• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2         pd.c    (c) 1997-8  Grant R. Guenther <grant@torque.net>
3                             Under the terms of the GNU General Public License.
4 
5         This is the high-level driver for parallel port IDE hard
6         drives based on chips supported by the paride module.
7 
8 	By default, the driver will autoprobe for a single parallel
9 	port IDE drive, but if their individual parameters are
10         specified, the driver can handle up to 4 drives.
11 
12         The behaviour of the pd driver can be altered by setting
13         some parameters from the insmod command line.  The following
14         parameters are adjustable:
15 
16 	    drive0  	These four arguments can be arrays of
17 	    drive1	1-8 integers as follows:
18 	    drive2
19 	    drive3	<prt>,<pro>,<uni>,<mod>,<geo>,<sby>,<dly>,<slv>
20 
21 			Where,
22 
23 		<prt>	is the base of the parallel port address for
24 			the corresponding drive.  (required)
25 
26 		<pro>   is the protocol number for the adapter that
27 			supports this drive.  These numbers are
28                         logged by 'paride' when the protocol modules
29 			are initialised.  (0 if not given)
30 
31 		<uni>   for those adapters that support chained
32 			devices, this is the unit selector for the
33 		        chain of devices on the given port.  It should
34 			be zero for devices that don't support chaining.
35 			(0 if not given)
36 
37 		<mod>   this can be -1 to choose the best mode, or one
38 		        of the mode numbers supported by the adapter.
39 			(-1 if not given)
40 
41 		<geo>   this defaults to 0 to indicate that the driver
42 			should use the CHS geometry provided by the drive
43 			itself.  If set to 1, the driver will provide
44 			a logical geometry with 64 heads and 32 sectors
45 			per track, to be consistent with most SCSI
46 		        drivers.  (0 if not given)
47 
48 		<sby>   set this to zero to disable the power saving
49 			standby mode, if needed.  (1 if not given)
50 
51 		<dly>   some parallel ports require the driver to
52 			go more slowly.  -1 sets a default value that
53 			should work with the chosen protocol.  Otherwise,
54 			set this to a small integer, the larger it is
55 			the slower the port i/o.  In some cases, setting
56 			this to zero will speed up the device. (default -1)
57 
58 		<slv>   IDE disks can be jumpered to master or slave.
59                         Set this to 0 to choose the master drive, 1 to
60                         choose the slave, -1 (the default) to choose the
61                         first drive found.
62 
63 
64             major       You may use this parameter to override the
65                         default major number (45) that this driver
66                         will use.  Be sure to change the device
67                         name as well.
68 
69             name        This parameter is a character string that
70                         contains the name the kernel will use for this
71                         device (in /proc output, for instance).
72 			(default "pd")
73 
74 	    cluster	The driver will attempt to aggregate requests
75 			for adjacent blocks into larger multi-block
76 			clusters.  The maximum cluster size (in 512
77 			byte sectors) is set with this parameter.
78 			(default 64)
79 
80 	    verbose	This parameter controls the amount of logging
81 			that the driver will do.  Set it to 0 for
82 			normal operation, 1 to see autoprobe progress
83 			messages, or 2 to see additional debugging
84 			output.  (default 0)
85 
86             nice        This parameter controls the driver's use of
87                         idle CPU time, at the expense of some speed.
88 
89         If this driver is built into the kernel, you can use kernel
90         the following command line parameters, with the same values
91         as the corresponding module parameters listed above:
92 
93             pd.drive0
94             pd.drive1
95             pd.drive2
96             pd.drive3
97             pd.cluster
98             pd.nice
99 
100         In addition, you can use the parameter pd.disable to disable
101         the driver entirely.
102 
103 */
104 
105 /* Changes:
106 
107 	1.01	GRG 1997.01.24	Restored pd_reset()
108 				Added eject ioctl
109 	1.02    GRG 1998.05.06  SMP spinlock changes,
110 				Added slave support
111 	1.03    GRG 1998.06.16  Eliminate an Ugh.
112 	1.04	GRG 1998.08.15  Extra debugging, use HZ in loop timing
113 	1.05    GRG 1998.09.24  Added jumbo support
114 
115 */
116 
117 #define PD_VERSION      "1.05"
118 #define PD_MAJOR	45
119 #define PD_NAME		"pd"
120 #define PD_UNITS	4
121 
122 /* Here are things one can override from the insmod command.
123    Most are autoprobed by paride unless set here.  Verbose is off
124    by default.
125 
126 */
127 #include <linux/types.h>
128 
129 static int verbose = 0;
130 static int major = PD_MAJOR;
131 static char *name = PD_NAME;
132 static int cluster = 64;
133 static int nice = 0;
134 static int disable = 0;
135 
136 static int drive0[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
137 static int drive1[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
138 static int drive2[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
139 static int drive3[8] = { 0, 0, 0, -1, 0, 1, -1, -1 };
140 
141 static int (*drives[4])[8] = {&drive0, &drive1, &drive2, &drive3};
142 
143 enum {D_PRT, D_PRO, D_UNI, D_MOD, D_GEO, D_SBY, D_DLY, D_SLV};
144 
145 /* end of parameters */
146 
147 #include <linux/init.h>
148 #include <linux/module.h>
149 #include <linux/gfp.h>
150 #include <linux/fs.h>
151 #include <linux/delay.h>
152 #include <linux/hdreg.h>
153 #include <linux/cdrom.h>	/* for the eject ioctl */
154 #include <linux/blkdev.h>
155 #include <linux/blkpg.h>
156 #include <linux/kernel.h>
157 #include <linux/mutex.h>
158 #include <linux/uaccess.h>
159 #include <linux/workqueue.h>
160 
161 static DEFINE_MUTEX(pd_mutex);
162 static DEFINE_SPINLOCK(pd_lock);
163 
164 module_param(verbose, int, 0);
165 module_param(major, int, 0);
166 module_param(name, charp, 0);
167 module_param(cluster, int, 0);
168 module_param(nice, int, 0);
169 module_param_array(drive0, int, NULL, 0);
170 module_param_array(drive1, int, NULL, 0);
171 module_param_array(drive2, int, NULL, 0);
172 module_param_array(drive3, int, NULL, 0);
173 
174 #include "paride.h"
175 
176 #define PD_BITS    4
177 
178 /* numbers for "SCSI" geometry */
179 
180 #define PD_LOG_HEADS    64
181 #define PD_LOG_SECTS    32
182 
183 #define PD_ID_OFF       54
184 #define PD_ID_LEN       14
185 
186 #define PD_MAX_RETRIES  5
187 #define PD_TMO          800	/* interrupt timeout in jiffies */
188 #define PD_SPIN_DEL     50	/* spin delay in micro-seconds  */
189 
190 #define PD_SPIN         (1000000*PD_TMO)/(HZ*PD_SPIN_DEL)
191 
192 #define STAT_ERR        0x00001
193 #define STAT_INDEX      0x00002
194 #define STAT_ECC        0x00004
195 #define STAT_DRQ        0x00008
196 #define STAT_SEEK       0x00010
197 #define STAT_WRERR      0x00020
198 #define STAT_READY      0x00040
199 #define STAT_BUSY       0x00080
200 
201 #define ERR_AMNF        0x00100
202 #define ERR_TK0NF       0x00200
203 #define ERR_ABRT        0x00400
204 #define ERR_MCR         0x00800
205 #define ERR_IDNF        0x01000
206 #define ERR_MC          0x02000
207 #define ERR_UNC         0x04000
208 #define ERR_TMO         0x10000
209 
210 #define IDE_READ        	0x20
211 #define IDE_WRITE       	0x30
212 #define IDE_READ_VRFY		0x40
213 #define IDE_INIT_DEV_PARMS	0x91
214 #define IDE_STANDBY     	0x96
215 #define IDE_ACKCHANGE   	0xdb
216 #define IDE_DOORLOCK    	0xde
217 #define IDE_DOORUNLOCK  	0xdf
218 #define IDE_IDENTIFY    	0xec
219 #define IDE_EJECT		0xed
220 
221 #define PD_NAMELEN	8
222 
223 struct pd_unit {
224 	struct pi_adapter pia;	/* interface to paride layer */
225 	struct pi_adapter *pi;
226 	int access;		/* count of active opens ... */
227 	int capacity;		/* Size of this volume in sectors */
228 	int heads;		/* physical geometry */
229 	int sectors;
230 	int cylinders;
231 	int can_lba;
232 	int drive;		/* master=0 slave=1 */
233 	int changed;		/* Have we seen a disk change ? */
234 	int removable;		/* removable media device  ?  */
235 	int standby;
236 	int alt_geom;
237 	char name[PD_NAMELEN];	/* pda, pdb, etc ... */
238 	struct gendisk *gd;
239 };
240 
241 static struct pd_unit pd[PD_UNITS];
242 
243 static char pd_scratch[512];	/* scratch block buffer */
244 
245 static char *pd_errs[17] = { "ERR", "INDEX", "ECC", "DRQ", "SEEK", "WRERR",
246 	"READY", "BUSY", "AMNF", "TK0NF", "ABRT", "MCR",
247 	"IDNF", "MC", "UNC", "???", "TMO"
248 };
249 
250 static void *par_drv;		/* reference of parport driver */
251 
status_reg(struct pd_unit * disk)252 static inline int status_reg(struct pd_unit *disk)
253 {
254 	return pi_read_regr(disk->pi, 1, 6);
255 }
256 
read_reg(struct pd_unit * disk,int reg)257 static inline int read_reg(struct pd_unit *disk, int reg)
258 {
259 	return pi_read_regr(disk->pi, 0, reg);
260 }
261 
write_status(struct pd_unit * disk,int val)262 static inline void write_status(struct pd_unit *disk, int val)
263 {
264 	pi_write_regr(disk->pi, 1, 6, val);
265 }
266 
write_reg(struct pd_unit * disk,int reg,int val)267 static inline void write_reg(struct pd_unit *disk, int reg, int val)
268 {
269 	pi_write_regr(disk->pi, 0, reg, val);
270 }
271 
DRIVE(struct pd_unit * disk)272 static inline u8 DRIVE(struct pd_unit *disk)
273 {
274 	return 0xa0+0x10*disk->drive;
275 }
276 
277 /*  ide command interface */
278 
pd_print_error(struct pd_unit * disk,char * msg,int status)279 static void pd_print_error(struct pd_unit *disk, char *msg, int status)
280 {
281 	int i;
282 
283 	printk("%s: %s: status = 0x%x =", disk->name, msg, status);
284 	for (i = 0; i < ARRAY_SIZE(pd_errs); i++)
285 		if (status & (1 << i))
286 			printk(" %s", pd_errs[i]);
287 	printk("\n");
288 }
289 
pd_reset(struct pd_unit * disk)290 static void pd_reset(struct pd_unit *disk)
291 {				/* called only for MASTER drive */
292 	write_status(disk, 4);
293 	udelay(50);
294 	write_status(disk, 0);
295 	udelay(250);
296 }
297 
298 #define DBMSG(msg)	((verbose>1)?(msg):NULL)
299 
pd_wait_for(struct pd_unit * disk,int w,char * msg)300 static int pd_wait_for(struct pd_unit *disk, int w, char *msg)
301 {				/* polled wait */
302 	int k, r, e;
303 
304 	k = 0;
305 	while (k < PD_SPIN) {
306 		r = status_reg(disk);
307 		k++;
308 		if (((r & w) == w) && !(r & STAT_BUSY))
309 			break;
310 		udelay(PD_SPIN_DEL);
311 	}
312 	e = (read_reg(disk, 1) << 8) + read_reg(disk, 7);
313 	if (k >= PD_SPIN)
314 		e |= ERR_TMO;
315 	if ((e & (STAT_ERR | ERR_TMO)) && (msg != NULL))
316 		pd_print_error(disk, msg, e);
317 	return e;
318 }
319 
pd_send_command(struct pd_unit * disk,int n,int s,int h,int c0,int c1,int func)320 static void pd_send_command(struct pd_unit *disk, int n, int s, int h, int c0, int c1, int func)
321 {
322 	write_reg(disk, 6, DRIVE(disk) + h);
323 	write_reg(disk, 1, 0);		/* the IDE task file */
324 	write_reg(disk, 2, n);
325 	write_reg(disk, 3, s);
326 	write_reg(disk, 4, c0);
327 	write_reg(disk, 5, c1);
328 	write_reg(disk, 7, func);
329 
330 	udelay(1);
331 }
332 
pd_ide_command(struct pd_unit * disk,int func,int block,int count)333 static void pd_ide_command(struct pd_unit *disk, int func, int block, int count)
334 {
335 	int c1, c0, h, s;
336 
337 	if (disk->can_lba) {
338 		s = block & 255;
339 		c0 = (block >>= 8) & 255;
340 		c1 = (block >>= 8) & 255;
341 		h = ((block >>= 8) & 15) + 0x40;
342 	} else {
343 		s = (block % disk->sectors) + 1;
344 		h = (block /= disk->sectors) % disk->heads;
345 		c0 = (block /= disk->heads) % 256;
346 		c1 = (block >>= 8);
347 	}
348 	pd_send_command(disk, count, s, h, c0, c1, func);
349 }
350 
351 /* The i/o request engine */
352 
353 enum action {Fail = 0, Ok = 1, Hold, Wait};
354 
355 static struct request *pd_req;	/* current request */
356 static enum action (*phase)(void);
357 
358 static void run_fsm(void);
359 
360 static void ps_tq_int(struct work_struct *work);
361 
362 static DECLARE_DELAYED_WORK(fsm_tq, ps_tq_int);
363 
schedule_fsm(void)364 static void schedule_fsm(void)
365 {
366 	if (!nice)
367 		schedule_delayed_work(&fsm_tq, 0);
368 	else
369 		schedule_delayed_work(&fsm_tq, nice-1);
370 }
371 
ps_tq_int(struct work_struct * work)372 static void ps_tq_int(struct work_struct *work)
373 {
374 	run_fsm();
375 }
376 
377 static enum action do_pd_io_start(void);
378 static enum action pd_special(void);
379 static enum action do_pd_read_start(void);
380 static enum action do_pd_write_start(void);
381 static enum action do_pd_read_drq(void);
382 static enum action do_pd_write_done(void);
383 
384 static int pd_queue;
385 static int pd_claimed;
386 
387 static struct pd_unit *pd_current; /* current request's drive */
388 static PIA *pi_current; /* current request's PIA */
389 
set_next_request(void)390 static int set_next_request(void)
391 {
392 	struct gendisk *disk;
393 	struct request_queue *q;
394 	int old_pos = pd_queue;
395 
396 	do {
397 		disk = pd[pd_queue].gd;
398 		q = disk ? disk->queue : NULL;
399 		if (++pd_queue == PD_UNITS)
400 			pd_queue = 0;
401 		if (q) {
402 			pd_req = blk_fetch_request(q);
403 			if (pd_req)
404 				break;
405 		}
406 	} while (pd_queue != old_pos);
407 
408 	return pd_req != NULL;
409 }
410 
run_fsm(void)411 static void run_fsm(void)
412 {
413 	while (1) {
414 		enum action res;
415 		unsigned long saved_flags;
416 		int stop = 0;
417 
418 		if (!phase) {
419 			pd_current = pd_req->rq_disk->private_data;
420 			pi_current = pd_current->pi;
421 			phase = do_pd_io_start;
422 		}
423 
424 		switch (pd_claimed) {
425 			case 0:
426 				pd_claimed = 1;
427 				if (!pi_schedule_claimed(pi_current, run_fsm))
428 					return;
429 			case 1:
430 				pd_claimed = 2;
431 				pi_current->proto->connect(pi_current);
432 		}
433 
434 		switch(res = phase()) {
435 			case Ok: case Fail:
436 				pi_disconnect(pi_current);
437 				pd_claimed = 0;
438 				phase = NULL;
439 				spin_lock_irqsave(&pd_lock, saved_flags);
440 				if (!__blk_end_request_cur(pd_req,
441 						res == Ok ? 0 : BLK_STS_IOERR)) {
442 					if (!set_next_request())
443 						stop = 1;
444 				}
445 				spin_unlock_irqrestore(&pd_lock, saved_flags);
446 				if (stop)
447 					return;
448 			case Hold:
449 				schedule_fsm();
450 				return;
451 			case Wait:
452 				pi_disconnect(pi_current);
453 				pd_claimed = 0;
454 		}
455 	}
456 }
457 
458 static int pd_retries = 0;	/* i/o error retry count */
459 static int pd_block;		/* address of next requested block */
460 static int pd_count;		/* number of blocks still to do */
461 static int pd_run;		/* sectors in current cluster */
462 static char *pd_buf;		/* buffer for request in progress */
463 
do_pd_io_start(void)464 static enum action do_pd_io_start(void)
465 {
466 	switch (req_op(pd_req)) {
467 	case REQ_OP_DRV_IN:
468 		phase = pd_special;
469 		return pd_special();
470 	case REQ_OP_READ:
471 	case REQ_OP_WRITE:
472 		pd_block = blk_rq_pos(pd_req);
473 		pd_count = blk_rq_cur_sectors(pd_req);
474 		if (pd_block + pd_count > get_capacity(pd_req->rq_disk))
475 			return Fail;
476 		pd_run = blk_rq_sectors(pd_req);
477 		pd_buf = bio_data(pd_req->bio);
478 		pd_retries = 0;
479 		if (req_op(pd_req) == REQ_OP_READ)
480 			return do_pd_read_start();
481 		else
482 			return do_pd_write_start();
483 	}
484 	return Fail;
485 }
486 
pd_special(void)487 static enum action pd_special(void)
488 {
489 	enum action (*func)(struct pd_unit *) = pd_req->special;
490 	return func(pd_current);
491 }
492 
pd_next_buf(void)493 static int pd_next_buf(void)
494 {
495 	unsigned long saved_flags;
496 
497 	pd_count--;
498 	pd_run--;
499 	pd_buf += 512;
500 	pd_block++;
501 	if (!pd_run)
502 		return 1;
503 	if (pd_count)
504 		return 0;
505 	spin_lock_irqsave(&pd_lock, saved_flags);
506 	__blk_end_request_cur(pd_req, 0);
507 	pd_count = blk_rq_cur_sectors(pd_req);
508 	pd_buf = bio_data(pd_req->bio);
509 	spin_unlock_irqrestore(&pd_lock, saved_flags);
510 	return 0;
511 }
512 
513 static unsigned long pd_timeout;
514 
do_pd_read_start(void)515 static enum action do_pd_read_start(void)
516 {
517 	if (pd_wait_for(pd_current, STAT_READY, "do_pd_read") & STAT_ERR) {
518 		if (pd_retries < PD_MAX_RETRIES) {
519 			pd_retries++;
520 			return Wait;
521 		}
522 		return Fail;
523 	}
524 	pd_ide_command(pd_current, IDE_READ, pd_block, pd_run);
525 	phase = do_pd_read_drq;
526 	pd_timeout = jiffies + PD_TMO;
527 	return Hold;
528 }
529 
do_pd_write_start(void)530 static enum action do_pd_write_start(void)
531 {
532 	if (pd_wait_for(pd_current, STAT_READY, "do_pd_write") & STAT_ERR) {
533 		if (pd_retries < PD_MAX_RETRIES) {
534 			pd_retries++;
535 			return Wait;
536 		}
537 		return Fail;
538 	}
539 	pd_ide_command(pd_current, IDE_WRITE, pd_block, pd_run);
540 	while (1) {
541 		if (pd_wait_for(pd_current, STAT_DRQ, "do_pd_write_drq") & STAT_ERR) {
542 			if (pd_retries < PD_MAX_RETRIES) {
543 				pd_retries++;
544 				return Wait;
545 			}
546 			return Fail;
547 		}
548 		pi_write_block(pd_current->pi, pd_buf, 512);
549 		if (pd_next_buf())
550 			break;
551 	}
552 	phase = do_pd_write_done;
553 	pd_timeout = jiffies + PD_TMO;
554 	return Hold;
555 }
556 
pd_ready(void)557 static inline int pd_ready(void)
558 {
559 	return !(status_reg(pd_current) & STAT_BUSY);
560 }
561 
do_pd_read_drq(void)562 static enum action do_pd_read_drq(void)
563 {
564 	if (!pd_ready() && !time_after_eq(jiffies, pd_timeout))
565 		return Hold;
566 
567 	while (1) {
568 		if (pd_wait_for(pd_current, STAT_DRQ, "do_pd_read_drq") & STAT_ERR) {
569 			if (pd_retries < PD_MAX_RETRIES) {
570 				pd_retries++;
571 				phase = do_pd_read_start;
572 				return Wait;
573 			}
574 			return Fail;
575 		}
576 		pi_read_block(pd_current->pi, pd_buf, 512);
577 		if (pd_next_buf())
578 			break;
579 	}
580 	return Ok;
581 }
582 
do_pd_write_done(void)583 static enum action do_pd_write_done(void)
584 {
585 	if (!pd_ready() && !time_after_eq(jiffies, pd_timeout))
586 		return Hold;
587 
588 	if (pd_wait_for(pd_current, STAT_READY, "do_pd_write_done") & STAT_ERR) {
589 		if (pd_retries < PD_MAX_RETRIES) {
590 			pd_retries++;
591 			phase = do_pd_write_start;
592 			return Wait;
593 		}
594 		return Fail;
595 	}
596 	return Ok;
597 }
598 
599 /* special io requests */
600 
601 /* According to the ATA standard, the default CHS geometry should be
602    available following a reset.  Some Western Digital drives come up
603    in a mode where only LBA addresses are accepted until the device
604    parameters are initialised.
605 */
606 
pd_init_dev_parms(struct pd_unit * disk)607 static void pd_init_dev_parms(struct pd_unit *disk)
608 {
609 	pd_wait_for(disk, 0, DBMSG("before init_dev_parms"));
610 	pd_send_command(disk, disk->sectors, 0, disk->heads - 1, 0, 0,
611 			IDE_INIT_DEV_PARMS);
612 	udelay(300);
613 	pd_wait_for(disk, 0, "Initialise device parameters");
614 }
615 
pd_door_lock(struct pd_unit * disk)616 static enum action pd_door_lock(struct pd_unit *disk)
617 {
618 	if (!(pd_wait_for(disk, STAT_READY, "Lock") & STAT_ERR)) {
619 		pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORLOCK);
620 		pd_wait_for(disk, STAT_READY, "Lock done");
621 	}
622 	return Ok;
623 }
624 
pd_door_unlock(struct pd_unit * disk)625 static enum action pd_door_unlock(struct pd_unit *disk)
626 {
627 	if (!(pd_wait_for(disk, STAT_READY, "Lock") & STAT_ERR)) {
628 		pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORUNLOCK);
629 		pd_wait_for(disk, STAT_READY, "Lock done");
630 	}
631 	return Ok;
632 }
633 
pd_eject(struct pd_unit * disk)634 static enum action pd_eject(struct pd_unit *disk)
635 {
636 	pd_wait_for(disk, 0, DBMSG("before unlock on eject"));
637 	pd_send_command(disk, 1, 0, 0, 0, 0, IDE_DOORUNLOCK);
638 	pd_wait_for(disk, 0, DBMSG("after unlock on eject"));
639 	pd_wait_for(disk, 0, DBMSG("before eject"));
640 	pd_send_command(disk, 0, 0, 0, 0, 0, IDE_EJECT);
641 	pd_wait_for(disk, 0, DBMSG("after eject"));
642 	return Ok;
643 }
644 
pd_media_check(struct pd_unit * disk)645 static enum action pd_media_check(struct pd_unit *disk)
646 {
647 	int r = pd_wait_for(disk, STAT_READY, DBMSG("before media_check"));
648 	if (!(r & STAT_ERR)) {
649 		pd_send_command(disk, 1, 1, 0, 0, 0, IDE_READ_VRFY);
650 		r = pd_wait_for(disk, STAT_READY, DBMSG("RDY after READ_VRFY"));
651 	} else
652 		disk->changed = 1;	/* say changed if other error */
653 	if (r & ERR_MC) {
654 		disk->changed = 1;
655 		pd_send_command(disk, 1, 0, 0, 0, 0, IDE_ACKCHANGE);
656 		pd_wait_for(disk, STAT_READY, DBMSG("RDY after ACKCHANGE"));
657 		pd_send_command(disk, 1, 1, 0, 0, 0, IDE_READ_VRFY);
658 		r = pd_wait_for(disk, STAT_READY, DBMSG("RDY after VRFY"));
659 	}
660 	return Ok;
661 }
662 
pd_standby_off(struct pd_unit * disk)663 static void pd_standby_off(struct pd_unit *disk)
664 {
665 	pd_wait_for(disk, 0, DBMSG("before STANDBY"));
666 	pd_send_command(disk, 0, 0, 0, 0, 0, IDE_STANDBY);
667 	pd_wait_for(disk, 0, DBMSG("after STANDBY"));
668 }
669 
pd_identify(struct pd_unit * disk)670 static enum action pd_identify(struct pd_unit *disk)
671 {
672 	int j;
673 	char id[PD_ID_LEN + 1];
674 
675 /* WARNING:  here there may be dragons.  reset() applies to both drives,
676    but we call it only on probing the MASTER. This should allow most
677    common configurations to work, but be warned that a reset can clear
678    settings on the SLAVE drive.
679 */
680 
681 	if (disk->drive == 0)
682 		pd_reset(disk);
683 
684 	write_reg(disk, 6, DRIVE(disk));
685 	pd_wait_for(disk, 0, DBMSG("before IDENT"));
686 	pd_send_command(disk, 1, 0, 0, 0, 0, IDE_IDENTIFY);
687 
688 	if (pd_wait_for(disk, STAT_DRQ, DBMSG("IDENT DRQ")) & STAT_ERR)
689 		return Fail;
690 	pi_read_block(disk->pi, pd_scratch, 512);
691 	disk->can_lba = pd_scratch[99] & 2;
692 	disk->sectors = le16_to_cpu(*(__le16 *) (pd_scratch + 12));
693 	disk->heads = le16_to_cpu(*(__le16 *) (pd_scratch + 6));
694 	disk->cylinders = le16_to_cpu(*(__le16 *) (pd_scratch + 2));
695 	if (disk->can_lba)
696 		disk->capacity = le32_to_cpu(*(__le32 *) (pd_scratch + 120));
697 	else
698 		disk->capacity = disk->sectors * disk->heads * disk->cylinders;
699 
700 	for (j = 0; j < PD_ID_LEN; j++)
701 		id[j ^ 1] = pd_scratch[j + PD_ID_OFF];
702 	j = PD_ID_LEN - 1;
703 	while ((j >= 0) && (id[j] <= 0x20))
704 		j--;
705 	j++;
706 	id[j] = 0;
707 
708 	disk->removable = pd_scratch[0] & 0x80;
709 
710 	printk("%s: %s, %s, %d blocks [%dM], (%d/%d/%d), %s media\n",
711 	       disk->name, id,
712 	       disk->drive ? "slave" : "master",
713 	       disk->capacity, disk->capacity / 2048,
714 	       disk->cylinders, disk->heads, disk->sectors,
715 	       disk->removable ? "removable" : "fixed");
716 
717 	if (disk->capacity)
718 		pd_init_dev_parms(disk);
719 	if (!disk->standby)
720 		pd_standby_off(disk);
721 
722 	return Ok;
723 }
724 
725 /* end of io request engine */
726 
do_pd_request(struct request_queue * q)727 static void do_pd_request(struct request_queue * q)
728 {
729 	if (pd_req)
730 		return;
731 	pd_req = blk_fetch_request(q);
732 	if (!pd_req)
733 		return;
734 
735 	schedule_fsm();
736 }
737 
pd_special_command(struct pd_unit * disk,enum action (* func)(struct pd_unit * disk))738 static int pd_special_command(struct pd_unit *disk,
739 		      enum action (*func)(struct pd_unit *disk))
740 {
741 	struct request *rq;
742 
743 	rq = blk_get_request(disk->gd->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
744 	if (IS_ERR(rq))
745 		return PTR_ERR(rq);
746 
747 	rq->special = func;
748 	blk_execute_rq(disk->gd->queue, disk->gd, rq, 0);
749 	blk_put_request(rq);
750 	return 0;
751 }
752 
753 /* kernel glue structures */
754 
pd_open(struct block_device * bdev,fmode_t mode)755 static int pd_open(struct block_device *bdev, fmode_t mode)
756 {
757 	struct pd_unit *disk = bdev->bd_disk->private_data;
758 
759 	mutex_lock(&pd_mutex);
760 	disk->access++;
761 
762 	if (disk->removable) {
763 		pd_special_command(disk, pd_media_check);
764 		pd_special_command(disk, pd_door_lock);
765 	}
766 	mutex_unlock(&pd_mutex);
767 	return 0;
768 }
769 
pd_getgeo(struct block_device * bdev,struct hd_geometry * geo)770 static int pd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
771 {
772 	struct pd_unit *disk = bdev->bd_disk->private_data;
773 
774 	if (disk->alt_geom) {
775 		geo->heads = PD_LOG_HEADS;
776 		geo->sectors = PD_LOG_SECTS;
777 		geo->cylinders = disk->capacity / (geo->heads * geo->sectors);
778 	} else {
779 		geo->heads = disk->heads;
780 		geo->sectors = disk->sectors;
781 		geo->cylinders = disk->cylinders;
782 	}
783 
784 	return 0;
785 }
786 
pd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)787 static int pd_ioctl(struct block_device *bdev, fmode_t mode,
788 	 unsigned int cmd, unsigned long arg)
789 {
790 	struct pd_unit *disk = bdev->bd_disk->private_data;
791 
792 	switch (cmd) {
793 	case CDROMEJECT:
794 		mutex_lock(&pd_mutex);
795 		if (disk->access == 1)
796 			pd_special_command(disk, pd_eject);
797 		mutex_unlock(&pd_mutex);
798 		return 0;
799 	default:
800 		return -EINVAL;
801 	}
802 }
803 
pd_release(struct gendisk * p,fmode_t mode)804 static void pd_release(struct gendisk *p, fmode_t mode)
805 {
806 	struct pd_unit *disk = p->private_data;
807 
808 	mutex_lock(&pd_mutex);
809 	if (!--disk->access && disk->removable)
810 		pd_special_command(disk, pd_door_unlock);
811 	mutex_unlock(&pd_mutex);
812 }
813 
pd_check_events(struct gendisk * p,unsigned int clearing)814 static unsigned int pd_check_events(struct gendisk *p, unsigned int clearing)
815 {
816 	struct pd_unit *disk = p->private_data;
817 	int r;
818 	if (!disk->removable)
819 		return 0;
820 	pd_special_command(disk, pd_media_check);
821 	r = disk->changed;
822 	disk->changed = 0;
823 	return r ? DISK_EVENT_MEDIA_CHANGE : 0;
824 }
825 
pd_revalidate(struct gendisk * p)826 static int pd_revalidate(struct gendisk *p)
827 {
828 	struct pd_unit *disk = p->private_data;
829 	if (pd_special_command(disk, pd_identify) == 0)
830 		set_capacity(p, disk->capacity);
831 	else
832 		set_capacity(p, 0);
833 	return 0;
834 }
835 
836 static const struct block_device_operations pd_fops = {
837 	.owner		= THIS_MODULE,
838 	.open		= pd_open,
839 	.release	= pd_release,
840 	.ioctl		= pd_ioctl,
841 	.getgeo		= pd_getgeo,
842 	.check_events	= pd_check_events,
843 	.revalidate_disk= pd_revalidate
844 };
845 
846 /* probing */
847 
pd_probe_drive(struct pd_unit * disk)848 static void pd_probe_drive(struct pd_unit *disk)
849 {
850 	struct gendisk *p = alloc_disk(1 << PD_BITS);
851 	if (!p)
852 		return;
853 	strcpy(p->disk_name, disk->name);
854 	p->fops = &pd_fops;
855 	p->major = major;
856 	p->first_minor = (disk - pd) << PD_BITS;
857 	disk->gd = p;
858 	p->private_data = disk;
859 	p->queue = blk_init_queue(do_pd_request, &pd_lock);
860 	if (!p->queue) {
861 		disk->gd = NULL;
862 		put_disk(p);
863 		return;
864 	}
865 	blk_queue_max_hw_sectors(p->queue, cluster);
866 	blk_queue_bounce_limit(p->queue, BLK_BOUNCE_HIGH);
867 
868 	if (disk->drive == -1) {
869 		for (disk->drive = 0; disk->drive <= 1; disk->drive++)
870 			if (pd_special_command(disk, pd_identify) == 0)
871 				return;
872 	} else if (pd_special_command(disk, pd_identify) == 0)
873 		return;
874 	disk->gd = NULL;
875 	put_disk(p);
876 }
877 
pd_detect(void)878 static int pd_detect(void)
879 {
880 	int found = 0, unit, pd_drive_count = 0;
881 	struct pd_unit *disk;
882 
883 	for (unit = 0; unit < PD_UNITS; unit++) {
884 		int *parm = *drives[unit];
885 		struct pd_unit *disk = pd + unit;
886 		disk->pi = &disk->pia;
887 		disk->access = 0;
888 		disk->changed = 1;
889 		disk->capacity = 0;
890 		disk->drive = parm[D_SLV];
891 		snprintf(disk->name, PD_NAMELEN, "%s%c", name, 'a'+unit);
892 		disk->alt_geom = parm[D_GEO];
893 		disk->standby = parm[D_SBY];
894 		if (parm[D_PRT])
895 			pd_drive_count++;
896 	}
897 
898 	par_drv = pi_register_driver(name);
899 	if (!par_drv) {
900 		pr_err("failed to register %s driver\n", name);
901 		return -1;
902 	}
903 
904 	if (pd_drive_count == 0) { /* nothing spec'd - so autoprobe for 1 */
905 		disk = pd;
906 		if (pi_init(disk->pi, 1, -1, -1, -1, -1, -1, pd_scratch,
907 			    PI_PD, verbose, disk->name)) {
908 			pd_probe_drive(disk);
909 			if (!disk->gd)
910 				pi_release(disk->pi);
911 		}
912 
913 	} else {
914 		for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
915 			int *parm = *drives[unit];
916 			if (!parm[D_PRT])
917 				continue;
918 			if (pi_init(disk->pi, 0, parm[D_PRT], parm[D_MOD],
919 				     parm[D_UNI], parm[D_PRO], parm[D_DLY],
920 				     pd_scratch, PI_PD, verbose, disk->name)) {
921 				pd_probe_drive(disk);
922 				if (!disk->gd)
923 					pi_release(disk->pi);
924 			}
925 		}
926 	}
927 	for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
928 		if (disk->gd) {
929 			set_capacity(disk->gd, disk->capacity);
930 			add_disk(disk->gd);
931 			found = 1;
932 		}
933 	}
934 	if (!found) {
935 		printk("%s: no valid drive found\n", name);
936 		pi_unregister_driver(par_drv);
937 	}
938 	return found;
939 }
940 
pd_init(void)941 static int __init pd_init(void)
942 {
943 	if (disable)
944 		goto out1;
945 
946 	if (register_blkdev(major, name))
947 		goto out1;
948 
949 	printk("%s: %s version %s, major %d, cluster %d, nice %d\n",
950 	       name, name, PD_VERSION, major, cluster, nice);
951 	if (!pd_detect())
952 		goto out2;
953 
954 	return 0;
955 
956 out2:
957 	unregister_blkdev(major, name);
958 out1:
959 	return -ENODEV;
960 }
961 
pd_exit(void)962 static void __exit pd_exit(void)
963 {
964 	struct pd_unit *disk;
965 	int unit;
966 	unregister_blkdev(major, name);
967 	for (unit = 0, disk = pd; unit < PD_UNITS; unit++, disk++) {
968 		struct gendisk *p = disk->gd;
969 		if (p) {
970 			disk->gd = NULL;
971 			del_gendisk(p);
972 			blk_cleanup_queue(p->queue);
973 			put_disk(p);
974 			pi_release(disk->pi);
975 		}
976 	}
977 }
978 
979 MODULE_LICENSE("GPL");
980 module_init(pd_init)
981 module_exit(pd_exit)
982