• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Coherent per-device memory handling.
4  * Borrowed from i386
5  */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 
12 struct dma_coherent_mem {
13 	void		*virt_base;
14 	dma_addr_t	device_base;
15 	unsigned long	pfn_base;
16 	int		size;
17 	int		flags;
18 	unsigned long	*bitmap;
19 	spinlock_t	spinlock;
20 	bool		use_dev_dma_pfn_offset;
21 };
22 
23 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
24 
dev_get_coherent_memory(struct device * dev)25 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
26 {
27 	if (dev && dev->dma_mem)
28 		return dev->dma_mem;
29 	return NULL;
30 }
31 
dma_get_device_base(struct device * dev,struct dma_coherent_mem * mem)32 static inline dma_addr_t dma_get_device_base(struct device *dev,
33 					     struct dma_coherent_mem * mem)
34 {
35 	if (mem->use_dev_dma_pfn_offset)
36 		return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
37 	else
38 		return mem->device_base;
39 }
40 
dma_init_coherent_memory(phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,int flags,struct dma_coherent_mem ** mem)41 static int dma_init_coherent_memory(
42 	phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags,
43 	struct dma_coherent_mem **mem)
44 {
45 	struct dma_coherent_mem *dma_mem = NULL;
46 	void __iomem *mem_base = NULL;
47 	int pages = size >> PAGE_SHIFT;
48 	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
49 	int ret;
50 
51 	if (!size) {
52 		ret = -EINVAL;
53 		goto out;
54 	}
55 
56 	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
57 	if (!mem_base) {
58 		ret = -EINVAL;
59 		goto out;
60 	}
61 	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
62 	if (!dma_mem) {
63 		ret = -ENOMEM;
64 		goto out;
65 	}
66 	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
67 	if (!dma_mem->bitmap) {
68 		ret = -ENOMEM;
69 		goto out;
70 	}
71 
72 	dma_mem->virt_base = mem_base;
73 	dma_mem->device_base = device_addr;
74 	dma_mem->pfn_base = PFN_DOWN(phys_addr);
75 	dma_mem->size = pages;
76 	dma_mem->flags = flags;
77 	spin_lock_init(&dma_mem->spinlock);
78 
79 	*mem = dma_mem;
80 	return 0;
81 
82 out:
83 	kfree(dma_mem);
84 	if (mem_base)
85 		memunmap(mem_base);
86 	return ret;
87 }
88 
dma_release_coherent_memory(struct dma_coherent_mem * mem)89 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
90 {
91 	if (!mem)
92 		return;
93 
94 	memunmap(mem->virt_base);
95 	kfree(mem->bitmap);
96 	kfree(mem);
97 }
98 
dma_assign_coherent_memory(struct device * dev,struct dma_coherent_mem * mem)99 static int dma_assign_coherent_memory(struct device *dev,
100 				      struct dma_coherent_mem *mem)
101 {
102 	if (!dev)
103 		return -ENODEV;
104 
105 	if (dev->dma_mem)
106 		return -EBUSY;
107 
108 	dev->dma_mem = mem;
109 	return 0;
110 }
111 
dma_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,int flags)112 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
113 				dma_addr_t device_addr, size_t size, int flags)
114 {
115 	struct dma_coherent_mem *mem;
116 	int ret;
117 
118 	ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem);
119 	if (ret)
120 		return ret;
121 
122 	ret = dma_assign_coherent_memory(dev, mem);
123 	if (ret)
124 		dma_release_coherent_memory(mem);
125 	return ret;
126 }
127 EXPORT_SYMBOL(dma_declare_coherent_memory);
128 
dma_release_declared_memory(struct device * dev)129 void dma_release_declared_memory(struct device *dev)
130 {
131 	struct dma_coherent_mem *mem = dev->dma_mem;
132 
133 	if (!mem)
134 		return;
135 	dma_release_coherent_memory(mem);
136 	dev->dma_mem = NULL;
137 }
138 EXPORT_SYMBOL(dma_release_declared_memory);
139 
dma_mark_declared_memory_occupied(struct device * dev,dma_addr_t device_addr,size_t size)140 void *dma_mark_declared_memory_occupied(struct device *dev,
141 					dma_addr_t device_addr, size_t size)
142 {
143 	struct dma_coherent_mem *mem = dev->dma_mem;
144 	unsigned long flags;
145 	int pos, err;
146 
147 	size += device_addr & ~PAGE_MASK;
148 
149 	if (!mem)
150 		return ERR_PTR(-EINVAL);
151 
152 	spin_lock_irqsave(&mem->spinlock, flags);
153 	pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem));
154 	err = bitmap_allocate_region(mem->bitmap, pos, get_order(size));
155 	spin_unlock_irqrestore(&mem->spinlock, flags);
156 
157 	if (err != 0)
158 		return ERR_PTR(err);
159 	return mem->virt_base + (pos << PAGE_SHIFT);
160 }
161 EXPORT_SYMBOL(dma_mark_declared_memory_occupied);
162 
__dma_alloc_from_coherent(struct dma_coherent_mem * mem,ssize_t size,dma_addr_t * dma_handle)163 static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem,
164 		ssize_t size, dma_addr_t *dma_handle)
165 {
166 	int order = get_order(size);
167 	unsigned long flags;
168 	int pageno;
169 	void *ret;
170 
171 	spin_lock_irqsave(&mem->spinlock, flags);
172 
173 	if (unlikely(size > (mem->size << PAGE_SHIFT)))
174 		goto err;
175 
176 	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
177 	if (unlikely(pageno < 0))
178 		goto err;
179 
180 	/*
181 	 * Memory was found in the coherent area.
182 	 */
183 	*dma_handle = mem->device_base + (pageno << PAGE_SHIFT);
184 	ret = mem->virt_base + (pageno << PAGE_SHIFT);
185 	spin_unlock_irqrestore(&mem->spinlock, flags);
186 	memset(ret, 0, size);
187 	return ret;
188 err:
189 	spin_unlock_irqrestore(&mem->spinlock, flags);
190 	return NULL;
191 }
192 
193 /**
194  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
195  * @dev:	device from which we allocate memory
196  * @size:	size of requested memory area
197  * @dma_handle:	This will be filled with the correct dma handle
198  * @ret:	This pointer will be filled with the virtual address
199  *		to allocated area.
200  *
201  * This function should be only called from per-arch dma_alloc_coherent()
202  * to support allocation from per-device coherent memory pools.
203  *
204  * Returns 0 if dma_alloc_coherent should continue with allocating from
205  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
206  */
dma_alloc_from_dev_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle,void ** ret)207 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
208 		dma_addr_t *dma_handle, void **ret)
209 {
210 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
211 
212 	if (!mem)
213 		return 0;
214 
215 	*ret = __dma_alloc_from_coherent(mem, size, dma_handle);
216 	if (*ret)
217 		return 1;
218 
219 	/*
220 	 * In the case where the allocation can not be satisfied from the
221 	 * per-device area, try to fall back to generic memory if the
222 	 * constraints allow it.
223 	 */
224 	return mem->flags & DMA_MEMORY_EXCLUSIVE;
225 }
226 EXPORT_SYMBOL(dma_alloc_from_dev_coherent);
227 
dma_alloc_from_global_coherent(ssize_t size,dma_addr_t * dma_handle)228 void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle)
229 {
230 	if (!dma_coherent_default_memory)
231 		return NULL;
232 
233 	return __dma_alloc_from_coherent(dma_coherent_default_memory, size,
234 			dma_handle);
235 }
236 
__dma_release_from_coherent(struct dma_coherent_mem * mem,int order,void * vaddr)237 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
238 				       int order, void *vaddr)
239 {
240 	if (mem && vaddr >= mem->virt_base && vaddr <
241 		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
242 		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
243 		unsigned long flags;
244 
245 		spin_lock_irqsave(&mem->spinlock, flags);
246 		bitmap_release_region(mem->bitmap, page, order);
247 		spin_unlock_irqrestore(&mem->spinlock, flags);
248 		return 1;
249 	}
250 	return 0;
251 }
252 
253 /**
254  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
255  * @dev:	device from which the memory was allocated
256  * @order:	the order of pages allocated
257  * @vaddr:	virtual address of allocated pages
258  *
259  * This checks whether the memory was allocated from the per-device
260  * coherent memory pool and if so, releases that memory.
261  *
262  * Returns 1 if we correctly released the memory, or 0 if the caller should
263  * proceed with releasing memory from generic pools.
264  */
dma_release_from_dev_coherent(struct device * dev,int order,void * vaddr)265 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
266 {
267 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
268 
269 	return __dma_release_from_coherent(mem, order, vaddr);
270 }
271 EXPORT_SYMBOL(dma_release_from_dev_coherent);
272 
dma_release_from_global_coherent(int order,void * vaddr)273 int dma_release_from_global_coherent(int order, void *vaddr)
274 {
275 	if (!dma_coherent_default_memory)
276 		return 0;
277 
278 	return __dma_release_from_coherent(dma_coherent_default_memory, order,
279 			vaddr);
280 }
281 
__dma_mmap_from_coherent(struct dma_coherent_mem * mem,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)282 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
283 		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
284 {
285 	if (mem && vaddr >= mem->virt_base && vaddr + size <=
286 		   (mem->virt_base + (mem->size << PAGE_SHIFT))) {
287 		unsigned long off = vma->vm_pgoff;
288 		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
289 		int user_count = vma_pages(vma);
290 		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
291 
292 		*ret = -ENXIO;
293 		if (off < count && user_count <= count - off) {
294 			unsigned long pfn = mem->pfn_base + start + off;
295 			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
296 					       user_count << PAGE_SHIFT,
297 					       vma->vm_page_prot);
298 		}
299 		return 1;
300 	}
301 	return 0;
302 }
303 
304 /**
305  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
306  * @dev:	device from which the memory was allocated
307  * @vma:	vm_area for the userspace memory
308  * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
309  * @size:	size of the memory buffer allocated
310  * @ret:	result from remap_pfn_range()
311  *
312  * This checks whether the memory was allocated from the per-device
313  * coherent memory pool and if so, maps that memory to the provided vma.
314  *
315  * Returns 1 if we correctly mapped the memory, or 0 if the caller should
316  * proceed with mapping memory from generic pools.
317  */
dma_mmap_from_dev_coherent(struct device * dev,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)318 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
319 			   void *vaddr, size_t size, int *ret)
320 {
321 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
322 
323 	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
324 }
325 EXPORT_SYMBOL(dma_mmap_from_dev_coherent);
326 
dma_mmap_from_global_coherent(struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)327 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
328 				   size_t size, int *ret)
329 {
330 	if (!dma_coherent_default_memory)
331 		return 0;
332 
333 	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
334 					vaddr, size, ret);
335 }
336 
337 /*
338  * Support for reserved memory regions defined in device tree
339  */
340 #ifdef CONFIG_OF_RESERVED_MEM
341 #include <linux/of.h>
342 #include <linux/of_fdt.h>
343 #include <linux/of_reserved_mem.h>
344 
345 static struct reserved_mem *dma_reserved_default_memory __initdata;
346 
rmem_dma_device_init(struct reserved_mem * rmem,struct device * dev)347 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
348 {
349 	struct dma_coherent_mem *mem = rmem->priv;
350 	int ret;
351 
352 	if (!mem) {
353 		ret = dma_init_coherent_memory(rmem->base, rmem->base,
354 					       rmem->size,
355 					       DMA_MEMORY_EXCLUSIVE, &mem);
356 		if (ret) {
357 			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
358 				&rmem->base, (unsigned long)rmem->size / SZ_1M);
359 			return ret;
360 		}
361 	}
362 	mem->use_dev_dma_pfn_offset = true;
363 	rmem->priv = mem;
364 	dma_assign_coherent_memory(dev, mem);
365 	return 0;
366 }
367 
rmem_dma_device_release(struct reserved_mem * rmem,struct device * dev)368 static void rmem_dma_device_release(struct reserved_mem *rmem,
369 				    struct device *dev)
370 {
371 	if (dev)
372 		dev->dma_mem = NULL;
373 }
374 
375 static const struct reserved_mem_ops rmem_dma_ops = {
376 	.device_init	= rmem_dma_device_init,
377 	.device_release	= rmem_dma_device_release,
378 };
379 
rmem_dma_setup(struct reserved_mem * rmem)380 static int __init rmem_dma_setup(struct reserved_mem *rmem)
381 {
382 	unsigned long node = rmem->fdt_node;
383 
384 	if (of_get_flat_dt_prop(node, "reusable", NULL))
385 		return -EINVAL;
386 
387 #ifdef CONFIG_ARM
388 	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
389 		pr_err("Reserved memory: regions without no-map are not yet supported\n");
390 		return -EINVAL;
391 	}
392 
393 	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
394 		WARN(dma_reserved_default_memory,
395 		     "Reserved memory: region for default DMA coherent area is redefined\n");
396 		dma_reserved_default_memory = rmem;
397 	}
398 #endif
399 
400 	rmem->ops = &rmem_dma_ops;
401 	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
402 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
403 	return 0;
404 }
405 
dma_init_reserved_memory(void)406 static int __init dma_init_reserved_memory(void)
407 {
408 	const struct reserved_mem_ops *ops;
409 	int ret;
410 
411 	if (!dma_reserved_default_memory)
412 		return -ENOMEM;
413 
414 	ops = dma_reserved_default_memory->ops;
415 
416 	/*
417 	 * We rely on rmem_dma_device_init() does not propagate error of
418 	 * dma_assign_coherent_memory() for "NULL" device.
419 	 */
420 	ret = ops->device_init(dma_reserved_default_memory, NULL);
421 
422 	if (!ret) {
423 		dma_coherent_default_memory = dma_reserved_default_memory->priv;
424 		pr_info("DMA: default coherent area is set\n");
425 	}
426 
427 	return ret;
428 }
429 
430 core_initcall(dma_init_reserved_memory);
431 
432 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
433 #endif
434