking HPA */
4374 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4375 rc = -EIO;
4376 } else
4377 rc = -ENODEV;
4378
4379 /* restore original n_[native_]sectors and fail */
4380 dev->n_native_sectors = n_native_sectors;
4381 dev->n_sectors = n_sectors;
4382 fail:
4383 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4384 return rc;
4385 }
4386
4387 struct ata_blacklist_entry {
4388 const char *model_num;
4389 const char *model_rev;
4390 unsigned long horkage;
4391 };
4392
4393 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4394 /* Devices with DMA related problems under Linux */
4395 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4396 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4397 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4398 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4399 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4400 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4401 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4402 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4403 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4404 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4405 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4406 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4407 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4408 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4409 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4410 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4411 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4412 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4413 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4414 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4415 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4416 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4417 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4418 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4419 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4420 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4421 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4422 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4423 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4424 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4425 /* Odd clown on sil3726/4726 PMPs */
4426 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4427
4428 /* Weird ATAPI devices */
4429 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4430 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4431 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4432 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4433
4434 /*
4435 * Causes silent data corruption with higher max sects.
4436 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4437 */
4438 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4439
4440 /*
4441 * These devices time out with higher max sects.
4442 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4443 */
4444 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4445 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4446
4447 /* Devices we expect to fail diagnostics */
4448
4449 /* Devices where NCQ should be avoided */
4450 /* NCQ is slow */
4451 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4452 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4453 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4454 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4455 /* NCQ is broken */
4456 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4457 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4458 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4459 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4460 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4461
4462 /* Seagate NCQ + FLUSH CACHE firmware bug */
4463 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4464 ATA_HORKAGE_FIRMWARE_WARN },
4465
4466 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4467 ATA_HORKAGE_FIRMWARE_WARN },
4468
4469 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4470 ATA_HORKAGE_FIRMWARE_WARN },
4471
4472 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4473 ATA_HORKAGE_FIRMWARE_WARN },
4474
4475 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4476 the ST disks also have LPM issues */
4477 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA |
4478 ATA_HORKAGE_NOLPM, },
4479 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA |
4480 ATA_HORKAGE_NOLPM, },
4481 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4482
4483 /* Blacklist entries taken from Silicon Image 3124/3132
4484 Windows driver .inf file - also several Linux problem reports */
4485 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4486 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4487 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4488
4489 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4490 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4491
4492 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4493 SD7SN6S256G and SD8SN8U256G */
4494 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4495
4496 /* devices which puke on READ_NATIVE_MAX */
4497 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4498 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4499 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4500 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4501
4502 /* this one allows HPA unlocking but fails IOs on the area */
4503 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4504
4505 /* Devices which report 1 sector over size HPA */
4506 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4507 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4508 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4509
4510 /* Devices which get the IVB wrong */
4511 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4512 /* Maybe we should just blacklist TSSTcorp... */
4513 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4514
4515 /* Devices that do not need bridging limits applied */
4516 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4517 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4518
4519 /* Devices which aren't very happy with higher link speeds */
4520 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4521 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4522
4523 /*
4524 * Devices which choke on SETXFER. Applies only if both the
4525 * device and controller are SATA.
4526 */
4527 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4528 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4529 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4530 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4531 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4532
4533 /* Crucial BX100 SSD 500GB has broken LPM support */
4534 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4535
4536 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4537 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4538 ATA_HORKAGE_ZERO_AFTER_TRIM |
4539 ATA_HORKAGE_NOLPM, },
4540 /* 512GB MX100 with newer firmware has only LPM issues */
4541 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4542 ATA_HORKAGE_NOLPM, },
4543
4544 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4545 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4546 ATA_HORKAGE_ZERO_AFTER_TRIM |
4547 ATA_HORKAGE_NOLPM, },
4548 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4549 ATA_HORKAGE_ZERO_AFTER_TRIM |
4550 ATA_HORKAGE_NOLPM, },
4551
4552 /* devices that don't properly handle queued TRIM commands */
4553 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4554 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4555 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4556 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4557 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4558 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4559 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4560 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4561 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4562 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4563 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4564 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4565 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4566 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4567 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4568 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4569 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4570 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4571
4572 /* devices that don't properly handle TRIM commands */
4573 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4574
4575 /*
4576 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4577 * (Return Zero After Trim) flags in the ATA Command Set are
4578 * unreliable in the sense that they only define what happens if
4579 * the device successfully executed the DSM TRIM command. TRIM
4580 * is only advisory, however, and the device is free to silently
4581 * ignore all or parts of the request.
4582 *
4583 * Whitelist drives that are known to reliably return zeroes
4584 * after TRIM.
4585 */
4586
4587 /*
4588 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4589 * that model before whitelisting all other intel SSDs.
4590 */
4591 { "INTEL*SSDSC2MH*", NULL, 0, },
4592
4593 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4594 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4595 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4596 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4597 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4598 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4599 { "SAMSUNG*MZ7KM*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4600 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4601
4602 /*
4603 * Some WD SATA-I drives spin up and down erratically when the link
4604 * is put into the slumber mode. We don't have full list of the
4605 * affected devices. Disable LPM if the device matches one of the
4606 * known prefixes and is SATA-1. As a side effect LPM partial is
4607 * lost too.
4608 *
4609 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4610 */
4611 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4612 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4613 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4614 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4615 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4616 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4617 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4618
4619 /* End Marker */
4620 { }
4621 };
4622
ata_dev_blacklisted(const struct ata_device * dev)4623 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4624 {
4625 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4626 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4627 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4628
4629 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4630 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4631
4632 while (ad->model_num) {
4633 if (glob_match(ad->model_num, model_num)) {
4634 if (ad->model_rev == NULL)
4635 return ad->horkage;
4636 if (glob_match(ad->model_rev, model_rev))
4637 return ad->horkage;
4638 }
4639 ad++;
4640 }
4641 return 0;
4642 }
4643
ata_dma_blacklisted(const struct ata_device * dev)4644 static int ata_dma_blacklisted(const struct ata_device *dev)
4645 {
4646 /* We don't support polling DMA.
4647 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4648 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4649 */
4650 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4651 (dev->flags & ATA_DFLAG_CDB_INTR))
4652 return 1;
4653 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4654 }
4655
4656 /**
4657 * ata_is_40wire - check drive side detection
4658 * @dev: device
4659 *
4660 * Perform drive side detection decoding, allowing for device vendors
4661 * who can't follow the documentation.
4662 */
4663
ata_is_40wire(struct ata_device * dev)4664 static int ata_is_40wire(struct ata_device *dev)
4665 {
4666 if (dev->horkage & ATA_HORKAGE_IVB)
4667 return ata_drive_40wire_relaxed(dev->id);
4668 return ata_drive_40wire(dev->id);
4669 }
4670
4671 /**
4672 * cable_is_40wire - 40/80/SATA decider
4673 * @ap: port to consider
4674 *
4675 * This function encapsulates the policy for speed management
4676 * in one place. At the moment we don't cache the result but
4677 * there is a good case for setting ap->cbl to the result when
4678 * we are called with unknown cables (and figuring out if it
4679 * impacts hotplug at all).
4680 *
4681 * Return 1 if the cable appears to be 40 wire.
4682 */
4683
cable_is_40wire(struct ata_port * ap)4684 static int cable_is_40wire(struct ata_port *ap)
4685 {
4686 struct ata_link *link;
4687 struct ata_device *dev;
4688
4689 /* If the controller thinks we are 40 wire, we are. */
4690 if (ap->cbl == ATA_CBL_PATA40)
4691 return 1;
4692
4693 /* If the controller thinks we are 80 wire, we are. */
4694 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4695 return 0;
4696
4697 /* If the system is known to be 40 wire short cable (eg
4698 * laptop), then we allow 80 wire modes even if the drive
4699 * isn't sure.
4700 */
4701 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4702 return 0;
4703
4704 /* If the controller doesn't know, we scan.
4705 *
4706 * Note: We look for all 40 wire detects at this point. Any
4707 * 80 wire detect is taken to be 80 wire cable because
4708 * - in many setups only the one drive (slave if present) will
4709 * give a valid detect
4710 * - if you have a non detect capable drive you don't want it
4711 * to colour the choice
4712 */
4713 ata_for_each_link(link, ap, EDGE) {
4714 ata_for_each_dev(dev, link, ENABLED) {
4715 if (!ata_is_40wire(dev))
4716 return 0;
4717 }
4718 }
4719 return 1;
4720 }
4721
4722 /**
4723 * ata_dev_xfermask - Compute supported xfermask of the given device
4724 * @dev: Device to compute xfermask for
4725 *
4726 * Compute supported xfermask of @dev and store it in
4727 * dev->*_mask. This function is responsible for applying all
4728 * known limits including host controller limits, device
4729 * blacklist, etc...
4730 *
4731 * LOCKING:
4732 * None.
4733 */
ata_dev_xfermask(struct ata_device * dev)4734 static void ata_dev_xfermask(struct ata_device *dev)
4735 {
4736 struct ata_link *link = dev->link;
4737 struct ata_port *ap = link->ap;
4738 struct ata_host *host = ap->host;
4739 unsigned long xfer_mask;
4740
4741 /* controller modes available */
4742 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4743 ap->mwdma_mask, ap->udma_mask);
4744
4745 /* drive modes available */
4746 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4747 dev->mwdma_mask, dev->udma_mask);
4748 xfer_mask &= ata_id_xfermask(dev->id);
4749
4750 /*
4751 * CFA Advanced TrueIDE timings are not allowed on a shared
4752 * cable
4753 */
4754 if (ata_dev_pair(dev)) {
4755 /* No PIO5 or PIO6 */
4756 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4757 /* No MWDMA3 or MWDMA 4 */
4758 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4759 }
4760
4761 if (ata_dma_blacklisted(dev)) {
4762 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4763 ata_dev_warn(dev,
4764 "device is on DMA blacklist, disabling DMA\n");
4765 }
4766
4767 if ((host->flags & ATA_HOST_SIMPLEX) &&
4768 host->simplex_claimed && host->simplex_claimed != ap) {
4769 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4770 ata_dev_warn(dev,
4771 "simplex DMA is claimed by other device, disabling DMA\n");
4772 }
4773
4774 if (ap->flags & ATA_FLAG_NO_IORDY)
4775 xfer_mask &= ata_pio_mask_no_iordy(dev);
4776
4777 if (ap->ops->mode_filter)
4778 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4779
4780 /* Apply cable rule here. Don't apply it early because when
4781 * we handle hot plug the cable type can itself change.
4782 * Check this last so that we know if the transfer rate was
4783 * solely limited by the cable.
4784 * Unknown or 80 wire cables reported host side are checked
4785 * drive side as well. Cases where we know a 40wire cable
4786 * is used safely for 80 are not checked here.
4787 */
4788 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4789 /* UDMA/44 or higher would be available */
4790 if (cable_is_40wire(ap)) {
4791 ata_dev_warn(dev,
4792 "limited to UDMA/33 due to 40-wire cable\n");
4793 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4794 }
4795
4796 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4797 &dev->mwdma_mask, &dev->udma_mask);
4798 }
4799
4800 /**
4801 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4802 * @dev: Device to which command will be sent
4803 *
4804 * Issue SET FEATURES - XFER MODE command to device @dev
4805 * on port @ap.
4806 *
4807 * LOCKING:
4808 * PCI/etc. bus probe sem.
4809 *
4810 * RETURNS:
4811 * 0 on success, AC_ERR_* mask otherwise.
4812 */
4813
ata_dev_set_xfermode(struct ata_device * dev)4814 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4815 {
4816 struct ata_taskfile tf;
4817 unsigned int err_mask;
4818
4819 /* set up set-features taskfile */
4820 DPRINTK("set features - xfer mode\n");
4821
4822 /* Some controllers and ATAPI devices show flaky interrupt
4823 * behavior after setting xfer mode. Use polling instead.
4824 */
4825 ata_tf_init(dev, &tf);
4826 tf.command = ATA_CMD_SET_FEATURES;
4827 tf.feature = SETFEATURES_XFER;
4828 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4829 tf.protocol = ATA_PROT_NODATA;
4830 /* If we are using IORDY we must send the mode setting command */
4831 if (ata_pio_need_iordy(dev))
4832 tf.nsect = dev->xfer_mode;
4833 /* If the device has IORDY and the controller does not - turn it off */
4834 else if (ata_id_has_iordy(dev->id))
4835 tf.nsect = 0x01;
4836 else /* In the ancient relic department - skip all of this */
4837 return 0;
4838
4839 /* On some disks, this command causes spin-up, so we need longer timeout */
4840 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4841
4842 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4843 return err_mask;
4844 }
4845
4846 /**
4847 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4848 * @dev: Device to which command will be sent
4849 * @enable: Whether to enable or disable the feature
4850 * @feature: The sector count represents the feature to set
4851 *
4852 * Issue SET FEATURES - SATA FEATURES command to device @dev
4853 * on port @ap with sector count
4854 *
4855 * LOCKING:
4856 * PCI/etc. bus probe sem.
4857 *
4858 * RETURNS:
4859 * 0 on success, AC_ERR_* mask otherwise.
4860 */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4861 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4862 {
4863 struct ata_taskfile tf;
4864 unsigned int err_mask;
4865 unsigned long timeout = 0;
4866
4867 /* set up set-features taskfile */
4868 DPRINTK("set features - SATA features\n");
4869
4870 ata_tf_init(dev, &tf);
4871 tf.command = ATA_CMD_SET_FEATURES;
4872 tf.feature = enable;
4873 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4874 tf.protocol = ATA_PROT_NODATA;
4875 tf.nsect = feature;
4876
4877 if (enable == SETFEATURES_SPINUP)
4878 timeout = ata_probe_timeout ?
4879 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4880 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4881
4882 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4883 return err_mask;
4884 }
4885 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4886
4887 /**
4888 * ata_dev_init_params - Issue INIT DEV PARAMS command
4889 * @dev: Device to which command will be sent
4890 * @heads: Number of heads (taskfile parameter)
4891 * @sectors: Number of sectors (taskfile parameter)
4892 *
4893 * LOCKING:
4894 * Kernel thread context (may sleep)
4895 *
4896 * RETURNS:
4897 * 0 on success, AC_ERR_* mask otherwise.
4898 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4899 static unsigned int ata_dev_init_params(struct ata_device *dev,
4900 u16 heads, u16 sectors)
4901 {
4902 struct ata_taskfile tf;
4903 unsigned int err_mask;
4904
4905 /* Number of sectors per track 1-255. Number of heads 1-16 */
4906 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4907 return AC_ERR_INVALID;
4908
4909 /* set up init dev params taskfile */
4910 DPRINTK("init dev params \n");
4911
4912 ata_tf_init(dev, &tf);
4913 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4914 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4915 tf.protocol = ATA_PROT_NODATA;
4916 tf.nsect = sectors;
4917 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4918
4919 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4920 /* A clean abort indicates an original or just out of spec drive
4921 and we should continue as we issue the setup based on the
4922 drive reported working geometry */
4923 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4924 err_mask = 0;
4925
4926 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4927 return err_mask;
4928 }
4929
4930 /**
4931 * atapi_check_dma - Check whether ATAPI DMA can be supported
4932 * @qc: Metadata associated with taskfile to check
4933 *
4934 * Allow low-level driver to filter ATA PACKET commands, returning
4935 * a status indicating whether or not it is OK to use DMA for the
4936 * supplied PACKET command.
4937 *
4938 * LOCKING:
4939 * spin_lock_irqsave(host lock)
4940 *
4941 * RETURNS: 0 when ATAPI DMA can be used
4942 * nonzero otherwise
4943 */
atapi_check_dma(struct ata_queued_cmd * qc)4944 int atapi_check_dma(struct ata_queued_cmd *qc)
4945 {
4946 struct ata_port *ap = qc->ap;
4947
4948 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4949 * few ATAPI devices choke on such DMA requests.
4950 */
4951 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4952 unlikely(qc->nbytes & 15))
4953 return 1;
4954
4955 if (ap->ops->check_atapi_dma)
4956 return ap->ops->check_atapi_dma(qc);
4957
4958 return 0;
4959 }
4960
4961 /**
4962 * ata_std_qc_defer - Check whether a qc needs to be deferred
4963 * @qc: ATA command in question
4964 *
4965 * Non-NCQ commands cannot run with any other command, NCQ or
4966 * not. As upper layer only knows the queue depth, we are
4967 * responsible for maintaining exclusion. This function checks
4968 * whether a new command @qc can be issued.
4969 *
4970 * LOCKING:
4971 * spin_lock_irqsave(host lock)
4972 *
4973 * RETURNS:
4974 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4975 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4976 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4977 {
4978 struct ata_link *link = qc->dev->link;
4979
4980 if (ata_is_ncq(qc->tf.protocol)) {
4981 if (!ata_tag_valid(link->active_tag))
4982 return 0;
4983 } else {
4984 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4985 return 0;
4986 }
4987
4988 return ATA_DEFER_LINK;
4989 }
4990
ata_noop_qc_prep(struct ata_queued_cmd * qc)4991 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4992
4993 /**
4994 * ata_sg_init - Associate command with scatter-gather table.
4995 * @qc: Command to be associated
4996 * @sg: Scatter-gather table.
4997 * @n_elem: Number of elements in s/g table.
4998 *
4999 * Initialize the data-related elements of queued_cmd @qc
5000 * to point to a scatter-gather table @sg, containing @n_elem
5001 * elements.
5002 *
5003 * LOCKING:
5004 * spin_lock_irqsave(host lock)
5005 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)5006 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5007 unsigned int n_elem)
5008 {
5009 qc->sg = sg;
5010 qc->n_elem = n_elem;
5011 qc->cursg = qc->sg;
5012 }
5013
5014 #ifdef CONFIG_HAS_DMA
5015
5016 /**
5017 * ata_sg_clean - Unmap DMA memory associated with command
5018 * @qc: Command containing DMA memory to be released
5019 *
5020 * Unmap all mapped DMA memory associated with this command.
5021 *
5022 * LOCKING:
5023 * spin_lock_irqsave(host lock)
5024 */
ata_sg_clean(struct ata_queued_cmd * qc)5025 static void ata_sg_clean(struct ata_queued_cmd *qc)
5026 {
5027 struct ata_port *ap = qc->ap;
5028 struct scatterlist *sg = qc->sg;
5029 int dir = qc->dma_dir;
5030
5031 WARN_ON_ONCE(sg == NULL);
5032
5033 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5034
5035 if (qc->n_elem)
5036 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5037
5038 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5039 qc->sg = NULL;
5040 }
5041
5042 /**
5043 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5044 * @qc: Command with scatter-gather table to be mapped.
5045 *
5046 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5047 *
5048 * LOCKING:
5049 * spin_lock_irqsave(host lock)
5050 *
5051 * RETURNS:
5052 * Zero on success, negative on error.
5053 *
5054 */
ata_sg_setup(struct ata_queued_cmd * qc)5055 static int ata_sg_setup(struct ata_queued_cmd *qc)
5056 {
5057 struct ata_port *ap = qc->ap;
5058 unsigned int n_elem;
5059
5060 VPRINTK("ENTER, ata%u\n", ap->print_id);
5061
5062 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5063 if (n_elem < 1)
5064 return -1;
5065
5066 DPRINTK("%d sg elements mapped\n", n_elem);
5067 qc->orig_n_elem = qc->n_elem;
5068 qc->n_elem = n_elem;
5069 qc->flags |= ATA_QCFLAG_DMAMAP;
5070
5071 return 0;
5072 }
5073
5074 #else /* !CONFIG_HAS_DMA */
5075
ata_sg_clean(struct ata_queued_cmd * qc)5076 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)5077 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5078
5079 #endif /* !CONFIG_HAS_DMA */
5080
5081 /**
5082 * swap_buf_le16 - swap halves of 16-bit words in place
5083 * @buf: Buffer to swap
5084 * @buf_words: Number of 16-bit words in buffer.
5085 *
5086 * Swap halves of 16-bit words if needed to convert from
5087 * little-endian byte order to native cpu byte order, or
5088 * vice-versa.
5089 *
5090 * LOCKING:
5091 * Inherited from caller.
5092 */
swap_buf_le16(u16 * buf,unsigned int buf_words)5093 void swap_buf_le16(u16 *buf, unsigned int buf_words)
5094 {
5095 #ifdef __BIG_ENDIAN
5096 unsigned int i;
5097
5098 for (i = 0; i < buf_words; i++)
5099 buf[i] = le16_to_cpu(buf[i]);
5100 #endif /* __BIG_ENDIAN */
5101 }
5102
5103 /**
5104 * ata_qc_new_init - Request an available ATA command, and initialize it
5105 * @dev: Device from whom we request an available command structure
5106 * @tag: tag
5107 *
5108 * LOCKING:
5109 * None.
5110 */
5111
ata_qc_new_init(struct ata_device * dev,int tag)5112 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5113 {
5114 struct ata_port *ap = dev->link->ap;
5115 struct ata_queued_cmd *qc;
5116
5117 /* no command while frozen */
5118 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5119 return NULL;
5120
5121 /* libsas case */
5122 if (ap->flags & ATA_FLAG_SAS_HOST) {
5123 tag = ata_sas_allocate_tag(ap);
5124 if (tag < 0)
5125 return NULL;
5126 }
5127
5128 qc = __ata_qc_from_tag(ap, tag);
5129 qc->tag = tag;
5130 qc->scsicmd = NULL;
5131 qc->ap = ap;
5132 qc->dev = dev;
5133
5134 ata_qc_reinit(qc);
5135
5136 return qc;
5137 }
5138
5139 /**
5140 * ata_qc_free - free unused ata_queued_cmd
5141 * @qc: Command to complete
5142 *
5143 * Designed to free unused ata_queued_cmd object
5144 * in case something prevents using it.
5145 *
5146 * LOCKING:
5147 * spin_lock_irqsave(host lock)
5148 */
ata_qc_free(struct ata_queued_cmd * qc)5149 void ata_qc_free(struct ata_queued_cmd *qc)
5150 {
5151 struct ata_port *ap;
5152 unsigned int tag;
5153
5154 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5155 ap = qc->ap;
5156
5157 qc->flags = 0;
5158 tag = qc->tag;
5159 if (likely(ata_tag_valid(tag))) {
5160 qc->tag = ATA_TAG_POISON;
5161 if (ap->flags & ATA_FLAG_SAS_HOST)
5162 ata_sas_free_tag(tag, ap);
5163 }
5164 }
5165
__ata_qc_complete(struct ata_queued_cmd * qc)5166 void __ata_qc_complete(struct ata_queued_cmd *qc)
5167 {
5168 struct ata_port *ap;
5169 struct ata_link *link;
5170
5171 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5172 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5173 ap = qc->ap;
5174 link = qc->dev->link;
5175
5176 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5177 ata_sg_clean(qc);
5178
5179 /* command should be marked inactive atomically with qc completion */
5180 if (ata_is_ncq(qc->tf.protocol)) {
5181 link->sactive &= ~(1 << qc->tag);
5182 if (!link->sactive)
5183 ap->nr_active_links--;
5184 } else {
5185 link->active_tag = ATA_TAG_POISON;
5186 ap->nr_active_links--;
5187 }
5188
5189 /* clear exclusive status */
5190 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5191 ap->excl_link == link))
5192 ap->excl_link = NULL;
5193
5194 /* atapi: mark qc as inactive to prevent the interrupt handler
5195 * from completing the command twice later, before the error handler
5196 * is called. (when rc != 0 and atapi request sense is needed)
5197 */
5198 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5199 ap->qc_active &= ~(1 << qc->tag);
5200
5201 /* call completion callback */
5202 qc->complete_fn(qc);
5203 }
5204
fill_result_tf(struct ata_queued_cmd * qc)5205 static void fill_result_tf(struct ata_queued_cmd *qc)
5206 {
5207 struct ata_port *ap = qc->ap;
5208
5209 qc->result_tf.flags = qc->tf.flags;
5210 ap->ops->qc_fill_rtf(qc);
5211 }
5212
ata_verify_xfer(struct ata_queued_cmd * qc)5213 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5214 {
5215 struct ata_device *dev = qc->dev;
5216
5217 if (!ata_is_data(qc->tf.protocol))
5218 return;
5219
5220 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5221 return;
5222
5223 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5224 }
5225
5226 /**
5227 * ata_qc_complete - Complete an active ATA command
5228 * @qc: Command to complete
5229 *
5230 * Indicate to the mid and upper layers that an ATA command has
5231 * completed, with either an ok or not-ok status.
5232 *
5233 * Refrain from calling this function multiple times when
5234 * successfully completing multiple NCQ commands.
5235 * ata_qc_complete_multiple() should be used instead, which will
5236 * properly update IRQ expect state.
5237 *
5238 * LOCKING:
5239 * spin_lock_irqsave(host lock)
5240 */
ata_qc_complete(struct ata_queued_cmd * qc)5241 void ata_qc_complete(struct ata_queued_cmd *qc)
5242 {
5243 struct ata_port *ap = qc->ap;
5244
5245 /* Trigger the LED (if available) */
5246 ledtrig_disk_activity();
5247
5248 /* XXX: New EH and old EH use different mechanisms to
5249 * synchronize EH with regular execution path.
5250 *
5251 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5252 * Normal execution path is responsible for not accessing a
5253 * failed qc. libata core enforces the rule by returning NULL
5254 * from ata_qc_from_tag() for failed qcs.
5255 *
5256 * Old EH depends on ata_qc_complete() nullifying completion
5257 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5258 * not synchronize with interrupt handler. Only PIO task is
5259 * taken care of.
5260 */
5261 if (ap->ops->error_handler) {
5262 struct ata_device *dev = qc->dev;
5263 struct ata_eh_info *ehi = &dev->link->eh_info;
5264
5265 if (unlikely(qc->err_mask))
5266 qc->flags |= ATA_QCFLAG_FAILED;
5267
5268 /*
5269 * Finish internal commands without any further processing
5270 * and always with the result TF filled.
5271 */
5272 if (unlikely(ata_tag_internal(qc->tag))) {
5273 fill_result_tf(qc);
5274 trace_ata_qc_complete_internal(qc);
5275 __ata_qc_complete(qc);
5276 return;
5277 }
5278
5279 /*
5280 * Non-internal qc has failed. Fill the result TF and
5281 * summon EH.
5282 */
5283 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5284 fill_result_tf(qc);
5285 trace_ata_qc_complete_failed(qc);
5286 ata_qc_schedule_eh(qc);
5287 return;
5288 }
5289
5290 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5291
5292 /* read result TF if requested */
5293 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5294 fill_result_tf(qc);
5295
5296 trace_ata_qc_complete_done(qc);
5297 /* Some commands need post-processing after successful
5298 * completion.
5299 */
5300 switch (qc->tf.command) {
5301 case ATA_CMD_SET_FEATURES:
5302 if (qc->tf.feature != SETFEATURES_WC_ON &&
5303 qc->tf.feature != SETFEATURES_WC_OFF &&
5304 qc->tf.feature != SETFEATURES_RA_ON &&
5305 qc->tf.feature != SETFEATURES_RA_OFF)
5306 break;
5307 /* fall through */
5308 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5309 case ATA_CMD_SET_MULTI: /* multi_count changed */
5310 /* revalidate device */
5311 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5312 ata_port_schedule_eh(ap);
5313 break;
5314
5315 case ATA_CMD_SLEEP:
5316 dev->flags |= ATA_DFLAG_SLEEPING;
5317 break;
5318 }
5319
5320 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5321 ata_verify_xfer(qc);
5322
5323 __ata_qc_complete(qc);
5324 } else {
5325 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5326 return;
5327
5328 /* read result TF if failed or requested */
5329 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5330 fill_result_tf(qc);
5331
5332 __ata_qc_complete(qc);
5333 }
5334 }
5335
5336 /**
5337 * ata_qc_complete_multiple - Complete multiple qcs successfully
5338 * @ap: port in question
5339 * @qc_active: new qc_active mask
5340 *
5341 * Complete in-flight commands. This functions is meant to be
5342 * called from low-level driver's interrupt routine to complete
5343 * requests normally. ap->qc_active and @qc_active is compared
5344 * and commands are completed accordingly.
5345 *
5346 * Always use this function when completing multiple NCQ commands
5347 * from IRQ handlers instead of calling ata_qc_complete()
5348 * multiple times to keep IRQ expect status properly in sync.
5349 *
5350 * LOCKING:
5351 * spin_lock_irqsave(host lock)
5352 *
5353 * RETURNS:
5354 * Number of completed commands on success, -errno otherwise.
5355 */
ata_qc_complete_multiple(struct ata_port * ap,u32 qc_active)5356 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5357 {
5358 int nr_done = 0;
5359 u32 done_mask;
5360
5361 done_mask = ap->qc_active ^ qc_active;
5362
5363 if (unlikely(done_mask & qc_active)) {
5364 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5365 ap->qc_active, qc_active);
5366 return -EINVAL;
5367 }
5368
5369 while (done_mask) {
5370 struct ata_queued_cmd *qc;
5371 unsigned int tag = __ffs(done_mask);
5372
5373 qc = ata_qc_from_tag(ap, tag);
5374 if (qc) {
5375 ata_qc_complete(qc);
5376 nr_done++;
5377 }
5378 done_mask &= ~(1 << tag);
5379 }
5380
5381 return nr_done;
5382 }
5383
5384 /**
5385 * ata_qc_issue - issue taskfile to device
5386 * @qc: command to issue to device
5387 *
5388 * Prepare an ATA command to submission to device.
5389 * This includes mapping the data into a DMA-able
5390 * area, filling in the S/G table, and finally
5391 * writing the taskfile to hardware, starting the command.
5392 *
5393 * LOCKING:
5394 * spin_lock_irqsave(host lock)
5395 */
ata_qc_issue(struct ata_queued_cmd * qc)5396 void ata_qc_issue(struct ata_queued_cmd *qc)
5397 {
5398 struct ata_port *ap = qc->ap;
5399 struct ata_link *link = qc->dev->link;
5400 u8 prot = qc->tf.protocol;
5401
5402 /* Make sure only one non-NCQ command is outstanding. The
5403 * check is skipped for old EH because it reuses active qc to
5404 * request ATAPI sense.
5405 */
5406 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5407
5408 if (ata_is_ncq(prot)) {
5409 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5410
5411 if (!link->sactive)
5412 ap->nr_active_links++;
5413 link->sactive |= 1 << qc->tag;
5414 } else {
5415 WARN_ON_ONCE(link->sactive);
5416
5417 ap->nr_active_links++;
5418 link->active_tag = qc->tag;
5419 }
5420
5421 qc->flags |= ATA_QCFLAG_ACTIVE;
5422 ap->qc_active |= 1 << qc->tag;
5423
5424 /*
5425 * We guarantee to LLDs that they will have at least one
5426 * non-zero sg if the command is a data command.
5427 */
5428 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5429 goto sys_err;
5430
5431 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5432 (ap->flags & ATA_FLAG_PIO_DMA)))
5433 if (ata_sg_setup(qc))
5434 goto sys_err;
5435
5436 /* if device is sleeping, schedule reset and abort the link */
5437 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5438 link->eh_info.action |= ATA_EH_RESET;
5439 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5440 ata_link_abort(link);
5441 return;
5442 }
5443
5444 ap->ops->qc_prep(qc);
5445 trace_ata_qc_issue(qc);
5446 qc->err_mask |= ap->ops->qc_issue(qc);
5447 if (unlikely(qc->err_mask))
5448 goto err;
5449 return;
5450
5451 sys_err:
5452 qc->err_mask |= AC_ERR_SYSTEM;
5453 err:
5454 ata_qc_complete(qc);
5455 }
5456
5457 /**
5458 * sata_scr_valid - test whether SCRs are accessible
5459 * @link: ATA link to test SCR accessibility for
5460 *
5461 * Test whether SCRs are accessible for @link.
5462 *
5463 * LOCKING:
5464 * None.
5465 *
5466 * RETURNS:
5467 * 1 if SCRs are accessible, 0 otherwise.
5468 */
sata_scr_valid(struct ata_link * link)5469 int sata_scr_valid(struct ata_link *link)
5470 {
5471 struct ata_port *ap = link->ap;
5472
5473 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5474 }
5475
5476 /**
5477 * sata_scr_read - read SCR register of the specified port
5478 * @link: ATA link to read SCR for
5479 * @reg: SCR to read
5480 * @val: Place to store read value
5481 *
5482 * Read SCR register @reg of @link into *@val. This function is
5483 * guaranteed to succeed if @link is ap->link, the cable type of
5484 * the port is SATA and the port implements ->scr_read.
5485 *
5486 * LOCKING:
5487 * None if @link is ap->link. Kernel thread context otherwise.
5488 *
5489 * RETURNS:
5490 * 0 on success, negative errno on failure.
5491 */
sata_scr_read(struct ata_link * link,int reg,u32 * val)5492 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5493 {
5494 if (ata_is_host_link(link)) {
5495 if (sata_scr_valid(link))
5496 return link->ap->ops->scr_read(link, reg, val);
5497 return -EOPNOTSUPP;
5498 }
5499
5500 return sata_pmp_scr_read(link, reg, val);
5501 }
5502
5503 /**
5504 * sata_scr_write - write SCR register of the specified port
5505 * @link: ATA link to write SCR for
5506 * @reg: SCR to write
5507 * @val: value to write
5508 *
5509 * Write @val to SCR register @reg of @link. This function is
5510 * guaranteed to succeed if @link is ap->link, the cable type of
5511 * the port is SATA and the port implements ->scr_read.
5512 *
5513 * LOCKING:
5514 * None if @link is ap->link. Kernel thread context otherwise.
5515 *
5516 * RETURNS:
5517 * 0 on success, negative errno on failure.
5518 */
sata_scr_write(struct ata_link * link,int reg,u32 val)5519 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5520 {
5521 if (ata_is_host_link(link)) {
5522 if (sata_scr_valid(link))
5523 return link->ap->ops->scr_write(link, reg, val);
5524 return -EOPNOTSUPP;
5525 }
5526
5527 return sata_pmp_scr_write(link, reg, val);
5528 }
5529
5530 /**
5531 * sata_scr_write_flush - write SCR register of the specified port and flush
5532 * @link: ATA link to write SCR for
5533 * @reg: SCR to write
5534 * @val: value to write
5535 *
5536 * This function is identical to sata_scr_write() except that this
5537 * function performs flush after writing to the register.
5538 *
5539 * LOCKING:
5540 * None if @link is ap->link. Kernel thread context otherwise.
5541 *
5542 * RETURNS:
5543 * 0 on success, negative errno on failure.
5544 */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)5545 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5546 {
5547 if (ata_is_host_link(link)) {
5548 int rc;
5549
5550 if (sata_scr_valid(link)) {
5551 rc = link->ap->ops->scr_write(link, reg, val);
5552 if (rc == 0)
5553 rc = link->ap->ops->scr_read(link, reg, &val);
5554 return rc;
5555 }
5556 return -EOPNOTSUPP;
5557 }
5558
5559 return sata_pmp_scr_write(link, reg, val);
5560 }
5561
5562 /**
5563 * ata_phys_link_online - test whether the given link is online
5564 * @link: ATA link to test
5565 *
5566 * Test whether @link is online. Note that this function returns
5567 * 0 if online status of @link cannot be obtained, so
5568 * ata_link_online(link) != !ata_link_offline(link).
5569 *
5570 * LOCKING:
5571 * None.
5572 *
5573 * RETURNS:
5574 * True if the port online status is available and online.
5575 */
ata_phys_link_online(struct ata_link * link)5576 bool ata_phys_link_online(struct ata_link *link)
5577 {
5578 u32 sstatus;
5579
5580 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5581 ata_sstatus_online(sstatus))
5582 return true;
5583 return false;
5584 }
5585
5586 /**
5587 * ata_phys_link_offline - test whether the given link is offline
5588 * @link: ATA link to test
5589 *
5590 * Test whether @link is offline. Note that this function
5591 * returns 0 if offline status of @link cannot be obtained, so
5592 * ata_link_online(link) != !ata_link_offline(link).
5593 *
5594 * LOCKING:
5595 * None.
5596 *
5597 * RETURNS:
5598 * True if the port offline status is available and offline.
5599 */
ata_phys_link_offline(struct ata_link * link)5600 bool ata_phys_link_offline(struct ata_link *link)
5601 {
5602 u32 sstatus;
5603
5604 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5605 !ata_sstatus_online(sstatus))
5606 return true;
5607 return false;
5608 }
5609
5610 /**
5611 * ata_link_online - test whether the given link is online
5612 * @link: ATA link to test
5613 *
5614 * Test whether @link is online. This is identical to
5615 * ata_phys_link_online() when there's no slave link. When
5616 * there's a slave link, this function should only be called on
5617 * the master link and will return true if any of M/S links is
5618 * online.
5619 *
5620 * LOCKING:
5621 * None.
5622 *
5623 * RETURNS:
5624 * True if the port online status is available and online.
5625 */
ata_link_online(struct ata_link * link)5626 bool ata_link_online(struct ata_link *link)
5627 {
5628 struct ata_link *slave = link->ap->slave_link;
5629
5630 WARN_ON(link == slave); /* shouldn't be called on slave link */
5631
5632 return ata_phys_link_online(link) ||
5633 (slave && ata_phys_link_online(slave));
5634 }
5635
5636 /**
5637 * ata_link_offline - test whether the given link is offline
5638 * @link: ATA link to test
5639 *
5640 * Test whether @link is offline. This is identical to
5641 * ata_phys_link_offline() when there's no slave link. When
5642 * there's a slave link, this function should only be called on
5643 * the master link and will return true if both M/S links are
5644 * offline.
5645 *
5646 * LOCKING:
5647 * None.
5648 *
5649 * RETURNS:
5650 * True if the port offline status is available and offline.
5651 */
ata_link_offline(struct ata_link * link)5652 bool ata_link_offline(struct ata_link *link)
5653 {
5654 struct ata_link *slave = link->ap->slave_link;
5655
5656 WARN_ON(link == slave); /* shouldn't be called on slave link */
5657
5658 return ata_phys_link_offline(link) &&
5659 (!slave || ata_phys_link_offline(slave));
5660 }
5661
5662 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5663 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5664 unsigned int action, unsigned int ehi_flags,
5665 bool async)
5666 {
5667 struct ata_link *link;
5668 unsigned long flags;
5669
5670 /* Previous resume operation might still be in
5671 * progress. Wait for PM_PENDING to clear.
5672 */
5673 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5674 ata_port_wait_eh(ap);
5675 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5676 }
5677
5678 /* request PM ops to EH */
5679 spin_lock_irqsave(ap->lock, flags);
5680
5681 ap->pm_mesg = mesg;
5682 ap->pflags |= ATA_PFLAG_PM_PENDING;
5683 ata_for_each_link(link, ap, HOST_FIRST) {
5684 link->eh_info.action |= action;
5685 link->eh_info.flags |= ehi_flags;
5686 }
5687
5688 ata_port_schedule_eh(ap);
5689
5690 spin_unlock_irqrestore(ap->lock, flags);
5691
5692 if (!async) {
5693 ata_port_wait_eh(ap);
5694 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5695 }
5696 }
5697
5698 /*
5699 * On some hardware, device fails to respond after spun down for suspend. As
5700 * the device won't be used before being resumed, we don't need to touch the
5701 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5702 *
5703 * http://thread.gmane.org/gmane.linux.ide/46764
5704 */
5705 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5706 | ATA_EHI_NO_AUTOPSY
5707 | ATA_EHI_NO_RECOVERY;
5708
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5709 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5710 {
5711 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5712 }
5713
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5714 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5715 {
5716 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5717 }
5718
ata_port_pm_suspend(struct device * dev)5719 static int ata_port_pm_suspend(struct device *dev)
5720 {
5721 struct ata_port *ap = to_ata_port(dev);
5722
5723 if (pm_runtime_suspended(dev))
5724 return 0;
5725
5726 ata_port_suspend(ap, PMSG_SUSPEND);
5727 return 0;
5728 }
5729
ata_port_pm_freeze(struct device * dev)5730 static int ata_port_pm_freeze(struct device *dev)
5731 {
5732 struct ata_port *ap = to_ata_port(dev);
5733
5734 if (pm_runtime_suspended(dev))
5735 return 0;
5736
5737 ata_port_suspend(ap, PMSG_FREEZE);
5738 return 0;
5739 }
5740
ata_port_pm_poweroff(struct device * dev)5741 static int ata_port_pm_poweroff(struct device *dev)
5742 {
5743 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5744 return 0;
5745 }
5746
5747 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5748 | ATA_EHI_QUIET;
5749
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5750 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5751 {
5752 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5753 }
5754
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5755 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5756 {
5757 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5758 }
5759
ata_port_pm_resume(struct device * dev)5760 static int ata_port_pm_resume(struct device *dev)
5761 {
5762 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5763 pm_runtime_disable(dev);
5764 pm_runtime_set_active(dev);
5765 pm_runtime_enable(dev);
5766 return 0;
5767 }
5768
5769 /*
5770 * For ODDs, the upper layer will poll for media change every few seconds,
5771 * which will make it enter and leave suspend state every few seconds. And
5772 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5773 * is very little and the ODD may malfunction after constantly being reset.
5774 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5775 * ODD is attached to the port.
5776 */
ata_port_runtime_idle(struct device * dev)5777 static int ata_port_runtime_idle(struct device *dev)
5778 {
5779 struct ata_port *ap = to_ata_port(dev);
5780 struct ata_link *link;
5781 struct ata_device *adev;
5782
5783 ata_for_each_link(link, ap, HOST_FIRST) {
5784 ata_for_each_dev(adev, link, ENABLED)
5785 if (adev->class == ATA_DEV_ATAPI &&
5786 !zpodd_dev_enabled(adev))
5787 return -EBUSY;
5788 }
5789
5790 return 0;
5791 }
5792
ata_port_runtime_suspend(struct device * dev)5793 static int ata_port_runtime_suspend(struct device *dev)
5794 {
5795 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5796 return 0;
5797 }
5798
ata_port_runtime_resume(struct device * dev)5799 static int ata_port_runtime_resume(struct device *dev)
5800 {
5801 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5802 return 0;
5803 }
5804
5805 static const struct dev_pm_ops ata_port_pm_ops = {
5806 .suspend = ata_port_pm_suspend,
5807 .resume = ata_port_pm_resume,
5808 .freeze = ata_port_pm_freeze,
5809 .thaw = ata_port_pm_resume,
5810 .poweroff = ata_port_pm_poweroff,
5811 .restore = ata_port_pm_resume,
5812
5813 .runtime_suspend = ata_port_runtime_suspend,
5814 .runtime_resume = ata_port_runtime_resume,
5815 .runtime_idle = ata_port_runtime_idle,
5816 };
5817
5818 /* sas ports don't participate in pm runtime management of ata_ports,
5819 * and need to resume ata devices at the domain level, not the per-port
5820 * level. sas suspend/resume is async to allow parallel port recovery
5821 * since sas has multiple ata_port instances per Scsi_Host.
5822 */
ata_sas_port_suspend(struct ata_port * ap)5823 void ata_sas_port_suspend(struct ata_port *ap)
5824 {
5825 ata_port_suspend_async(ap, PMSG_SUSPEND);
5826 }
5827 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5828
ata_sas_port_resume(struct ata_port * ap)5829 void ata_sas_port_resume(struct ata_port *ap)
5830 {
5831 ata_port_resume_async(ap, PMSG_RESUME);
5832 }
5833 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5834
5835 /**
5836 * ata_host_suspend - suspend host
5837 * @host: host to suspend
5838 * @mesg: PM message
5839 *
5840 * Suspend @host. Actual operation is performed by port suspend.
5841 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5842 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5843 {
5844 host->dev->power.power_state = mesg;
5845 return 0;
5846 }
5847
5848 /**
5849 * ata_host_resume - resume host
5850 * @host: host to resume
5851 *
5852 * Resume @host. Actual operation is performed by port resume.
5853 */
ata_host_resume(struct ata_host * host)5854 void ata_host_resume(struct ata_host *host)
5855 {
5856 host->dev->power.power_state = PMSG_ON;
5857 }
5858 #endif
5859
5860 struct device_type ata_port_type = {
5861 .name = "ata_port",
5862 #ifdef CONFIG_PM
5863 .pm = &ata_port_pm_ops,
5864 #endif
5865 };
5866
5867 /**
5868 * ata_dev_init - Initialize an ata_device structure
5869 * @dev: Device structure to initialize
5870 *
5871 * Initialize @dev in preparation for probing.
5872 *
5873 * LOCKING:
5874 * Inherited from caller.
5875 */
ata_dev_init(struct ata_device * dev)5876 void ata_dev_init(struct ata_device *dev)
5877 {
5878 struct ata_link *link = ata_dev_phys_link(dev);
5879 struct ata_port *ap = link->ap;
5880 unsigned long flags;
5881
5882 /* SATA spd limit is bound to the attached device, reset together */
5883 link->sata_spd_limit = link->hw_sata_spd_limit;
5884 link->sata_spd = 0;
5885
5886 /* High bits of dev->flags are used to record warm plug
5887 * requests which occur asynchronously. Synchronize using
5888 * host lock.
5889 */
5890 spin_lock_irqsave(ap->lock, flags);
5891 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5892 dev->horkage = 0;
5893 spin_unlock_irqrestore(ap->lock, flags);
5894
5895 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5896 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5897 dev->pio_mask = UINT_MAX;
5898 dev->mwdma_mask = UINT_MAX;
5899 dev->udma_mask = UINT_MAX;
5900 }
5901
5902 /**
5903 * ata_link_init - Initialize an ata_link structure
5904 * @ap: ATA port link is attached to
5905 * @link: Link structure to initialize
5906 * @pmp: Port multiplier port number
5907 *
5908 * Initialize @link.
5909 *
5910 * LOCKING:
5911 * Kernel thread context (may sleep)
5912 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5913 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5914 {
5915 int i;
5916
5917 /* clear everything except for devices */
5918 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5919 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5920
5921 link->ap = ap;
5922 link->pmp = pmp;
5923 link->active_tag = ATA_TAG_POISON;
5924 link->hw_sata_spd_limit = UINT_MAX;
5925
5926 /* can't use iterator, ap isn't initialized yet */
5927 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5928 struct ata_device *dev = &link->device[i];
5929
5930 dev->link = link;
5931 dev->devno = dev - link->device;
5932 #ifdef CONFIG_ATA_ACPI
5933 dev->gtf_filter = ata_acpi_gtf_filter;
5934 #endif
5935 ata_dev_init(dev);
5936 }
5937 }
5938
5939 /**
5940 * sata_link_init_spd - Initialize link->sata_spd_limit
5941 * @link: Link to configure sata_spd_limit for
5942 *
5943 * Initialize @link->[hw_]sata_spd_limit to the currently
5944 * configured value.
5945 *
5946 * LOCKING:
5947 * Kernel thread context (may sleep).
5948 *
5949 * RETURNS:
5950 * 0 on success, -errno on failure.
5951 */
sata_link_init_spd(struct ata_link * link)5952 int sata_link_init_spd(struct ata_link *link)
5953 {
5954 u8 spd;
5955 int rc;
5956
5957 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5958 if (rc)
5959 return rc;
5960
5961 spd = (link->saved_scontrol >> 4) & 0xf;
5962 if (spd)
5963 link->hw_sata_spd_limit &= (1 << spd) - 1;
5964
5965 ata_force_link_limits(link);
5966
5967 link->sata_spd_limit = link->hw_sata_spd_limit;
5968
5969 return 0;
5970 }
5971
5972 /**
5973 * ata_port_alloc - allocate and initialize basic ATA port resources
5974 * @host: ATA host this allocated port belongs to
5975 *
5976 * Allocate and initialize basic ATA port resources.
5977 *
5978 * RETURNS:
5979 * Allocate ATA port on success, NULL on failure.
5980 *
5981 * LOCKING:
5982 * Inherited from calling layer (may sleep).
5983 */
ata_port_alloc(struct ata_host * host)5984 struct ata_port *ata_port_alloc(struct ata_host *host)
5985 {
5986 struct ata_port *ap;
5987
5988 DPRINTK("ENTER\n");
5989
5990 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5991 if (!ap)
5992 return NULL;
5993
5994 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5995 ap->lock = &host->lock;
5996 ap->print_id = -1;
5997 ap->local_port_no = -1;
5998 ap->host = host;
5999 ap->dev = host->dev;
6000
6001 #if defined(ATA_VERBOSE_DEBUG)
6002 /* turn on all debugging levels */
6003 ap->msg_enable = 0x00FF;
6004 #elif defined(ATA_DEBUG)
6005 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6006 #else
6007 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6008 #endif
6009
6010 mutex_init(&ap->scsi_scan_mutex);
6011 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6012 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6013 INIT_LIST_HEAD(&ap->eh_done_q);
6014 init_waitqueue_head(&ap->eh_wait_q);
6015 init_completion(&ap->park_req_pending);
6016 setup_deferrable_timer(&ap->fastdrain_timer,
6017 ata_eh_fastdrain_timerfn,
6018 (unsigned long)ap);
6019
6020 ap->cbl = ATA_CBL_NONE;
6021
6022 ata_link_init(ap, &ap->link, 0);
6023
6024 #ifdef ATA_IRQ_TRAP
6025 ap->stats.unhandled_irq = 1;
6026 ap->stats.idle_irq = 1;
6027 #endif
6028 ata_sff_port_init(ap);
6029
6030 return ap;
6031 }
6032
ata_host_release(struct device * gendev,void * res)6033 static void ata_host_release(struct device *gendev, void *res)
6034 {
6035 struct ata_host *host = dev_get_drvdata(gendev);
6036 int i;
6037
6038 for (i = 0; i < host->n_ports; i++) {
6039 struct ata_port *ap = host->ports[i];
6040
6041 if (!ap)
6042 continue;
6043
6044 if (ap->scsi_host)
6045 scsi_host_put(ap->scsi_host);
6046
6047 kfree(ap->pmp_link);
6048 kfree(ap->slave_link);
6049 kfree(ap);
6050 host->ports[i] = NULL;
6051 }
6052
6053 dev_set_drvdata(gendev, NULL);
6054 }
6055
6056 /**
6057 * ata_host_alloc - allocate and init basic ATA host resources
6058 * @dev: generic device this host is associated with
6059 * @max_ports: maximum number of ATA ports associated with this host
6060 *
6061 * Allocate and initialize basic ATA host resources. LLD calls
6062 * this function to allocate a host, initializes it fully and
6063 * attaches it using ata_host_register().
6064 *
6065 * @max_ports ports are allocated and host->n_ports is
6066 * initialized to @max_ports. The caller is allowed to decrease
6067 * host->n_ports before calling ata_host_register(). The unused
6068 * ports will be automatically freed on registration.
6069 *
6070 * RETURNS:
6071 * Allocate ATA host on success, NULL on failure.
6072 *
6073 * LOCKING:
6074 * Inherited from calling layer (may sleep).
6075 */
ata_host_alloc(struct device * dev,int max_ports)6076 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6077 {
6078 struct ata_host *host;
6079 size_t sz;
6080 int i;
6081
6082 DPRINTK("ENTER\n");
6083
6084 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6085 return NULL;
6086
6087 /* alloc a container for our list of ATA ports (buses) */
6088 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6089 /* alloc a container for our list of ATA ports (buses) */
6090 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6091 if (!host)
6092 goto err_out;
6093
6094 devres_add(dev, host);
6095 dev_set_drvdata(dev, host);
6096
6097 spin_lock_init(&host->lock);
6098 mutex_init(&host->eh_mutex);
6099 host->dev = dev;
6100 host->n_ports = max_ports;
6101
6102 /* allocate ports bound to this host */
6103 for (i = 0; i < max_ports; i++) {
6104 struct ata_port *ap;
6105
6106 ap = ata_port_alloc(host);
6107 if (!ap)
6108 goto err_out;
6109
6110 ap->port_no = i;
6111 host->ports[i] = ap;
6112 }
6113
6114 devres_remove_group(dev, NULL);
6115 return host;
6116
6117 err_out:
6118 devres_release_group(dev, NULL);
6119 return NULL;
6120 }
6121
6122 /**
6123 * ata_host_alloc_pinfo - alloc host and init with port_info array
6124 * @dev: generic device this host is associated with
6125 * @ppi: array of ATA port_info to initialize host with
6126 * @n_ports: number of ATA ports attached to this host
6127 *
6128 * Allocate ATA host and initialize with info from @ppi. If NULL
6129 * terminated, @ppi may contain fewer entries than @n_ports. The
6130 * last entry will be used for the remaining ports.
6131 *
6132 * RETURNS:
6133 * Allocate ATA host on success, NULL on failure.
6134 *
6135 * LOCKING:
6136 * Inherited from calling layer (may sleep).
6137 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)6138 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6139 const struct ata_port_info * const * ppi,
6140 int n_ports)
6141 {
6142 const struct ata_port_info *pi;
6143 struct ata_host *host;
6144 int i, j;
6145
6146 host = ata_host_alloc(dev, n_ports);
6147 if (!host)
6148 return NULL;
6149
6150 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6151 struct ata_port *ap = host->ports[i];
6152
6153 if (ppi[j])
6154 pi = ppi[j++];
6155
6156 ap->pio_mask = pi->pio_mask;
6157 ap->mwdma_mask = pi->mwdma_mask;
6158 ap->udma_mask = pi->udma_mask;
6159 ap->flags |= pi->flags;
6160 ap->link.flags |= pi->link_flags;
6161 ap->ops = pi->port_ops;
6162
6163 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6164 host->ops = pi->port_ops;
6165 }
6166
6167 return host;
6168 }
6169
6170 /**
6171 * ata_slave_link_init - initialize slave link
6172 * @ap: port to initialize slave link for
6173 *
6174 * Create and initialize slave link for @ap. This enables slave
6175 * link handling on the port.
6176 *
6177 * In libata, a port contains links and a link contains devices.
6178 * There is single host link but if a PMP is attached to it,
6179 * there can be multiple fan-out links. On SATA, there's usually
6180 * a single device connected to a link but PATA and SATA
6181 * controllers emulating TF based interface can have two - master
6182 * and slave.
6183 *
6184 * However, there are a few controllers which don't fit into this
6185 * abstraction too well - SATA controllers which emulate TF
6186 * interface with both master and slave devices but also have
6187 * separate SCR register sets for each device. These controllers
6188 * need separate links for physical link handling
6189 * (e.g. onlineness, link speed) but should be treated like a
6190 * traditional M/S controller for everything else (e.g. command
6191 * issue, softreset).
6192 *
6193 * slave_link is libata's way of handling this class of
6194 * controllers without impacting core layer too much. For
6195 * anything other than physical link handling, the default host
6196 * link is used for both master and slave. For physical link
6197 * handling, separate @ap->slave_link is used. All dirty details
6198 * are implemented inside libata core layer. From LLD's POV, the
6199 * only difference is that prereset, hardreset and postreset are
6200 * called once more for the slave link, so the reset sequence
6201 * looks like the following.
6202 *
6203 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6204 * softreset(M) -> postreset(M) -> postreset(S)
6205 *
6206 * Note that softreset is called only for the master. Softreset
6207 * resets both M/S by definition, so SRST on master should handle
6208 * both (the standard method will work just fine).
6209 *
6210 * LOCKING:
6211 * Should be called before host is registered.
6212 *
6213 * RETURNS:
6214 * 0 on success, -errno on failure.
6215 */
ata_slave_link_init(struct ata_port * ap)6216 int ata_slave_link_init(struct ata_port *ap)
6217 {
6218 struct ata_link *link;
6219
6220 WARN_ON(ap->slave_link);
6221 WARN_ON(ap->flags & ATA_FLAG_PMP);
6222
6223 link = kzalloc(sizeof(*link), GFP_KERNEL);
6224 if (!link)
6225 return -ENOMEM;
6226
6227 ata_link_init(ap, link, 1);
6228 ap->slave_link = link;
6229 return 0;
6230 }
6231
ata_host_stop(struct device * gendev,void * res)6232 static void ata_host_stop(struct device *gendev, void *res)
6233 {
6234 struct ata_host *host = dev_get_drvdata(gendev);
6235 int i;
6236
6237 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6238
6239 for (i = 0; i < host->n_ports; i++) {
6240 struct ata_port *ap = host->ports[i];
6241
6242 if (ap->ops->port_stop)
6243 ap->ops->port_stop(ap);
6244 }
6245
6246 if (host->ops->host_stop)
6247 host->ops->host_stop(host);
6248 }
6249
6250 /**
6251 * ata_finalize_port_ops - finalize ata_port_operations
6252 * @ops: ata_port_operations to finalize
6253 *
6254 * An ata_port_operations can inherit from another ops and that
6255 * ops can again inherit from another. This can go on as many
6256 * times as necessary as long as there is no loop in the
6257 * inheritance chain.
6258 *
6259 * Ops tables are finalized when the host is started. NULL or
6260 * unspecified entries are inherited from the closet ancestor
6261 * which has the method and the entry is populated with it.
6262 * After finalization, the ops table directly points to all the
6263 * methods and ->inherits is no longer necessary and cleared.
6264 *
6265 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6266 *
6267 * LOCKING:
6268 * None.
6269 */
ata_finalize_port_ops(struct ata_port_operations * ops)6270 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6271 {
6272 static DEFINE_SPINLOCK(lock);
6273 const struct ata_port_operations *cur;
6274 void **begin = (void **)ops;
6275 void **end = (void **)&ops->inherits;
6276 void **pp;
6277
6278 if (!ops || !ops->inherits)
6279 return;
6280
6281 spin_lock(&lock);
6282
6283 for (cur = ops->inherits; cur; cur = cur->inherits) {
6284 void **inherit = (void **)cur;
6285
6286 for (pp = begin; pp < end; pp++, inherit++)
6287 if (!*pp)
6288 *pp = *inherit;
6289 }
6290
6291 for (pp = begin; pp < end; pp++)
6292 if (IS_ERR(*pp))
6293 *pp = NULL;
6294
6295 ops->inherits = NULL;
6296
6297 spin_unlock(&lock);
6298 }
6299
6300 /**
6301 * ata_host_start - start and freeze ports of an ATA host
6302 * @host: ATA host to start ports for
6303 *
6304 * Start and then freeze ports of @host. Started status is
6305 * recorded in host->flags, so this function can be called
6306 * multiple times. Ports are guaranteed to get started only
6307 * once. If host->ops isn't initialized yet, its set to the
6308 * first non-dummy port ops.
6309 *
6310 * LOCKING:
6311 * Inherited from calling layer (may sleep).
6312 *
6313 * RETURNS:
6314 * 0 if all ports are started successfully, -errno otherwise.
6315 */
ata_host_start(struct ata_host * host)6316 int ata_host_start(struct ata_host *host)
6317 {
6318 int have_stop = 0;
6319 void *start_dr = NULL;
6320 int i, rc;
6321
6322 if (host->flags & ATA_HOST_STARTED)
6323 return 0;
6324
6325 ata_finalize_port_ops(host->ops);
6326
6327 for (i = 0; i < host->n_ports; i++) {
6328 struct ata_port *ap = host->ports[i];
6329
6330 ata_finalize_port_ops(ap->ops);
6331
6332 if (!host->ops && !ata_port_is_dummy(ap))
6333 host->ops = ap->ops;
6334
6335 if (ap->ops->port_stop)
6336 have_stop = 1;
6337 }
6338
6339 if (host->ops->host_stop)
6340 have_stop = 1;
6341
6342 if (have_stop) {
6343 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6344 if (!start_dr)
6345 return -ENOMEM;
6346 }
6347
6348 for (i = 0; i < host->n_ports; i++) {
6349 struct ata_port *ap = host->ports[i];
6350
6351 if (ap->ops->port_start) {
6352 rc = ap->ops->port_start(ap);
6353 if (rc) {
6354 if (rc != -ENODEV)
6355 dev_err(host->dev,
6356 "failed to start port %d (errno=%d)\n",
6357 i, rc);
6358 goto err_out;
6359 }
6360 }
6361 ata_eh_freeze_port(ap);
6362 }
6363
6364 if (start_dr)
6365 devres_add(host->dev, start_dr);
6366 host->flags |= ATA_HOST_STARTED;
6367 return 0;
6368
6369 err_out:
6370 while (--i >= 0) {
6371 struct ata_port *ap = host->ports[i];
6372
6373 if (ap->ops->port_stop)
6374 ap->ops->port_stop(ap);
6375 }
6376 devres_free(start_dr);
6377 return rc;
6378 }
6379
6380 /**
6381 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6382 * @host: host to initialize
6383 * @dev: device host is attached to
6384 * @ops: port_ops
6385 *
6386 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)6387 void ata_host_init(struct ata_host *host, struct device *dev,
6388 struct ata_port_operations *ops)
6389 {
6390 spin_lock_init(&host->lock);
6391 mutex_init(&host->eh_mutex);
6392 host->n_tags = ATA_MAX_QUEUE - 1;
6393 host->dev = dev;
6394 host->ops = ops;
6395 }
6396
__ata_port_probe(struct ata_port * ap)6397 void __ata_port_probe(struct ata_port *ap)
6398 {
6399 struct ata_eh_info *ehi = &ap->link.eh_info;
6400 unsigned long flags;
6401
6402 /* kick EH for boot probing */
6403 spin_lock_irqsave(ap->lock, flags);
6404
6405 ehi->probe_mask |= ATA_ALL_DEVICES;
6406 ehi->action |= ATA_EH_RESET;
6407 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6408
6409 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6410 ap->pflags |= ATA_PFLAG_LOADING;
6411 ata_port_schedule_eh(ap);
6412
6413 spin_unlock_irqrestore(ap->lock, flags);
6414 }
6415
ata_port_probe(struct ata_port * ap)6416 int ata_port_probe(struct ata_port *ap)
6417 {
6418 int rc = 0;
6419
6420 if (ap->ops->error_handler) {
6421 __ata_port_probe(ap);
6422 ata_port_wait_eh(ap);
6423 } else {
6424 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6425 rc = ata_bus_probe(ap);
6426 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6427 }
6428 return rc;
6429 }
6430
6431
async_port_probe(void * data,async_cookie_t cookie)6432 static void async_port_probe(void *data, async_cookie_t cookie)
6433 {
6434 struct ata_port *ap = data;
6435
6436 /*
6437 * If we're not allowed to scan this host in parallel,
6438 * we need to wait until all previous scans have completed
6439 * before going further.
6440 * Jeff Garzik says this is only within a controller, so we
6441 * don't need to wait for port 0, only for later ports.
6442 */
6443 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6444 async_synchronize_cookie(cookie);
6445
6446 (void)ata_port_probe(ap);
6447
6448 /* in order to keep device order, we need to synchronize at this point */
6449 async_synchronize_cookie(cookie);
6450
6451 ata_scsi_scan_host(ap, 1);
6452 }
6453
6454 /**
6455 * ata_host_register - register initialized ATA host
6456 * @host: ATA host to register
6457 * @sht: template for SCSI host
6458 *
6459 * Register initialized ATA host. @host is allocated using
6460 * ata_host_alloc() and fully initialized by LLD. This function
6461 * starts ports, registers @host with ATA and SCSI layers and
6462 * probe registered devices.
6463 *
6464 * LOCKING:
6465 * Inherited from calling layer (may sleep).
6466 *
6467 * RETURNS:
6468 * 0 on success, -errno otherwise.
6469 */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)6470 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6471 {
6472 int i, rc;
6473
6474 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6475
6476 /* host must have been started */
6477 if (!(host->flags & ATA_HOST_STARTED)) {
6478 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6479 WARN_ON(1);
6480 return -EINVAL;
6481 }
6482
6483 /* Blow away unused ports. This happens when LLD can't
6484 * determine the exact number of ports to allocate at
6485 * allocation time.
6486 */
6487 for (i = host->n_ports; host->ports[i]; i++)
6488 kfree(host->ports[i]);
6489
6490 /* give ports names and add SCSI hosts */
6491 for (i = 0; i < host->n_ports; i++) {
6492 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6493 host->ports[i]->local_port_no = i + 1;
6494 }
6495
6496 /* Create associated sysfs transport objects */
6497 for (i = 0; i < host->n_ports; i++) {
6498 rc = ata_tport_add(host->dev,host->ports[i]);
6499 if (rc) {
6500 goto err_tadd;
6501 }
6502 }
6503
6504 rc = ata_scsi_add_hosts(host, sht);
6505 if (rc)
6506 goto err_tadd;
6507
6508 /* set cable, sata_spd_limit and report */
6509 for (i = 0; i < host->n_ports; i++) {
6510 struct ata_port *ap = host->ports[i];
6511 unsigned long xfer_mask;
6512
6513 /* set SATA cable type if still unset */
6514 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6515 ap->cbl = ATA_CBL_SATA;
6516
6517 /* init sata_spd_limit to the current value */
6518 sata_link_init_spd(&ap->link);
6519 if (ap->slave_link)
6520 sata_link_init_spd(ap->slave_link);
6521
6522 /* print per-port info to dmesg */
6523 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6524 ap->udma_mask);
6525
6526 if (!ata_port_is_dummy(ap)) {
6527 ata_port_info(ap, "%cATA max %s %s\n",
6528 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6529 ata_mode_string(xfer_mask),
6530 ap->link.eh_info.desc);
6531 ata_ehi_clear_desc(&ap->link.eh_info);
6532 } else
6533 ata_port_info(ap, "DUMMY\n");
6534 }
6535
6536 /* perform each probe asynchronously */
6537 for (i = 0; i < host->n_ports; i++) {
6538 struct ata_port *ap = host->ports[i];
6539 async_schedule(async_port_probe, ap);
6540 }
6541
6542 return 0;
6543
6544 err_tadd:
6545 while (--i >= 0) {
6546 ata_tport_delete(host->ports[i]);
6547 }
6548 return rc;
6549
6550 }
6551
6552 /**
6553 * ata_host_activate - start host, request IRQ and register it
6554 * @host: target ATA host
6555 * @irq: IRQ to request
6556 * @irq_handler: irq_handler used when requesting IRQ
6557 * @irq_flags: irq_flags used when requesting IRQ
6558 * @sht: scsi_host_template to use when registering the host
6559 *
6560 * After allocating an ATA host and initializing it, most libata
6561 * LLDs perform three steps to activate the host - start host,
6562 * request IRQ and register it. This helper takes necessary
6563 * arguments and performs the three steps in one go.
6564 *
6565 * An invalid IRQ skips the IRQ registration and expects the host to
6566 * have set polling mode on the port. In this case, @irq_handler
6567 * should be NULL.
6568 *
6569 * LOCKING:
6570 * Inherited from calling layer (may sleep).
6571 *
6572 * RETURNS:
6573 * 0 on success, -errno otherwise.
6574 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)6575 int ata_host_activate(struct ata_host *host, int irq,
6576 irq_handler_t irq_handler, unsigned long irq_flags,
6577 struct scsi_host_template *sht)
6578 {
6579 int i, rc;
6580 char *irq_desc;
6581
6582 rc = ata_host_start(host);
6583 if (rc)
6584 return rc;
6585
6586 /* Special case for polling mode */
6587 if (!irq) {
6588 WARN_ON(irq_handler);
6589 return ata_host_register(host, sht);
6590 }
6591
6592 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6593 dev_driver_string(host->dev),
6594 dev_name(host->dev));
6595 if (!irq_desc)
6596 return -ENOMEM;
6597
6598 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6599 irq_desc, host);
6600 if (rc)
6601 return rc;
6602
6603 for (i = 0; i < host->n_ports; i++)
6604 ata_port_desc(host->ports[i], "irq %d", irq);
6605
6606 rc = ata_host_register(host, sht);
6607 /* if failed, just free the IRQ and leave ports alone */
6608 if (rc)
6609 devm_free_irq(host->dev, irq, host);
6610
6611 return rc;
6612 }
6613
6614 /**
6615 * ata_port_detach - Detach ATA port in preparation of device removal
6616 * @ap: ATA port to be detached
6617 *
6618 * Detach all ATA devices and the associated SCSI devices of @ap;
6619 * then, remove the associated SCSI host. @ap is guaranteed to
6620 * be quiescent on return from this function.
6621 *
6622 * LOCKING:
6623 * Kernel thread context (may sleep).
6624 */
ata_port_detach(struct ata_port * ap)6625 static void ata_port_detach(struct ata_port *ap)
6626 {
6627 unsigned long flags;
6628 struct ata_link *link;
6629 struct ata_device *dev;
6630
6631 if (!ap->ops->error_handler)
6632 goto skip_eh;
6633
6634 /* tell EH we're leaving & flush EH */
6635 spin_lock_irqsave(ap->lock, flags);
6636 ap->pflags |= ATA_PFLAG_UNLOADING;
6637 ata_port_schedule_eh(ap);
6638 spin_unlock_irqrestore(ap->lock, flags);
6639
6640 /* wait till EH commits suicide */
6641 ata_port_wait_eh(ap);
6642
6643 /* it better be dead now */
6644 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6645
6646 cancel_delayed_work_sync(&ap->hotplug_task);
6647
6648 skip_eh:
6649 /* clean up zpodd on port removal */
6650 ata_for_each_link(link, ap, HOST_FIRST) {
6651 ata_for_each_dev(dev, link, ALL) {
6652 if (zpodd_dev_enabled(dev))
6653 zpodd_exit(dev);
6654 }
6655 }
6656 if (ap->pmp_link) {
6657 int i;
6658 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6659 ata_tlink_delete(&ap->pmp_link[i]);
6660 }
6661 /* remove the associated SCSI host */
6662 scsi_remove_host(ap->scsi_host);
6663 ata_tport_delete(ap);
6664 }
6665
6666 /**
6667 * ata_host_detach - Detach all ports of an ATA host
6668 * @host: Host to detach
6669 *
6670 * Detach all ports of @host.
6671 *
6672 * LOCKING:
6673 * Kernel thread context (may sleep).
6674 */
ata_host_detach(struct ata_host * host)6675 void ata_host_detach(struct ata_host *host)
6676 {
6677 int i;
6678
6679 /* Ensure ata_port probe has completed */
6680 async_synchronize_full();
6681
6682 for (i = 0; i < host->n_ports; i++)
6683 ata_port_detach(host->ports[i]);
6684
6685 /* the host is dead now, dissociate ACPI */
6686 ata_acpi_dissociate(host);
6687 }
6688
6689 #ifdef CONFIG_PCI
6690
6691 /**
6692 * ata_pci_remove_one - PCI layer callback for device removal
6693 * @pdev: PCI device that was removed
6694 *
6695 * PCI layer indicates to libata via this hook that hot-unplug or
6696 * module unload event has occurred. Detach all ports. Resource
6697 * release is handled via devres.
6698 *
6699 * LOCKING:
6700 * Inherited from PCI layer (may sleep).
6701 */
ata_pci_remove_one(struct pci_dev * pdev)6702 void ata_pci_remove_one(struct pci_dev *pdev)
6703 {
6704 struct ata_host *host = pci_get_drvdata(pdev);
6705
6706 ata_host_detach(host);
6707 }
6708
ata_pci_shutdown_one(struct pci_dev * pdev)6709 void ata_pci_shutdown_one(struct pci_dev *pdev)
6710 {
6711 struct ata_host *host = pci_get_drvdata(pdev);
6712 int i;
6713
6714 for (i = 0; i < host->n_ports; i++) {
6715 struct ata_port *ap = host->ports[i];
6716
6717 ap->pflags |= ATA_PFLAG_FROZEN;
6718
6719 /* Disable port interrupts */
6720 if (ap->ops->freeze)
6721 ap->ops->freeze(ap);
6722
6723 /* Stop the port DMA engines */
6724 if (ap->ops->port_stop)
6725 ap->ops->port_stop(ap);
6726 }
6727 }
6728
6729 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6730 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6731 {
6732 unsigned long tmp = 0;
6733
6734 switch (bits->width) {
6735 case 1: {
6736 u8 tmp8 = 0;
6737 pci_read_config_byte(pdev, bits->reg, &tmp8);
6738 tmp = tmp8;
6739 break;
6740 }
6741 case 2: {
6742 u16 tmp16 = 0;
6743 pci_read_config_word(pdev, bits->reg, &tmp16);
6744 tmp = tmp16;
6745 break;
6746 }
6747 case 4: {
6748 u32 tmp32 = 0;
6749 pci_read_config_dword(pdev, bits->reg, &tmp32);
6750 tmp = tmp32;
6751 break;
6752 }
6753
6754 default:
6755 return -EINVAL;
6756 }
6757
6758 tmp &= bits->mask;
6759
6760 return (tmp == bits->val) ? 1 : 0;
6761 }
6762
6763 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6764 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6765 {
6766 pci_save_state(pdev);
6767 pci_disable_device(pdev);
6768
6769 if (mesg.event & PM_EVENT_SLEEP)
6770 pci_set_power_state(pdev, PCI_D3hot);
6771 }
6772
ata_pci_device_do_resume(struct pci_dev * pdev)6773 int ata_pci_device_do_resume(struct pci_dev *pdev)
6774 {
6775 int rc;
6776
6777 pci_set_power_state(pdev, PCI_D0);
6778 pci_restore_state(pdev);
6779
6780 rc = pcim_enable_device(pdev);
6781 if (rc) {
6782 dev_err(&pdev->dev,
6783 "failed to enable device after resume (%d)\n", rc);
6784 return rc;
6785 }
6786
6787 pci_set_master(pdev);
6788 return 0;
6789 }
6790
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6791 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6792 {
6793 struct ata_host *host = pci_get_drvdata(pdev);
6794 int rc = 0;
6795
6796 rc = ata_host_suspend(host, mesg);
6797 if (rc)
6798 return rc;
6799
6800 ata_pci_device_do_suspend(pdev, mesg);
6801
6802 return 0;
6803 }
6804
ata_pci_device_resume(struct pci_dev * pdev)6805 int ata_pci_device_resume(struct pci_dev *pdev)
6806 {
6807 struct ata_host *host = pci_get_drvdata(pdev);
6808 int rc;
6809
6810 rc = ata_pci_device_do_resume(pdev);
6811 if (rc == 0)
6812 ata_host_resume(host);
6813 return rc;
6814 }
6815 #endif /* CONFIG_PM */
6816
6817 #endif /* CONFIG_PCI */
6818
6819 /**
6820 * ata_platform_remove_one - Platform layer callback for device removal
6821 * @pdev: Platform device that was removed
6822 *
6823 * Platform layer indicates to libata via this hook that hot-unplug or
6824 * module unload event has occurred. Detach all ports. Resource
6825 * release is handled via devres.
6826 *
6827 * LOCKING:
6828 * Inherited from platform layer (may sleep).
6829 */
ata_platform_remove_one(struct platform_device * pdev)6830 int ata_platform_remove_one(struct platform_device *pdev)
6831 {
6832 struct ata_host *host = platform_get_drvdata(pdev);
6833
6834 ata_host_detach(host);
6835
6836 return 0;
6837 }
6838
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6839 static int __init ata_parse_force_one(char **cur,
6840 struct ata_force_ent *force_ent,
6841 const char **reason)
6842 {
6843 static const struct ata_force_param force_tbl[] __initconst = {
6844 { "40c", .cbl = ATA_CBL_PATA40 },
6845 { "80c", .cbl = ATA_CBL_PATA80 },
6846 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6847 { "unk", .cbl = ATA_CBL_PATA_UNK },
6848 { "ign", .cbl = ATA_CBL_PATA_IGN },
6849 { "sata", .cbl = ATA_CBL_SATA },
6850 { "1.5Gbps", .spd_limit = 1 },
6851 { "3.0Gbps", .spd_limit = 2 },
6852 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6853 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6854 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6855 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6856 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6857 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6858 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6859 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6860 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6861 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6862 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6863 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6864 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6865 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6866 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6867 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6868 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6869 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6870 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6871 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6872 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6873 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6874 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6875 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6876 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6877 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6878 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6879 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6880 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6881 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6882 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6883 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6884 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6885 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6886 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6887 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6888 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6889 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6890 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6891 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6892 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6893 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6894 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6895 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6896 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6897 };
6898 char *start = *cur, *p = *cur;
6899 char *id, *val, *endp;
6900 const struct ata_force_param *match_fp = NULL;
6901 int nr_matches = 0, i;
6902
6903 /* find where this param ends and update *cur */
6904 while (*p != '\0' && *p != ',')
6905 p++;
6906
6907 if (*p == '\0')
6908 *cur = p;
6909 else
6910 *cur = p + 1;
6911
6912 *p = '\0';
6913
6914 /* parse */
6915 p = strchr(start, ':');
6916 if (!p) {
6917 val = strstrip(start);
6918 goto parse_val;
6919 }
6920 *p = '\0';
6921
6922 id = strstrip(start);
6923 val = strstrip(p + 1);
6924
6925 /* parse id */
6926 p = strchr(id, '.');
6927 if (p) {
6928 *p++ = '\0';
6929 force_ent->device = simple_strtoul(p, &endp, 10);
6930 if (p == endp || *endp != '\0') {
6931 *reason = "invalid device";
6932 return -EINVAL;
6933 }
6934 }
6935
6936 force_ent->port = simple_strtoul(id, &endp, 10);
6937 if (id == endp || *endp != '\0') {
6938 *reason = "invalid port/link";
6939 return -EINVAL;
6940 }
6941
6942 parse_val:
6943 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6944 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6945 const struct ata_force_param *fp = &force_tbl[i];
6946
6947 if (strncasecmp(val, fp->name, strlen(val)))
6948 continue;
6949
6950 nr_matches++;
6951 match_fp = fp;
6952
6953 if (strcasecmp(val, fp->name) == 0) {
6954 nr_matches = 1;
6955 break;
6956 }
6957 }
6958
6959 if (!nr_matches) {
6960 *reason = "unknown value";
6961 return -EINVAL;
6962 }
6963 if (nr_matches > 1) {
6964 *reason = "ambigious value";
6965 return -EINVAL;
6966 }
6967
6968 force_ent->param = *match_fp;
6969
6970 return 0;
6971 }
6972
ata_parse_force_param(void)6973 static void __init ata_parse_force_param(void)
6974 {
6975 int idx = 0, size = 1;
6976 int last_port = -1, last_device = -1;
6977 char *p, *cur, *next;
6978
6979 /* calculate maximum number of params and allocate force_tbl */
6980 for (p = ata_force_param_buf; *p; p++)
6981 if (*p == ',')
6982 size++;
6983
6984 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6985 if (!ata_force_tbl) {
6986 printk(KERN_WARNING "ata: failed to extend force table, "
6987 "libata.force ignored\n");
6988 return;
6989 }
6990
6991 /* parse and populate the table */
6992 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6993 const char *reason = "";
6994 struct ata_force_ent te = { .port = -1, .device = -1 };
6995
6996 next = cur;
6997 if (ata_parse_force_one(&next, &te, &reason)) {
6998 printk(KERN_WARNING "ata: failed to parse force "
6999 "parameter \"%s\" (%s)\n",
7000 cur, reason);
7001 continue;
7002 }
7003
7004 if (te.port == -1) {
7005 te.port = last_port;
7006 te.device = last_device;
7007 }
7008
7009 ata_force_tbl[idx++] = te;
7010
7011 last_port = te.port;
7012 last_device = te.device;
7013 }
7014
7015 ata_force_tbl_size = idx;
7016 }
7017
ata_init(void)7018 static int __init ata_init(void)
7019 {
7020 int rc;
7021
7022 ata_parse_force_param();
7023
7024 rc = ata_sff_init();
7025 if (rc) {
7026 kfree(ata_force_tbl);
7027 return rc;
7028 }
7029
7030 libata_transport_init();
7031 ata_scsi_transport_template = ata_attach_transport();
7032 if (!ata_scsi_transport_template) {
7033 ata_sff_exit();
7034 rc = -ENOMEM;
7035 goto err_out;
7036 }
7037
7038 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7039 return 0;
7040
7041 err_out:
7042 return rc;
7043 }
7044
ata_exit(void)7045 static void __exit ata_exit(void)
7046 {
7047 ata_release_transport(ata_scsi_transport_template);
7048 libata_transport_exit();
7049 ata_sff_exit();
7050 kfree(ata_force_tbl);
7051 }
7052
7053 subsys_initcall(ata_init);
7054 module_exit(ata_exit);
7055
7056 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7057
ata_ratelimit(void)7058 int ata_ratelimit(void)
7059 {
7060 return __ratelimit(&ratelimit);
7061 }
7062
7063 /**
7064 * ata_msleep - ATA EH owner aware msleep
7065 * @ap: ATA port to attribute the sleep to
7066 * @msecs: duration to sleep in milliseconds
7067 *
7068 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7069 * ownership is released before going to sleep and reacquired
7070 * after the sleep is complete. IOW, other ports sharing the
7071 * @ap->host will be allowed to own the EH while this task is
7072 * sleeping.
7073 *
7074 * LOCKING:
7075 * Might sleep.
7076 */
ata_msleep(struct ata_port * ap,unsigned int msecs)7077 void ata_msleep(struct ata_port *ap, unsigned int msecs)
7078 {
7079 bool owns_eh = ap && ap->host->eh_owner == current;
7080
7081 if (owns_eh)
7082 ata_eh_release(ap);
7083
7084 if (msecs < 20) {
7085 unsigned long usecs = msecs * USEC_PER_MSEC;
7086 usleep_range(usecs, usecs + 50);
7087 } else {
7088 msleep(msecs);
7089 }
7090
7091 if (owns_eh)
7092 ata_eh_acquire(ap);
7093 }
7094
7095 /**
7096 * ata_wait_register - wait until register value changes
7097 * @ap: ATA port to wait register for, can be NULL
7098 * @reg: IO-mapped register
7099 * @mask: Mask to apply to read register value
7100 * @val: Wait condition
7101 * @interval: polling interval in milliseconds
7102 * @timeout: timeout in milliseconds
7103 *
7104 * Waiting for some bits of register to change is a common
7105 * operation for ATA controllers. This function reads 32bit LE
7106 * IO-mapped register @reg and tests for the following condition.
7107 *
7108 * (*@reg & mask) != val
7109 *
7110 * If the condition is met, it returns; otherwise, the process is
7111 * repeated after @interval_msec until timeout.
7112 *
7113 * LOCKING:
7114 * Kernel thread context (may sleep)
7115 *
7116 * RETURNS:
7117 * The final register value.
7118 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)7119 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7120 unsigned long interval, unsigned long timeout)
7121 {
7122 unsigned long deadline;
7123 u32 tmp;
7124
7125 tmp = ioread32(reg);
7126
7127 /* Calculate timeout _after_ the first read to make sure
7128 * preceding writes reach the controller before starting to
7129 * eat away the timeout.
7130 */
7131 deadline = ata_deadline(jiffies, timeout);
7132
7133 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7134 ata_msleep(ap, interval);
7135 tmp = ioread32(reg);
7136 }
7137
7138 return tmp;
7139 }
7140
7141 /**
7142 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7143 * @link: Link receiving the event
7144 *
7145 * Test whether the received PHY event has to be ignored or not.
7146 *
7147 * LOCKING:
7148 * None:
7149 *
7150 * RETURNS:
7151 * True if the event has to be ignored.
7152 */
sata_lpm_ignore_phy_events(struct ata_link * link)7153 bool sata_lpm_ignore_phy_events(struct ata_link *link)
7154 {
7155 unsigned long lpm_timeout = link->last_lpm_change +
7156 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7157
7158 /* if LPM is enabled, PHYRDY doesn't mean anything */
7159 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7160 return true;
7161
7162 /* ignore the first PHY event after the LPM policy changed
7163 * as it is might be spurious
7164 */
7165 if ((link->flags & ATA_LFLAG_CHANGED) &&
7166 time_before(jiffies, lpm_timeout))
7167 return true;
7168
7169 return false;
7170 }
7171 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7172
7173 /*
7174 * Dummy port_ops
7175 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)7176 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7177 {
7178 return AC_ERR_SYSTEM;
7179 }
7180
ata_dummy_error_handler(struct ata_port * ap)7181 static void ata_dummy_error_handler(struct ata_port *ap)
7182 {
7183 /* truly dummy */
7184 }
7185
7186 struct ata_port_operations ata_dummy_port_ops = {
7187 .qc_prep = ata_noop_qc_prep,
7188 .qc_issue = ata_dummy_qc_issue,
7189 .error_handler = ata_dummy_error_handler,
7190 .sched_eh = ata_std_sched_eh,
7191 .end_eh = ata_std_end_eh,
7192 };
7193
7194 const struct ata_port_info ata_dummy_port_info = {
7195 .port_ops = &ata_dummy_port_ops,
7196 };
7197
7198 /*
7199 * Utility print functions
7200 */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)7201 void ata_port_printk(const struct ata_port *ap, const char *level,
7202 const char *fmt, ...)
7203 {
7204 struct va_format vaf;
7205 va_list args;
7206
7207 va_start(args, fmt);
7208
7209 vaf.fmt = fmt;
7210 vaf.va = &args;
7211
7212 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7213
7214 va_end(args);
7215 }
7216 EXPORT_SYMBOL(ata_port_printk);
7217
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)7218 void ata_link_printk(const struct ata_link *link, const char *level,
7219 const char *fmt, ...)
7220 {
7221 struct va_format vaf;
7222 va_list args;
7223
7224 va_start(args, fmt);
7225
7226 vaf.fmt = fmt;
7227 vaf.va = &args;
7228
7229 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7230 printk("%sata%u.%02u: %pV",
7231 level, link->ap->print_id, link->pmp, &vaf);
7232 else
7233 printk("%sata%u: %pV",
7234 level, link->ap->print_id, &vaf);
7235
7236 va_end(args);
7237 }
7238 EXPORT_SYMBOL(ata_link_printk);
7239
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)7240 void ata_dev_printk(const struct ata_device *dev, const char *level,
7241 const char *fmt, ...)
7242 {
7243 struct va_format vaf;
7244 va_list args;
7245
7246 va_start(args, fmt);
7247
7248 vaf.fmt = fmt;
7249 vaf.va = &args;
7250
7251 printk("%sata%u.%02u: %pV",
7252 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7253 &vaf);
7254
7255 va_end(args);
7256 }
7257 EXPORT_SYMBOL(ata_dev_printk);
7258
ata_print_version(const struct device * dev,const char * version)7259 void ata_print_version(const struct device *dev, const char *version)
7260 {
7261 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7262 }
7263 EXPORT_SYMBOL(ata_print_version);
7264
7265 /*
7266 * libata is essentially a library of internal helper functions for
7267 * low-level ATA host controller drivers. As such, the API/ABI is
7268 * likely to change as new drivers are added and updated.
7269 * Do not depend on ABI/API stability.
7270 */
7271 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7272 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7273 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7274 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7275 EXPORT_SYMBOL_GPL(sata_port_ops);
7276 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7277 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7278 EXPORT_SYMBOL_GPL(ata_link_next);
7279 EXPORT_SYMBOL_GPL(ata_dev_next);
7280 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7281 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7282 EXPORT_SYMBOL_GPL(ata_host_init);
7283 EXPORT_SYMBOL_GPL(ata_host_alloc);
7284 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7285 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7286 EXPORT_SYMBOL_GPL(ata_host_start);
7287 EXPORT_SYMBOL_GPL(ata_host_register);
7288 EXPORT_SYMBOL_GPL(ata_host_activate);
7289 EXPORT_SYMBOL_GPL(ata_host_detach);
7290 EXPORT_SYMBOL_GPL(ata_sg_init);
7291 EXPORT_SYMBOL_GPL(ata_qc_complete);
7292 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7293 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7294 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7295 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7296 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7297 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7298 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7299 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7300 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7301 EXPORT_SYMBOL_GPL(ata_mode_string);
7302 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7303 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7304 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7305 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7306 EXPORT_SYMBOL_GPL(ata_dev_disable);
7307 EXPORT_SYMBOL_GPL(sata_set_spd);
7308 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7309 EXPORT_SYMBOL_GPL(sata_link_debounce);
7310 EXPORT_SYMBOL_GPL(sata_link_resume);
7311 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7312 EXPORT_SYMBOL_GPL(ata_std_prereset);
7313 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7314 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7315 EXPORT_SYMBOL_GPL(ata_std_postreset);
7316 EXPORT_SYMBOL_GPL(ata_dev_classify);
7317 EXPORT_SYMBOL_GPL(ata_dev_pair);
7318 EXPORT_SYMBOL_GPL(ata_ratelimit);
7319 EXPORT_SYMBOL_GPL(ata_msleep);
7320 EXPORT_SYMBOL_GPL(ata_wait_register);
7321 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7322 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7323 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7324 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7325 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7326 EXPORT_SYMBOL_GPL(sata_scr_valid);
7327 EXPORT_SYMBOL_GPL(sata_scr_read);
7328 EXPORT_SYMBOL_GPL(sata_scr_write);
7329 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7330 EXPORT_SYMBOL_GPL(ata_link_online);
7331 EXPORT_SYMBOL_GPL(ata_link_offline);
7332 #ifdef CONFIG_PM
7333 EXPORT_SYMBOL_GPL(ata_host_suspend);
7334 EXPORT_SYMBOL_GPL(ata_host_resume);
7335 #endif /* CONFIG_PM */
7336 EXPORT_SYMBOL_GPL(ata_id_string);
7337 EXPORT_SYMBOL_GPL(ata_id_c_string);
7338 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7339 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7340
7341 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7342 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7343 EXPORT_SYMBOL_GPL(ata_timing_compute);
7344 EXPORT_SYMBOL_GPL(ata_timing_merge);
7345 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7346
7347 #ifdef CONFIG_PCI
7348 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7349 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
7350 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7351 #ifdef CONFIG_PM
7352 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7353 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7354 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7355 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7356 #endif /* CONFIG_PM */
7357 #endif /* CONFIG_PCI */
7358
7359 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7360
7361 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7362 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7363 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7364 EXPORT_SYMBOL_GPL(ata_port_desc);
7365 #ifdef CONFIG_PCI
7366 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7367 #endif /* CONFIG_PCI */
7368 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7369 EXPORT_SYMBOL_GPL(ata_link_abort);
7370 EXPORT_SYMBOL_GPL(ata_port_abort);
7371 EXPORT_SYMBOL_GPL(ata_port_freeze);
7372 EXPORT_SYMBOL_GPL(sata_async_notification);
7373 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7374 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7375 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7376 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7377 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7378 EXPORT_SYMBOL_GPL(ata_do_eh);
7379 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7380
7381 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7382 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7383 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7384 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7385 EXPORT_SYMBOL_GPL(ata_cable_sata);
7386