• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
3  * was acquired by Western Digital in 2012.
4  *
5  * Copyright 2012 sTec, Inc.
6  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
7  *
8  * This file is part of the Linux kernel, and is made available under
9  * the terms of the GNU General Public License version 2.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/sched.h>
21 #include <linux/interrupt.h>
22 #include <linux/compiler.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <linux/time.h>
26 #include <linux/hdreg.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/completion.h>
29 #include <linux/scatterlist.h>
30 #include <linux/version.h>
31 #include <linux/err.h>
32 #include <linux/aer.h>
33 #include <linux/wait.h>
34 #include <linux/stringify.h>
35 #include <linux/slab_def.h>
36 #include <scsi/scsi.h>
37 #include <scsi/sg.h>
38 #include <linux/io.h>
39 #include <linux/uaccess.h>
40 #include <asm/unaligned.h>
41 
42 #include "skd_s1120.h"
43 
44 static int skd_dbg_level;
45 static int skd_isr_comp_limit = 4;
46 
47 #define SKD_ASSERT(expr) \
48 	do { \
49 		if (unlikely(!(expr))) { \
50 			pr_err("Assertion failed! %s,%s,%s,line=%d\n",	\
51 			       # expr, __FILE__, __func__, __LINE__); \
52 		} \
53 	} while (0)
54 
55 #define DRV_NAME "skd"
56 #define PFX DRV_NAME ": "
57 
58 MODULE_LICENSE("GPL");
59 
60 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
61 
62 #define PCI_VENDOR_ID_STEC      0x1B39
63 #define PCI_DEVICE_ID_S1120     0x0001
64 
65 #define SKD_FUA_NV		(1 << 1)
66 #define SKD_MINORS_PER_DEVICE   16
67 
68 #define SKD_MAX_QUEUE_DEPTH     200u
69 
70 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
71 
72 #define SKD_N_FITMSG_BYTES      (512u)
73 #define SKD_MAX_REQ_PER_MSG	14
74 
75 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
76 
77 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
78  * 128KB limit.  That allows 4096*4K = 16M xfer size
79  */
80 #define SKD_N_SG_PER_REQ_DEFAULT 256u
81 
82 #define SKD_N_COMPLETION_ENTRY  256u
83 #define SKD_N_READ_CAP_BYTES    (8u)
84 
85 #define SKD_N_INTERNAL_BYTES    (512u)
86 
87 #define SKD_SKCOMP_SIZE							\
88 	((sizeof(struct fit_completion_entry_v1) +			\
89 	  sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
90 
91 /* 5 bits of uniqifier, 0xF800 */
92 #define SKD_ID_TABLE_MASK       (3u << 8u)
93 #define  SKD_ID_RW_REQUEST      (0u << 8u)
94 #define  SKD_ID_INTERNAL        (1u << 8u)
95 #define  SKD_ID_FIT_MSG         (3u << 8u)
96 #define SKD_ID_SLOT_MASK        0x00FFu
97 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
98 
99 #define SKD_N_MAX_SECTORS 2048u
100 
101 #define SKD_MAX_RETRIES 2u
102 
103 #define SKD_TIMER_SECONDS(seconds) (seconds)
104 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
105 
106 #define INQ_STD_NBYTES 36
107 
108 enum skd_drvr_state {
109 	SKD_DRVR_STATE_LOAD,
110 	SKD_DRVR_STATE_IDLE,
111 	SKD_DRVR_STATE_BUSY,
112 	SKD_DRVR_STATE_STARTING,
113 	SKD_DRVR_STATE_ONLINE,
114 	SKD_DRVR_STATE_PAUSING,
115 	SKD_DRVR_STATE_PAUSED,
116 	SKD_DRVR_STATE_RESTARTING,
117 	SKD_DRVR_STATE_RESUMING,
118 	SKD_DRVR_STATE_STOPPING,
119 	SKD_DRVR_STATE_FAULT,
120 	SKD_DRVR_STATE_DISAPPEARED,
121 	SKD_DRVR_STATE_PROTOCOL_MISMATCH,
122 	SKD_DRVR_STATE_BUSY_ERASE,
123 	SKD_DRVR_STATE_BUSY_SANITIZE,
124 	SKD_DRVR_STATE_BUSY_IMMINENT,
125 	SKD_DRVR_STATE_WAIT_BOOT,
126 	SKD_DRVR_STATE_SYNCING,
127 };
128 
129 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
130 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
131 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
132 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
133 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
134 #define SKD_START_WAIT_SECONDS  90u
135 
136 enum skd_req_state {
137 	SKD_REQ_STATE_IDLE,
138 	SKD_REQ_STATE_SETUP,
139 	SKD_REQ_STATE_BUSY,
140 	SKD_REQ_STATE_COMPLETED,
141 	SKD_REQ_STATE_TIMEOUT,
142 };
143 
144 enum skd_check_status_action {
145 	SKD_CHECK_STATUS_REPORT_GOOD,
146 	SKD_CHECK_STATUS_REPORT_SMART_ALERT,
147 	SKD_CHECK_STATUS_REQUEUE_REQUEST,
148 	SKD_CHECK_STATUS_REPORT_ERROR,
149 	SKD_CHECK_STATUS_BUSY_IMMINENT,
150 };
151 
152 struct skd_msg_buf {
153 	struct fit_msg_hdr	fmh;
154 	struct skd_scsi_request	scsi[SKD_MAX_REQ_PER_MSG];
155 };
156 
157 struct skd_fitmsg_context {
158 	u32 id;
159 
160 	u32 length;
161 
162 	struct skd_msg_buf *msg_buf;
163 	dma_addr_t mb_dma_address;
164 };
165 
166 struct skd_request_context {
167 	enum skd_req_state state;
168 
169 	u16 id;
170 	u32 fitmsg_id;
171 
172 	u8 flush_cmd;
173 
174 	enum dma_data_direction data_dir;
175 	struct scatterlist *sg;
176 	u32 n_sg;
177 	u32 sg_byte_count;
178 
179 	struct fit_sg_descriptor *sksg_list;
180 	dma_addr_t sksg_dma_address;
181 
182 	struct fit_completion_entry_v1 completion;
183 
184 	struct fit_comp_error_info err_info;
185 
186 	blk_status_t status;
187 };
188 
189 struct skd_special_context {
190 	struct skd_request_context req;
191 
192 	void *data_buf;
193 	dma_addr_t db_dma_address;
194 
195 	struct skd_msg_buf *msg_buf;
196 	dma_addr_t mb_dma_address;
197 };
198 
199 typedef enum skd_irq_type {
200 	SKD_IRQ_LEGACY,
201 	SKD_IRQ_MSI,
202 	SKD_IRQ_MSIX
203 } skd_irq_type_t;
204 
205 #define SKD_MAX_BARS                    2
206 
207 struct skd_device {
208 	void __iomem *mem_map[SKD_MAX_BARS];
209 	resource_size_t mem_phys[SKD_MAX_BARS];
210 	u32 mem_size[SKD_MAX_BARS];
211 
212 	struct skd_msix_entry *msix_entries;
213 
214 	struct pci_dev *pdev;
215 	int pcie_error_reporting_is_enabled;
216 
217 	spinlock_t lock;
218 	struct gendisk *disk;
219 	struct blk_mq_tag_set tag_set;
220 	struct request_queue *queue;
221 	struct skd_fitmsg_context *skmsg;
222 	struct device *class_dev;
223 	int gendisk_on;
224 	int sync_done;
225 
226 	u32 devno;
227 	u32 major;
228 	char isr_name[30];
229 
230 	enum skd_drvr_state state;
231 	u32 drive_state;
232 
233 	u32 cur_max_queue_depth;
234 	u32 queue_low_water_mark;
235 	u32 dev_max_queue_depth;
236 
237 	u32 num_fitmsg_context;
238 	u32 num_req_context;
239 
240 	struct skd_fitmsg_context *skmsg_table;
241 
242 	struct skd_special_context internal_skspcl;
243 	u32 read_cap_blocksize;
244 	u32 read_cap_last_lba;
245 	int read_cap_is_valid;
246 	int inquiry_is_valid;
247 	u8 inq_serial_num[13];  /*12 chars plus null term */
248 
249 	u8 skcomp_cycle;
250 	u32 skcomp_ix;
251 	struct kmem_cache *msgbuf_cache;
252 	struct kmem_cache *sglist_cache;
253 	struct kmem_cache *databuf_cache;
254 	struct fit_completion_entry_v1 *skcomp_table;
255 	struct fit_comp_error_info *skerr_table;
256 	dma_addr_t cq_dma_address;
257 
258 	wait_queue_head_t waitq;
259 
260 	struct timer_list timer;
261 	u32 timer_countdown;
262 	u32 timer_substate;
263 
264 	int sgs_per_request;
265 	u32 last_mtd;
266 
267 	u32 proto_ver;
268 
269 	int dbg_level;
270 	u32 connect_time_stamp;
271 	int connect_retries;
272 #define SKD_MAX_CONNECT_RETRIES 16
273 	u32 drive_jiffies;
274 
275 	u32 timo_slot;
276 
277 	struct work_struct start_queue;
278 	struct work_struct completion_worker;
279 };
280 
281 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
282 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
283 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
284 
skd_reg_read32(struct skd_device * skdev,u32 offset)285 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
286 {
287 	u32 val = readl(skdev->mem_map[1] + offset);
288 
289 	if (unlikely(skdev->dbg_level >= 2))
290 		dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
291 	return val;
292 }
293 
skd_reg_write32(struct skd_device * skdev,u32 val,u32 offset)294 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
295 				   u32 offset)
296 {
297 	writel(val, skdev->mem_map[1] + offset);
298 	if (unlikely(skdev->dbg_level >= 2))
299 		dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
300 }
301 
skd_reg_write64(struct skd_device * skdev,u64 val,u32 offset)302 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
303 				   u32 offset)
304 {
305 	writeq(val, skdev->mem_map[1] + offset);
306 	if (unlikely(skdev->dbg_level >= 2))
307 		dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
308 			val);
309 }
310 
311 
312 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
313 static int skd_isr_type = SKD_IRQ_DEFAULT;
314 
315 module_param(skd_isr_type, int, 0444);
316 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
317 		 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
318 
319 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
320 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
321 
322 module_param(skd_max_req_per_msg, int, 0444);
323 MODULE_PARM_DESC(skd_max_req_per_msg,
324 		 "Maximum SCSI requests packed in a single message."
325 		 " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
326 
327 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
328 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
329 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
330 
331 module_param(skd_max_queue_depth, int, 0444);
332 MODULE_PARM_DESC(skd_max_queue_depth,
333 		 "Maximum SCSI requests issued to s1120."
334 		 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
335 
336 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
337 module_param(skd_sgs_per_request, int, 0444);
338 MODULE_PARM_DESC(skd_sgs_per_request,
339 		 "Maximum SG elements per block request."
340 		 " (1-4096, default==256)");
341 
342 static int skd_max_pass_thru = 1;
343 module_param(skd_max_pass_thru, int, 0444);
344 MODULE_PARM_DESC(skd_max_pass_thru,
345 		 "Maximum SCSI pass-thru at a time. IGNORED");
346 
347 module_param(skd_dbg_level, int, 0444);
348 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
349 
350 module_param(skd_isr_comp_limit, int, 0444);
351 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
352 
353 /* Major device number dynamically assigned. */
354 static u32 skd_major;
355 
356 static void skd_destruct(struct skd_device *skdev);
357 static const struct block_device_operations skd_blockdev_ops;
358 static void skd_send_fitmsg(struct skd_device *skdev,
359 			    struct skd_fitmsg_context *skmsg);
360 static void skd_send_special_fitmsg(struct skd_device *skdev,
361 				    struct skd_special_context *skspcl);
362 static bool skd_preop_sg_list(struct skd_device *skdev,
363 			     struct skd_request_context *skreq);
364 static void skd_postop_sg_list(struct skd_device *skdev,
365 			       struct skd_request_context *skreq);
366 
367 static void skd_restart_device(struct skd_device *skdev);
368 static int skd_quiesce_dev(struct skd_device *skdev);
369 static int skd_unquiesce_dev(struct skd_device *skdev);
370 static void skd_disable_interrupts(struct skd_device *skdev);
371 static void skd_isr_fwstate(struct skd_device *skdev);
372 static void skd_recover_requests(struct skd_device *skdev);
373 static void skd_soft_reset(struct skd_device *skdev);
374 
375 const char *skd_drive_state_to_str(int state);
376 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
377 static void skd_log_skdev(struct skd_device *skdev, const char *event);
378 static void skd_log_skreq(struct skd_device *skdev,
379 			  struct skd_request_context *skreq, const char *event);
380 
381 /*
382  *****************************************************************************
383  * READ/WRITE REQUESTS
384  *****************************************************************************
385  */
skd_inc_in_flight(struct request * rq,void * data,bool reserved)386 static void skd_inc_in_flight(struct request *rq, void *data, bool reserved)
387 {
388 	int *count = data;
389 
390 	count++;
391 }
392 
skd_in_flight(struct skd_device * skdev)393 static int skd_in_flight(struct skd_device *skdev)
394 {
395 	int count = 0;
396 
397 	blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
398 
399 	return count;
400 }
401 
402 static void
skd_prep_rw_cdb(struct skd_scsi_request * scsi_req,int data_dir,unsigned lba,unsigned count)403 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
404 		int data_dir, unsigned lba,
405 		unsigned count)
406 {
407 	if (data_dir == READ)
408 		scsi_req->cdb[0] = READ_10;
409 	else
410 		scsi_req->cdb[0] = WRITE_10;
411 
412 	scsi_req->cdb[1] = 0;
413 	scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
414 	scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
415 	scsi_req->cdb[4] = (lba & 0xff00) >> 8;
416 	scsi_req->cdb[5] = (lba & 0xff);
417 	scsi_req->cdb[6] = 0;
418 	scsi_req->cdb[7] = (count & 0xff00) >> 8;
419 	scsi_req->cdb[8] = count & 0xff;
420 	scsi_req->cdb[9] = 0;
421 }
422 
423 static void
skd_prep_zerosize_flush_cdb(struct skd_scsi_request * scsi_req,struct skd_request_context * skreq)424 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
425 			    struct skd_request_context *skreq)
426 {
427 	skreq->flush_cmd = 1;
428 
429 	scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
430 	scsi_req->cdb[1] = 0;
431 	scsi_req->cdb[2] = 0;
432 	scsi_req->cdb[3] = 0;
433 	scsi_req->cdb[4] = 0;
434 	scsi_req->cdb[5] = 0;
435 	scsi_req->cdb[6] = 0;
436 	scsi_req->cdb[7] = 0;
437 	scsi_req->cdb[8] = 0;
438 	scsi_req->cdb[9] = 0;
439 }
440 
441 /*
442  * Return true if and only if all pending requests should be failed.
443  */
skd_fail_all(struct request_queue * q)444 static bool skd_fail_all(struct request_queue *q)
445 {
446 	struct skd_device *skdev = q->queuedata;
447 
448 	SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
449 
450 	skd_log_skdev(skdev, "req_not_online");
451 	switch (skdev->state) {
452 	case SKD_DRVR_STATE_PAUSING:
453 	case SKD_DRVR_STATE_PAUSED:
454 	case SKD_DRVR_STATE_STARTING:
455 	case SKD_DRVR_STATE_RESTARTING:
456 	case SKD_DRVR_STATE_WAIT_BOOT:
457 	/* In case of starting, we haven't started the queue,
458 	 * so we can't get here... but requests are
459 	 * possibly hanging out waiting for us because we
460 	 * reported the dev/skd0 already.  They'll wait
461 	 * forever if connect doesn't complete.
462 	 * What to do??? delay dev/skd0 ??
463 	 */
464 	case SKD_DRVR_STATE_BUSY:
465 	case SKD_DRVR_STATE_BUSY_IMMINENT:
466 	case SKD_DRVR_STATE_BUSY_ERASE:
467 		return false;
468 
469 	case SKD_DRVR_STATE_BUSY_SANITIZE:
470 	case SKD_DRVR_STATE_STOPPING:
471 	case SKD_DRVR_STATE_SYNCING:
472 	case SKD_DRVR_STATE_FAULT:
473 	case SKD_DRVR_STATE_DISAPPEARED:
474 	default:
475 		return true;
476 	}
477 }
478 
skd_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * mqd)479 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
480 				    const struct blk_mq_queue_data *mqd)
481 {
482 	struct request *const req = mqd->rq;
483 	struct request_queue *const q = req->q;
484 	struct skd_device *skdev = q->queuedata;
485 	struct skd_fitmsg_context *skmsg;
486 	struct fit_msg_hdr *fmh;
487 	const u32 tag = blk_mq_unique_tag(req);
488 	struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
489 	struct skd_scsi_request *scsi_req;
490 	unsigned long flags = 0;
491 	const u32 lba = blk_rq_pos(req);
492 	const u32 count = blk_rq_sectors(req);
493 	const int data_dir = rq_data_dir(req);
494 
495 	if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
496 		return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
497 
498 	blk_mq_start_request(req);
499 
500 	WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
501 		  tag, skd_max_queue_depth, q->nr_requests);
502 
503 	SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
504 
505 	dev_dbg(&skdev->pdev->dev,
506 		"new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
507 		lba, count, count, data_dir);
508 
509 	skreq->id = tag + SKD_ID_RW_REQUEST;
510 	skreq->flush_cmd = 0;
511 	skreq->n_sg = 0;
512 	skreq->sg_byte_count = 0;
513 
514 	skreq->fitmsg_id = 0;
515 
516 	skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
517 
518 	if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
519 		dev_dbg(&skdev->pdev->dev, "error Out\n");
520 		skreq->status = BLK_STS_RESOURCE;
521 		blk_mq_complete_request(req);
522 		return BLK_STS_OK;
523 	}
524 
525 	dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
526 				   skreq->n_sg *
527 				   sizeof(struct fit_sg_descriptor),
528 				   DMA_TO_DEVICE);
529 
530 	/* Either a FIT msg is in progress or we have to start one. */
531 	if (skd_max_req_per_msg == 1) {
532 		skmsg = NULL;
533 	} else {
534 		spin_lock_irqsave(&skdev->lock, flags);
535 		skmsg = skdev->skmsg;
536 	}
537 	if (!skmsg) {
538 		skmsg = &skdev->skmsg_table[tag];
539 		skdev->skmsg = skmsg;
540 
541 		/* Initialize the FIT msg header */
542 		fmh = &skmsg->msg_buf->fmh;
543 		memset(fmh, 0, sizeof(*fmh));
544 		fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
545 		skmsg->length = sizeof(*fmh);
546 	} else {
547 		fmh = &skmsg->msg_buf->fmh;
548 	}
549 
550 	skreq->fitmsg_id = skmsg->id;
551 
552 	scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
553 	memset(scsi_req, 0, sizeof(*scsi_req));
554 
555 	scsi_req->hdr.tag = skreq->id;
556 	scsi_req->hdr.sg_list_dma_address =
557 		cpu_to_be64(skreq->sksg_dma_address);
558 
559 	if (req_op(req) == REQ_OP_FLUSH) {
560 		skd_prep_zerosize_flush_cdb(scsi_req, skreq);
561 		SKD_ASSERT(skreq->flush_cmd == 1);
562 	} else {
563 		skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
564 	}
565 
566 	if (req->cmd_flags & REQ_FUA)
567 		scsi_req->cdb[1] |= SKD_FUA_NV;
568 
569 	scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
570 
571 	/* Complete resource allocations. */
572 	skreq->state = SKD_REQ_STATE_BUSY;
573 
574 	skmsg->length += sizeof(struct skd_scsi_request);
575 	fmh->num_protocol_cmds_coalesced++;
576 
577 	dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
578 		skd_in_flight(skdev));
579 
580 	/*
581 	 * If the FIT msg buffer is full send it.
582 	 */
583 	if (skd_max_req_per_msg == 1) {
584 		skd_send_fitmsg(skdev, skmsg);
585 	} else {
586 		if (mqd->last ||
587 		    fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
588 			skd_send_fitmsg(skdev, skmsg);
589 			skdev->skmsg = NULL;
590 		}
591 		spin_unlock_irqrestore(&skdev->lock, flags);
592 	}
593 
594 	return BLK_STS_OK;
595 }
596 
skd_timed_out(struct request * req,bool reserved)597 static enum blk_eh_timer_return skd_timed_out(struct request *req,
598 					      bool reserved)
599 {
600 	struct skd_device *skdev = req->q->queuedata;
601 
602 	dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
603 		blk_mq_unique_tag(req));
604 
605 	return BLK_EH_RESET_TIMER;
606 }
607 
skd_complete_rq(struct request * req)608 static void skd_complete_rq(struct request *req)
609 {
610 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
611 
612 	blk_mq_end_request(req, skreq->status);
613 }
614 
skd_preop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)615 static bool skd_preop_sg_list(struct skd_device *skdev,
616 			     struct skd_request_context *skreq)
617 {
618 	struct request *req = blk_mq_rq_from_pdu(skreq);
619 	struct scatterlist *sgl = &skreq->sg[0], *sg;
620 	int n_sg;
621 	int i;
622 
623 	skreq->sg_byte_count = 0;
624 
625 	WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
626 		     skreq->data_dir != DMA_FROM_DEVICE);
627 
628 	n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
629 	if (n_sg <= 0)
630 		return false;
631 
632 	/*
633 	 * Map scatterlist to PCI bus addresses.
634 	 * Note PCI might change the number of entries.
635 	 */
636 	n_sg = pci_map_sg(skdev->pdev, sgl, n_sg, skreq->data_dir);
637 	if (n_sg <= 0)
638 		return false;
639 
640 	SKD_ASSERT(n_sg <= skdev->sgs_per_request);
641 
642 	skreq->n_sg = n_sg;
643 
644 	for_each_sg(sgl, sg, n_sg, i) {
645 		struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
646 		u32 cnt = sg_dma_len(sg);
647 		uint64_t dma_addr = sg_dma_address(sg);
648 
649 		sgd->control = FIT_SGD_CONTROL_NOT_LAST;
650 		sgd->byte_count = cnt;
651 		skreq->sg_byte_count += cnt;
652 		sgd->host_side_addr = dma_addr;
653 		sgd->dev_side_addr = 0;
654 	}
655 
656 	skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
657 	skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
658 
659 	if (unlikely(skdev->dbg_level > 1)) {
660 		dev_dbg(&skdev->pdev->dev,
661 			"skreq=%x sksg_list=%p sksg_dma=%llx\n",
662 			skreq->id, skreq->sksg_list, skreq->sksg_dma_address);
663 		for (i = 0; i < n_sg; i++) {
664 			struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
665 
666 			dev_dbg(&skdev->pdev->dev,
667 				"  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
668 				i, sgd->byte_count, sgd->control,
669 				sgd->host_side_addr, sgd->next_desc_ptr);
670 		}
671 	}
672 
673 	return true;
674 }
675 
skd_postop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)676 static void skd_postop_sg_list(struct skd_device *skdev,
677 			       struct skd_request_context *skreq)
678 {
679 	/*
680 	 * restore the next ptr for next IO request so we
681 	 * don't have to set it every time.
682 	 */
683 	skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
684 		skreq->sksg_dma_address +
685 		((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
686 	pci_unmap_sg(skdev->pdev, &skreq->sg[0], skreq->n_sg, skreq->data_dir);
687 }
688 
689 /*
690  *****************************************************************************
691  * TIMER
692  *****************************************************************************
693  */
694 
695 static void skd_timer_tick_not_online(struct skd_device *skdev);
696 
skd_start_queue(struct work_struct * work)697 static void skd_start_queue(struct work_struct *work)
698 {
699 	struct skd_device *skdev = container_of(work, typeof(*skdev),
700 						start_queue);
701 
702 	/*
703 	 * Although it is safe to call blk_start_queue() from interrupt
704 	 * context, blk_mq_start_hw_queues() must not be called from
705 	 * interrupt context.
706 	 */
707 	blk_mq_start_hw_queues(skdev->queue);
708 }
709 
skd_timer_tick(ulong arg)710 static void skd_timer_tick(ulong arg)
711 {
712 	struct skd_device *skdev = (struct skd_device *)arg;
713 	unsigned long reqflags;
714 	u32 state;
715 
716 	if (skdev->state == SKD_DRVR_STATE_FAULT)
717 		/* The driver has declared fault, and we want it to
718 		 * stay that way until driver is reloaded.
719 		 */
720 		return;
721 
722 	spin_lock_irqsave(&skdev->lock, reqflags);
723 
724 	state = SKD_READL(skdev, FIT_STATUS);
725 	state &= FIT_SR_DRIVE_STATE_MASK;
726 	if (state != skdev->drive_state)
727 		skd_isr_fwstate(skdev);
728 
729 	if (skdev->state != SKD_DRVR_STATE_ONLINE)
730 		skd_timer_tick_not_online(skdev);
731 
732 	mod_timer(&skdev->timer, (jiffies + HZ));
733 
734 	spin_unlock_irqrestore(&skdev->lock, reqflags);
735 }
736 
skd_timer_tick_not_online(struct skd_device * skdev)737 static void skd_timer_tick_not_online(struct skd_device *skdev)
738 {
739 	switch (skdev->state) {
740 	case SKD_DRVR_STATE_IDLE:
741 	case SKD_DRVR_STATE_LOAD:
742 		break;
743 	case SKD_DRVR_STATE_BUSY_SANITIZE:
744 		dev_dbg(&skdev->pdev->dev,
745 			"drive busy sanitize[%x], driver[%x]\n",
746 			skdev->drive_state, skdev->state);
747 		/* If we've been in sanitize for 3 seconds, we figure we're not
748 		 * going to get anymore completions, so recover requests now
749 		 */
750 		if (skdev->timer_countdown > 0) {
751 			skdev->timer_countdown--;
752 			return;
753 		}
754 		skd_recover_requests(skdev);
755 		break;
756 
757 	case SKD_DRVR_STATE_BUSY:
758 	case SKD_DRVR_STATE_BUSY_IMMINENT:
759 	case SKD_DRVR_STATE_BUSY_ERASE:
760 		dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
761 			skdev->state, skdev->timer_countdown);
762 		if (skdev->timer_countdown > 0) {
763 			skdev->timer_countdown--;
764 			return;
765 		}
766 		dev_dbg(&skdev->pdev->dev,
767 			"busy[%x], timedout=%d, restarting device.",
768 			skdev->state, skdev->timer_countdown);
769 		skd_restart_device(skdev);
770 		break;
771 
772 	case SKD_DRVR_STATE_WAIT_BOOT:
773 	case SKD_DRVR_STATE_STARTING:
774 		if (skdev->timer_countdown > 0) {
775 			skdev->timer_countdown--;
776 			return;
777 		}
778 		/* For now, we fault the drive.  Could attempt resets to
779 		 * revcover at some point. */
780 		skdev->state = SKD_DRVR_STATE_FAULT;
781 
782 		dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
783 			skdev->drive_state);
784 
785 		/*start the queue so we can respond with error to requests */
786 		/* wakeup anyone waiting for startup complete */
787 		schedule_work(&skdev->start_queue);
788 		skdev->gendisk_on = -1;
789 		wake_up_interruptible(&skdev->waitq);
790 		break;
791 
792 	case SKD_DRVR_STATE_ONLINE:
793 		/* shouldn't get here. */
794 		break;
795 
796 	case SKD_DRVR_STATE_PAUSING:
797 	case SKD_DRVR_STATE_PAUSED:
798 		break;
799 
800 	case SKD_DRVR_STATE_RESTARTING:
801 		if (skdev->timer_countdown > 0) {
802 			skdev->timer_countdown--;
803 			return;
804 		}
805 		/* For now, we fault the drive. Could attempt resets to
806 		 * revcover at some point. */
807 		skdev->state = SKD_DRVR_STATE_FAULT;
808 		dev_err(&skdev->pdev->dev,
809 			"DriveFault Reconnect Timeout (%x)\n",
810 			skdev->drive_state);
811 
812 		/*
813 		 * Recovering does two things:
814 		 * 1. completes IO with error
815 		 * 2. reclaims dma resources
816 		 * When is it safe to recover requests?
817 		 * - if the drive state is faulted
818 		 * - if the state is still soft reset after out timeout
819 		 * - if the drive registers are dead (state = FF)
820 		 * If it is "unsafe", we still need to recover, so we will
821 		 * disable pci bus mastering and disable our interrupts.
822 		 */
823 
824 		if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
825 		    (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
826 		    (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
827 			/* It never came out of soft reset. Try to
828 			 * recover the requests and then let them
829 			 * fail. This is to mitigate hung processes. */
830 			skd_recover_requests(skdev);
831 		else {
832 			dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
833 				skdev->drive_state);
834 			pci_disable_device(skdev->pdev);
835 			skd_disable_interrupts(skdev);
836 			skd_recover_requests(skdev);
837 		}
838 
839 		/*start the queue so we can respond with error to requests */
840 		/* wakeup anyone waiting for startup complete */
841 		schedule_work(&skdev->start_queue);
842 		skdev->gendisk_on = -1;
843 		wake_up_interruptible(&skdev->waitq);
844 		break;
845 
846 	case SKD_DRVR_STATE_RESUMING:
847 	case SKD_DRVR_STATE_STOPPING:
848 	case SKD_DRVR_STATE_SYNCING:
849 	case SKD_DRVR_STATE_FAULT:
850 	case SKD_DRVR_STATE_DISAPPEARED:
851 	default:
852 		break;
853 	}
854 }
855 
skd_start_timer(struct skd_device * skdev)856 static int skd_start_timer(struct skd_device *skdev)
857 {
858 	int rc;
859 
860 	setup_timer(&skdev->timer, skd_timer_tick, (ulong)skdev);
861 
862 	rc = mod_timer(&skdev->timer, (jiffies + HZ));
863 	if (rc)
864 		dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
865 	return rc;
866 }
867 
skd_kill_timer(struct skd_device * skdev)868 static void skd_kill_timer(struct skd_device *skdev)
869 {
870 	del_timer_sync(&skdev->timer);
871 }
872 
873 /*
874  *****************************************************************************
875  * INTERNAL REQUESTS -- generated by driver itself
876  *****************************************************************************
877  */
878 
skd_format_internal_skspcl(struct skd_device * skdev)879 static int skd_format_internal_skspcl(struct skd_device *skdev)
880 {
881 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
882 	struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
883 	struct fit_msg_hdr *fmh;
884 	uint64_t dma_address;
885 	struct skd_scsi_request *scsi;
886 
887 	fmh = &skspcl->msg_buf->fmh;
888 	fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
889 	fmh->num_protocol_cmds_coalesced = 1;
890 
891 	scsi = &skspcl->msg_buf->scsi[0];
892 	memset(scsi, 0, sizeof(*scsi));
893 	dma_address = skspcl->req.sksg_dma_address;
894 	scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
895 	skspcl->req.n_sg = 1;
896 	sgd->control = FIT_SGD_CONTROL_LAST;
897 	sgd->byte_count = 0;
898 	sgd->host_side_addr = skspcl->db_dma_address;
899 	sgd->dev_side_addr = 0;
900 	sgd->next_desc_ptr = 0LL;
901 
902 	return 1;
903 }
904 
905 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
906 
skd_send_internal_skspcl(struct skd_device * skdev,struct skd_special_context * skspcl,u8 opcode)907 static void skd_send_internal_skspcl(struct skd_device *skdev,
908 				     struct skd_special_context *skspcl,
909 				     u8 opcode)
910 {
911 	struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
912 	struct skd_scsi_request *scsi;
913 	unsigned char *buf = skspcl->data_buf;
914 	int i;
915 
916 	if (skspcl->req.state != SKD_REQ_STATE_IDLE)
917 		/*
918 		 * A refresh is already in progress.
919 		 * Just wait for it to finish.
920 		 */
921 		return;
922 
923 	skspcl->req.state = SKD_REQ_STATE_BUSY;
924 
925 	scsi = &skspcl->msg_buf->scsi[0];
926 	scsi->hdr.tag = skspcl->req.id;
927 
928 	memset(scsi->cdb, 0, sizeof(scsi->cdb));
929 
930 	switch (opcode) {
931 	case TEST_UNIT_READY:
932 		scsi->cdb[0] = TEST_UNIT_READY;
933 		sgd->byte_count = 0;
934 		scsi->hdr.sg_list_len_bytes = 0;
935 		break;
936 
937 	case READ_CAPACITY:
938 		scsi->cdb[0] = READ_CAPACITY;
939 		sgd->byte_count = SKD_N_READ_CAP_BYTES;
940 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
941 		break;
942 
943 	case INQUIRY:
944 		scsi->cdb[0] = INQUIRY;
945 		scsi->cdb[1] = 0x01;    /* evpd */
946 		scsi->cdb[2] = 0x80;    /* serial number page */
947 		scsi->cdb[4] = 0x10;
948 		sgd->byte_count = 16;
949 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
950 		break;
951 
952 	case SYNCHRONIZE_CACHE:
953 		scsi->cdb[0] = SYNCHRONIZE_CACHE;
954 		sgd->byte_count = 0;
955 		scsi->hdr.sg_list_len_bytes = 0;
956 		break;
957 
958 	case WRITE_BUFFER:
959 		scsi->cdb[0] = WRITE_BUFFER;
960 		scsi->cdb[1] = 0x02;
961 		scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
962 		scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
963 		sgd->byte_count = WR_BUF_SIZE;
964 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
965 		/* fill incrementing byte pattern */
966 		for (i = 0; i < sgd->byte_count; i++)
967 			buf[i] = i & 0xFF;
968 		break;
969 
970 	case READ_BUFFER:
971 		scsi->cdb[0] = READ_BUFFER;
972 		scsi->cdb[1] = 0x02;
973 		scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
974 		scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
975 		sgd->byte_count = WR_BUF_SIZE;
976 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
977 		memset(skspcl->data_buf, 0, sgd->byte_count);
978 		break;
979 
980 	default:
981 		SKD_ASSERT("Don't know what to send");
982 		return;
983 
984 	}
985 	skd_send_special_fitmsg(skdev, skspcl);
986 }
987 
skd_refresh_device_data(struct skd_device * skdev)988 static void skd_refresh_device_data(struct skd_device *skdev)
989 {
990 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
991 
992 	skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
993 }
994 
skd_chk_read_buf(struct skd_device * skdev,struct skd_special_context * skspcl)995 static int skd_chk_read_buf(struct skd_device *skdev,
996 			    struct skd_special_context *skspcl)
997 {
998 	unsigned char *buf = skspcl->data_buf;
999 	int i;
1000 
1001 	/* check for incrementing byte pattern */
1002 	for (i = 0; i < WR_BUF_SIZE; i++)
1003 		if (buf[i] != (i & 0xFF))
1004 			return 1;
1005 
1006 	return 0;
1007 }
1008 
skd_log_check_status(struct skd_device * skdev,u8 status,u8 key,u8 code,u8 qual,u8 fruc)1009 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1010 				 u8 code, u8 qual, u8 fruc)
1011 {
1012 	/* If the check condition is of special interest, log a message */
1013 	if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1014 	    && (code == 0x04) && (qual == 0x06)) {
1015 		dev_err(&skdev->pdev->dev,
1016 			"*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1017 			key, code, qual, fruc);
1018 	}
1019 }
1020 
skd_complete_internal(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr,struct skd_special_context * skspcl)1021 static void skd_complete_internal(struct skd_device *skdev,
1022 				  struct fit_completion_entry_v1 *skcomp,
1023 				  struct fit_comp_error_info *skerr,
1024 				  struct skd_special_context *skspcl)
1025 {
1026 	u8 *buf = skspcl->data_buf;
1027 	u8 status;
1028 	int i;
1029 	struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1030 
1031 	lockdep_assert_held(&skdev->lock);
1032 
1033 	SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1034 
1035 	dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1036 
1037 	dma_sync_single_for_cpu(&skdev->pdev->dev,
1038 				skspcl->db_dma_address,
1039 				skspcl->req.sksg_list[0].byte_count,
1040 				DMA_BIDIRECTIONAL);
1041 
1042 	skspcl->req.completion = *skcomp;
1043 	skspcl->req.state = SKD_REQ_STATE_IDLE;
1044 
1045 	status = skspcl->req.completion.status;
1046 
1047 	skd_log_check_status(skdev, status, skerr->key, skerr->code,
1048 			     skerr->qual, skerr->fruc);
1049 
1050 	switch (scsi->cdb[0]) {
1051 	case TEST_UNIT_READY:
1052 		if (status == SAM_STAT_GOOD)
1053 			skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1054 		else if ((status == SAM_STAT_CHECK_CONDITION) &&
1055 			 (skerr->key == MEDIUM_ERROR))
1056 			skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1057 		else {
1058 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1059 				dev_dbg(&skdev->pdev->dev,
1060 					"TUR failed, don't send anymore state 0x%x\n",
1061 					skdev->state);
1062 				return;
1063 			}
1064 			dev_dbg(&skdev->pdev->dev,
1065 				"**** TUR failed, retry skerr\n");
1066 			skd_send_internal_skspcl(skdev, skspcl,
1067 						 TEST_UNIT_READY);
1068 		}
1069 		break;
1070 
1071 	case WRITE_BUFFER:
1072 		if (status == SAM_STAT_GOOD)
1073 			skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1074 		else {
1075 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1076 				dev_dbg(&skdev->pdev->dev,
1077 					"write buffer failed, don't send anymore state 0x%x\n",
1078 					skdev->state);
1079 				return;
1080 			}
1081 			dev_dbg(&skdev->pdev->dev,
1082 				"**** write buffer failed, retry skerr\n");
1083 			skd_send_internal_skspcl(skdev, skspcl,
1084 						 TEST_UNIT_READY);
1085 		}
1086 		break;
1087 
1088 	case READ_BUFFER:
1089 		if (status == SAM_STAT_GOOD) {
1090 			if (skd_chk_read_buf(skdev, skspcl) == 0)
1091 				skd_send_internal_skspcl(skdev, skspcl,
1092 							 READ_CAPACITY);
1093 			else {
1094 				dev_err(&skdev->pdev->dev,
1095 					"*** W/R Buffer mismatch %d ***\n",
1096 					skdev->connect_retries);
1097 				if (skdev->connect_retries <
1098 				    SKD_MAX_CONNECT_RETRIES) {
1099 					skdev->connect_retries++;
1100 					skd_soft_reset(skdev);
1101 				} else {
1102 					dev_err(&skdev->pdev->dev,
1103 						"W/R Buffer Connect Error\n");
1104 					return;
1105 				}
1106 			}
1107 
1108 		} else {
1109 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1110 				dev_dbg(&skdev->pdev->dev,
1111 					"read buffer failed, don't send anymore state 0x%x\n",
1112 					skdev->state);
1113 				return;
1114 			}
1115 			dev_dbg(&skdev->pdev->dev,
1116 				"**** read buffer failed, retry skerr\n");
1117 			skd_send_internal_skspcl(skdev, skspcl,
1118 						 TEST_UNIT_READY);
1119 		}
1120 		break;
1121 
1122 	case READ_CAPACITY:
1123 		skdev->read_cap_is_valid = 0;
1124 		if (status == SAM_STAT_GOOD) {
1125 			skdev->read_cap_last_lba =
1126 				(buf[0] << 24) | (buf[1] << 16) |
1127 				(buf[2] << 8) | buf[3];
1128 			skdev->read_cap_blocksize =
1129 				(buf[4] << 24) | (buf[5] << 16) |
1130 				(buf[6] << 8) | buf[7];
1131 
1132 			dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1133 				skdev->read_cap_last_lba,
1134 				skdev->read_cap_blocksize);
1135 
1136 			set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1137 
1138 			skdev->read_cap_is_valid = 1;
1139 
1140 			skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1141 		} else if ((status == SAM_STAT_CHECK_CONDITION) &&
1142 			   (skerr->key == MEDIUM_ERROR)) {
1143 			skdev->read_cap_last_lba = ~0;
1144 			set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1145 			dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1146 			skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1147 		} else {
1148 			dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1149 			skd_send_internal_skspcl(skdev, skspcl,
1150 						 TEST_UNIT_READY);
1151 		}
1152 		break;
1153 
1154 	case INQUIRY:
1155 		skdev->inquiry_is_valid = 0;
1156 		if (status == SAM_STAT_GOOD) {
1157 			skdev->inquiry_is_valid = 1;
1158 
1159 			for (i = 0; i < 12; i++)
1160 				skdev->inq_serial_num[i] = buf[i + 4];
1161 			skdev->inq_serial_num[12] = 0;
1162 		}
1163 
1164 		if (skd_unquiesce_dev(skdev) < 0)
1165 			dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1166 		 /* connection is complete */
1167 		skdev->connect_retries = 0;
1168 		break;
1169 
1170 	case SYNCHRONIZE_CACHE:
1171 		if (status == SAM_STAT_GOOD)
1172 			skdev->sync_done = 1;
1173 		else
1174 			skdev->sync_done = -1;
1175 		wake_up_interruptible(&skdev->waitq);
1176 		break;
1177 
1178 	default:
1179 		SKD_ASSERT("we didn't send this");
1180 	}
1181 }
1182 
1183 /*
1184  *****************************************************************************
1185  * FIT MESSAGES
1186  *****************************************************************************
1187  */
1188 
skd_send_fitmsg(struct skd_device * skdev,struct skd_fitmsg_context * skmsg)1189 static void skd_send_fitmsg(struct skd_device *skdev,
1190 			    struct skd_fitmsg_context *skmsg)
1191 {
1192 	u64 qcmd;
1193 
1194 	dev_dbg(&skdev->pdev->dev, "dma address 0x%llx, busy=%d\n",
1195 		skmsg->mb_dma_address, skd_in_flight(skdev));
1196 	dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1197 
1198 	qcmd = skmsg->mb_dma_address;
1199 	qcmd |= FIT_QCMD_QID_NORMAL;
1200 
1201 	if (unlikely(skdev->dbg_level > 1)) {
1202 		u8 *bp = (u8 *)skmsg->msg_buf;
1203 		int i;
1204 		for (i = 0; i < skmsg->length; i += 8) {
1205 			dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1206 				&bp[i]);
1207 			if (i == 0)
1208 				i = 64 - 8;
1209 		}
1210 	}
1211 
1212 	if (skmsg->length > 256)
1213 		qcmd |= FIT_QCMD_MSGSIZE_512;
1214 	else if (skmsg->length > 128)
1215 		qcmd |= FIT_QCMD_MSGSIZE_256;
1216 	else if (skmsg->length > 64)
1217 		qcmd |= FIT_QCMD_MSGSIZE_128;
1218 	else
1219 		/*
1220 		 * This makes no sense because the FIT msg header is
1221 		 * 64 bytes. If the msg is only 64 bytes long it has
1222 		 * no payload.
1223 		 */
1224 		qcmd |= FIT_QCMD_MSGSIZE_64;
1225 
1226 	dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1227 				   skmsg->length, DMA_TO_DEVICE);
1228 
1229 	/* Make sure skd_msg_buf is written before the doorbell is triggered. */
1230 	smp_wmb();
1231 
1232 	SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1233 }
1234 
skd_send_special_fitmsg(struct skd_device * skdev,struct skd_special_context * skspcl)1235 static void skd_send_special_fitmsg(struct skd_device *skdev,
1236 				    struct skd_special_context *skspcl)
1237 {
1238 	u64 qcmd;
1239 
1240 	WARN_ON_ONCE(skspcl->req.n_sg != 1);
1241 
1242 	if (unlikely(skdev->dbg_level > 1)) {
1243 		u8 *bp = (u8 *)skspcl->msg_buf;
1244 		int i;
1245 
1246 		for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1247 			dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1248 				&bp[i]);
1249 			if (i == 0)
1250 				i = 64 - 8;
1251 		}
1252 
1253 		dev_dbg(&skdev->pdev->dev,
1254 			"skspcl=%p id=%04x sksg_list=%p sksg_dma=%llx\n",
1255 			skspcl, skspcl->req.id, skspcl->req.sksg_list,
1256 			skspcl->req.sksg_dma_address);
1257 		for (i = 0; i < skspcl->req.n_sg; i++) {
1258 			struct fit_sg_descriptor *sgd =
1259 				&skspcl->req.sksg_list[i];
1260 
1261 			dev_dbg(&skdev->pdev->dev,
1262 				"  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1263 				i, sgd->byte_count, sgd->control,
1264 				sgd->host_side_addr, sgd->next_desc_ptr);
1265 		}
1266 	}
1267 
1268 	/*
1269 	 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1270 	 * and one 64-byte SSDI command.
1271 	 */
1272 	qcmd = skspcl->mb_dma_address;
1273 	qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1274 
1275 	dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1276 				   SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1277 	dma_sync_single_for_device(&skdev->pdev->dev,
1278 				   skspcl->req.sksg_dma_address,
1279 				   1 * sizeof(struct fit_sg_descriptor),
1280 				   DMA_TO_DEVICE);
1281 	dma_sync_single_for_device(&skdev->pdev->dev,
1282 				   skspcl->db_dma_address,
1283 				   skspcl->req.sksg_list[0].byte_count,
1284 				   DMA_BIDIRECTIONAL);
1285 
1286 	/* Make sure skd_msg_buf is written before the doorbell is triggered. */
1287 	smp_wmb();
1288 
1289 	SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1290 }
1291 
1292 /*
1293  *****************************************************************************
1294  * COMPLETION QUEUE
1295  *****************************************************************************
1296  */
1297 
1298 static void skd_complete_other(struct skd_device *skdev,
1299 			       struct fit_completion_entry_v1 *skcomp,
1300 			       struct fit_comp_error_info *skerr);
1301 
1302 struct sns_info {
1303 	u8 type;
1304 	u8 stat;
1305 	u8 key;
1306 	u8 asc;
1307 	u8 ascq;
1308 	u8 mask;
1309 	enum skd_check_status_action action;
1310 };
1311 
1312 static struct sns_info skd_chkstat_table[] = {
1313 	/* Good */
1314 	{ 0x70, 0x02, RECOVERED_ERROR, 0,    0,	   0x1c,
1315 	  SKD_CHECK_STATUS_REPORT_GOOD },
1316 
1317 	/* Smart alerts */
1318 	{ 0x70, 0x02, NO_SENSE,	       0x0B, 0x00, 0x1E,	/* warnings */
1319 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1320 	{ 0x70, 0x02, NO_SENSE,	       0x5D, 0x00, 0x1E,	/* thresholds */
1321 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1322 	{ 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1323 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1324 
1325 	/* Retry (with limits) */
1326 	{ 0x70, 0x02, 0x0B,	       0,    0,	   0x1C,        /* This one is for DMA ERROR */
1327 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1328 	{ 0x70, 0x02, 0x06,	       0x0B, 0x00, 0x1E,        /* warnings */
1329 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1330 	{ 0x70, 0x02, 0x06,	       0x5D, 0x00, 0x1E,        /* thresholds */
1331 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1332 	{ 0x70, 0x02, 0x06,	       0x80, 0x30, 0x1F,        /* backup power */
1333 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1334 
1335 	/* Busy (or about to be) */
1336 	{ 0x70, 0x02, 0x06,	       0x3f, 0x01, 0x1F, /* fw changed */
1337 	  SKD_CHECK_STATUS_BUSY_IMMINENT },
1338 };
1339 
1340 /*
1341  * Look up status and sense data to decide how to handle the error
1342  * from the device.
1343  * mask says which fields must match e.g., mask=0x18 means check
1344  * type and stat, ignore key, asc, ascq.
1345  */
1346 
1347 static enum skd_check_status_action
skd_check_status(struct skd_device * skdev,u8 cmp_status,struct fit_comp_error_info * skerr)1348 skd_check_status(struct skd_device *skdev,
1349 		 u8 cmp_status, struct fit_comp_error_info *skerr)
1350 {
1351 	int i;
1352 
1353 	dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1354 		skerr->key, skerr->code, skerr->qual, skerr->fruc);
1355 
1356 	dev_dbg(&skdev->pdev->dev,
1357 		"stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1358 		skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1359 		skerr->fruc);
1360 
1361 	/* Does the info match an entry in the good category? */
1362 	for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1363 		struct sns_info *sns = &skd_chkstat_table[i];
1364 
1365 		if (sns->mask & 0x10)
1366 			if (skerr->type != sns->type)
1367 				continue;
1368 
1369 		if (sns->mask & 0x08)
1370 			if (cmp_status != sns->stat)
1371 				continue;
1372 
1373 		if (sns->mask & 0x04)
1374 			if (skerr->key != sns->key)
1375 				continue;
1376 
1377 		if (sns->mask & 0x02)
1378 			if (skerr->code != sns->asc)
1379 				continue;
1380 
1381 		if (sns->mask & 0x01)
1382 			if (skerr->qual != sns->ascq)
1383 				continue;
1384 
1385 		if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1386 			dev_err(&skdev->pdev->dev,
1387 				"SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1388 				skerr->key, skerr->code, skerr->qual);
1389 		}
1390 		return sns->action;
1391 	}
1392 
1393 	/* No other match, so nonzero status means error,
1394 	 * zero status means good
1395 	 */
1396 	if (cmp_status) {
1397 		dev_dbg(&skdev->pdev->dev, "status check: error\n");
1398 		return SKD_CHECK_STATUS_REPORT_ERROR;
1399 	}
1400 
1401 	dev_dbg(&skdev->pdev->dev, "status check good default\n");
1402 	return SKD_CHECK_STATUS_REPORT_GOOD;
1403 }
1404 
skd_resolve_req_exception(struct skd_device * skdev,struct skd_request_context * skreq,struct request * req)1405 static void skd_resolve_req_exception(struct skd_device *skdev,
1406 				      struct skd_request_context *skreq,
1407 				      struct request *req)
1408 {
1409 	u8 cmp_status = skreq->completion.status;
1410 
1411 	switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1412 	case SKD_CHECK_STATUS_REPORT_GOOD:
1413 	case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1414 		skreq->status = BLK_STS_OK;
1415 		blk_mq_complete_request(req);
1416 		break;
1417 
1418 	case SKD_CHECK_STATUS_BUSY_IMMINENT:
1419 		skd_log_skreq(skdev, skreq, "retry(busy)");
1420 		blk_mq_requeue_request(req, true);
1421 		dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1422 		skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1423 		skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1424 		skd_quiesce_dev(skdev);
1425 		break;
1426 
1427 	case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1428 		if ((unsigned long) ++req->special < SKD_MAX_RETRIES) {
1429 			skd_log_skreq(skdev, skreq, "retry");
1430 			blk_mq_requeue_request(req, true);
1431 			break;
1432 		}
1433 		/* fall through */
1434 
1435 	case SKD_CHECK_STATUS_REPORT_ERROR:
1436 	default:
1437 		skreq->status = BLK_STS_IOERR;
1438 		blk_mq_complete_request(req);
1439 		break;
1440 	}
1441 }
1442 
skd_release_skreq(struct skd_device * skdev,struct skd_request_context * skreq)1443 static void skd_release_skreq(struct skd_device *skdev,
1444 			      struct skd_request_context *skreq)
1445 {
1446 	/*
1447 	 * Reclaim the skd_request_context
1448 	 */
1449 	skreq->state = SKD_REQ_STATE_IDLE;
1450 }
1451 
skd_isr_completion_posted(struct skd_device * skdev,int limit,int * enqueued)1452 static int skd_isr_completion_posted(struct skd_device *skdev,
1453 					int limit, int *enqueued)
1454 {
1455 	struct fit_completion_entry_v1 *skcmp;
1456 	struct fit_comp_error_info *skerr;
1457 	u16 req_id;
1458 	u32 tag;
1459 	u16 hwq = 0;
1460 	struct request *rq;
1461 	struct skd_request_context *skreq;
1462 	u16 cmp_cntxt;
1463 	u8 cmp_status;
1464 	u8 cmp_cycle;
1465 	u32 cmp_bytes;
1466 	int rc = 0;
1467 	int processed = 0;
1468 
1469 	lockdep_assert_held(&skdev->lock);
1470 
1471 	for (;; ) {
1472 		SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1473 
1474 		skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1475 		cmp_cycle = skcmp->cycle;
1476 		cmp_cntxt = skcmp->tag;
1477 		cmp_status = skcmp->status;
1478 		cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1479 
1480 		skerr = &skdev->skerr_table[skdev->skcomp_ix];
1481 
1482 		dev_dbg(&skdev->pdev->dev,
1483 			"cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1484 			skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1485 			cmp_cntxt, cmp_status, skd_in_flight(skdev),
1486 			cmp_bytes, skdev->proto_ver);
1487 
1488 		if (cmp_cycle != skdev->skcomp_cycle) {
1489 			dev_dbg(&skdev->pdev->dev, "end of completions\n");
1490 			break;
1491 		}
1492 		/*
1493 		 * Update the completion queue head index and possibly
1494 		 * the completion cycle count. 8-bit wrap-around.
1495 		 */
1496 		skdev->skcomp_ix++;
1497 		if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1498 			skdev->skcomp_ix = 0;
1499 			skdev->skcomp_cycle++;
1500 		}
1501 
1502 		/*
1503 		 * The command context is a unique 32-bit ID. The low order
1504 		 * bits help locate the request. The request is usually a
1505 		 * r/w request (see skd_start() above) or a special request.
1506 		 */
1507 		req_id = cmp_cntxt;
1508 		tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1509 
1510 		/* Is this other than a r/w request? */
1511 		if (tag >= skdev->num_req_context) {
1512 			/*
1513 			 * This is not a completion for a r/w request.
1514 			 */
1515 			WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1516 						      tag));
1517 			skd_complete_other(skdev, skcmp, skerr);
1518 			continue;
1519 		}
1520 
1521 		rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1522 		if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1523 			 tag))
1524 			continue;
1525 		skreq = blk_mq_rq_to_pdu(rq);
1526 
1527 		/*
1528 		 * Make sure the request ID for the slot matches.
1529 		 */
1530 		if (skreq->id != req_id) {
1531 			dev_err(&skdev->pdev->dev,
1532 				"Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1533 				req_id, skreq->id, cmp_cntxt);
1534 
1535 			continue;
1536 		}
1537 
1538 		SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1539 
1540 		skreq->completion = *skcmp;
1541 		if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1542 			skreq->err_info = *skerr;
1543 			skd_log_check_status(skdev, cmp_status, skerr->key,
1544 					     skerr->code, skerr->qual,
1545 					     skerr->fruc);
1546 		}
1547 		/* Release DMA resources for the request. */
1548 		if (skreq->n_sg > 0)
1549 			skd_postop_sg_list(skdev, skreq);
1550 
1551 		skd_release_skreq(skdev, skreq);
1552 
1553 		/*
1554 		 * Capture the outcome and post it back to the native request.
1555 		 */
1556 		if (likely(cmp_status == SAM_STAT_GOOD)) {
1557 			skreq->status = BLK_STS_OK;
1558 			blk_mq_complete_request(rq);
1559 		} else {
1560 			skd_resolve_req_exception(skdev, skreq, rq);
1561 		}
1562 
1563 		/* skd_isr_comp_limit equal zero means no limit */
1564 		if (limit) {
1565 			if (++processed >= limit) {
1566 				rc = 1;
1567 				break;
1568 			}
1569 		}
1570 	}
1571 
1572 	if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1573 	    skd_in_flight(skdev) == 0) {
1574 		skdev->state = SKD_DRVR_STATE_PAUSED;
1575 		wake_up_interruptible(&skdev->waitq);
1576 	}
1577 
1578 	return rc;
1579 }
1580 
skd_complete_other(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr)1581 static void skd_complete_other(struct skd_device *skdev,
1582 			       struct fit_completion_entry_v1 *skcomp,
1583 			       struct fit_comp_error_info *skerr)
1584 {
1585 	u32 req_id = 0;
1586 	u32 req_table;
1587 	u32 req_slot;
1588 	struct skd_special_context *skspcl;
1589 
1590 	lockdep_assert_held(&skdev->lock);
1591 
1592 	req_id = skcomp->tag;
1593 	req_table = req_id & SKD_ID_TABLE_MASK;
1594 	req_slot = req_id & SKD_ID_SLOT_MASK;
1595 
1596 	dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1597 		req_id, req_slot);
1598 
1599 	/*
1600 	 * Based on the request id, determine how to dispatch this completion.
1601 	 * This swich/case is finding the good cases and forwarding the
1602 	 * completion entry. Errors are reported below the switch.
1603 	 */
1604 	switch (req_table) {
1605 	case SKD_ID_RW_REQUEST:
1606 		/*
1607 		 * The caller, skd_isr_completion_posted() above,
1608 		 * handles r/w requests. The only way we get here
1609 		 * is if the req_slot is out of bounds.
1610 		 */
1611 		break;
1612 
1613 	case SKD_ID_INTERNAL:
1614 		if (req_slot == 0) {
1615 			skspcl = &skdev->internal_skspcl;
1616 			if (skspcl->req.id == req_id &&
1617 			    skspcl->req.state == SKD_REQ_STATE_BUSY) {
1618 				skd_complete_internal(skdev,
1619 						      skcomp, skerr, skspcl);
1620 				return;
1621 			}
1622 		}
1623 		break;
1624 
1625 	case SKD_ID_FIT_MSG:
1626 		/*
1627 		 * These id's should never appear in a completion record.
1628 		 */
1629 		break;
1630 
1631 	default:
1632 		/*
1633 		 * These id's should never appear anywhere;
1634 		 */
1635 		break;
1636 	}
1637 
1638 	/*
1639 	 * If we get here it is a bad or stale id.
1640 	 */
1641 }
1642 
skd_reset_skcomp(struct skd_device * skdev)1643 static void skd_reset_skcomp(struct skd_device *skdev)
1644 {
1645 	memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1646 
1647 	skdev->skcomp_ix = 0;
1648 	skdev->skcomp_cycle = 1;
1649 }
1650 
1651 /*
1652  *****************************************************************************
1653  * INTERRUPTS
1654  *****************************************************************************
1655  */
skd_completion_worker(struct work_struct * work)1656 static void skd_completion_worker(struct work_struct *work)
1657 {
1658 	struct skd_device *skdev =
1659 		container_of(work, struct skd_device, completion_worker);
1660 	unsigned long flags;
1661 	int flush_enqueued = 0;
1662 
1663 	spin_lock_irqsave(&skdev->lock, flags);
1664 
1665 	/*
1666 	 * pass in limit=0, which means no limit..
1667 	 * process everything in compq
1668 	 */
1669 	skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1670 	schedule_work(&skdev->start_queue);
1671 
1672 	spin_unlock_irqrestore(&skdev->lock, flags);
1673 }
1674 
1675 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1676 
1677 static irqreturn_t
skd_isr(int irq,void * ptr)1678 skd_isr(int irq, void *ptr)
1679 {
1680 	struct skd_device *skdev = ptr;
1681 	u32 intstat;
1682 	u32 ack;
1683 	int rc = 0;
1684 	int deferred = 0;
1685 	int flush_enqueued = 0;
1686 
1687 	spin_lock(&skdev->lock);
1688 
1689 	for (;; ) {
1690 		intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1691 
1692 		ack = FIT_INT_DEF_MASK;
1693 		ack &= intstat;
1694 
1695 		dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1696 			ack);
1697 
1698 		/* As long as there is an int pending on device, keep
1699 		 * running loop.  When none, get out, but if we've never
1700 		 * done any processing, call completion handler?
1701 		 */
1702 		if (ack == 0) {
1703 			/* No interrupts on device, but run the completion
1704 			 * processor anyway?
1705 			 */
1706 			if (rc == 0)
1707 				if (likely (skdev->state
1708 					== SKD_DRVR_STATE_ONLINE))
1709 					deferred = 1;
1710 			break;
1711 		}
1712 
1713 		rc = IRQ_HANDLED;
1714 
1715 		SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1716 
1717 		if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1718 			   (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1719 			if (intstat & FIT_ISH_COMPLETION_POSTED) {
1720 				/*
1721 				 * If we have already deferred completion
1722 				 * processing, don't bother running it again
1723 				 */
1724 				if (deferred == 0)
1725 					deferred =
1726 						skd_isr_completion_posted(skdev,
1727 						skd_isr_comp_limit, &flush_enqueued);
1728 			}
1729 
1730 			if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1731 				skd_isr_fwstate(skdev);
1732 				if (skdev->state == SKD_DRVR_STATE_FAULT ||
1733 				    skdev->state ==
1734 				    SKD_DRVR_STATE_DISAPPEARED) {
1735 					spin_unlock(&skdev->lock);
1736 					return rc;
1737 				}
1738 			}
1739 
1740 			if (intstat & FIT_ISH_MSG_FROM_DEV)
1741 				skd_isr_msg_from_dev(skdev);
1742 		}
1743 	}
1744 
1745 	if (unlikely(flush_enqueued))
1746 		schedule_work(&skdev->start_queue);
1747 
1748 	if (deferred)
1749 		schedule_work(&skdev->completion_worker);
1750 	else if (!flush_enqueued)
1751 		schedule_work(&skdev->start_queue);
1752 
1753 	spin_unlock(&skdev->lock);
1754 
1755 	return rc;
1756 }
1757 
skd_drive_fault(struct skd_device * skdev)1758 static void skd_drive_fault(struct skd_device *skdev)
1759 {
1760 	skdev->state = SKD_DRVR_STATE_FAULT;
1761 	dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1762 }
1763 
skd_drive_disappeared(struct skd_device * skdev)1764 static void skd_drive_disappeared(struct skd_device *skdev)
1765 {
1766 	skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1767 	dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1768 }
1769 
skd_isr_fwstate(struct skd_device * skdev)1770 static void skd_isr_fwstate(struct skd_device *skdev)
1771 {
1772 	u32 sense;
1773 	u32 state;
1774 	u32 mtd;
1775 	int prev_driver_state = skdev->state;
1776 
1777 	sense = SKD_READL(skdev, FIT_STATUS);
1778 	state = sense & FIT_SR_DRIVE_STATE_MASK;
1779 
1780 	dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1781 		skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1782 		skd_drive_state_to_str(state), state);
1783 
1784 	skdev->drive_state = state;
1785 
1786 	switch (skdev->drive_state) {
1787 	case FIT_SR_DRIVE_INIT:
1788 		if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1789 			skd_disable_interrupts(skdev);
1790 			break;
1791 		}
1792 		if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1793 			skd_recover_requests(skdev);
1794 		if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1795 			skdev->timer_countdown = SKD_STARTING_TIMO;
1796 			skdev->state = SKD_DRVR_STATE_STARTING;
1797 			skd_soft_reset(skdev);
1798 			break;
1799 		}
1800 		mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1801 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1802 		skdev->last_mtd = mtd;
1803 		break;
1804 
1805 	case FIT_SR_DRIVE_ONLINE:
1806 		skdev->cur_max_queue_depth = skd_max_queue_depth;
1807 		if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1808 			skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1809 
1810 		skdev->queue_low_water_mark =
1811 			skdev->cur_max_queue_depth * 2 / 3 + 1;
1812 		if (skdev->queue_low_water_mark < 1)
1813 			skdev->queue_low_water_mark = 1;
1814 		dev_info(&skdev->pdev->dev,
1815 			 "Queue depth limit=%d dev=%d lowat=%d\n",
1816 			 skdev->cur_max_queue_depth,
1817 			 skdev->dev_max_queue_depth,
1818 			 skdev->queue_low_water_mark);
1819 
1820 		skd_refresh_device_data(skdev);
1821 		break;
1822 
1823 	case FIT_SR_DRIVE_BUSY:
1824 		skdev->state = SKD_DRVR_STATE_BUSY;
1825 		skdev->timer_countdown = SKD_BUSY_TIMO;
1826 		skd_quiesce_dev(skdev);
1827 		break;
1828 	case FIT_SR_DRIVE_BUSY_SANITIZE:
1829 		/* set timer for 3 seconds, we'll abort any unfinished
1830 		 * commands after that expires
1831 		 */
1832 		skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1833 		skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1834 		schedule_work(&skdev->start_queue);
1835 		break;
1836 	case FIT_SR_DRIVE_BUSY_ERASE:
1837 		skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1838 		skdev->timer_countdown = SKD_BUSY_TIMO;
1839 		break;
1840 	case FIT_SR_DRIVE_OFFLINE:
1841 		skdev->state = SKD_DRVR_STATE_IDLE;
1842 		break;
1843 	case FIT_SR_DRIVE_SOFT_RESET:
1844 		switch (skdev->state) {
1845 		case SKD_DRVR_STATE_STARTING:
1846 		case SKD_DRVR_STATE_RESTARTING:
1847 			/* Expected by a caller of skd_soft_reset() */
1848 			break;
1849 		default:
1850 			skdev->state = SKD_DRVR_STATE_RESTARTING;
1851 			break;
1852 		}
1853 		break;
1854 	case FIT_SR_DRIVE_FW_BOOTING:
1855 		dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1856 		skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1857 		skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1858 		break;
1859 
1860 	case FIT_SR_DRIVE_DEGRADED:
1861 	case FIT_SR_PCIE_LINK_DOWN:
1862 	case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1863 		break;
1864 
1865 	case FIT_SR_DRIVE_FAULT:
1866 		skd_drive_fault(skdev);
1867 		skd_recover_requests(skdev);
1868 		schedule_work(&skdev->start_queue);
1869 		break;
1870 
1871 	/* PCIe bus returned all Fs? */
1872 	case 0xFF:
1873 		dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1874 			 sense);
1875 		skd_drive_disappeared(skdev);
1876 		skd_recover_requests(skdev);
1877 		schedule_work(&skdev->start_queue);
1878 		break;
1879 	default:
1880 		/*
1881 		 * Uknown FW State. Wait for a state we recognize.
1882 		 */
1883 		break;
1884 	}
1885 	dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1886 		skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1887 		skd_skdev_state_to_str(skdev->state), skdev->state);
1888 }
1889 
skd_recover_request(struct request * req,void * data,bool reserved)1890 static void skd_recover_request(struct request *req, void *data, bool reserved)
1891 {
1892 	struct skd_device *const skdev = data;
1893 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1894 
1895 	if (skreq->state != SKD_REQ_STATE_BUSY)
1896 		return;
1897 
1898 	skd_log_skreq(skdev, skreq, "recover");
1899 
1900 	/* Release DMA resources for the request. */
1901 	if (skreq->n_sg > 0)
1902 		skd_postop_sg_list(skdev, skreq);
1903 
1904 	skreq->state = SKD_REQ_STATE_IDLE;
1905 	skreq->status = BLK_STS_IOERR;
1906 	blk_mq_complete_request(req);
1907 }
1908 
skd_recover_requests(struct skd_device * skdev)1909 static void skd_recover_requests(struct skd_device *skdev)
1910 {
1911 	blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1912 }
1913 
skd_isr_msg_from_dev(struct skd_device * skdev)1914 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1915 {
1916 	u32 mfd;
1917 	u32 mtd;
1918 	u32 data;
1919 
1920 	mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1921 
1922 	dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1923 		skdev->last_mtd);
1924 
1925 	/* ignore any mtd that is an ack for something we didn't send */
1926 	if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1927 		return;
1928 
1929 	switch (FIT_MXD_TYPE(mfd)) {
1930 	case FIT_MTD_FITFW_INIT:
1931 		skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1932 
1933 		if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1934 			dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1935 			dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1936 				skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1937 			dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1938 			skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1939 			skd_soft_reset(skdev);
1940 			break;
1941 		}
1942 		mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1943 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1944 		skdev->last_mtd = mtd;
1945 		break;
1946 
1947 	case FIT_MTD_GET_CMDQ_DEPTH:
1948 		skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1949 		mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1950 				   SKD_N_COMPLETION_ENTRY);
1951 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1952 		skdev->last_mtd = mtd;
1953 		break;
1954 
1955 	case FIT_MTD_SET_COMPQ_DEPTH:
1956 		SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1957 		mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1958 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1959 		skdev->last_mtd = mtd;
1960 		break;
1961 
1962 	case FIT_MTD_SET_COMPQ_ADDR:
1963 		skd_reset_skcomp(skdev);
1964 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1965 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1966 		skdev->last_mtd = mtd;
1967 		break;
1968 
1969 	case FIT_MTD_CMD_LOG_HOST_ID:
1970 		skdev->connect_time_stamp = get_seconds();
1971 		data = skdev->connect_time_stamp & 0xFFFF;
1972 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1973 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1974 		skdev->last_mtd = mtd;
1975 		break;
1976 
1977 	case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1978 		skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1979 		data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1980 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1981 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1982 		skdev->last_mtd = mtd;
1983 		break;
1984 
1985 	case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1986 		skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1987 		mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1988 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1989 		skdev->last_mtd = mtd;
1990 
1991 		dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1992 			skdev->connect_time_stamp, skdev->drive_jiffies);
1993 		break;
1994 
1995 	case FIT_MTD_ARM_QUEUE:
1996 		skdev->last_mtd = 0;
1997 		/*
1998 		 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
1999 		 */
2000 		break;
2001 
2002 	default:
2003 		break;
2004 	}
2005 }
2006 
skd_disable_interrupts(struct skd_device * skdev)2007 static void skd_disable_interrupts(struct skd_device *skdev)
2008 {
2009 	u32 sense;
2010 
2011 	sense = SKD_READL(skdev, FIT_CONTROL);
2012 	sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2013 	SKD_WRITEL(skdev, sense, FIT_CONTROL);
2014 	dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2015 
2016 	/* Note that the 1s is written. A 1-bit means
2017 	 * disable, a 0 means enable.
2018 	 */
2019 	SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2020 }
2021 
skd_enable_interrupts(struct skd_device * skdev)2022 static void skd_enable_interrupts(struct skd_device *skdev)
2023 {
2024 	u32 val;
2025 
2026 	/* unmask interrupts first */
2027 	val = FIT_ISH_FW_STATE_CHANGE +
2028 	      FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2029 
2030 	/* Note that the compliment of mask is written. A 1-bit means
2031 	 * disable, a 0 means enable. */
2032 	SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2033 	dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2034 
2035 	val = SKD_READL(skdev, FIT_CONTROL);
2036 	val |= FIT_CR_ENABLE_INTERRUPTS;
2037 	dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2038 	SKD_WRITEL(skdev, val, FIT_CONTROL);
2039 }
2040 
2041 /*
2042  *****************************************************************************
2043  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2044  *****************************************************************************
2045  */
2046 
skd_soft_reset(struct skd_device * skdev)2047 static void skd_soft_reset(struct skd_device *skdev)
2048 {
2049 	u32 val;
2050 
2051 	val = SKD_READL(skdev, FIT_CONTROL);
2052 	val |= (FIT_CR_SOFT_RESET);
2053 	dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2054 	SKD_WRITEL(skdev, val, FIT_CONTROL);
2055 }
2056 
skd_start_device(struct skd_device * skdev)2057 static void skd_start_device(struct skd_device *skdev)
2058 {
2059 	unsigned long flags;
2060 	u32 sense;
2061 	u32 state;
2062 
2063 	spin_lock_irqsave(&skdev->lock, flags);
2064 
2065 	/* ack all ghost interrupts */
2066 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2067 
2068 	sense = SKD_READL(skdev, FIT_STATUS);
2069 
2070 	dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2071 
2072 	state = sense & FIT_SR_DRIVE_STATE_MASK;
2073 	skdev->drive_state = state;
2074 	skdev->last_mtd = 0;
2075 
2076 	skdev->state = SKD_DRVR_STATE_STARTING;
2077 	skdev->timer_countdown = SKD_STARTING_TIMO;
2078 
2079 	skd_enable_interrupts(skdev);
2080 
2081 	switch (skdev->drive_state) {
2082 	case FIT_SR_DRIVE_OFFLINE:
2083 		dev_err(&skdev->pdev->dev, "Drive offline...\n");
2084 		break;
2085 
2086 	case FIT_SR_DRIVE_FW_BOOTING:
2087 		dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2088 		skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2089 		skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2090 		break;
2091 
2092 	case FIT_SR_DRIVE_BUSY_SANITIZE:
2093 		dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2094 		skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2095 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2096 		break;
2097 
2098 	case FIT_SR_DRIVE_BUSY_ERASE:
2099 		dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2100 		skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2101 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2102 		break;
2103 
2104 	case FIT_SR_DRIVE_INIT:
2105 	case FIT_SR_DRIVE_ONLINE:
2106 		skd_soft_reset(skdev);
2107 		break;
2108 
2109 	case FIT_SR_DRIVE_BUSY:
2110 		dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2111 		skdev->state = SKD_DRVR_STATE_BUSY;
2112 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2113 		break;
2114 
2115 	case FIT_SR_DRIVE_SOFT_RESET:
2116 		dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2117 		break;
2118 
2119 	case FIT_SR_DRIVE_FAULT:
2120 		/* Fault state is bad...soft reset won't do it...
2121 		 * Hard reset, maybe, but does it work on device?
2122 		 * For now, just fault so the system doesn't hang.
2123 		 */
2124 		skd_drive_fault(skdev);
2125 		/*start the queue so we can respond with error to requests */
2126 		dev_dbg(&skdev->pdev->dev, "starting queue\n");
2127 		schedule_work(&skdev->start_queue);
2128 		skdev->gendisk_on = -1;
2129 		wake_up_interruptible(&skdev->waitq);
2130 		break;
2131 
2132 	case 0xFF:
2133 		/* Most likely the device isn't there or isn't responding
2134 		 * to the BAR1 addresses. */
2135 		skd_drive_disappeared(skdev);
2136 		/*start the queue so we can respond with error to requests */
2137 		dev_dbg(&skdev->pdev->dev,
2138 			"starting queue to error-out reqs\n");
2139 		schedule_work(&skdev->start_queue);
2140 		skdev->gendisk_on = -1;
2141 		wake_up_interruptible(&skdev->waitq);
2142 		break;
2143 
2144 	default:
2145 		dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2146 			skdev->drive_state);
2147 		break;
2148 	}
2149 
2150 	state = SKD_READL(skdev, FIT_CONTROL);
2151 	dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2152 
2153 	state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2154 	dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2155 
2156 	state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2157 	dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2158 
2159 	state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2160 	dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2161 
2162 	state = SKD_READL(skdev, FIT_HW_VERSION);
2163 	dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2164 
2165 	spin_unlock_irqrestore(&skdev->lock, flags);
2166 }
2167 
skd_stop_device(struct skd_device * skdev)2168 static void skd_stop_device(struct skd_device *skdev)
2169 {
2170 	unsigned long flags;
2171 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
2172 	u32 dev_state;
2173 	int i;
2174 
2175 	spin_lock_irqsave(&skdev->lock, flags);
2176 
2177 	if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2178 		dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2179 		goto stop_out;
2180 	}
2181 
2182 	if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2183 		dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2184 		goto stop_out;
2185 	}
2186 
2187 	skdev->state = SKD_DRVR_STATE_SYNCING;
2188 	skdev->sync_done = 0;
2189 
2190 	skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2191 
2192 	spin_unlock_irqrestore(&skdev->lock, flags);
2193 
2194 	wait_event_interruptible_timeout(skdev->waitq,
2195 					 (skdev->sync_done), (10 * HZ));
2196 
2197 	spin_lock_irqsave(&skdev->lock, flags);
2198 
2199 	switch (skdev->sync_done) {
2200 	case 0:
2201 		dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2202 		break;
2203 	case 1:
2204 		dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2205 		break;
2206 	default:
2207 		dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2208 	}
2209 
2210 stop_out:
2211 	skdev->state = SKD_DRVR_STATE_STOPPING;
2212 	spin_unlock_irqrestore(&skdev->lock, flags);
2213 
2214 	skd_kill_timer(skdev);
2215 
2216 	spin_lock_irqsave(&skdev->lock, flags);
2217 	skd_disable_interrupts(skdev);
2218 
2219 	/* ensure all ints on device are cleared */
2220 	/* soft reset the device to unload with a clean slate */
2221 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2222 	SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2223 
2224 	spin_unlock_irqrestore(&skdev->lock, flags);
2225 
2226 	/* poll every 100ms, 1 second timeout */
2227 	for (i = 0; i < 10; i++) {
2228 		dev_state =
2229 			SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2230 		if (dev_state == FIT_SR_DRIVE_INIT)
2231 			break;
2232 		set_current_state(TASK_INTERRUPTIBLE);
2233 		schedule_timeout(msecs_to_jiffies(100));
2234 	}
2235 
2236 	if (dev_state != FIT_SR_DRIVE_INIT)
2237 		dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2238 			dev_state);
2239 }
2240 
2241 /* assume spinlock is held */
skd_restart_device(struct skd_device * skdev)2242 static void skd_restart_device(struct skd_device *skdev)
2243 {
2244 	u32 state;
2245 
2246 	/* ack all ghost interrupts */
2247 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2248 
2249 	state = SKD_READL(skdev, FIT_STATUS);
2250 
2251 	dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2252 
2253 	state &= FIT_SR_DRIVE_STATE_MASK;
2254 	skdev->drive_state = state;
2255 	skdev->last_mtd = 0;
2256 
2257 	skdev->state = SKD_DRVR_STATE_RESTARTING;
2258 	skdev->timer_countdown = SKD_RESTARTING_TIMO;
2259 
2260 	skd_soft_reset(skdev);
2261 }
2262 
2263 /* assume spinlock is held */
skd_quiesce_dev(struct skd_device * skdev)2264 static int skd_quiesce_dev(struct skd_device *skdev)
2265 {
2266 	int rc = 0;
2267 
2268 	switch (skdev->state) {
2269 	case SKD_DRVR_STATE_BUSY:
2270 	case SKD_DRVR_STATE_BUSY_IMMINENT:
2271 		dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2272 		blk_mq_stop_hw_queues(skdev->queue);
2273 		break;
2274 	case SKD_DRVR_STATE_ONLINE:
2275 	case SKD_DRVR_STATE_STOPPING:
2276 	case SKD_DRVR_STATE_SYNCING:
2277 	case SKD_DRVR_STATE_PAUSING:
2278 	case SKD_DRVR_STATE_PAUSED:
2279 	case SKD_DRVR_STATE_STARTING:
2280 	case SKD_DRVR_STATE_RESTARTING:
2281 	case SKD_DRVR_STATE_RESUMING:
2282 	default:
2283 		rc = -EINVAL;
2284 		dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2285 			skdev->state);
2286 	}
2287 	return rc;
2288 }
2289 
2290 /* assume spinlock is held */
skd_unquiesce_dev(struct skd_device * skdev)2291 static int skd_unquiesce_dev(struct skd_device *skdev)
2292 {
2293 	int prev_driver_state = skdev->state;
2294 
2295 	skd_log_skdev(skdev, "unquiesce");
2296 	if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2297 		dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2298 		return 0;
2299 	}
2300 	if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2301 		/*
2302 		 * If there has been an state change to other than
2303 		 * ONLINE, we will rely on controller state change
2304 		 * to come back online and restart the queue.
2305 		 * The BUSY state means that driver is ready to
2306 		 * continue normal processing but waiting for controller
2307 		 * to become available.
2308 		 */
2309 		skdev->state = SKD_DRVR_STATE_BUSY;
2310 		dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2311 		return 0;
2312 	}
2313 
2314 	/*
2315 	 * Drive has just come online, driver is either in startup,
2316 	 * paused performing a task, or bust waiting for hardware.
2317 	 */
2318 	switch (skdev->state) {
2319 	case SKD_DRVR_STATE_PAUSED:
2320 	case SKD_DRVR_STATE_BUSY:
2321 	case SKD_DRVR_STATE_BUSY_IMMINENT:
2322 	case SKD_DRVR_STATE_BUSY_ERASE:
2323 	case SKD_DRVR_STATE_STARTING:
2324 	case SKD_DRVR_STATE_RESTARTING:
2325 	case SKD_DRVR_STATE_FAULT:
2326 	case SKD_DRVR_STATE_IDLE:
2327 	case SKD_DRVR_STATE_LOAD:
2328 		skdev->state = SKD_DRVR_STATE_ONLINE;
2329 		dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2330 			skd_skdev_state_to_str(prev_driver_state),
2331 			prev_driver_state, skd_skdev_state_to_str(skdev->state),
2332 			skdev->state);
2333 		dev_dbg(&skdev->pdev->dev,
2334 			"**** device ONLINE...starting block queue\n");
2335 		dev_dbg(&skdev->pdev->dev, "starting queue\n");
2336 		dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2337 		schedule_work(&skdev->start_queue);
2338 		skdev->gendisk_on = 1;
2339 		wake_up_interruptible(&skdev->waitq);
2340 		break;
2341 
2342 	case SKD_DRVR_STATE_DISAPPEARED:
2343 	default:
2344 		dev_dbg(&skdev->pdev->dev,
2345 			"**** driver state %d, not implemented\n",
2346 			skdev->state);
2347 		return -EBUSY;
2348 	}
2349 	return 0;
2350 }
2351 
2352 /*
2353  *****************************************************************************
2354  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2355  *****************************************************************************
2356  */
2357 
skd_reserved_isr(int irq,void * skd_host_data)2358 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2359 {
2360 	struct skd_device *skdev = skd_host_data;
2361 	unsigned long flags;
2362 
2363 	spin_lock_irqsave(&skdev->lock, flags);
2364 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2365 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2366 	dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2367 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2368 	SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2369 	spin_unlock_irqrestore(&skdev->lock, flags);
2370 	return IRQ_HANDLED;
2371 }
2372 
skd_statec_isr(int irq,void * skd_host_data)2373 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2374 {
2375 	struct skd_device *skdev = skd_host_data;
2376 	unsigned long flags;
2377 
2378 	spin_lock_irqsave(&skdev->lock, flags);
2379 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2380 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2381 	SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2382 	skd_isr_fwstate(skdev);
2383 	spin_unlock_irqrestore(&skdev->lock, flags);
2384 	return IRQ_HANDLED;
2385 }
2386 
skd_comp_q(int irq,void * skd_host_data)2387 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2388 {
2389 	struct skd_device *skdev = skd_host_data;
2390 	unsigned long flags;
2391 	int flush_enqueued = 0;
2392 	int deferred;
2393 
2394 	spin_lock_irqsave(&skdev->lock, flags);
2395 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2396 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2397 	SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2398 	deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2399 						&flush_enqueued);
2400 	if (flush_enqueued)
2401 		schedule_work(&skdev->start_queue);
2402 
2403 	if (deferred)
2404 		schedule_work(&skdev->completion_worker);
2405 	else if (!flush_enqueued)
2406 		schedule_work(&skdev->start_queue);
2407 
2408 	spin_unlock_irqrestore(&skdev->lock, flags);
2409 
2410 	return IRQ_HANDLED;
2411 }
2412 
skd_msg_isr(int irq,void * skd_host_data)2413 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2414 {
2415 	struct skd_device *skdev = skd_host_data;
2416 	unsigned long flags;
2417 
2418 	spin_lock_irqsave(&skdev->lock, flags);
2419 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2420 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2421 	SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2422 	skd_isr_msg_from_dev(skdev);
2423 	spin_unlock_irqrestore(&skdev->lock, flags);
2424 	return IRQ_HANDLED;
2425 }
2426 
skd_qfull_isr(int irq,void * skd_host_data)2427 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2428 {
2429 	struct skd_device *skdev = skd_host_data;
2430 	unsigned long flags;
2431 
2432 	spin_lock_irqsave(&skdev->lock, flags);
2433 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2434 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2435 	SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2436 	spin_unlock_irqrestore(&skdev->lock, flags);
2437 	return IRQ_HANDLED;
2438 }
2439 
2440 /*
2441  *****************************************************************************
2442  * PCIe MSI/MSI-X SETUP
2443  *****************************************************************************
2444  */
2445 
2446 struct skd_msix_entry {
2447 	char isr_name[30];
2448 };
2449 
2450 struct skd_init_msix_entry {
2451 	const char *name;
2452 	irq_handler_t handler;
2453 };
2454 
2455 #define SKD_MAX_MSIX_COUNT              13
2456 #define SKD_MIN_MSIX_COUNT              7
2457 #define SKD_BASE_MSIX_IRQ               4
2458 
2459 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2460 	{ "(DMA 0)",	    skd_reserved_isr },
2461 	{ "(DMA 1)",	    skd_reserved_isr },
2462 	{ "(DMA 2)",	    skd_reserved_isr },
2463 	{ "(DMA 3)",	    skd_reserved_isr },
2464 	{ "(State Change)", skd_statec_isr   },
2465 	{ "(COMPL_Q)",	    skd_comp_q	     },
2466 	{ "(MSG)",	    skd_msg_isr	     },
2467 	{ "(Reserved)",	    skd_reserved_isr },
2468 	{ "(Reserved)",	    skd_reserved_isr },
2469 	{ "(Queue Full 0)", skd_qfull_isr    },
2470 	{ "(Queue Full 1)", skd_qfull_isr    },
2471 	{ "(Queue Full 2)", skd_qfull_isr    },
2472 	{ "(Queue Full 3)", skd_qfull_isr    },
2473 };
2474 
skd_acquire_msix(struct skd_device * skdev)2475 static int skd_acquire_msix(struct skd_device *skdev)
2476 {
2477 	int i, rc;
2478 	struct pci_dev *pdev = skdev->pdev;
2479 
2480 	rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2481 			PCI_IRQ_MSIX);
2482 	if (rc < 0) {
2483 		dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2484 		goto out;
2485 	}
2486 
2487 	skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2488 			sizeof(struct skd_msix_entry), GFP_KERNEL);
2489 	if (!skdev->msix_entries) {
2490 		rc = -ENOMEM;
2491 		dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2492 		goto out;
2493 	}
2494 
2495 	/* Enable MSI-X vectors for the base queue */
2496 	for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2497 		struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2498 
2499 		snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2500 			 "%s%d-msix %s", DRV_NAME, skdev->devno,
2501 			 msix_entries[i].name);
2502 
2503 		rc = devm_request_irq(&skdev->pdev->dev,
2504 				pci_irq_vector(skdev->pdev, i),
2505 				msix_entries[i].handler, 0,
2506 				qentry->isr_name, skdev);
2507 		if (rc) {
2508 			dev_err(&skdev->pdev->dev,
2509 				"Unable to register(%d) MSI-X handler %d: %s\n",
2510 				rc, i, qentry->isr_name);
2511 			goto msix_out;
2512 		}
2513 	}
2514 
2515 	dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2516 		SKD_MAX_MSIX_COUNT);
2517 	return 0;
2518 
2519 msix_out:
2520 	while (--i >= 0)
2521 		devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2522 out:
2523 	kfree(skdev->msix_entries);
2524 	skdev->msix_entries = NULL;
2525 	return rc;
2526 }
2527 
skd_acquire_irq(struct skd_device * skdev)2528 static int skd_acquire_irq(struct skd_device *skdev)
2529 {
2530 	struct pci_dev *pdev = skdev->pdev;
2531 	unsigned int irq_flag = PCI_IRQ_LEGACY;
2532 	int rc;
2533 
2534 	if (skd_isr_type == SKD_IRQ_MSIX) {
2535 		rc = skd_acquire_msix(skdev);
2536 		if (!rc)
2537 			return 0;
2538 
2539 		dev_err(&skdev->pdev->dev,
2540 			"failed to enable MSI-X, re-trying with MSI %d\n", rc);
2541 	}
2542 
2543 	snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2544 			skdev->devno);
2545 
2546 	if (skd_isr_type != SKD_IRQ_LEGACY)
2547 		irq_flag |= PCI_IRQ_MSI;
2548 	rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2549 	if (rc < 0) {
2550 		dev_err(&skdev->pdev->dev,
2551 			"failed to allocate the MSI interrupt %d\n", rc);
2552 		return rc;
2553 	}
2554 
2555 	rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2556 			pdev->msi_enabled ? 0 : IRQF_SHARED,
2557 			skdev->isr_name, skdev);
2558 	if (rc) {
2559 		pci_free_irq_vectors(pdev);
2560 		dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2561 			rc);
2562 		return rc;
2563 	}
2564 
2565 	return 0;
2566 }
2567 
skd_release_irq(struct skd_device * skdev)2568 static void skd_release_irq(struct skd_device *skdev)
2569 {
2570 	struct pci_dev *pdev = skdev->pdev;
2571 
2572 	if (skdev->msix_entries) {
2573 		int i;
2574 
2575 		for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2576 			devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2577 					skdev);
2578 		}
2579 
2580 		kfree(skdev->msix_entries);
2581 		skdev->msix_entries = NULL;
2582 	} else {
2583 		devm_free_irq(&pdev->dev, pdev->irq, skdev);
2584 	}
2585 
2586 	pci_free_irq_vectors(pdev);
2587 }
2588 
2589 /*
2590  *****************************************************************************
2591  * CONSTRUCT
2592  *****************************************************************************
2593  */
2594 
skd_alloc_dma(struct skd_device * skdev,struct kmem_cache * s,dma_addr_t * dma_handle,gfp_t gfp,enum dma_data_direction dir)2595 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2596 			   dma_addr_t *dma_handle, gfp_t gfp,
2597 			   enum dma_data_direction dir)
2598 {
2599 	struct device *dev = &skdev->pdev->dev;
2600 	void *buf;
2601 
2602 	buf = kmem_cache_alloc(s, gfp);
2603 	if (!buf)
2604 		return NULL;
2605 	*dma_handle = dma_map_single(dev, buf, s->size, dir);
2606 	if (dma_mapping_error(dev, *dma_handle)) {
2607 		kmem_cache_free(s, buf);
2608 		buf = NULL;
2609 	}
2610 	return buf;
2611 }
2612 
skd_free_dma(struct skd_device * skdev,struct kmem_cache * s,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)2613 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2614 			 void *vaddr, dma_addr_t dma_handle,
2615 			 enum dma_data_direction dir)
2616 {
2617 	if (!vaddr)
2618 		return;
2619 
2620 	dma_unmap_single(&skdev->pdev->dev, dma_handle, s->size, dir);
2621 	kmem_cache_free(s, vaddr);
2622 }
2623 
skd_cons_skcomp(struct skd_device * skdev)2624 static int skd_cons_skcomp(struct skd_device *skdev)
2625 {
2626 	int rc = 0;
2627 	struct fit_completion_entry_v1 *skcomp;
2628 
2629 	dev_dbg(&skdev->pdev->dev,
2630 		"comp pci_alloc, total bytes %zd entries %d\n",
2631 		SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2632 
2633 	skcomp = pci_zalloc_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2634 				       &skdev->cq_dma_address);
2635 
2636 	if (skcomp == NULL) {
2637 		rc = -ENOMEM;
2638 		goto err_out;
2639 	}
2640 
2641 	skdev->skcomp_table = skcomp;
2642 	skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2643 							   sizeof(*skcomp) *
2644 							   SKD_N_COMPLETION_ENTRY);
2645 
2646 err_out:
2647 	return rc;
2648 }
2649 
skd_cons_skmsg(struct skd_device * skdev)2650 static int skd_cons_skmsg(struct skd_device *skdev)
2651 {
2652 	int rc = 0;
2653 	u32 i;
2654 
2655 	dev_dbg(&skdev->pdev->dev,
2656 		"skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2657 		sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2658 		sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2659 
2660 	skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2661 				     sizeof(struct skd_fitmsg_context),
2662 				     GFP_KERNEL);
2663 	if (skdev->skmsg_table == NULL) {
2664 		rc = -ENOMEM;
2665 		goto err_out;
2666 	}
2667 
2668 	for (i = 0; i < skdev->num_fitmsg_context; i++) {
2669 		struct skd_fitmsg_context *skmsg;
2670 
2671 		skmsg = &skdev->skmsg_table[i];
2672 
2673 		skmsg->id = i + SKD_ID_FIT_MSG;
2674 
2675 		skmsg->msg_buf = pci_alloc_consistent(skdev->pdev,
2676 						      SKD_N_FITMSG_BYTES,
2677 						      &skmsg->mb_dma_address);
2678 
2679 		if (skmsg->msg_buf == NULL) {
2680 			rc = -ENOMEM;
2681 			goto err_out;
2682 		}
2683 
2684 		WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2685 		     (FIT_QCMD_ALIGN - 1),
2686 		     "not aligned: msg_buf %p mb_dma_address %#llx\n",
2687 		     skmsg->msg_buf, skmsg->mb_dma_address);
2688 		memset(skmsg->msg_buf, 0, SKD_N_FITMSG_BYTES);
2689 	}
2690 
2691 err_out:
2692 	return rc;
2693 }
2694 
skd_cons_sg_list(struct skd_device * skdev,u32 n_sg,dma_addr_t * ret_dma_addr)2695 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2696 						  u32 n_sg,
2697 						  dma_addr_t *ret_dma_addr)
2698 {
2699 	struct fit_sg_descriptor *sg_list;
2700 
2701 	sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2702 				GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2703 
2704 	if (sg_list != NULL) {
2705 		uint64_t dma_address = *ret_dma_addr;
2706 		u32 i;
2707 
2708 		for (i = 0; i < n_sg - 1; i++) {
2709 			uint64_t ndp_off;
2710 			ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2711 
2712 			sg_list[i].next_desc_ptr = dma_address + ndp_off;
2713 		}
2714 		sg_list[i].next_desc_ptr = 0LL;
2715 	}
2716 
2717 	return sg_list;
2718 }
2719 
skd_free_sg_list(struct skd_device * skdev,struct fit_sg_descriptor * sg_list,dma_addr_t dma_addr)2720 static void skd_free_sg_list(struct skd_device *skdev,
2721 			     struct fit_sg_descriptor *sg_list,
2722 			     dma_addr_t dma_addr)
2723 {
2724 	if (WARN_ON_ONCE(!sg_list))
2725 		return;
2726 
2727 	skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2728 		     DMA_TO_DEVICE);
2729 }
2730 
skd_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2731 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2732 			    unsigned int hctx_idx, unsigned int numa_node)
2733 {
2734 	struct skd_device *skdev = set->driver_data;
2735 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2736 
2737 	skreq->state = SKD_REQ_STATE_IDLE;
2738 	skreq->sg = (void *)(skreq + 1);
2739 	sg_init_table(skreq->sg, skd_sgs_per_request);
2740 	skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2741 					    &skreq->sksg_dma_address);
2742 
2743 	return skreq->sksg_list ? 0 : -ENOMEM;
2744 }
2745 
skd_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)2746 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2747 			     unsigned int hctx_idx)
2748 {
2749 	struct skd_device *skdev = set->driver_data;
2750 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2751 
2752 	skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2753 }
2754 
skd_cons_sksb(struct skd_device * skdev)2755 static int skd_cons_sksb(struct skd_device *skdev)
2756 {
2757 	int rc = 0;
2758 	struct skd_special_context *skspcl;
2759 
2760 	skspcl = &skdev->internal_skspcl;
2761 
2762 	skspcl->req.id = 0 + SKD_ID_INTERNAL;
2763 	skspcl->req.state = SKD_REQ_STATE_IDLE;
2764 
2765 	skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2766 					 &skspcl->db_dma_address,
2767 					 GFP_DMA | __GFP_ZERO,
2768 					 DMA_BIDIRECTIONAL);
2769 	if (skspcl->data_buf == NULL) {
2770 		rc = -ENOMEM;
2771 		goto err_out;
2772 	}
2773 
2774 	skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2775 					&skspcl->mb_dma_address,
2776 					GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2777 	if (skspcl->msg_buf == NULL) {
2778 		rc = -ENOMEM;
2779 		goto err_out;
2780 	}
2781 
2782 	skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2783 						 &skspcl->req.sksg_dma_address);
2784 	if (skspcl->req.sksg_list == NULL) {
2785 		rc = -ENOMEM;
2786 		goto err_out;
2787 	}
2788 
2789 	if (!skd_format_internal_skspcl(skdev)) {
2790 		rc = -EINVAL;
2791 		goto err_out;
2792 	}
2793 
2794 err_out:
2795 	return rc;
2796 }
2797 
2798 static const struct blk_mq_ops skd_mq_ops = {
2799 	.queue_rq	= skd_mq_queue_rq,
2800 	.complete	= skd_complete_rq,
2801 	.timeout	= skd_timed_out,
2802 	.init_request	= skd_init_request,
2803 	.exit_request	= skd_exit_request,
2804 };
2805 
skd_cons_disk(struct skd_device * skdev)2806 static int skd_cons_disk(struct skd_device *skdev)
2807 {
2808 	int rc = 0;
2809 	struct gendisk *disk;
2810 	struct request_queue *q;
2811 	unsigned long flags;
2812 
2813 	disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2814 	if (!disk) {
2815 		rc = -ENOMEM;
2816 		goto err_out;
2817 	}
2818 
2819 	skdev->disk = disk;
2820 	sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2821 
2822 	disk->major = skdev->major;
2823 	disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2824 	disk->fops = &skd_blockdev_ops;
2825 	disk->private_data = skdev;
2826 
2827 	memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2828 	skdev->tag_set.ops = &skd_mq_ops;
2829 	skdev->tag_set.nr_hw_queues = 1;
2830 	skdev->tag_set.queue_depth = skd_max_queue_depth;
2831 	skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2832 		skdev->sgs_per_request * sizeof(struct scatterlist);
2833 	skdev->tag_set.numa_node = NUMA_NO_NODE;
2834 	skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2835 		BLK_MQ_F_SG_MERGE |
2836 		BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2837 	skdev->tag_set.driver_data = skdev;
2838 	rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2839 	if (rc)
2840 		goto err_out;
2841 	q = blk_mq_init_queue(&skdev->tag_set);
2842 	if (IS_ERR(q)) {
2843 		blk_mq_free_tag_set(&skdev->tag_set);
2844 		rc = PTR_ERR(q);
2845 		goto err_out;
2846 	}
2847 	q->queuedata = skdev;
2848 
2849 	skdev->queue = q;
2850 	disk->queue = q;
2851 
2852 	blk_queue_write_cache(q, true, true);
2853 	blk_queue_max_segments(q, skdev->sgs_per_request);
2854 	blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2855 
2856 	/* set optimal I/O size to 8KB */
2857 	blk_queue_io_opt(q, 8192);
2858 
2859 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2860 	queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2861 
2862 	blk_queue_rq_timeout(q, 8 * HZ);
2863 
2864 	spin_lock_irqsave(&skdev->lock, flags);
2865 	dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2866 	blk_mq_stop_hw_queues(skdev->queue);
2867 	spin_unlock_irqrestore(&skdev->lock, flags);
2868 
2869 err_out:
2870 	return rc;
2871 }
2872 
2873 #define SKD_N_DEV_TABLE         16u
2874 static u32 skd_next_devno;
2875 
skd_construct(struct pci_dev * pdev)2876 static struct skd_device *skd_construct(struct pci_dev *pdev)
2877 {
2878 	struct skd_device *skdev;
2879 	int blk_major = skd_major;
2880 	size_t size;
2881 	int rc;
2882 
2883 	skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2884 
2885 	if (!skdev) {
2886 		dev_err(&pdev->dev, "memory alloc failure\n");
2887 		return NULL;
2888 	}
2889 
2890 	skdev->state = SKD_DRVR_STATE_LOAD;
2891 	skdev->pdev = pdev;
2892 	skdev->devno = skd_next_devno++;
2893 	skdev->major = blk_major;
2894 	skdev->dev_max_queue_depth = 0;
2895 
2896 	skdev->num_req_context = skd_max_queue_depth;
2897 	skdev->num_fitmsg_context = skd_max_queue_depth;
2898 	skdev->cur_max_queue_depth = 1;
2899 	skdev->queue_low_water_mark = 1;
2900 	skdev->proto_ver = 99;
2901 	skdev->sgs_per_request = skd_sgs_per_request;
2902 	skdev->dbg_level = skd_dbg_level;
2903 
2904 	spin_lock_init(&skdev->lock);
2905 
2906 	INIT_WORK(&skdev->start_queue, skd_start_queue);
2907 	INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2908 
2909 	size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2910 	skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2911 						SLAB_HWCACHE_ALIGN, NULL);
2912 	if (!skdev->msgbuf_cache)
2913 		goto err_out;
2914 	WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2915 		  "skd-msgbuf: %d < %zd\n",
2916 		  kmem_cache_size(skdev->msgbuf_cache), size);
2917 	size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2918 	skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2919 						SLAB_HWCACHE_ALIGN, NULL);
2920 	if (!skdev->sglist_cache)
2921 		goto err_out;
2922 	WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2923 		  "skd-sglist: %d < %zd\n",
2924 		  kmem_cache_size(skdev->sglist_cache), size);
2925 	size = SKD_N_INTERNAL_BYTES;
2926 	skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2927 						 SLAB_HWCACHE_ALIGN, NULL);
2928 	if (!skdev->databuf_cache)
2929 		goto err_out;
2930 	WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2931 		  "skd-databuf: %d < %zd\n",
2932 		  kmem_cache_size(skdev->databuf_cache), size);
2933 
2934 	dev_dbg(&skdev->pdev->dev, "skcomp\n");
2935 	rc = skd_cons_skcomp(skdev);
2936 	if (rc < 0)
2937 		goto err_out;
2938 
2939 	dev_dbg(&skdev->pdev->dev, "skmsg\n");
2940 	rc = skd_cons_skmsg(skdev);
2941 	if (rc < 0)
2942 		goto err_out;
2943 
2944 	dev_dbg(&skdev->pdev->dev, "sksb\n");
2945 	rc = skd_cons_sksb(skdev);
2946 	if (rc < 0)
2947 		goto err_out;
2948 
2949 	dev_dbg(&skdev->pdev->dev, "disk\n");
2950 	rc = skd_cons_disk(skdev);
2951 	if (rc < 0)
2952 		goto err_out;
2953 
2954 	dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2955 	return skdev;
2956 
2957 err_out:
2958 	dev_dbg(&skdev->pdev->dev, "construct failed\n");
2959 	skd_destruct(skdev);
2960 	return NULL;
2961 }
2962 
2963 /*
2964  *****************************************************************************
2965  * DESTRUCT (FREE)
2966  *****************************************************************************
2967  */
2968 
skd_free_skcomp(struct skd_device * skdev)2969 static void skd_free_skcomp(struct skd_device *skdev)
2970 {
2971 	if (skdev->skcomp_table)
2972 		pci_free_consistent(skdev->pdev, SKD_SKCOMP_SIZE,
2973 				    skdev->skcomp_table, skdev->cq_dma_address);
2974 
2975 	skdev->skcomp_table = NULL;
2976 	skdev->cq_dma_address = 0;
2977 }
2978 
skd_free_skmsg(struct skd_device * skdev)2979 static void skd_free_skmsg(struct skd_device *skdev)
2980 {
2981 	u32 i;
2982 
2983 	if (skdev->skmsg_table == NULL)
2984 		return;
2985 
2986 	for (i = 0; i < skdev->num_fitmsg_context; i++) {
2987 		struct skd_fitmsg_context *skmsg;
2988 
2989 		skmsg = &skdev->skmsg_table[i];
2990 
2991 		if (skmsg->msg_buf != NULL) {
2992 			pci_free_consistent(skdev->pdev, SKD_N_FITMSG_BYTES,
2993 					    skmsg->msg_buf,
2994 					    skmsg->mb_dma_address);
2995 		}
2996 		skmsg->msg_buf = NULL;
2997 		skmsg->mb_dma_address = 0;
2998 	}
2999 
3000 	kfree(skdev->skmsg_table);
3001 	skdev->skmsg_table = NULL;
3002 }
3003 
skd_free_sksb(struct skd_device * skdev)3004 static void skd_free_sksb(struct skd_device *skdev)
3005 {
3006 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
3007 
3008 	skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3009 		     skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3010 
3011 	skspcl->data_buf = NULL;
3012 	skspcl->db_dma_address = 0;
3013 
3014 	skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3015 		     skspcl->mb_dma_address, DMA_TO_DEVICE);
3016 
3017 	skspcl->msg_buf = NULL;
3018 	skspcl->mb_dma_address = 0;
3019 
3020 	skd_free_sg_list(skdev, skspcl->req.sksg_list,
3021 			 skspcl->req.sksg_dma_address);
3022 
3023 	skspcl->req.sksg_list = NULL;
3024 	skspcl->req.sksg_dma_address = 0;
3025 }
3026 
skd_free_disk(struct skd_device * skdev)3027 static void skd_free_disk(struct skd_device *skdev)
3028 {
3029 	struct gendisk *disk = skdev->disk;
3030 
3031 	if (disk && (disk->flags & GENHD_FL_UP))
3032 		del_gendisk(disk);
3033 
3034 	if (skdev->queue) {
3035 		blk_cleanup_queue(skdev->queue);
3036 		skdev->queue = NULL;
3037 		if (disk)
3038 			disk->queue = NULL;
3039 	}
3040 
3041 	if (skdev->tag_set.tags)
3042 		blk_mq_free_tag_set(&skdev->tag_set);
3043 
3044 	put_disk(disk);
3045 	skdev->disk = NULL;
3046 }
3047 
skd_destruct(struct skd_device * skdev)3048 static void skd_destruct(struct skd_device *skdev)
3049 {
3050 	if (skdev == NULL)
3051 		return;
3052 
3053 	cancel_work_sync(&skdev->start_queue);
3054 
3055 	dev_dbg(&skdev->pdev->dev, "disk\n");
3056 	skd_free_disk(skdev);
3057 
3058 	dev_dbg(&skdev->pdev->dev, "sksb\n");
3059 	skd_free_sksb(skdev);
3060 
3061 	dev_dbg(&skdev->pdev->dev, "skmsg\n");
3062 	skd_free_skmsg(skdev);
3063 
3064 	dev_dbg(&skdev->pdev->dev, "skcomp\n");
3065 	skd_free_skcomp(skdev);
3066 
3067 	kmem_cache_destroy(skdev->databuf_cache);
3068 	kmem_cache_destroy(skdev->sglist_cache);
3069 	kmem_cache_destroy(skdev->msgbuf_cache);
3070 
3071 	dev_dbg(&skdev->pdev->dev, "skdev\n");
3072 	kfree(skdev);
3073 }
3074 
3075 /*
3076  *****************************************************************************
3077  * BLOCK DEVICE (BDEV) GLUE
3078  *****************************************************************************
3079  */
3080 
skd_bdev_getgeo(struct block_device * bdev,struct hd_geometry * geo)3081 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3082 {
3083 	struct skd_device *skdev;
3084 	u64 capacity;
3085 
3086 	skdev = bdev->bd_disk->private_data;
3087 
3088 	dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3089 		bdev->bd_disk->disk_name, current->comm);
3090 
3091 	if (skdev->read_cap_is_valid) {
3092 		capacity = get_capacity(skdev->disk);
3093 		geo->heads = 64;
3094 		geo->sectors = 255;
3095 		geo->cylinders = (capacity) / (255 * 64);
3096 
3097 		return 0;
3098 	}
3099 	return -EIO;
3100 }
3101 
skd_bdev_attach(struct device * parent,struct skd_device * skdev)3102 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3103 {
3104 	dev_dbg(&skdev->pdev->dev, "add_disk\n");
3105 	device_add_disk(parent, skdev->disk);
3106 	return 0;
3107 }
3108 
3109 static const struct block_device_operations skd_blockdev_ops = {
3110 	.owner		= THIS_MODULE,
3111 	.getgeo		= skd_bdev_getgeo,
3112 };
3113 
3114 /*
3115  *****************************************************************************
3116  * PCIe DRIVER GLUE
3117  *****************************************************************************
3118  */
3119 
3120 static const struct pci_device_id skd_pci_tbl[] = {
3121 	{ PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3122 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3123 	{ 0 }                     /* terminate list */
3124 };
3125 
3126 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3127 
skd_pci_info(struct skd_device * skdev,char * str)3128 static char *skd_pci_info(struct skd_device *skdev, char *str)
3129 {
3130 	int pcie_reg;
3131 
3132 	strcpy(str, "PCIe (");
3133 	pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3134 
3135 	if (pcie_reg) {
3136 
3137 		char lwstr[6];
3138 		uint16_t pcie_lstat, lspeed, lwidth;
3139 
3140 		pcie_reg += 0x12;
3141 		pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3142 		lspeed = pcie_lstat & (0xF);
3143 		lwidth = (pcie_lstat & 0x3F0) >> 4;
3144 
3145 		if (lspeed == 1)
3146 			strcat(str, "2.5GT/s ");
3147 		else if (lspeed == 2)
3148 			strcat(str, "5.0GT/s ");
3149 		else
3150 			strcat(str, "<unknown> ");
3151 		snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3152 		strcat(str, lwstr);
3153 	}
3154 	return str;
3155 }
3156 
skd_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3157 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3158 {
3159 	int i;
3160 	int rc = 0;
3161 	char pci_str[32];
3162 	struct skd_device *skdev;
3163 
3164 	dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3165 		pdev->device);
3166 
3167 	rc = pci_enable_device(pdev);
3168 	if (rc)
3169 		return rc;
3170 	rc = pci_request_regions(pdev, DRV_NAME);
3171 	if (rc)
3172 		goto err_out;
3173 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3174 	if (!rc) {
3175 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3176 			dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3177 				rc);
3178 		}
3179 	} else {
3180 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3181 		if (rc) {
3182 			dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3183 			goto err_out_regions;
3184 		}
3185 	}
3186 
3187 	if (!skd_major) {
3188 		rc = register_blkdev(0, DRV_NAME);
3189 		if (rc < 0)
3190 			goto err_out_regions;
3191 		BUG_ON(!rc);
3192 		skd_major = rc;
3193 	}
3194 
3195 	skdev = skd_construct(pdev);
3196 	if (skdev == NULL) {
3197 		rc = -ENOMEM;
3198 		goto err_out_regions;
3199 	}
3200 
3201 	skd_pci_info(skdev, pci_str);
3202 	dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3203 
3204 	pci_set_master(pdev);
3205 	rc = pci_enable_pcie_error_reporting(pdev);
3206 	if (rc) {
3207 		dev_err(&pdev->dev,
3208 			"bad enable of PCIe error reporting rc=%d\n", rc);
3209 		skdev->pcie_error_reporting_is_enabled = 0;
3210 	} else
3211 		skdev->pcie_error_reporting_is_enabled = 1;
3212 
3213 	pci_set_drvdata(pdev, skdev);
3214 
3215 	for (i = 0; i < SKD_MAX_BARS; i++) {
3216 		skdev->mem_phys[i] = pci_resource_start(pdev, i);
3217 		skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3218 		skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3219 					    skdev->mem_size[i]);
3220 		if (!skdev->mem_map[i]) {
3221 			dev_err(&pdev->dev,
3222 				"Unable to map adapter memory!\n");
3223 			rc = -ENODEV;
3224 			goto err_out_iounmap;
3225 		}
3226 		dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3227 			skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3228 			skdev->mem_size[i]);
3229 	}
3230 
3231 	rc = skd_acquire_irq(skdev);
3232 	if (rc) {
3233 		dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3234 		goto err_out_iounmap;
3235 	}
3236 
3237 	rc = skd_start_timer(skdev);
3238 	if (rc)
3239 		goto err_out_timer;
3240 
3241 	init_waitqueue_head(&skdev->waitq);
3242 
3243 	skd_start_device(skdev);
3244 
3245 	rc = wait_event_interruptible_timeout(skdev->waitq,
3246 					      (skdev->gendisk_on),
3247 					      (SKD_START_WAIT_SECONDS * HZ));
3248 	if (skdev->gendisk_on > 0) {
3249 		/* device came on-line after reset */
3250 		skd_bdev_attach(&pdev->dev, skdev);
3251 		rc = 0;
3252 	} else {
3253 		/* we timed out, something is wrong with the device,
3254 		   don't add the disk structure */
3255 		dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3256 			rc);
3257 		/* in case of no error; we timeout with ENXIO */
3258 		if (!rc)
3259 			rc = -ENXIO;
3260 		goto err_out_timer;
3261 	}
3262 
3263 	return rc;
3264 
3265 err_out_timer:
3266 	skd_stop_device(skdev);
3267 	skd_release_irq(skdev);
3268 
3269 err_out_iounmap:
3270 	for (i = 0; i < SKD_MAX_BARS; i++)
3271 		if (skdev->mem_map[i])
3272 			iounmap(skdev->mem_map[i]);
3273 
3274 	if (skdev->pcie_error_reporting_is_enabled)
3275 		pci_disable_pcie_error_reporting(pdev);
3276 
3277 	skd_destruct(skdev);
3278 
3279 err_out_regions:
3280 	pci_release_regions(pdev);
3281 
3282 err_out:
3283 	pci_disable_device(pdev);
3284 	pci_set_drvdata(pdev, NULL);
3285 	return rc;
3286 }
3287 
skd_pci_remove(struct pci_dev * pdev)3288 static void skd_pci_remove(struct pci_dev *pdev)
3289 {
3290 	int i;
3291 	struct skd_device *skdev;
3292 
3293 	skdev = pci_get_drvdata(pdev);
3294 	if (!skdev) {
3295 		dev_err(&pdev->dev, "no device data for PCI\n");
3296 		return;
3297 	}
3298 	skd_stop_device(skdev);
3299 	skd_release_irq(skdev);
3300 
3301 	for (i = 0; i < SKD_MAX_BARS; i++)
3302 		if (skdev->mem_map[i])
3303 			iounmap(skdev->mem_map[i]);
3304 
3305 	if (skdev->pcie_error_reporting_is_enabled)
3306 		pci_disable_pcie_error_reporting(pdev);
3307 
3308 	skd_destruct(skdev);
3309 
3310 	pci_release_regions(pdev);
3311 	pci_disable_device(pdev);
3312 	pci_set_drvdata(pdev, NULL);
3313 
3314 	return;
3315 }
3316 
skd_pci_suspend(struct pci_dev * pdev,pm_message_t state)3317 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3318 {
3319 	int i;
3320 	struct skd_device *skdev;
3321 
3322 	skdev = pci_get_drvdata(pdev);
3323 	if (!skdev) {
3324 		dev_err(&pdev->dev, "no device data for PCI\n");
3325 		return -EIO;
3326 	}
3327 
3328 	skd_stop_device(skdev);
3329 
3330 	skd_release_irq(skdev);
3331 
3332 	for (i = 0; i < SKD_MAX_BARS; i++)
3333 		if (skdev->mem_map[i])
3334 			iounmap(skdev->mem_map[i]);
3335 
3336 	if (skdev->pcie_error_reporting_is_enabled)
3337 		pci_disable_pcie_error_reporting(pdev);
3338 
3339 	pci_release_regions(pdev);
3340 	pci_save_state(pdev);
3341 	pci_disable_device(pdev);
3342 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
3343 	return 0;
3344 }
3345 
skd_pci_resume(struct pci_dev * pdev)3346 static int skd_pci_resume(struct pci_dev *pdev)
3347 {
3348 	int i;
3349 	int rc = 0;
3350 	struct skd_device *skdev;
3351 
3352 	skdev = pci_get_drvdata(pdev);
3353 	if (!skdev) {
3354 		dev_err(&pdev->dev, "no device data for PCI\n");
3355 		return -1;
3356 	}
3357 
3358 	pci_set_power_state(pdev, PCI_D0);
3359 	pci_enable_wake(pdev, PCI_D0, 0);
3360 	pci_restore_state(pdev);
3361 
3362 	rc = pci_enable_device(pdev);
3363 	if (rc)
3364 		return rc;
3365 	rc = pci_request_regions(pdev, DRV_NAME);
3366 	if (rc)
3367 		goto err_out;
3368 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3369 	if (!rc) {
3370 		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
3371 
3372 			dev_err(&pdev->dev, "consistent DMA mask error %d\n",
3373 				rc);
3374 		}
3375 	} else {
3376 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3377 		if (rc) {
3378 
3379 			dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3380 			goto err_out_regions;
3381 		}
3382 	}
3383 
3384 	pci_set_master(pdev);
3385 	rc = pci_enable_pcie_error_reporting(pdev);
3386 	if (rc) {
3387 		dev_err(&pdev->dev,
3388 			"bad enable of PCIe error reporting rc=%d\n", rc);
3389 		skdev->pcie_error_reporting_is_enabled = 0;
3390 	} else
3391 		skdev->pcie_error_reporting_is_enabled = 1;
3392 
3393 	for (i = 0; i < SKD_MAX_BARS; i++) {
3394 
3395 		skdev->mem_phys[i] = pci_resource_start(pdev, i);
3396 		skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3397 		skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3398 					    skdev->mem_size[i]);
3399 		if (!skdev->mem_map[i]) {
3400 			dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3401 			rc = -ENODEV;
3402 			goto err_out_iounmap;
3403 		}
3404 		dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3405 			skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3406 			skdev->mem_size[i]);
3407 	}
3408 	rc = skd_acquire_irq(skdev);
3409 	if (rc) {
3410 		dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3411 		goto err_out_iounmap;
3412 	}
3413 
3414 	rc = skd_start_timer(skdev);
3415 	if (rc)
3416 		goto err_out_timer;
3417 
3418 	init_waitqueue_head(&skdev->waitq);
3419 
3420 	skd_start_device(skdev);
3421 
3422 	return rc;
3423 
3424 err_out_timer:
3425 	skd_stop_device(skdev);
3426 	skd_release_irq(skdev);
3427 
3428 err_out_iounmap:
3429 	for (i = 0; i < SKD_MAX_BARS; i++)
3430 		if (skdev->mem_map[i])
3431 			iounmap(skdev->mem_map[i]);
3432 
3433 	if (skdev->pcie_error_reporting_is_enabled)
3434 		pci_disable_pcie_error_reporting(pdev);
3435 
3436 err_out_regions:
3437 	pci_release_regions(pdev);
3438 
3439 err_out:
3440 	pci_disable_device(pdev);
3441 	return rc;
3442 }
3443 
skd_pci_shutdown(struct pci_dev * pdev)3444 static void skd_pci_shutdown(struct pci_dev *pdev)
3445 {
3446 	struct skd_device *skdev;
3447 
3448 	dev_err(&pdev->dev, "%s called\n", __func__);
3449 
3450 	skdev = pci_get_drvdata(pdev);
3451 	if (!skdev) {
3452 		dev_err(&pdev->dev, "no device data for PCI\n");
3453 		return;
3454 	}
3455 
3456 	dev_err(&pdev->dev, "calling stop\n");
3457 	skd_stop_device(skdev);
3458 }
3459 
3460 static struct pci_driver skd_driver = {
3461 	.name		= DRV_NAME,
3462 	.id_table	= skd_pci_tbl,
3463 	.probe		= skd_pci_probe,
3464 	.remove		= skd_pci_remove,
3465 	.suspend	= skd_pci_suspend,
3466 	.resume		= skd_pci_resume,
3467 	.shutdown	= skd_pci_shutdown,
3468 };
3469 
3470 /*
3471  *****************************************************************************
3472  * LOGGING SUPPORT
3473  *****************************************************************************
3474  */
3475 
skd_drive_state_to_str(int state)3476 const char *skd_drive_state_to_str(int state)
3477 {
3478 	switch (state) {
3479 	case FIT_SR_DRIVE_OFFLINE:
3480 		return "OFFLINE";
3481 	case FIT_SR_DRIVE_INIT:
3482 		return "INIT";
3483 	case FIT_SR_DRIVE_ONLINE:
3484 		return "ONLINE";
3485 	case FIT_SR_DRIVE_BUSY:
3486 		return "BUSY";
3487 	case FIT_SR_DRIVE_FAULT:
3488 		return "FAULT";
3489 	case FIT_SR_DRIVE_DEGRADED:
3490 		return "DEGRADED";
3491 	case FIT_SR_PCIE_LINK_DOWN:
3492 		return "INK_DOWN";
3493 	case FIT_SR_DRIVE_SOFT_RESET:
3494 		return "SOFT_RESET";
3495 	case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3496 		return "NEED_FW";
3497 	case FIT_SR_DRIVE_INIT_FAULT:
3498 		return "INIT_FAULT";
3499 	case FIT_SR_DRIVE_BUSY_SANITIZE:
3500 		return "BUSY_SANITIZE";
3501 	case FIT_SR_DRIVE_BUSY_ERASE:
3502 		return "BUSY_ERASE";
3503 	case FIT_SR_DRIVE_FW_BOOTING:
3504 		return "FW_BOOTING";
3505 	default:
3506 		return "???";
3507 	}
3508 }
3509 
skd_skdev_state_to_str(enum skd_drvr_state state)3510 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3511 {
3512 	switch (state) {
3513 	case SKD_DRVR_STATE_LOAD:
3514 		return "LOAD";
3515 	case SKD_DRVR_STATE_IDLE:
3516 		return "IDLE";
3517 	case SKD_DRVR_STATE_BUSY:
3518 		return "BUSY";
3519 	case SKD_DRVR_STATE_STARTING:
3520 		return "STARTING";
3521 	case SKD_DRVR_STATE_ONLINE:
3522 		return "ONLINE";
3523 	case SKD_DRVR_STATE_PAUSING:
3524 		return "PAUSING";
3525 	case SKD_DRVR_STATE_PAUSED:
3526 		return "PAUSED";
3527 	case SKD_DRVR_STATE_RESTARTING:
3528 		return "RESTARTING";
3529 	case SKD_DRVR_STATE_RESUMING:
3530 		return "RESUMING";
3531 	case SKD_DRVR_STATE_STOPPING:
3532 		return "STOPPING";
3533 	case SKD_DRVR_STATE_SYNCING:
3534 		return "SYNCING";
3535 	case SKD_DRVR_STATE_FAULT:
3536 		return "FAULT";
3537 	case SKD_DRVR_STATE_DISAPPEARED:
3538 		return "DISAPPEARED";
3539 	case SKD_DRVR_STATE_BUSY_ERASE:
3540 		return "BUSY_ERASE";
3541 	case SKD_DRVR_STATE_BUSY_SANITIZE:
3542 		return "BUSY_SANITIZE";
3543 	case SKD_DRVR_STATE_BUSY_IMMINENT:
3544 		return "BUSY_IMMINENT";
3545 	case SKD_DRVR_STATE_WAIT_BOOT:
3546 		return "WAIT_BOOT";
3547 
3548 	default:
3549 		return "???";
3550 	}
3551 }
3552 
skd_skreq_state_to_str(enum skd_req_state state)3553 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3554 {
3555 	switch (state) {
3556 	case SKD_REQ_STATE_IDLE:
3557 		return "IDLE";
3558 	case SKD_REQ_STATE_SETUP:
3559 		return "SETUP";
3560 	case SKD_REQ_STATE_BUSY:
3561 		return "BUSY";
3562 	case SKD_REQ_STATE_COMPLETED:
3563 		return "COMPLETED";
3564 	case SKD_REQ_STATE_TIMEOUT:
3565 		return "TIMEOUT";
3566 	default:
3567 		return "???";
3568 	}
3569 }
3570 
skd_log_skdev(struct skd_device * skdev,const char * event)3571 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3572 {
3573 	dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3574 	dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3575 		skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3576 		skd_skdev_state_to_str(skdev->state), skdev->state);
3577 	dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3578 		skd_in_flight(skdev), skdev->cur_max_queue_depth,
3579 		skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3580 	dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3581 		skdev->skcomp_cycle, skdev->skcomp_ix);
3582 }
3583 
skd_log_skreq(struct skd_device * skdev,struct skd_request_context * skreq,const char * event)3584 static void skd_log_skreq(struct skd_device *skdev,
3585 			  struct skd_request_context *skreq, const char *event)
3586 {
3587 	struct request *req = blk_mq_rq_from_pdu(skreq);
3588 	u32 lba = blk_rq_pos(req);
3589 	u32 count = blk_rq_sectors(req);
3590 
3591 	dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3592 	dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3593 		skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3594 		skreq->fitmsg_id);
3595 	dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3596 		skreq->data_dir, skreq->n_sg);
3597 
3598 	dev_dbg(&skdev->pdev->dev,
3599 		"req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3600 		count, count, (int)rq_data_dir(req));
3601 }
3602 
3603 /*
3604  *****************************************************************************
3605  * MODULE GLUE
3606  *****************************************************************************
3607  */
3608 
skd_init(void)3609 static int __init skd_init(void)
3610 {
3611 	BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3612 	BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3613 	BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3614 	BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3615 	BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3616 	BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3617 	BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3618 	BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3619 
3620 	switch (skd_isr_type) {
3621 	case SKD_IRQ_LEGACY:
3622 	case SKD_IRQ_MSI:
3623 	case SKD_IRQ_MSIX:
3624 		break;
3625 	default:
3626 		pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3627 		       skd_isr_type, SKD_IRQ_DEFAULT);
3628 		skd_isr_type = SKD_IRQ_DEFAULT;
3629 	}
3630 
3631 	if (skd_max_queue_depth < 1 ||
3632 	    skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3633 		pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3634 		       skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3635 		skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3636 	}
3637 
3638 	if (skd_max_req_per_msg < 1 ||
3639 	    skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3640 		pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3641 		       skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3642 		skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3643 	}
3644 
3645 	if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3646 		pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3647 		       skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3648 		skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3649 	}
3650 
3651 	if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3652 		pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3653 		       skd_dbg_level, 0);
3654 		skd_dbg_level = 0;
3655 	}
3656 
3657 	if (skd_isr_comp_limit < 0) {
3658 		pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3659 		       skd_isr_comp_limit, 0);
3660 		skd_isr_comp_limit = 0;
3661 	}
3662 
3663 	return pci_register_driver(&skd_driver);
3664 }
3665 
skd_exit(void)3666 static void __exit skd_exit(void)
3667 {
3668 	pci_unregister_driver(&skd_driver);
3669 
3670 	if (skd_major)
3671 		unregister_blkdev(skd_major, DRV_NAME);
3672 }
3673 
3674 module_init(skd_init);
3675 module_exit(skd_exit);
3676