1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include "ipmi_dmi.h"
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 #include <linux/acpi.h>
73
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
78
79 #define PFX "ipmi_si: "
80
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC 10000
86 #define SI_USEC_PER_JIFFY (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
89 short timeout */
90
91 enum si_intf_state {
92 SI_NORMAL,
93 SI_GETTING_FLAGS,
94 SI_GETTING_EVENTS,
95 SI_CLEARING_FLAGS,
96 SI_GETTING_MESSAGES,
97 SI_CHECKING_ENABLES,
98 SI_SETTING_ENABLES
99 /* FIXME - add watchdog stuff. */
100 };
101
102 /* Some BT-specific defines we need here. */
103 #define IPMI_BT_INTMASK_REG 2
104 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
105 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106
107 enum si_type {
108 SI_KCS, SI_SMIC, SI_BT
109 };
110
111 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
112
113 #define DEVICE_NAME "ipmi_si"
114
115 static struct platform_driver ipmi_driver;
116
117 /*
118 * Indexes into stats[] in smi_info below.
119 */
120 enum si_stat_indexes {
121 /*
122 * Number of times the driver requested a timer while an operation
123 * was in progress.
124 */
125 SI_STAT_short_timeouts = 0,
126
127 /*
128 * Number of times the driver requested a timer while nothing was in
129 * progress.
130 */
131 SI_STAT_long_timeouts,
132
133 /* Number of times the interface was idle while being polled. */
134 SI_STAT_idles,
135
136 /* Number of interrupts the driver handled. */
137 SI_STAT_interrupts,
138
139 /* Number of time the driver got an ATTN from the hardware. */
140 SI_STAT_attentions,
141
142 /* Number of times the driver requested flags from the hardware. */
143 SI_STAT_flag_fetches,
144
145 /* Number of times the hardware didn't follow the state machine. */
146 SI_STAT_hosed_count,
147
148 /* Number of completed messages. */
149 SI_STAT_complete_transactions,
150
151 /* Number of IPMI events received from the hardware. */
152 SI_STAT_events,
153
154 /* Number of watchdog pretimeouts. */
155 SI_STAT_watchdog_pretimeouts,
156
157 /* Number of asynchronous messages received. */
158 SI_STAT_incoming_messages,
159
160
161 /* This *must* remain last, add new values above this. */
162 SI_NUM_STATS
163 };
164
165 struct smi_info {
166 int intf_num;
167 ipmi_smi_t intf;
168 struct si_sm_data *si_sm;
169 const struct si_sm_handlers *handlers;
170 enum si_type si_type;
171 spinlock_t si_lock;
172 struct ipmi_smi_msg *waiting_msg;
173 struct ipmi_smi_msg *curr_msg;
174 enum si_intf_state si_state;
175
176 /*
177 * Used to handle the various types of I/O that can occur with
178 * IPMI
179 */
180 struct si_sm_io io;
181 int (*io_setup)(struct smi_info *info);
182 void (*io_cleanup)(struct smi_info *info);
183 int (*irq_setup)(struct smi_info *info);
184 void (*irq_cleanup)(struct smi_info *info);
185 unsigned int io_size;
186 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
187 void (*addr_source_cleanup)(struct smi_info *info);
188 void *addr_source_data;
189
190 /*
191 * Per-OEM handler, called from handle_flags(). Returns 1
192 * when handle_flags() needs to be re-run or 0 indicating it
193 * set si_state itself.
194 */
195 int (*oem_data_avail_handler)(struct smi_info *smi_info);
196
197 /*
198 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
199 * is set to hold the flags until we are done handling everything
200 * from the flags.
201 */
202 #define RECEIVE_MSG_AVAIL 0x01
203 #define EVENT_MSG_BUFFER_FULL 0x02
204 #define WDT_PRE_TIMEOUT_INT 0x08
205 #define OEM0_DATA_AVAIL 0x20
206 #define OEM1_DATA_AVAIL 0x40
207 #define OEM2_DATA_AVAIL 0x80
208 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
209 OEM1_DATA_AVAIL | \
210 OEM2_DATA_AVAIL)
211 unsigned char msg_flags;
212
213 /* Does the BMC have an event buffer? */
214 bool has_event_buffer;
215
216 /*
217 * If set to true, this will request events the next time the
218 * state machine is idle.
219 */
220 atomic_t req_events;
221
222 /*
223 * If true, run the state machine to completion on every send
224 * call. Generally used after a panic to make sure stuff goes
225 * out.
226 */
227 bool run_to_completion;
228
229 /* The I/O port of an SI interface. */
230 int port;
231
232 /*
233 * The space between start addresses of the two ports. For
234 * instance, if the first port is 0xca2 and the spacing is 4, then
235 * the second port is 0xca6.
236 */
237 unsigned int spacing;
238
239 /* zero if no irq; */
240 int irq;
241
242 /* The timer for this si. */
243 struct timer_list si_timer;
244
245 /* This flag is set, if the timer can be set */
246 bool timer_can_start;
247
248 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
249 bool timer_running;
250
251 /* The time (in jiffies) the last timeout occurred at. */
252 unsigned long last_timeout_jiffies;
253
254 /* Are we waiting for the events, pretimeouts, received msgs? */
255 atomic_t need_watch;
256
257 /*
258 * The driver will disable interrupts when it gets into a
259 * situation where it cannot handle messages due to lack of
260 * memory. Once that situation clears up, it will re-enable
261 * interrupts.
262 */
263 bool interrupt_disabled;
264
265 /*
266 * Does the BMC support events?
267 */
268 bool supports_event_msg_buff;
269
270 /*
271 * Can we disable interrupts the global enables receive irq
272 * bit? There are currently two forms of brokenness, some
273 * systems cannot disable the bit (which is technically within
274 * the spec but a bad idea) and some systems have the bit
275 * forced to zero even though interrupts work (which is
276 * clearly outside the spec). The next bool tells which form
277 * of brokenness is present.
278 */
279 bool cannot_disable_irq;
280
281 /*
282 * Some systems are broken and cannot set the irq enable
283 * bit, even if they support interrupts.
284 */
285 bool irq_enable_broken;
286
287 /* Is the driver in maintenance mode? */
288 bool in_maintenance_mode;
289
290 /*
291 * Did we get an attention that we did not handle?
292 */
293 bool got_attn;
294
295 /* From the get device id response... */
296 struct ipmi_device_id device_id;
297
298 /* Driver model stuff. */
299 struct device *dev;
300 struct platform_device *pdev;
301
302 /*
303 * True if we allocated the device, false if it came from
304 * someplace else (like PCI).
305 */
306 bool dev_registered;
307
308 /* Slave address, could be reported from DMI. */
309 unsigned char slave_addr;
310
311 /* Counters and things for the proc filesystem. */
312 atomic_t stats[SI_NUM_STATS];
313
314 struct task_struct *thread;
315
316 struct list_head link;
317 union ipmi_smi_info_union addr_info;
318 };
319
320 #define smi_inc_stat(smi, stat) \
321 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
322 #define smi_get_stat(smi, stat) \
323 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
324
325 #define SI_MAX_PARMS 4
326
327 static int force_kipmid[SI_MAX_PARMS];
328 static int num_force_kipmid;
329 #ifdef CONFIG_PCI
330 static bool pci_registered;
331 #endif
332 #ifdef CONFIG_PARISC
333 static bool parisc_registered;
334 #endif
335
336 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
337 static int num_max_busy_us;
338
339 static bool unload_when_empty = true;
340
341 static int add_smi(struct smi_info *smi);
342 static int try_smi_init(struct smi_info *smi);
343 static void cleanup_one_si(struct smi_info *to_clean);
344 static void cleanup_ipmi_si(void);
345
346 #ifdef DEBUG_TIMING
debug_timestamp(char * msg)347 void debug_timestamp(char *msg)
348 {
349 struct timespec64 t;
350
351 getnstimeofday64(&t);
352 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
353 }
354 #else
355 #define debug_timestamp(x)
356 #endif
357
358 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)359 static int register_xaction_notifier(struct notifier_block *nb)
360 {
361 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
362 }
363
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)364 static void deliver_recv_msg(struct smi_info *smi_info,
365 struct ipmi_smi_msg *msg)
366 {
367 /* Deliver the message to the upper layer. */
368 if (smi_info->intf)
369 ipmi_smi_msg_received(smi_info->intf, msg);
370 else
371 ipmi_free_smi_msg(msg);
372 }
373
return_hosed_msg(struct smi_info * smi_info,int cCode)374 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
375 {
376 struct ipmi_smi_msg *msg = smi_info->curr_msg;
377
378 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
379 cCode = IPMI_ERR_UNSPECIFIED;
380 /* else use it as is */
381
382 /* Make it a response */
383 msg->rsp[0] = msg->data[0] | 4;
384 msg->rsp[1] = msg->data[1];
385 msg->rsp[2] = cCode;
386 msg->rsp_size = 3;
387
388 smi_info->curr_msg = NULL;
389 deliver_recv_msg(smi_info, msg);
390 }
391
start_next_msg(struct smi_info * smi_info)392 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
393 {
394 int rv;
395
396 if (!smi_info->waiting_msg) {
397 smi_info->curr_msg = NULL;
398 rv = SI_SM_IDLE;
399 } else {
400 int err;
401
402 smi_info->curr_msg = smi_info->waiting_msg;
403 smi_info->waiting_msg = NULL;
404 debug_timestamp("Start2");
405 err = atomic_notifier_call_chain(&xaction_notifier_list,
406 0, smi_info);
407 if (err & NOTIFY_STOP_MASK) {
408 rv = SI_SM_CALL_WITHOUT_DELAY;
409 goto out;
410 }
411 err = smi_info->handlers->start_transaction(
412 smi_info->si_sm,
413 smi_info->curr_msg->data,
414 smi_info->curr_msg->data_size);
415 if (err)
416 return_hosed_msg(smi_info, err);
417
418 rv = SI_SM_CALL_WITHOUT_DELAY;
419 }
420 out:
421 return rv;
422 }
423
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)424 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
425 {
426 if (!smi_info->timer_can_start)
427 return;
428 smi_info->last_timeout_jiffies = jiffies;
429 mod_timer(&smi_info->si_timer, new_val);
430 smi_info->timer_running = true;
431 }
432
433 /*
434 * Start a new message and (re)start the timer and thread.
435 */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)436 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
437 unsigned int size)
438 {
439 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
440
441 if (smi_info->thread)
442 wake_up_process(smi_info->thread);
443
444 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
445 }
446
start_check_enables(struct smi_info * smi_info)447 static void start_check_enables(struct smi_info *smi_info)
448 {
449 unsigned char msg[2];
450
451 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
452 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
453
454 start_new_msg(smi_info, msg, 2);
455 smi_info->si_state = SI_CHECKING_ENABLES;
456 }
457
start_clear_flags(struct smi_info * smi_info)458 static void start_clear_flags(struct smi_info *smi_info)
459 {
460 unsigned char msg[3];
461
462 /* Make sure the watchdog pre-timeout flag is not set at startup. */
463 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
464 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
465 msg[2] = WDT_PRE_TIMEOUT_INT;
466
467 start_new_msg(smi_info, msg, 3);
468 smi_info->si_state = SI_CLEARING_FLAGS;
469 }
470
start_getting_msg_queue(struct smi_info * smi_info)471 static void start_getting_msg_queue(struct smi_info *smi_info)
472 {
473 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
474 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
475 smi_info->curr_msg->data_size = 2;
476
477 start_new_msg(smi_info, smi_info->curr_msg->data,
478 smi_info->curr_msg->data_size);
479 smi_info->si_state = SI_GETTING_MESSAGES;
480 }
481
start_getting_events(struct smi_info * smi_info)482 static void start_getting_events(struct smi_info *smi_info)
483 {
484 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
485 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
486 smi_info->curr_msg->data_size = 2;
487
488 start_new_msg(smi_info, smi_info->curr_msg->data,
489 smi_info->curr_msg->data_size);
490 smi_info->si_state = SI_GETTING_EVENTS;
491 }
492
493 /*
494 * When we have a situtaion where we run out of memory and cannot
495 * allocate messages, we just leave them in the BMC and run the system
496 * polled until we can allocate some memory. Once we have some
497 * memory, we will re-enable the interrupt.
498 *
499 * Note that we cannot just use disable_irq(), since the interrupt may
500 * be shared.
501 */
disable_si_irq(struct smi_info * smi_info)502 static inline bool disable_si_irq(struct smi_info *smi_info)
503 {
504 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
505 smi_info->interrupt_disabled = true;
506 start_check_enables(smi_info);
507 return true;
508 }
509 return false;
510 }
511
enable_si_irq(struct smi_info * smi_info)512 static inline bool enable_si_irq(struct smi_info *smi_info)
513 {
514 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
515 smi_info->interrupt_disabled = false;
516 start_check_enables(smi_info);
517 return true;
518 }
519 return false;
520 }
521
522 /*
523 * Allocate a message. If unable to allocate, start the interrupt
524 * disable process and return NULL. If able to allocate but
525 * interrupts are disabled, free the message and return NULL after
526 * starting the interrupt enable process.
527 */
alloc_msg_handle_irq(struct smi_info * smi_info)528 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
529 {
530 struct ipmi_smi_msg *msg;
531
532 msg = ipmi_alloc_smi_msg();
533 if (!msg) {
534 if (!disable_si_irq(smi_info))
535 smi_info->si_state = SI_NORMAL;
536 } else if (enable_si_irq(smi_info)) {
537 ipmi_free_smi_msg(msg);
538 msg = NULL;
539 }
540 return msg;
541 }
542
handle_flags(struct smi_info * smi_info)543 static void handle_flags(struct smi_info *smi_info)
544 {
545 retry:
546 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
547 /* Watchdog pre-timeout */
548 smi_inc_stat(smi_info, watchdog_pretimeouts);
549
550 start_clear_flags(smi_info);
551 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
552 if (smi_info->intf)
553 ipmi_smi_watchdog_pretimeout(smi_info->intf);
554 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
555 /* Messages available. */
556 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
557 if (!smi_info->curr_msg)
558 return;
559
560 start_getting_msg_queue(smi_info);
561 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
562 /* Events available. */
563 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
564 if (!smi_info->curr_msg)
565 return;
566
567 start_getting_events(smi_info);
568 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
569 smi_info->oem_data_avail_handler) {
570 if (smi_info->oem_data_avail_handler(smi_info))
571 goto retry;
572 } else
573 smi_info->si_state = SI_NORMAL;
574 }
575
576 /*
577 * Global enables we care about.
578 */
579 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
580 IPMI_BMC_EVT_MSG_INTR)
581
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)582 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
583 bool *irq_on)
584 {
585 u8 enables = 0;
586
587 if (smi_info->supports_event_msg_buff)
588 enables |= IPMI_BMC_EVT_MSG_BUFF;
589
590 if (((smi_info->irq && !smi_info->interrupt_disabled) ||
591 smi_info->cannot_disable_irq) &&
592 !smi_info->irq_enable_broken)
593 enables |= IPMI_BMC_RCV_MSG_INTR;
594
595 if (smi_info->supports_event_msg_buff &&
596 smi_info->irq && !smi_info->interrupt_disabled &&
597 !smi_info->irq_enable_broken)
598 enables |= IPMI_BMC_EVT_MSG_INTR;
599
600 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
601
602 return enables;
603 }
604
check_bt_irq(struct smi_info * smi_info,bool irq_on)605 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
606 {
607 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
608
609 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
610
611 if ((bool)irqstate == irq_on)
612 return;
613
614 if (irq_on)
615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
616 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
617 else
618 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
619 }
620
handle_transaction_done(struct smi_info * smi_info)621 static void handle_transaction_done(struct smi_info *smi_info)
622 {
623 struct ipmi_smi_msg *msg;
624
625 debug_timestamp("Done");
626 switch (smi_info->si_state) {
627 case SI_NORMAL:
628 if (!smi_info->curr_msg)
629 break;
630
631 smi_info->curr_msg->rsp_size
632 = smi_info->handlers->get_result(
633 smi_info->si_sm,
634 smi_info->curr_msg->rsp,
635 IPMI_MAX_MSG_LENGTH);
636
637 /*
638 * Do this here becase deliver_recv_msg() releases the
639 * lock, and a new message can be put in during the
640 * time the lock is released.
641 */
642 msg = smi_info->curr_msg;
643 smi_info->curr_msg = NULL;
644 deliver_recv_msg(smi_info, msg);
645 break;
646
647 case SI_GETTING_FLAGS:
648 {
649 unsigned char msg[4];
650 unsigned int len;
651
652 /* We got the flags from the SMI, now handle them. */
653 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
654 if (msg[2] != 0) {
655 /* Error fetching flags, just give up for now. */
656 smi_info->si_state = SI_NORMAL;
657 } else if (len < 4) {
658 /*
659 * Hmm, no flags. That's technically illegal, but
660 * don't use uninitialized data.
661 */
662 smi_info->si_state = SI_NORMAL;
663 } else {
664 smi_info->msg_flags = msg[3];
665 handle_flags(smi_info);
666 }
667 break;
668 }
669
670 case SI_CLEARING_FLAGS:
671 {
672 unsigned char msg[3];
673
674 /* We cleared the flags. */
675 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
676 if (msg[2] != 0) {
677 /* Error clearing flags */
678 dev_warn(smi_info->dev,
679 "Error clearing flags: %2.2x\n", msg[2]);
680 }
681 smi_info->si_state = SI_NORMAL;
682 break;
683 }
684
685 case SI_GETTING_EVENTS:
686 {
687 smi_info->curr_msg->rsp_size
688 = smi_info->handlers->get_result(
689 smi_info->si_sm,
690 smi_info->curr_msg->rsp,
691 IPMI_MAX_MSG_LENGTH);
692
693 /*
694 * Do this here becase deliver_recv_msg() releases the
695 * lock, and a new message can be put in during the
696 * time the lock is released.
697 */
698 msg = smi_info->curr_msg;
699 smi_info->curr_msg = NULL;
700 if (msg->rsp[2] != 0) {
701 /* Error getting event, probably done. */
702 msg->done(msg);
703
704 /* Take off the event flag. */
705 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
706 handle_flags(smi_info);
707 } else {
708 smi_inc_stat(smi_info, events);
709
710 /*
711 * Do this before we deliver the message
712 * because delivering the message releases the
713 * lock and something else can mess with the
714 * state.
715 */
716 handle_flags(smi_info);
717
718 deliver_recv_msg(smi_info, msg);
719 }
720 break;
721 }
722
723 case SI_GETTING_MESSAGES:
724 {
725 smi_info->curr_msg->rsp_size
726 = smi_info->handlers->get_result(
727 smi_info->si_sm,
728 smi_info->curr_msg->rsp,
729 IPMI_MAX_MSG_LENGTH);
730
731 /*
732 * Do this here becase deliver_recv_msg() releases the
733 * lock, and a new message can be put in during the
734 * time the lock is released.
735 */
736 msg = smi_info->curr_msg;
737 smi_info->curr_msg = NULL;
738 if (msg->rsp[2] != 0) {
739 /* Error getting event, probably done. */
740 msg->done(msg);
741
742 /* Take off the msg flag. */
743 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
744 handle_flags(smi_info);
745 } else {
746 smi_inc_stat(smi_info, incoming_messages);
747
748 /*
749 * Do this before we deliver the message
750 * because delivering the message releases the
751 * lock and something else can mess with the
752 * state.
753 */
754 handle_flags(smi_info);
755
756 deliver_recv_msg(smi_info, msg);
757 }
758 break;
759 }
760
761 case SI_CHECKING_ENABLES:
762 {
763 unsigned char msg[4];
764 u8 enables;
765 bool irq_on;
766
767 /* We got the flags from the SMI, now handle them. */
768 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
769 if (msg[2] != 0) {
770 dev_warn(smi_info->dev,
771 "Couldn't get irq info: %x.\n", msg[2]);
772 dev_warn(smi_info->dev,
773 "Maybe ok, but ipmi might run very slowly.\n");
774 smi_info->si_state = SI_NORMAL;
775 break;
776 }
777 enables = current_global_enables(smi_info, 0, &irq_on);
778 if (smi_info->si_type == SI_BT)
779 /* BT has its own interrupt enable bit. */
780 check_bt_irq(smi_info, irq_on);
781 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
782 /* Enables are not correct, fix them. */
783 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
784 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
785 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
786 smi_info->handlers->start_transaction(
787 smi_info->si_sm, msg, 3);
788 smi_info->si_state = SI_SETTING_ENABLES;
789 } else if (smi_info->supports_event_msg_buff) {
790 smi_info->curr_msg = ipmi_alloc_smi_msg();
791 if (!smi_info->curr_msg) {
792 smi_info->si_state = SI_NORMAL;
793 break;
794 }
795 start_getting_events(smi_info);
796 } else {
797 smi_info->si_state = SI_NORMAL;
798 }
799 break;
800 }
801
802 case SI_SETTING_ENABLES:
803 {
804 unsigned char msg[4];
805
806 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
807 if (msg[2] != 0)
808 dev_warn(smi_info->dev,
809 "Could not set the global enables: 0x%x.\n",
810 msg[2]);
811
812 if (smi_info->supports_event_msg_buff) {
813 smi_info->curr_msg = ipmi_alloc_smi_msg();
814 if (!smi_info->curr_msg) {
815 smi_info->si_state = SI_NORMAL;
816 break;
817 }
818 start_getting_events(smi_info);
819 } else {
820 smi_info->si_state = SI_NORMAL;
821 }
822 break;
823 }
824 }
825 }
826
827 /*
828 * Called on timeouts and events. Timeouts should pass the elapsed
829 * time, interrupts should pass in zero. Must be called with
830 * si_lock held and interrupts disabled.
831 */
smi_event_handler(struct smi_info * smi_info,int time)832 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
833 int time)
834 {
835 enum si_sm_result si_sm_result;
836
837 restart:
838 /*
839 * There used to be a loop here that waited a little while
840 * (around 25us) before giving up. That turned out to be
841 * pointless, the minimum delays I was seeing were in the 300us
842 * range, which is far too long to wait in an interrupt. So
843 * we just run until the state machine tells us something
844 * happened or it needs a delay.
845 */
846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
847 time = 0;
848 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
849 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
850
851 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
852 smi_inc_stat(smi_info, complete_transactions);
853
854 handle_transaction_done(smi_info);
855 goto restart;
856 } else if (si_sm_result == SI_SM_HOSED) {
857 smi_inc_stat(smi_info, hosed_count);
858
859 /*
860 * Do the before return_hosed_msg, because that
861 * releases the lock.
862 */
863 smi_info->si_state = SI_NORMAL;
864 if (smi_info->curr_msg != NULL) {
865 /*
866 * If we were handling a user message, format
867 * a response to send to the upper layer to
868 * tell it about the error.
869 */
870 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
871 }
872 goto restart;
873 }
874
875 /*
876 * We prefer handling attn over new messages. But don't do
877 * this if there is not yet an upper layer to handle anything.
878 */
879 if (likely(smi_info->intf) &&
880 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
881 unsigned char msg[2];
882
883 if (smi_info->si_state != SI_NORMAL) {
884 /*
885 * We got an ATTN, but we are doing something else.
886 * Handle the ATTN later.
887 */
888 smi_info->got_attn = true;
889 } else {
890 smi_info->got_attn = false;
891 smi_inc_stat(smi_info, attentions);
892
893 /*
894 * Got a attn, send down a get message flags to see
895 * what's causing it. It would be better to handle
896 * this in the upper layer, but due to the way
897 * interrupts work with the SMI, that's not really
898 * possible.
899 */
900 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
901 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
902
903 start_new_msg(smi_info, msg, 2);
904 smi_info->si_state = SI_GETTING_FLAGS;
905 goto restart;
906 }
907 }
908
909 /* If we are currently idle, try to start the next message. */
910 if (si_sm_result == SI_SM_IDLE) {
911 smi_inc_stat(smi_info, idles);
912
913 si_sm_result = start_next_msg(smi_info);
914 if (si_sm_result != SI_SM_IDLE)
915 goto restart;
916 }
917
918 if ((si_sm_result == SI_SM_IDLE)
919 && (atomic_read(&smi_info->req_events))) {
920 /*
921 * We are idle and the upper layer requested that I fetch
922 * events, so do so.
923 */
924 atomic_set(&smi_info->req_events, 0);
925
926 /*
927 * Take this opportunity to check the interrupt and
928 * message enable state for the BMC. The BMC can be
929 * asynchronously reset, and may thus get interrupts
930 * disable and messages disabled.
931 */
932 if (smi_info->supports_event_msg_buff || smi_info->irq) {
933 start_check_enables(smi_info);
934 } else {
935 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
936 if (!smi_info->curr_msg)
937 goto out;
938
939 start_getting_events(smi_info);
940 }
941 goto restart;
942 }
943
944 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
945 /* Ok it if fails, the timer will just go off. */
946 if (del_timer(&smi_info->si_timer))
947 smi_info->timer_running = false;
948 }
949
950 out:
951 return si_sm_result;
952 }
953
check_start_timer_thread(struct smi_info * smi_info)954 static void check_start_timer_thread(struct smi_info *smi_info)
955 {
956 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
957 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
958
959 if (smi_info->thread)
960 wake_up_process(smi_info->thread);
961
962 start_next_msg(smi_info);
963 smi_event_handler(smi_info, 0);
964 }
965 }
966
flush_messages(void * send_info)967 static void flush_messages(void *send_info)
968 {
969 struct smi_info *smi_info = send_info;
970 enum si_sm_result result;
971
972 /*
973 * Currently, this function is called only in run-to-completion
974 * mode. This means we are single-threaded, no need for locks.
975 */
976 result = smi_event_handler(smi_info, 0);
977 while (result != SI_SM_IDLE) {
978 udelay(SI_SHORT_TIMEOUT_USEC);
979 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
980 }
981 }
982
sender(void * send_info,struct ipmi_smi_msg * msg)983 static void sender(void *send_info,
984 struct ipmi_smi_msg *msg)
985 {
986 struct smi_info *smi_info = send_info;
987 unsigned long flags;
988
989 debug_timestamp("Enqueue");
990
991 if (smi_info->run_to_completion) {
992 /*
993 * If we are running to completion, start it. Upper
994 * layer will call flush_messages to clear it out.
995 */
996 smi_info->waiting_msg = msg;
997 return;
998 }
999
1000 spin_lock_irqsave(&smi_info->si_lock, flags);
1001 /*
1002 * The following two lines don't need to be under the lock for
1003 * the lock's sake, but they do need SMP memory barriers to
1004 * avoid getting things out of order. We are already claiming
1005 * the lock, anyway, so just do it under the lock to avoid the
1006 * ordering problem.
1007 */
1008 BUG_ON(smi_info->waiting_msg);
1009 smi_info->waiting_msg = msg;
1010 check_start_timer_thread(smi_info);
1011 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1012 }
1013
set_run_to_completion(void * send_info,bool i_run_to_completion)1014 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1015 {
1016 struct smi_info *smi_info = send_info;
1017
1018 smi_info->run_to_completion = i_run_to_completion;
1019 if (i_run_to_completion)
1020 flush_messages(smi_info);
1021 }
1022
1023 /*
1024 * Use -1 in the nsec value of the busy waiting timespec to tell that
1025 * we are spinning in kipmid looking for something and not delaying
1026 * between checks
1027 */
ipmi_si_set_not_busy(struct timespec64 * ts)1028 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1029 {
1030 ts->tv_nsec = -1;
1031 }
ipmi_si_is_busy(struct timespec64 * ts)1032 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1033 {
1034 return ts->tv_nsec != -1;
1035 }
1036
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,struct timespec64 * busy_until)1037 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1038 const struct smi_info *smi_info,
1039 struct timespec64 *busy_until)
1040 {
1041 unsigned int max_busy_us = 0;
1042
1043 if (smi_info->intf_num < num_max_busy_us)
1044 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1045 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1046 ipmi_si_set_not_busy(busy_until);
1047 else if (!ipmi_si_is_busy(busy_until)) {
1048 getnstimeofday64(busy_until);
1049 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1050 } else {
1051 struct timespec64 now;
1052
1053 getnstimeofday64(&now);
1054 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1055 ipmi_si_set_not_busy(busy_until);
1056 return 0;
1057 }
1058 }
1059 return 1;
1060 }
1061
1062
1063 /*
1064 * A busy-waiting loop for speeding up IPMI operation.
1065 *
1066 * Lousy hardware makes this hard. This is only enabled for systems
1067 * that are not BT and do not have interrupts. It starts spinning
1068 * when an operation is complete or until max_busy tells it to stop
1069 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1070 * Documentation/IPMI.txt for details.
1071 */
ipmi_thread(void * data)1072 static int ipmi_thread(void *data)
1073 {
1074 struct smi_info *smi_info = data;
1075 unsigned long flags;
1076 enum si_sm_result smi_result;
1077 struct timespec64 busy_until;
1078
1079 ipmi_si_set_not_busy(&busy_until);
1080 set_user_nice(current, MAX_NICE);
1081 while (!kthread_should_stop()) {
1082 int busy_wait;
1083
1084 spin_lock_irqsave(&(smi_info->si_lock), flags);
1085 smi_result = smi_event_handler(smi_info, 0);
1086
1087 /*
1088 * If the driver is doing something, there is a possible
1089 * race with the timer. If the timer handler see idle,
1090 * and the thread here sees something else, the timer
1091 * handler won't restart the timer even though it is
1092 * required. So start it here if necessary.
1093 */
1094 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1095 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1096
1097 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1098 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1099 &busy_until);
1100 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1101 ; /* do nothing */
1102 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1103 /*
1104 * In maintenance mode we run as fast as
1105 * possible to allow firmware updates to
1106 * complete as fast as possible, but normally
1107 * don't bang on the scheduler.
1108 */
1109 if (smi_info->in_maintenance_mode)
1110 schedule();
1111 else
1112 usleep_range(100, 200);
1113 } else if (smi_result == SI_SM_IDLE) {
1114 if (atomic_read(&smi_info->need_watch)) {
1115 schedule_timeout_interruptible(100);
1116 } else {
1117 /* Wait to be woken up when we are needed. */
1118 __set_current_state(TASK_INTERRUPTIBLE);
1119 schedule();
1120 }
1121 } else {
1122 schedule_timeout_interruptible(1);
1123 }
1124 }
1125 return 0;
1126 }
1127
1128
poll(void * send_info)1129 static void poll(void *send_info)
1130 {
1131 struct smi_info *smi_info = send_info;
1132 unsigned long flags = 0;
1133 bool run_to_completion = smi_info->run_to_completion;
1134
1135 /*
1136 * Make sure there is some delay in the poll loop so we can
1137 * drive time forward and timeout things.
1138 */
1139 udelay(10);
1140 if (!run_to_completion)
1141 spin_lock_irqsave(&smi_info->si_lock, flags);
1142 smi_event_handler(smi_info, 10);
1143 if (!run_to_completion)
1144 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1145 }
1146
request_events(void * send_info)1147 static void request_events(void *send_info)
1148 {
1149 struct smi_info *smi_info = send_info;
1150
1151 if (!smi_info->has_event_buffer)
1152 return;
1153
1154 atomic_set(&smi_info->req_events, 1);
1155 }
1156
set_need_watch(void * send_info,bool enable)1157 static void set_need_watch(void *send_info, bool enable)
1158 {
1159 struct smi_info *smi_info = send_info;
1160 unsigned long flags;
1161
1162 atomic_set(&smi_info->need_watch, enable);
1163 spin_lock_irqsave(&smi_info->si_lock, flags);
1164 check_start_timer_thread(smi_info);
1165 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1166 }
1167
1168 static int initialized;
1169
smi_timeout(unsigned long data)1170 static void smi_timeout(unsigned long data)
1171 {
1172 struct smi_info *smi_info = (struct smi_info *) data;
1173 enum si_sm_result smi_result;
1174 unsigned long flags;
1175 unsigned long jiffies_now;
1176 long time_diff;
1177 long timeout;
1178
1179 spin_lock_irqsave(&(smi_info->si_lock), flags);
1180 debug_timestamp("Timer");
1181
1182 jiffies_now = jiffies;
1183 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1184 * SI_USEC_PER_JIFFY);
1185 smi_result = smi_event_handler(smi_info, time_diff);
1186
1187 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1188 /* Running with interrupts, only do long timeouts. */
1189 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1190 smi_inc_stat(smi_info, long_timeouts);
1191 goto do_mod_timer;
1192 }
1193
1194 /*
1195 * If the state machine asks for a short delay, then shorten
1196 * the timer timeout.
1197 */
1198 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1199 smi_inc_stat(smi_info, short_timeouts);
1200 timeout = jiffies + 1;
1201 } else {
1202 smi_inc_stat(smi_info, long_timeouts);
1203 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1204 }
1205
1206 do_mod_timer:
1207 if (smi_result != SI_SM_IDLE)
1208 smi_mod_timer(smi_info, timeout);
1209 else
1210 smi_info->timer_running = false;
1211 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1212 }
1213
si_irq_handler(int irq,void * data)1214 static irqreturn_t si_irq_handler(int irq, void *data)
1215 {
1216 struct smi_info *smi_info = data;
1217 unsigned long flags;
1218
1219 spin_lock_irqsave(&(smi_info->si_lock), flags);
1220
1221 smi_inc_stat(smi_info, interrupts);
1222
1223 debug_timestamp("Interrupt");
1224
1225 smi_event_handler(smi_info, 0);
1226 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1227 return IRQ_HANDLED;
1228 }
1229
si_bt_irq_handler(int irq,void * data)1230 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1231 {
1232 struct smi_info *smi_info = data;
1233 /* We need to clear the IRQ flag for the BT interface. */
1234 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1235 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1236 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1237 return si_irq_handler(irq, data);
1238 }
1239
smi_start_processing(void * send_info,ipmi_smi_t intf)1240 static int smi_start_processing(void *send_info,
1241 ipmi_smi_t intf)
1242 {
1243 struct smi_info *new_smi = send_info;
1244 int enable = 0;
1245
1246 new_smi->intf = intf;
1247
1248 /* Set up the timer that drives the interface. */
1249 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1250 new_smi->timer_can_start = true;
1251 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1252
1253 /* Try to claim any interrupts. */
1254 if (new_smi->irq_setup)
1255 new_smi->irq_setup(new_smi);
1256
1257 /*
1258 * Check if the user forcefully enabled the daemon.
1259 */
1260 if (new_smi->intf_num < num_force_kipmid)
1261 enable = force_kipmid[new_smi->intf_num];
1262 /*
1263 * The BT interface is efficient enough to not need a thread,
1264 * and there is no need for a thread if we have interrupts.
1265 */
1266 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1267 enable = 1;
1268
1269 if (enable) {
1270 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1271 "kipmi%d", new_smi->intf_num);
1272 if (IS_ERR(new_smi->thread)) {
1273 dev_notice(new_smi->dev, "Could not start"
1274 " kernel thread due to error %ld, only using"
1275 " timers to drive the interface\n",
1276 PTR_ERR(new_smi->thread));
1277 new_smi->thread = NULL;
1278 }
1279 }
1280
1281 return 0;
1282 }
1283
get_smi_info(void * send_info,struct ipmi_smi_info * data)1284 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1285 {
1286 struct smi_info *smi = send_info;
1287
1288 data->addr_src = smi->addr_source;
1289 data->dev = smi->dev;
1290 data->addr_info = smi->addr_info;
1291 get_device(smi->dev);
1292
1293 return 0;
1294 }
1295
set_maintenance_mode(void * send_info,bool enable)1296 static void set_maintenance_mode(void *send_info, bool enable)
1297 {
1298 struct smi_info *smi_info = send_info;
1299
1300 if (!enable)
1301 atomic_set(&smi_info->req_events, 0);
1302 smi_info->in_maintenance_mode = enable;
1303 }
1304
1305 static const struct ipmi_smi_handlers handlers = {
1306 .owner = THIS_MODULE,
1307 .start_processing = smi_start_processing,
1308 .get_smi_info = get_smi_info,
1309 .sender = sender,
1310 .request_events = request_events,
1311 .set_need_watch = set_need_watch,
1312 .set_maintenance_mode = set_maintenance_mode,
1313 .set_run_to_completion = set_run_to_completion,
1314 .flush_messages = flush_messages,
1315 .poll = poll,
1316 };
1317
1318 /*
1319 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1320 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1321 */
1322
1323 static LIST_HEAD(smi_infos);
1324 static DEFINE_MUTEX(smi_infos_lock);
1325 static int smi_num; /* Used to sequence the SMIs */
1326
1327 #define DEFAULT_REGSPACING 1
1328 #define DEFAULT_REGSIZE 1
1329
1330 #ifdef CONFIG_ACPI
1331 static bool si_tryacpi = true;
1332 #endif
1333 #ifdef CONFIG_DMI
1334 static bool si_trydmi = true;
1335 #endif
1336 static bool si_tryplatform = true;
1337 #ifdef CONFIG_PCI
1338 static bool si_trypci = true;
1339 #endif
1340 static char *si_type[SI_MAX_PARMS];
1341 #define MAX_SI_TYPE_STR 30
1342 static char si_type_str[MAX_SI_TYPE_STR];
1343 static unsigned long addrs[SI_MAX_PARMS];
1344 static unsigned int num_addrs;
1345 static unsigned int ports[SI_MAX_PARMS];
1346 static unsigned int num_ports;
1347 static int irqs[SI_MAX_PARMS];
1348 static unsigned int num_irqs;
1349 static int regspacings[SI_MAX_PARMS];
1350 static unsigned int num_regspacings;
1351 static int regsizes[SI_MAX_PARMS];
1352 static unsigned int num_regsizes;
1353 static int regshifts[SI_MAX_PARMS];
1354 static unsigned int num_regshifts;
1355 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1356 static unsigned int num_slave_addrs;
1357
1358 #define IPMI_IO_ADDR_SPACE 0
1359 #define IPMI_MEM_ADDR_SPACE 1
1360 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1361
1362 static int hotmod_handler(const char *val, const struct kernel_param *kp);
1363
1364 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1365 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1366 " Documentation/IPMI.txt in the kernel sources for the"
1367 " gory details.");
1368
1369 #ifdef CONFIG_ACPI
1370 module_param_named(tryacpi, si_tryacpi, bool, 0);
1371 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1372 " default scan of the interfaces identified via ACPI");
1373 #endif
1374 #ifdef CONFIG_DMI
1375 module_param_named(trydmi, si_trydmi, bool, 0);
1376 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1377 " default scan of the interfaces identified via DMI");
1378 #endif
1379 module_param_named(tryplatform, si_tryplatform, bool, 0);
1380 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1381 " default scan of the interfaces identified via platform"
1382 " interfaces like openfirmware");
1383 #ifdef CONFIG_PCI
1384 module_param_named(trypci, si_trypci, bool, 0);
1385 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1386 " default scan of the interfaces identified via pci");
1387 #endif
1388 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1389 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1390 " interface separated by commas. The types are 'kcs',"
1391 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1392 " the first interface to kcs and the second to bt");
1393 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1394 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1395 " addresses separated by commas. Only use if an interface"
1396 " is in memory. Otherwise, set it to zero or leave"
1397 " it blank.");
1398 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1399 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1400 " addresses separated by commas. Only use if an interface"
1401 " is a port. Otherwise, set it to zero or leave"
1402 " it blank.");
1403 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1404 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1405 " addresses separated by commas. Only use if an interface"
1406 " has an interrupt. Otherwise, set it to zero or leave"
1407 " it blank.");
1408 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1409 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1410 " and each successive register used by the interface. For"
1411 " instance, if the start address is 0xca2 and the spacing"
1412 " is 2, then the second address is at 0xca4. Defaults"
1413 " to 1.");
1414 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1415 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1416 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1417 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1418 " the 8-bit IPMI register has to be read from a larger"
1419 " register.");
1420 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1421 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1422 " IPMI register, in bits. For instance, if the data"
1423 " is read from a 32-bit word and the IPMI data is in"
1424 " bit 8-15, then the shift would be 8");
1425 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1426 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1427 " the controller. Normally this is 0x20, but can be"
1428 " overridden by this parm. This is an array indexed"
1429 " by interface number.");
1430 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1431 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1432 " disabled(0). Normally the IPMI driver auto-detects"
1433 " this, but the value may be overridden by this parm.");
1434 module_param(unload_when_empty, bool, 0);
1435 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1436 " specified or found, default is 1. Setting to 0"
1437 " is useful for hot add of devices using hotmod.");
1438 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1439 MODULE_PARM_DESC(kipmid_max_busy_us,
1440 "Max time (in microseconds) to busy-wait for IPMI data before"
1441 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1442 " if kipmid is using up a lot of CPU time.");
1443
1444
std_irq_cleanup(struct smi_info * info)1445 static void std_irq_cleanup(struct smi_info *info)
1446 {
1447 if (info->si_type == SI_BT)
1448 /* Disable the interrupt in the BT interface. */
1449 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1450 free_irq(info->irq, info);
1451 }
1452
std_irq_setup(struct smi_info * info)1453 static int std_irq_setup(struct smi_info *info)
1454 {
1455 int rv;
1456
1457 if (!info->irq)
1458 return 0;
1459
1460 if (info->si_type == SI_BT) {
1461 rv = request_irq(info->irq,
1462 si_bt_irq_handler,
1463 IRQF_SHARED,
1464 DEVICE_NAME,
1465 info);
1466 if (!rv)
1467 /* Enable the interrupt in the BT interface. */
1468 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1469 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1470 } else
1471 rv = request_irq(info->irq,
1472 si_irq_handler,
1473 IRQF_SHARED,
1474 DEVICE_NAME,
1475 info);
1476 if (rv) {
1477 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1478 " running polled\n",
1479 DEVICE_NAME, info->irq);
1480 info->irq = 0;
1481 } else {
1482 info->irq_cleanup = std_irq_cleanup;
1483 dev_info(info->dev, "Using irq %d\n", info->irq);
1484 }
1485
1486 return rv;
1487 }
1488
port_inb(const struct si_sm_io * io,unsigned int offset)1489 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1490 {
1491 unsigned int addr = io->addr_data;
1492
1493 return inb(addr + (offset * io->regspacing));
1494 }
1495
port_outb(const struct si_sm_io * io,unsigned int offset,unsigned char b)1496 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1497 unsigned char b)
1498 {
1499 unsigned int addr = io->addr_data;
1500
1501 outb(b, addr + (offset * io->regspacing));
1502 }
1503
port_inw(const struct si_sm_io * io,unsigned int offset)1504 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1505 {
1506 unsigned int addr = io->addr_data;
1507
1508 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1509 }
1510
port_outw(const struct si_sm_io * io,unsigned int offset,unsigned char b)1511 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1512 unsigned char b)
1513 {
1514 unsigned int addr = io->addr_data;
1515
1516 outw(b << io->regshift, addr + (offset * io->regspacing));
1517 }
1518
port_inl(const struct si_sm_io * io,unsigned int offset)1519 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1520 {
1521 unsigned int addr = io->addr_data;
1522
1523 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1524 }
1525
port_outl(const struct si_sm_io * io,unsigned int offset,unsigned char b)1526 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1527 unsigned char b)
1528 {
1529 unsigned int addr = io->addr_data;
1530
1531 outl(b << io->regshift, addr+(offset * io->regspacing));
1532 }
1533
port_cleanup(struct smi_info * info)1534 static void port_cleanup(struct smi_info *info)
1535 {
1536 unsigned int addr = info->io.addr_data;
1537 int idx;
1538
1539 if (addr) {
1540 for (idx = 0; idx < info->io_size; idx++)
1541 release_region(addr + idx * info->io.regspacing,
1542 info->io.regsize);
1543 }
1544 }
1545
port_setup(struct smi_info * info)1546 static int port_setup(struct smi_info *info)
1547 {
1548 unsigned int addr = info->io.addr_data;
1549 int idx;
1550
1551 if (!addr)
1552 return -ENODEV;
1553
1554 info->io_cleanup = port_cleanup;
1555
1556 /*
1557 * Figure out the actual inb/inw/inl/etc routine to use based
1558 * upon the register size.
1559 */
1560 switch (info->io.regsize) {
1561 case 1:
1562 info->io.inputb = port_inb;
1563 info->io.outputb = port_outb;
1564 break;
1565 case 2:
1566 info->io.inputb = port_inw;
1567 info->io.outputb = port_outw;
1568 break;
1569 case 4:
1570 info->io.inputb = port_inl;
1571 info->io.outputb = port_outl;
1572 break;
1573 default:
1574 dev_warn(info->dev, "Invalid register size: %d\n",
1575 info->io.regsize);
1576 return -EINVAL;
1577 }
1578
1579 /*
1580 * Some BIOSes reserve disjoint I/O regions in their ACPI
1581 * tables. This causes problems when trying to register the
1582 * entire I/O region. Therefore we must register each I/O
1583 * port separately.
1584 */
1585 for (idx = 0; idx < info->io_size; idx++) {
1586 if (request_region(addr + idx * info->io.regspacing,
1587 info->io.regsize, DEVICE_NAME) == NULL) {
1588 /* Undo allocations */
1589 while (idx--)
1590 release_region(addr + idx * info->io.regspacing,
1591 info->io.regsize);
1592 return -EIO;
1593 }
1594 }
1595 return 0;
1596 }
1597
intf_mem_inb(const struct si_sm_io * io,unsigned int offset)1598 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1599 unsigned int offset)
1600 {
1601 return readb((io->addr)+(offset * io->regspacing));
1602 }
1603
intf_mem_outb(const struct si_sm_io * io,unsigned int offset,unsigned char b)1604 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1605 unsigned char b)
1606 {
1607 writeb(b, (io->addr)+(offset * io->regspacing));
1608 }
1609
intf_mem_inw(const struct si_sm_io * io,unsigned int offset)1610 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1611 unsigned int offset)
1612 {
1613 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1614 & 0xff;
1615 }
1616
intf_mem_outw(const struct si_sm_io * io,unsigned int offset,unsigned char b)1617 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1618 unsigned char b)
1619 {
1620 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1621 }
1622
intf_mem_inl(const struct si_sm_io * io,unsigned int offset)1623 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1624 unsigned int offset)
1625 {
1626 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1627 & 0xff;
1628 }
1629
intf_mem_outl(const struct si_sm_io * io,unsigned int offset,unsigned char b)1630 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1631 unsigned char b)
1632 {
1633 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1634 }
1635
1636 #ifdef readq
mem_inq(const struct si_sm_io * io,unsigned int offset)1637 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1638 {
1639 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1640 & 0xff;
1641 }
1642
mem_outq(const struct si_sm_io * io,unsigned int offset,unsigned char b)1643 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1644 unsigned char b)
1645 {
1646 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1647 }
1648 #endif
1649
mem_region_cleanup(struct smi_info * info,int num)1650 static void mem_region_cleanup(struct smi_info *info, int num)
1651 {
1652 unsigned long addr = info->io.addr_data;
1653 int idx;
1654
1655 for (idx = 0; idx < num; idx++)
1656 release_mem_region(addr + idx * info->io.regspacing,
1657 info->io.regsize);
1658 }
1659
mem_cleanup(struct smi_info * info)1660 static void mem_cleanup(struct smi_info *info)
1661 {
1662 if (info->io.addr) {
1663 iounmap(info->io.addr);
1664 mem_region_cleanup(info, info->io_size);
1665 }
1666 }
1667
mem_setup(struct smi_info * info)1668 static int mem_setup(struct smi_info *info)
1669 {
1670 unsigned long addr = info->io.addr_data;
1671 int mapsize, idx;
1672
1673 if (!addr)
1674 return -ENODEV;
1675
1676 info->io_cleanup = mem_cleanup;
1677
1678 /*
1679 * Figure out the actual readb/readw/readl/etc routine to use based
1680 * upon the register size.
1681 */
1682 switch (info->io.regsize) {
1683 case 1:
1684 info->io.inputb = intf_mem_inb;
1685 info->io.outputb = intf_mem_outb;
1686 break;
1687 case 2:
1688 info->io.inputb = intf_mem_inw;
1689 info->io.outputb = intf_mem_outw;
1690 break;
1691 case 4:
1692 info->io.inputb = intf_mem_inl;
1693 info->io.outputb = intf_mem_outl;
1694 break;
1695 #ifdef readq
1696 case 8:
1697 info->io.inputb = mem_inq;
1698 info->io.outputb = mem_outq;
1699 break;
1700 #endif
1701 default:
1702 dev_warn(info->dev, "Invalid register size: %d\n",
1703 info->io.regsize);
1704 return -EINVAL;
1705 }
1706
1707 /*
1708 * Some BIOSes reserve disjoint memory regions in their ACPI
1709 * tables. This causes problems when trying to request the
1710 * entire region. Therefore we must request each register
1711 * separately.
1712 */
1713 for (idx = 0; idx < info->io_size; idx++) {
1714 if (request_mem_region(addr + idx * info->io.regspacing,
1715 info->io.regsize, DEVICE_NAME) == NULL) {
1716 /* Undo allocations */
1717 mem_region_cleanup(info, idx);
1718 return -EIO;
1719 }
1720 }
1721
1722 /*
1723 * Calculate the total amount of memory to claim. This is an
1724 * unusual looking calculation, but it avoids claiming any
1725 * more memory than it has to. It will claim everything
1726 * between the first address to the end of the last full
1727 * register.
1728 */
1729 mapsize = ((info->io_size * info->io.regspacing)
1730 - (info->io.regspacing - info->io.regsize));
1731 info->io.addr = ioremap(addr, mapsize);
1732 if (info->io.addr == NULL) {
1733 mem_region_cleanup(info, info->io_size);
1734 return -EIO;
1735 }
1736 return 0;
1737 }
1738
1739 /*
1740 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1741 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1742 * Options are:
1743 * rsp=<regspacing>
1744 * rsi=<regsize>
1745 * rsh=<regshift>
1746 * irq=<irq>
1747 * ipmb=<ipmb addr>
1748 */
1749 enum hotmod_op { HM_ADD, HM_REMOVE };
1750 struct hotmod_vals {
1751 const char *name;
1752 const int val;
1753 };
1754
1755 static const struct hotmod_vals hotmod_ops[] = {
1756 { "add", HM_ADD },
1757 { "remove", HM_REMOVE },
1758 { NULL }
1759 };
1760
1761 static const struct hotmod_vals hotmod_si[] = {
1762 { "kcs", SI_KCS },
1763 { "smic", SI_SMIC },
1764 { "bt", SI_BT },
1765 { NULL }
1766 };
1767
1768 static const struct hotmod_vals hotmod_as[] = {
1769 { "mem", IPMI_MEM_ADDR_SPACE },
1770 { "i/o", IPMI_IO_ADDR_SPACE },
1771 { NULL }
1772 };
1773
parse_str(const struct hotmod_vals * v,int * val,char * name,char ** curr)1774 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1775 char **curr)
1776 {
1777 char *s;
1778 int i;
1779
1780 s = strchr(*curr, ',');
1781 if (!s) {
1782 pr_warn(PFX "No hotmod %s given.\n", name);
1783 return -EINVAL;
1784 }
1785 *s = '\0';
1786 s++;
1787 for (i = 0; v[i].name; i++) {
1788 if (strcmp(*curr, v[i].name) == 0) {
1789 *val = v[i].val;
1790 *curr = s;
1791 return 0;
1792 }
1793 }
1794
1795 pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1796 return -EINVAL;
1797 }
1798
check_hotmod_int_op(const char * curr,const char * option,const char * name,int * val)1799 static int check_hotmod_int_op(const char *curr, const char *option,
1800 const char *name, int *val)
1801 {
1802 char *n;
1803
1804 if (strcmp(curr, name) == 0) {
1805 if (!option) {
1806 pr_warn(PFX "No option given for '%s'\n", curr);
1807 return -EINVAL;
1808 }
1809 *val = simple_strtoul(option, &n, 0);
1810 if ((*n != '\0') || (*option == '\0')) {
1811 pr_warn(PFX "Bad option given for '%s'\n", curr);
1812 return -EINVAL;
1813 }
1814 return 1;
1815 }
1816 return 0;
1817 }
1818
smi_info_alloc(void)1819 static struct smi_info *smi_info_alloc(void)
1820 {
1821 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1822
1823 if (info)
1824 spin_lock_init(&info->si_lock);
1825 return info;
1826 }
1827
hotmod_handler(const char * val,const struct kernel_param * kp)1828 static int hotmod_handler(const char *val, const struct kernel_param *kp)
1829 {
1830 char *str = kstrdup(val, GFP_KERNEL);
1831 int rv;
1832 char *next, *curr, *s, *n, *o;
1833 enum hotmod_op op;
1834 enum si_type si_type;
1835 int addr_space;
1836 unsigned long addr;
1837 int regspacing;
1838 int regsize;
1839 int regshift;
1840 int irq;
1841 int ipmb;
1842 int ival;
1843 int len;
1844 struct smi_info *info;
1845
1846 if (!str)
1847 return -ENOMEM;
1848
1849 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1850 len = strlen(str);
1851 ival = len - 1;
1852 while ((ival >= 0) && isspace(str[ival])) {
1853 str[ival] = '\0';
1854 ival--;
1855 }
1856
1857 for (curr = str; curr; curr = next) {
1858 regspacing = 1;
1859 regsize = 1;
1860 regshift = 0;
1861 irq = 0;
1862 ipmb = 0; /* Choose the default if not specified */
1863
1864 next = strchr(curr, ':');
1865 if (next) {
1866 *next = '\0';
1867 next++;
1868 }
1869
1870 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1871 if (rv)
1872 break;
1873 op = ival;
1874
1875 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1876 if (rv)
1877 break;
1878 si_type = ival;
1879
1880 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1881 if (rv)
1882 break;
1883
1884 s = strchr(curr, ',');
1885 if (s) {
1886 *s = '\0';
1887 s++;
1888 }
1889 addr = simple_strtoul(curr, &n, 0);
1890 if ((*n != '\0') || (*curr == '\0')) {
1891 pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1892 break;
1893 }
1894
1895 while (s) {
1896 curr = s;
1897 s = strchr(curr, ',');
1898 if (s) {
1899 *s = '\0';
1900 s++;
1901 }
1902 o = strchr(curr, '=');
1903 if (o) {
1904 *o = '\0';
1905 o++;
1906 }
1907 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
1908 if (rv < 0)
1909 goto out;
1910 else if (rv)
1911 continue;
1912 rv = check_hotmod_int_op(curr, o, "rsi", ®size);
1913 if (rv < 0)
1914 goto out;
1915 else if (rv)
1916 continue;
1917 rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
1918 if (rv < 0)
1919 goto out;
1920 else if (rv)
1921 continue;
1922 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1923 if (rv < 0)
1924 goto out;
1925 else if (rv)
1926 continue;
1927 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1928 if (rv < 0)
1929 goto out;
1930 else if (rv)
1931 continue;
1932
1933 rv = -EINVAL;
1934 pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1935 goto out;
1936 }
1937
1938 if (op == HM_ADD) {
1939 info = smi_info_alloc();
1940 if (!info) {
1941 rv = -ENOMEM;
1942 goto out;
1943 }
1944
1945 info->addr_source = SI_HOTMOD;
1946 info->si_type = si_type;
1947 info->io.addr_data = addr;
1948 info->io.addr_type = addr_space;
1949 if (addr_space == IPMI_MEM_ADDR_SPACE)
1950 info->io_setup = mem_setup;
1951 else
1952 info->io_setup = port_setup;
1953
1954 info->io.addr = NULL;
1955 info->io.regspacing = regspacing;
1956 if (!info->io.regspacing)
1957 info->io.regspacing = DEFAULT_REGSPACING;
1958 info->io.regsize = regsize;
1959 if (!info->io.regsize)
1960 info->io.regsize = DEFAULT_REGSIZE;
1961 info->io.regshift = regshift;
1962 info->irq = irq;
1963 if (info->irq)
1964 info->irq_setup = std_irq_setup;
1965 info->slave_addr = ipmb;
1966
1967 rv = add_smi(info);
1968 if (rv) {
1969 kfree(info);
1970 goto out;
1971 }
1972 mutex_lock(&smi_infos_lock);
1973 rv = try_smi_init(info);
1974 mutex_unlock(&smi_infos_lock);
1975 if (rv) {
1976 cleanup_one_si(info);
1977 goto out;
1978 }
1979 } else {
1980 /* remove */
1981 struct smi_info *e, *tmp_e;
1982
1983 mutex_lock(&smi_infos_lock);
1984 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1985 if (e->io.addr_type != addr_space)
1986 continue;
1987 if (e->si_type != si_type)
1988 continue;
1989 if (e->io.addr_data == addr)
1990 cleanup_one_si(e);
1991 }
1992 mutex_unlock(&smi_infos_lock);
1993 }
1994 }
1995 rv = len;
1996 out:
1997 kfree(str);
1998 return rv;
1999 }
2000
hardcode_find_bmc(void)2001 static int hardcode_find_bmc(void)
2002 {
2003 int ret = -ENODEV;
2004 int i;
2005 struct smi_info *info;
2006
2007 for (i = 0; i < SI_MAX_PARMS; i++) {
2008 if (!ports[i] && !addrs[i])
2009 continue;
2010
2011 info = smi_info_alloc();
2012 if (!info)
2013 return -ENOMEM;
2014
2015 info->addr_source = SI_HARDCODED;
2016 pr_info(PFX "probing via hardcoded address\n");
2017
2018 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2019 info->si_type = SI_KCS;
2020 } else if (strcmp(si_type[i], "smic") == 0) {
2021 info->si_type = SI_SMIC;
2022 } else if (strcmp(si_type[i], "bt") == 0) {
2023 info->si_type = SI_BT;
2024 } else {
2025 pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2026 i, si_type[i]);
2027 kfree(info);
2028 continue;
2029 }
2030
2031 if (ports[i]) {
2032 /* An I/O port */
2033 info->io_setup = port_setup;
2034 info->io.addr_data = ports[i];
2035 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2036 } else if (addrs[i]) {
2037 /* A memory port */
2038 info->io_setup = mem_setup;
2039 info->io.addr_data = addrs[i];
2040 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2041 } else {
2042 pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2043 i);
2044 kfree(info);
2045 continue;
2046 }
2047
2048 info->io.addr = NULL;
2049 info->io.regspacing = regspacings[i];
2050 if (!info->io.regspacing)
2051 info->io.regspacing = DEFAULT_REGSPACING;
2052 info->io.regsize = regsizes[i];
2053 if (!info->io.regsize)
2054 info->io.regsize = DEFAULT_REGSIZE;
2055 info->io.regshift = regshifts[i];
2056 info->irq = irqs[i];
2057 if (info->irq)
2058 info->irq_setup = std_irq_setup;
2059 info->slave_addr = slave_addrs[i];
2060
2061 if (!add_smi(info)) {
2062 mutex_lock(&smi_infos_lock);
2063 if (try_smi_init(info))
2064 cleanup_one_si(info);
2065 mutex_unlock(&smi_infos_lock);
2066 ret = 0;
2067 } else {
2068 kfree(info);
2069 }
2070 }
2071 return ret;
2072 }
2073
2074 #ifdef CONFIG_ACPI
2075
2076 /*
2077 * Once we get an ACPI failure, we don't try any more, because we go
2078 * through the tables sequentially. Once we don't find a table, there
2079 * are no more.
2080 */
2081 static int acpi_failure;
2082
2083 /* For GPE-type interrupts. */
ipmi_acpi_gpe(acpi_handle gpe_device,u32 gpe_number,void * context)2084 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2085 u32 gpe_number, void *context)
2086 {
2087 struct smi_info *smi_info = context;
2088 unsigned long flags;
2089
2090 spin_lock_irqsave(&(smi_info->si_lock), flags);
2091
2092 smi_inc_stat(smi_info, interrupts);
2093
2094 debug_timestamp("ACPI_GPE");
2095
2096 smi_event_handler(smi_info, 0);
2097 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2098
2099 return ACPI_INTERRUPT_HANDLED;
2100 }
2101
acpi_gpe_irq_cleanup(struct smi_info * info)2102 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2103 {
2104 if (!info->irq)
2105 return;
2106
2107 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2108 }
2109
acpi_gpe_irq_setup(struct smi_info * info)2110 static int acpi_gpe_irq_setup(struct smi_info *info)
2111 {
2112 acpi_status status;
2113
2114 if (!info->irq)
2115 return 0;
2116
2117 status = acpi_install_gpe_handler(NULL,
2118 info->irq,
2119 ACPI_GPE_LEVEL_TRIGGERED,
2120 &ipmi_acpi_gpe,
2121 info);
2122 if (status != AE_OK) {
2123 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2124 " running polled\n", DEVICE_NAME, info->irq);
2125 info->irq = 0;
2126 return -EINVAL;
2127 } else {
2128 info->irq_cleanup = acpi_gpe_irq_cleanup;
2129 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2130 return 0;
2131 }
2132 }
2133
2134 /*
2135 * Defined at
2136 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2137 */
2138 struct SPMITable {
2139 s8 Signature[4];
2140 u32 Length;
2141 u8 Revision;
2142 u8 Checksum;
2143 s8 OEMID[6];
2144 s8 OEMTableID[8];
2145 s8 OEMRevision[4];
2146 s8 CreatorID[4];
2147 s8 CreatorRevision[4];
2148 u8 InterfaceType;
2149 u8 IPMIlegacy;
2150 s16 SpecificationRevision;
2151
2152 /*
2153 * Bit 0 - SCI interrupt supported
2154 * Bit 1 - I/O APIC/SAPIC
2155 */
2156 u8 InterruptType;
2157
2158 /*
2159 * If bit 0 of InterruptType is set, then this is the SCI
2160 * interrupt in the GPEx_STS register.
2161 */
2162 u8 GPE;
2163
2164 s16 Reserved;
2165
2166 /*
2167 * If bit 1 of InterruptType is set, then this is the I/O
2168 * APIC/SAPIC interrupt.
2169 */
2170 u32 GlobalSystemInterrupt;
2171
2172 /* The actual register address. */
2173 struct acpi_generic_address addr;
2174
2175 u8 UID[4];
2176
2177 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2178 };
2179
try_init_spmi(struct SPMITable * spmi)2180 static int try_init_spmi(struct SPMITable *spmi)
2181 {
2182 struct smi_info *info;
2183 int rv;
2184
2185 if (spmi->IPMIlegacy != 1) {
2186 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2187 return -ENODEV;
2188 }
2189
2190 info = smi_info_alloc();
2191 if (!info) {
2192 pr_err(PFX "Could not allocate SI data (3)\n");
2193 return -ENOMEM;
2194 }
2195
2196 info->addr_source = SI_SPMI;
2197 pr_info(PFX "probing via SPMI\n");
2198
2199 /* Figure out the interface type. */
2200 switch (spmi->InterfaceType) {
2201 case 1: /* KCS */
2202 info->si_type = SI_KCS;
2203 break;
2204 case 2: /* SMIC */
2205 info->si_type = SI_SMIC;
2206 break;
2207 case 3: /* BT */
2208 info->si_type = SI_BT;
2209 break;
2210 case 4: /* SSIF, just ignore */
2211 kfree(info);
2212 return -EIO;
2213 default:
2214 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2215 spmi->InterfaceType);
2216 kfree(info);
2217 return -EIO;
2218 }
2219
2220 if (spmi->InterruptType & 1) {
2221 /* We've got a GPE interrupt. */
2222 info->irq = spmi->GPE;
2223 info->irq_setup = acpi_gpe_irq_setup;
2224 } else if (spmi->InterruptType & 2) {
2225 /* We've got an APIC/SAPIC interrupt. */
2226 info->irq = spmi->GlobalSystemInterrupt;
2227 info->irq_setup = std_irq_setup;
2228 } else {
2229 /* Use the default interrupt setting. */
2230 info->irq = 0;
2231 info->irq_setup = NULL;
2232 }
2233
2234 if (spmi->addr.bit_width) {
2235 /* A (hopefully) properly formed register bit width. */
2236 info->io.regspacing = spmi->addr.bit_width / 8;
2237 } else {
2238 info->io.regspacing = DEFAULT_REGSPACING;
2239 }
2240 info->io.regsize = info->io.regspacing;
2241 info->io.regshift = spmi->addr.bit_offset;
2242
2243 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2244 info->io_setup = mem_setup;
2245 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2246 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2247 info->io_setup = port_setup;
2248 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2249 } else {
2250 kfree(info);
2251 pr_warn(PFX "Unknown ACPI I/O Address type\n");
2252 return -EIO;
2253 }
2254 info->io.addr_data = spmi->addr.address;
2255
2256 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2257 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2258 info->io.addr_data, info->io.regsize, info->io.regspacing,
2259 info->irq);
2260
2261 rv = add_smi(info);
2262 if (rv)
2263 kfree(info);
2264
2265 return rv;
2266 }
2267
spmi_find_bmc(void)2268 static void spmi_find_bmc(void)
2269 {
2270 acpi_status status;
2271 struct SPMITable *spmi;
2272 int i;
2273
2274 if (acpi_disabled)
2275 return;
2276
2277 if (acpi_failure)
2278 return;
2279
2280 for (i = 0; ; i++) {
2281 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2282 (struct acpi_table_header **)&spmi);
2283 if (status != AE_OK)
2284 return;
2285
2286 try_init_spmi(spmi);
2287 }
2288 }
2289 #endif
2290
2291 #if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
ipmi_get_info_from_resources(struct platform_device * pdev,struct smi_info * info)2292 struct resource *ipmi_get_info_from_resources(struct platform_device *pdev,
2293 struct smi_info *info)
2294 {
2295 struct resource *res, *res_second;
2296
2297 res = platform_get_resource(pdev, IORESOURCE_IO, 0);
2298 if (res) {
2299 info->io_setup = port_setup;
2300 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2301 } else {
2302 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2303 if (res) {
2304 info->io_setup = mem_setup;
2305 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2306 }
2307 }
2308 if (!res) {
2309 dev_err(&pdev->dev, "no I/O or memory address\n");
2310 return NULL;
2311 }
2312 info->io.addr_data = res->start;
2313
2314 info->io.regspacing = DEFAULT_REGSPACING;
2315 res_second = platform_get_resource(pdev,
2316 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2317 IORESOURCE_IO : IORESOURCE_MEM,
2318 1);
2319 if (res_second) {
2320 if (res_second->start > info->io.addr_data)
2321 info->io.regspacing =
2322 res_second->start - info->io.addr_data;
2323 }
2324 info->io.regsize = DEFAULT_REGSIZE;
2325 info->io.regshift = 0;
2326
2327 return res;
2328 }
2329
2330 #endif
2331
2332 #ifdef CONFIG_DMI
dmi_ipmi_probe(struct platform_device * pdev)2333 static int dmi_ipmi_probe(struct platform_device *pdev)
2334 {
2335 struct smi_info *info;
2336 u8 type, slave_addr;
2337 int rv;
2338
2339 if (!si_trydmi)
2340 return -ENODEV;
2341
2342 rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
2343 if (rv)
2344 return -ENODEV;
2345
2346 info = smi_info_alloc();
2347 if (!info) {
2348 pr_err(PFX "Could not allocate SI data\n");
2349 return -ENOMEM;
2350 }
2351
2352 info->addr_source = SI_SMBIOS;
2353 pr_info(PFX "probing via SMBIOS\n");
2354
2355 switch (type) {
2356 case IPMI_DMI_TYPE_KCS:
2357 info->si_type = SI_KCS;
2358 break;
2359 case IPMI_DMI_TYPE_SMIC:
2360 info->si_type = SI_SMIC;
2361 break;
2362 case IPMI_DMI_TYPE_BT:
2363 info->si_type = SI_BT;
2364 break;
2365 default:
2366 kfree(info);
2367 return -EINVAL;
2368 }
2369
2370 if (!ipmi_get_info_from_resources(pdev, info)) {
2371 rv = -EINVAL;
2372 goto err_free;
2373 }
2374
2375 rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
2376 if (rv) {
2377 dev_warn(&pdev->dev, "device has no slave-addr property");
2378 info->slave_addr = 0x20;
2379 } else {
2380 info->slave_addr = slave_addr;
2381 }
2382
2383 info->irq = platform_get_irq(pdev, 0);
2384 if (info->irq > 0)
2385 info->irq_setup = std_irq_setup;
2386 else
2387 info->irq = 0;
2388
2389 info->dev = &pdev->dev;
2390
2391 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2392 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2393 info->io.addr_data, info->io.regsize, info->io.regspacing,
2394 info->irq);
2395
2396 if (add_smi(info))
2397 kfree(info);
2398
2399 return 0;
2400
2401 err_free:
2402 kfree(info);
2403 return rv;
2404 }
2405 #else
dmi_ipmi_probe(struct platform_device * pdev)2406 static int dmi_ipmi_probe(struct platform_device *pdev)
2407 {
2408 return -ENODEV;
2409 }
2410 #endif /* CONFIG_DMI */
2411
2412 #ifdef CONFIG_PCI
2413
2414 #define PCI_ERMC_CLASSCODE 0x0C0700
2415 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2416 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2417 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2418 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2419 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2420
2421 #define PCI_HP_VENDOR_ID 0x103C
2422 #define PCI_MMC_DEVICE_ID 0x121A
2423 #define PCI_MMC_ADDR_CW 0x10
2424
ipmi_pci_cleanup(struct smi_info * info)2425 static void ipmi_pci_cleanup(struct smi_info *info)
2426 {
2427 struct pci_dev *pdev = info->addr_source_data;
2428
2429 pci_disable_device(pdev);
2430 }
2431
ipmi_pci_probe_regspacing(struct smi_info * info)2432 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2433 {
2434 if (info->si_type == SI_KCS) {
2435 unsigned char status;
2436 int regspacing;
2437
2438 info->io.regsize = DEFAULT_REGSIZE;
2439 info->io.regshift = 0;
2440 info->io_size = 2;
2441 info->handlers = &kcs_smi_handlers;
2442
2443 /* detect 1, 4, 16byte spacing */
2444 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2445 info->io.regspacing = regspacing;
2446 if (info->io_setup(info)) {
2447 dev_err(info->dev,
2448 "Could not setup I/O space\n");
2449 return DEFAULT_REGSPACING;
2450 }
2451 /* write invalid cmd */
2452 info->io.outputb(&info->io, 1, 0x10);
2453 /* read status back */
2454 status = info->io.inputb(&info->io, 1);
2455 info->io_cleanup(info);
2456 if (status)
2457 return regspacing;
2458 regspacing *= 4;
2459 }
2460 }
2461 return DEFAULT_REGSPACING;
2462 }
2463
2464 static struct pci_device_id ipmi_pci_blacklist[] = {
2465 /*
2466 * This is a "Virtual IPMI device", whatever that is. It appears
2467 * as a KCS device by the class, but it is not one.
2468 */
2469 { PCI_VDEVICE(REALTEK, 0x816c) },
2470 { 0, }
2471 };
2472
ipmi_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2473 static int ipmi_pci_probe(struct pci_dev *pdev,
2474 const struct pci_device_id *ent)
2475 {
2476 int rv;
2477 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2478 struct smi_info *info;
2479
2480 if (pci_match_id(ipmi_pci_blacklist, pdev))
2481 return -ENODEV;
2482
2483 info = smi_info_alloc();
2484 if (!info)
2485 return -ENOMEM;
2486
2487 info->addr_source = SI_PCI;
2488 dev_info(&pdev->dev, "probing via PCI");
2489
2490 switch (class_type) {
2491 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2492 info->si_type = SI_SMIC;
2493 break;
2494
2495 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2496 info->si_type = SI_KCS;
2497 break;
2498
2499 case PCI_ERMC_CLASSCODE_TYPE_BT:
2500 info->si_type = SI_BT;
2501 break;
2502
2503 default:
2504 kfree(info);
2505 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2506 return -ENOMEM;
2507 }
2508
2509 rv = pci_enable_device(pdev);
2510 if (rv) {
2511 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2512 kfree(info);
2513 return rv;
2514 }
2515
2516 info->addr_source_cleanup = ipmi_pci_cleanup;
2517 info->addr_source_data = pdev;
2518
2519 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2520 info->io_setup = port_setup;
2521 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2522 } else {
2523 info->io_setup = mem_setup;
2524 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2525 }
2526 info->io.addr_data = pci_resource_start(pdev, 0);
2527
2528 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2529 info->io.regsize = DEFAULT_REGSIZE;
2530 info->io.regshift = 0;
2531
2532 info->irq = pdev->irq;
2533 if (info->irq)
2534 info->irq_setup = std_irq_setup;
2535
2536 info->dev = &pdev->dev;
2537 pci_set_drvdata(pdev, info);
2538
2539 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2540 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2541 info->irq);
2542
2543 rv = add_smi(info);
2544 if (rv) {
2545 kfree(info);
2546 pci_disable_device(pdev);
2547 }
2548
2549 return rv;
2550 }
2551
ipmi_pci_remove(struct pci_dev * pdev)2552 static void ipmi_pci_remove(struct pci_dev *pdev)
2553 {
2554 struct smi_info *info = pci_get_drvdata(pdev);
2555 cleanup_one_si(info);
2556 }
2557
2558 static const struct pci_device_id ipmi_pci_devices[] = {
2559 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2560 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2561 { 0, }
2562 };
2563 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2564
2565 static struct pci_driver ipmi_pci_driver = {
2566 .name = DEVICE_NAME,
2567 .id_table = ipmi_pci_devices,
2568 .probe = ipmi_pci_probe,
2569 .remove = ipmi_pci_remove,
2570 };
2571 #endif /* CONFIG_PCI */
2572
2573 #ifdef CONFIG_OF
2574 static const struct of_device_id of_ipmi_match[] = {
2575 { .type = "ipmi", .compatible = "ipmi-kcs",
2576 .data = (void *)(unsigned long) SI_KCS },
2577 { .type = "ipmi", .compatible = "ipmi-smic",
2578 .data = (void *)(unsigned long) SI_SMIC },
2579 { .type = "ipmi", .compatible = "ipmi-bt",
2580 .data = (void *)(unsigned long) SI_BT },
2581 {},
2582 };
2583 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2584
of_ipmi_probe(struct platform_device * dev)2585 static int of_ipmi_probe(struct platform_device *dev)
2586 {
2587 const struct of_device_id *match;
2588 struct smi_info *info;
2589 struct resource resource;
2590 const __be32 *regsize, *regspacing, *regshift;
2591 struct device_node *np = dev->dev.of_node;
2592 int ret;
2593 int proplen;
2594
2595 dev_info(&dev->dev, "probing via device tree\n");
2596
2597 match = of_match_device(of_ipmi_match, &dev->dev);
2598 if (!match)
2599 return -ENODEV;
2600
2601 if (!of_device_is_available(np))
2602 return -EINVAL;
2603
2604 ret = of_address_to_resource(np, 0, &resource);
2605 if (ret) {
2606 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2607 return ret;
2608 }
2609
2610 regsize = of_get_property(np, "reg-size", &proplen);
2611 if (regsize && proplen != 4) {
2612 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2613 return -EINVAL;
2614 }
2615
2616 regspacing = of_get_property(np, "reg-spacing", &proplen);
2617 if (regspacing && proplen != 4) {
2618 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2619 return -EINVAL;
2620 }
2621
2622 regshift = of_get_property(np, "reg-shift", &proplen);
2623 if (regshift && proplen != 4) {
2624 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2625 return -EINVAL;
2626 }
2627
2628 info = smi_info_alloc();
2629
2630 if (!info) {
2631 dev_err(&dev->dev,
2632 "could not allocate memory for OF probe\n");
2633 return -ENOMEM;
2634 }
2635
2636 info->si_type = (enum si_type) match->data;
2637 info->addr_source = SI_DEVICETREE;
2638 info->irq_setup = std_irq_setup;
2639
2640 if (resource.flags & IORESOURCE_IO) {
2641 info->io_setup = port_setup;
2642 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2643 } else {
2644 info->io_setup = mem_setup;
2645 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2646 }
2647
2648 info->io.addr_data = resource.start;
2649
2650 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2651 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2652 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2653
2654 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2655 info->dev = &dev->dev;
2656
2657 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2658 info->io.addr_data, info->io.regsize, info->io.regspacing,
2659 info->irq);
2660
2661 dev_set_drvdata(&dev->dev, info);
2662
2663 ret = add_smi(info);
2664 if (ret) {
2665 kfree(info);
2666 return ret;
2667 }
2668 return 0;
2669 }
2670 #else
2671 #define of_ipmi_match NULL
of_ipmi_probe(struct platform_device * dev)2672 static int of_ipmi_probe(struct platform_device *dev)
2673 {
2674 return -ENODEV;
2675 }
2676 #endif
2677
2678 #ifdef CONFIG_ACPI
find_slave_address(struct smi_info * info,int slave_addr)2679 static int find_slave_address(struct smi_info *info, int slave_addr)
2680 {
2681 #ifdef CONFIG_IPMI_DMI_DECODE
2682 if (!slave_addr) {
2683 int type = -1;
2684 u32 flags = IORESOURCE_IO;
2685
2686 switch (info->si_type) {
2687 case SI_KCS:
2688 type = IPMI_DMI_TYPE_KCS;
2689 break;
2690 case SI_BT:
2691 type = IPMI_DMI_TYPE_BT;
2692 break;
2693 case SI_SMIC:
2694 type = IPMI_DMI_TYPE_SMIC;
2695 break;
2696 }
2697
2698 if (info->io.addr_type == IPMI_MEM_ADDR_SPACE)
2699 flags = IORESOURCE_MEM;
2700
2701 slave_addr = ipmi_dmi_get_slave_addr(type, flags,
2702 info->io.addr_data);
2703 }
2704 #endif
2705
2706 return slave_addr;
2707 }
2708
acpi_ipmi_probe(struct platform_device * dev)2709 static int acpi_ipmi_probe(struct platform_device *dev)
2710 {
2711 struct smi_info *info;
2712 acpi_handle handle;
2713 acpi_status status;
2714 unsigned long long tmp;
2715 struct resource *res;
2716 int rv = -EINVAL;
2717
2718 if (!si_tryacpi)
2719 return -ENODEV;
2720
2721 handle = ACPI_HANDLE(&dev->dev);
2722 if (!handle)
2723 return -ENODEV;
2724
2725 info = smi_info_alloc();
2726 if (!info)
2727 return -ENOMEM;
2728
2729 info->addr_source = SI_ACPI;
2730 dev_info(&dev->dev, PFX "probing via ACPI\n");
2731
2732 info->addr_info.acpi_info.acpi_handle = handle;
2733
2734 /* _IFT tells us the interface type: KCS, BT, etc */
2735 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2736 if (ACPI_FAILURE(status)) {
2737 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2738 goto err_free;
2739 }
2740
2741 switch (tmp) {
2742 case 1:
2743 info->si_type = SI_KCS;
2744 break;
2745 case 2:
2746 info->si_type = SI_SMIC;
2747 break;
2748 case 3:
2749 info->si_type = SI_BT;
2750 break;
2751 case 4: /* SSIF, just ignore */
2752 rv = -ENODEV;
2753 goto err_free;
2754 default:
2755 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2756 goto err_free;
2757 }
2758
2759 res = ipmi_get_info_from_resources(dev, info);
2760 if (!res) {
2761 rv = -EINVAL;
2762 goto err_free;
2763 }
2764
2765 /* If _GPE exists, use it; otherwise use standard interrupts */
2766 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2767 if (ACPI_SUCCESS(status)) {
2768 info->irq = tmp;
2769 info->irq_setup = acpi_gpe_irq_setup;
2770 } else {
2771 int irq = platform_get_irq(dev, 0);
2772
2773 if (irq > 0) {
2774 info->irq = irq;
2775 info->irq_setup = std_irq_setup;
2776 }
2777 }
2778
2779 info->slave_addr = find_slave_address(info, info->slave_addr);
2780
2781 info->dev = &dev->dev;
2782 platform_set_drvdata(dev, info);
2783
2784 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2785 res, info->io.regsize, info->io.regspacing,
2786 info->irq);
2787
2788 rv = add_smi(info);
2789 if (rv)
2790 kfree(info);
2791
2792 return rv;
2793
2794 err_free:
2795 kfree(info);
2796 return rv;
2797 }
2798
2799 static const struct acpi_device_id acpi_ipmi_match[] = {
2800 { "IPI0001", 0 },
2801 { },
2802 };
2803 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2804 #else
acpi_ipmi_probe(struct platform_device * dev)2805 static int acpi_ipmi_probe(struct platform_device *dev)
2806 {
2807 return -ENODEV;
2808 }
2809 #endif
2810
ipmi_probe(struct platform_device * dev)2811 static int ipmi_probe(struct platform_device *dev)
2812 {
2813 if (of_ipmi_probe(dev) == 0)
2814 return 0;
2815
2816 if (acpi_ipmi_probe(dev) == 0)
2817 return 0;
2818
2819 return dmi_ipmi_probe(dev);
2820 }
2821
ipmi_remove(struct platform_device * dev)2822 static int ipmi_remove(struct platform_device *dev)
2823 {
2824 struct smi_info *info = dev_get_drvdata(&dev->dev);
2825
2826 cleanup_one_si(info);
2827 return 0;
2828 }
2829
2830 static struct platform_driver ipmi_driver = {
2831 .driver = {
2832 .name = DEVICE_NAME,
2833 .of_match_table = of_ipmi_match,
2834 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2835 },
2836 .probe = ipmi_probe,
2837 .remove = ipmi_remove,
2838 };
2839
2840 #ifdef CONFIG_PARISC
ipmi_parisc_probe(struct parisc_device * dev)2841 static int __init ipmi_parisc_probe(struct parisc_device *dev)
2842 {
2843 struct smi_info *info;
2844 int rv;
2845
2846 info = smi_info_alloc();
2847
2848 if (!info) {
2849 dev_err(&dev->dev,
2850 "could not allocate memory for PARISC probe\n");
2851 return -ENOMEM;
2852 }
2853
2854 info->si_type = SI_KCS;
2855 info->addr_source = SI_DEVICETREE;
2856 info->io_setup = mem_setup;
2857 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2858 info->io.addr_data = dev->hpa.start;
2859 info->io.regsize = 1;
2860 info->io.regspacing = 1;
2861 info->io.regshift = 0;
2862 info->irq = 0; /* no interrupt */
2863 info->irq_setup = NULL;
2864 info->dev = &dev->dev;
2865
2866 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2867
2868 dev_set_drvdata(&dev->dev, info);
2869
2870 rv = add_smi(info);
2871 if (rv) {
2872 kfree(info);
2873 return rv;
2874 }
2875
2876 return 0;
2877 }
2878
ipmi_parisc_remove(struct parisc_device * dev)2879 static int __exit ipmi_parisc_remove(struct parisc_device *dev)
2880 {
2881 cleanup_one_si(dev_get_drvdata(&dev->dev));
2882 return 0;
2883 }
2884
2885 static const struct parisc_device_id ipmi_parisc_tbl[] __initconst = {
2886 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2887 { 0, }
2888 };
2889
2890 MODULE_DEVICE_TABLE(parisc, ipmi_parisc_tbl);
2891
2892 static struct parisc_driver ipmi_parisc_driver __refdata = {
2893 .name = "ipmi",
2894 .id_table = ipmi_parisc_tbl,
2895 .probe = ipmi_parisc_probe,
2896 .remove = __exit_p(ipmi_parisc_remove),
2897 };
2898 #endif /* CONFIG_PARISC */
2899
wait_for_msg_done(struct smi_info * smi_info)2900 static int wait_for_msg_done(struct smi_info *smi_info)
2901 {
2902 enum si_sm_result smi_result;
2903
2904 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2905 for (;;) {
2906 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2907 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2908 schedule_timeout_uninterruptible(1);
2909 smi_result = smi_info->handlers->event(
2910 smi_info->si_sm, jiffies_to_usecs(1));
2911 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2912 smi_result = smi_info->handlers->event(
2913 smi_info->si_sm, 0);
2914 } else
2915 break;
2916 }
2917 if (smi_result == SI_SM_HOSED)
2918 /*
2919 * We couldn't get the state machine to run, so whatever's at
2920 * the port is probably not an IPMI SMI interface.
2921 */
2922 return -ENODEV;
2923
2924 return 0;
2925 }
2926
try_get_dev_id(struct smi_info * smi_info)2927 static int try_get_dev_id(struct smi_info *smi_info)
2928 {
2929 unsigned char msg[2];
2930 unsigned char *resp;
2931 unsigned long resp_len;
2932 int rv = 0;
2933
2934 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2935 if (!resp)
2936 return -ENOMEM;
2937
2938 /*
2939 * Do a Get Device ID command, since it comes back with some
2940 * useful info.
2941 */
2942 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2943 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2944 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2945
2946 rv = wait_for_msg_done(smi_info);
2947 if (rv)
2948 goto out;
2949
2950 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2951 resp, IPMI_MAX_MSG_LENGTH);
2952
2953 /* Check and record info from the get device id, in case we need it. */
2954 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2955
2956 out:
2957 kfree(resp);
2958 return rv;
2959 }
2960
get_global_enables(struct smi_info * smi_info,u8 * enables)2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2962 {
2963 unsigned char msg[3];
2964 unsigned char *resp;
2965 unsigned long resp_len;
2966 int rv;
2967
2968 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2969 if (!resp)
2970 return -ENOMEM;
2971
2972 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2973 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2974 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2975
2976 rv = wait_for_msg_done(smi_info);
2977 if (rv) {
2978 dev_warn(smi_info->dev,
2979 "Error getting response from get global enables command: %d\n",
2980 rv);
2981 goto out;
2982 }
2983
2984 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2985 resp, IPMI_MAX_MSG_LENGTH);
2986
2987 if (resp_len < 4 ||
2988 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2989 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2990 resp[2] != 0) {
2991 dev_warn(smi_info->dev,
2992 "Invalid return from get global enables command: %ld %x %x %x\n",
2993 resp_len, resp[0], resp[1], resp[2]);
2994 rv = -EINVAL;
2995 goto out;
2996 } else {
2997 *enables = resp[3];
2998 }
2999
3000 out:
3001 kfree(resp);
3002 return rv;
3003 }
3004
3005 /*
3006 * Returns 1 if it gets an error from the command.
3007 */
set_global_enables(struct smi_info * smi_info,u8 enables)3008 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3009 {
3010 unsigned char msg[3];
3011 unsigned char *resp;
3012 unsigned long resp_len;
3013 int rv;
3014
3015 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3016 if (!resp)
3017 return -ENOMEM;
3018
3019 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3020 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3021 msg[2] = enables;
3022 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3023
3024 rv = wait_for_msg_done(smi_info);
3025 if (rv) {
3026 dev_warn(smi_info->dev,
3027 "Error getting response from set global enables command: %d\n",
3028 rv);
3029 goto out;
3030 }
3031
3032 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3033 resp, IPMI_MAX_MSG_LENGTH);
3034
3035 if (resp_len < 3 ||
3036 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3037 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3038 dev_warn(smi_info->dev,
3039 "Invalid return from set global enables command: %ld %x %x\n",
3040 resp_len, resp[0], resp[1]);
3041 rv = -EINVAL;
3042 goto out;
3043 }
3044
3045 if (resp[2] != 0)
3046 rv = 1;
3047
3048 out:
3049 kfree(resp);
3050 return rv;
3051 }
3052
3053 /*
3054 * Some BMCs do not support clearing the receive irq bit in the global
3055 * enables (even if they don't support interrupts on the BMC). Check
3056 * for this and handle it properly.
3057 */
check_clr_rcv_irq(struct smi_info * smi_info)3058 static void check_clr_rcv_irq(struct smi_info *smi_info)
3059 {
3060 u8 enables = 0;
3061 int rv;
3062
3063 rv = get_global_enables(smi_info, &enables);
3064 if (!rv) {
3065 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3066 /* Already clear, should work ok. */
3067 return;
3068
3069 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3070 rv = set_global_enables(smi_info, enables);
3071 }
3072
3073 if (rv < 0) {
3074 dev_err(smi_info->dev,
3075 "Cannot check clearing the rcv irq: %d\n", rv);
3076 return;
3077 }
3078
3079 if (rv) {
3080 /*
3081 * An error when setting the event buffer bit means
3082 * clearing the bit is not supported.
3083 */
3084 dev_warn(smi_info->dev,
3085 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 smi_info->cannot_disable_irq = true;
3087 }
3088 }
3089
3090 /*
3091 * Some BMCs do not support setting the interrupt bits in the global
3092 * enables even if they support interrupts. Clearly bad, but we can
3093 * compensate.
3094 */
check_set_rcv_irq(struct smi_info * smi_info)3095 static void check_set_rcv_irq(struct smi_info *smi_info)
3096 {
3097 u8 enables = 0;
3098 int rv;
3099
3100 if (!smi_info->irq)
3101 return;
3102
3103 rv = get_global_enables(smi_info, &enables);
3104 if (!rv) {
3105 enables |= IPMI_BMC_RCV_MSG_INTR;
3106 rv = set_global_enables(smi_info, enables);
3107 }
3108
3109 if (rv < 0) {
3110 dev_err(smi_info->dev,
3111 "Cannot check setting the rcv irq: %d\n", rv);
3112 return;
3113 }
3114
3115 if (rv) {
3116 /*
3117 * An error when setting the event buffer bit means
3118 * setting the bit is not supported.
3119 */
3120 dev_warn(smi_info->dev,
3121 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122 smi_info->cannot_disable_irq = true;
3123 smi_info->irq_enable_broken = true;
3124 }
3125 }
3126
try_enable_event_buffer(struct smi_info * smi_info)3127 static int try_enable_event_buffer(struct smi_info *smi_info)
3128 {
3129 unsigned char msg[3];
3130 unsigned char *resp;
3131 unsigned long resp_len;
3132 int rv = 0;
3133
3134 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3135 if (!resp)
3136 return -ENOMEM;
3137
3138 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3140 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3141
3142 rv = wait_for_msg_done(smi_info);
3143 if (rv) {
3144 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3145 goto out;
3146 }
3147
3148 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3149 resp, IPMI_MAX_MSG_LENGTH);
3150
3151 if (resp_len < 4 ||
3152 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3153 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3154 resp[2] != 0) {
3155 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3156 rv = -EINVAL;
3157 goto out;
3158 }
3159
3160 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3161 /* buffer is already enabled, nothing to do. */
3162 smi_info->supports_event_msg_buff = true;
3163 goto out;
3164 }
3165
3166 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3167 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3168 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3169 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3170
3171 rv = wait_for_msg_done(smi_info);
3172 if (rv) {
3173 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3174 goto out;
3175 }
3176
3177 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3178 resp, IPMI_MAX_MSG_LENGTH);
3179
3180 if (resp_len < 3 ||
3181 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3182 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3183 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3184 rv = -EINVAL;
3185 goto out;
3186 }
3187
3188 if (resp[2] != 0)
3189 /*
3190 * An error when setting the event buffer bit means
3191 * that the event buffer is not supported.
3192 */
3193 rv = -ENOENT;
3194 else
3195 smi_info->supports_event_msg_buff = true;
3196
3197 out:
3198 kfree(resp);
3199 return rv;
3200 }
3201
smi_type_proc_show(struct seq_file * m,void * v)3202 static int smi_type_proc_show(struct seq_file *m, void *v)
3203 {
3204 struct smi_info *smi = m->private;
3205
3206 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3207
3208 return 0;
3209 }
3210
smi_type_proc_open(struct inode * inode,struct file * file)3211 static int smi_type_proc_open(struct inode *inode, struct file *file)
3212 {
3213 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3214 }
3215
3216 static const struct file_operations smi_type_proc_ops = {
3217 .open = smi_type_proc_open,
3218 .read = seq_read,
3219 .llseek = seq_lseek,
3220 .release = single_release,
3221 };
3222
smi_si_stats_proc_show(struct seq_file * m,void * v)3223 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3224 {
3225 struct smi_info *smi = m->private;
3226
3227 seq_printf(m, "interrupts_enabled: %d\n",
3228 smi->irq && !smi->interrupt_disabled);
3229 seq_printf(m, "short_timeouts: %u\n",
3230 smi_get_stat(smi, short_timeouts));
3231 seq_printf(m, "long_timeouts: %u\n",
3232 smi_get_stat(smi, long_timeouts));
3233 seq_printf(m, "idles: %u\n",
3234 smi_get_stat(smi, idles));
3235 seq_printf(m, "interrupts: %u\n",
3236 smi_get_stat(smi, interrupts));
3237 seq_printf(m, "attentions: %u\n",
3238 smi_get_stat(smi, attentions));
3239 seq_printf(m, "flag_fetches: %u\n",
3240 smi_get_stat(smi, flag_fetches));
3241 seq_printf(m, "hosed_count: %u\n",
3242 smi_get_stat(smi, hosed_count));
3243 seq_printf(m, "complete_transactions: %u\n",
3244 smi_get_stat(smi, complete_transactions));
3245 seq_printf(m, "events: %u\n",
3246 smi_get_stat(smi, events));
3247 seq_printf(m, "watchdog_pretimeouts: %u\n",
3248 smi_get_stat(smi, watchdog_pretimeouts));
3249 seq_printf(m, "incoming_messages: %u\n",
3250 smi_get_stat(smi, incoming_messages));
3251 return 0;
3252 }
3253
smi_si_stats_proc_open(struct inode * inode,struct file * file)3254 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3255 {
3256 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3257 }
3258
3259 static const struct file_operations smi_si_stats_proc_ops = {
3260 .open = smi_si_stats_proc_open,
3261 .read = seq_read,
3262 .llseek = seq_lseek,
3263 .release = single_release,
3264 };
3265
smi_params_proc_show(struct seq_file * m,void * v)3266 static int smi_params_proc_show(struct seq_file *m, void *v)
3267 {
3268 struct smi_info *smi = m->private;
3269
3270 seq_printf(m,
3271 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3272 si_to_str[smi->si_type],
3273 addr_space_to_str[smi->io.addr_type],
3274 smi->io.addr_data,
3275 smi->io.regspacing,
3276 smi->io.regsize,
3277 smi->io.regshift,
3278 smi->irq,
3279 smi->slave_addr);
3280
3281 return 0;
3282 }
3283
smi_params_proc_open(struct inode * inode,struct file * file)3284 static int smi_params_proc_open(struct inode *inode, struct file *file)
3285 {
3286 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3287 }
3288
3289 static const struct file_operations smi_params_proc_ops = {
3290 .open = smi_params_proc_open,
3291 .read = seq_read,
3292 .llseek = seq_lseek,
3293 .release = single_release,
3294 };
3295
3296 /*
3297 * oem_data_avail_to_receive_msg_avail
3298 * @info - smi_info structure with msg_flags set
3299 *
3300 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3301 * Returns 1 indicating need to re-run handle_flags().
3302 */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)3303 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3304 {
3305 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3306 RECEIVE_MSG_AVAIL);
3307 return 1;
3308 }
3309
3310 /*
3311 * setup_dell_poweredge_oem_data_handler
3312 * @info - smi_info.device_id must be populated
3313 *
3314 * Systems that match, but have firmware version < 1.40 may assert
3315 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3316 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3317 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3318 * as RECEIVE_MSG_AVAIL instead.
3319 *
3320 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3321 * assert the OEM[012] bits, and if it did, the driver would have to
3322 * change to handle that properly, we don't actually check for the
3323 * firmware version.
3324 * Device ID = 0x20 BMC on PowerEdge 8G servers
3325 * Device Revision = 0x80
3326 * Firmware Revision1 = 0x01 BMC version 1.40
3327 * Firmware Revision2 = 0x40 BCD encoded
3328 * IPMI Version = 0x51 IPMI 1.5
3329 * Manufacturer ID = A2 02 00 Dell IANA
3330 *
3331 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3332 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3333 *
3334 */
3335 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3336 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3337 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3338 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)3339 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3340 {
3341 struct ipmi_device_id *id = &smi_info->device_id;
3342 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3343 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3344 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3345 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3346 smi_info->oem_data_avail_handler =
3347 oem_data_avail_to_receive_msg_avail;
3348 } else if (ipmi_version_major(id) < 1 ||
3349 (ipmi_version_major(id) == 1 &&
3350 ipmi_version_minor(id) < 5)) {
3351 smi_info->oem_data_avail_handler =
3352 oem_data_avail_to_receive_msg_avail;
3353 }
3354 }
3355 }
3356
3357 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)3358 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3359 {
3360 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3361
3362 /* Make it a response */
3363 msg->rsp[0] = msg->data[0] | 4;
3364 msg->rsp[1] = msg->data[1];
3365 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3366 msg->rsp_size = 3;
3367 smi_info->curr_msg = NULL;
3368 deliver_recv_msg(smi_info, msg);
3369 }
3370
3371 /*
3372 * dell_poweredge_bt_xaction_handler
3373 * @info - smi_info.device_id must be populated
3374 *
3375 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3376 * not respond to a Get SDR command if the length of the data
3377 * requested is exactly 0x3A, which leads to command timeouts and no
3378 * data returned. This intercepts such commands, and causes userspace
3379 * callers to try again with a different-sized buffer, which succeeds.
3380 */
3381
3382 #define STORAGE_NETFN 0x0A
3383 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)3384 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3385 unsigned long unused,
3386 void *in)
3387 {
3388 struct smi_info *smi_info = in;
3389 unsigned char *data = smi_info->curr_msg->data;
3390 unsigned int size = smi_info->curr_msg->data_size;
3391 if (size >= 8 &&
3392 (data[0]>>2) == STORAGE_NETFN &&
3393 data[1] == STORAGE_CMD_GET_SDR &&
3394 data[7] == 0x3A) {
3395 return_hosed_msg_badsize(smi_info);
3396 return NOTIFY_STOP;
3397 }
3398 return NOTIFY_DONE;
3399 }
3400
3401 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3402 .notifier_call = dell_poweredge_bt_xaction_handler,
3403 };
3404
3405 /*
3406 * setup_dell_poweredge_bt_xaction_handler
3407 * @info - smi_info.device_id must be filled in already
3408 *
3409 * Fills in smi_info.device_id.start_transaction_pre_hook
3410 * when we know what function to use there.
3411 */
3412 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)3413 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3414 {
3415 struct ipmi_device_id *id = &smi_info->device_id;
3416 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3417 smi_info->si_type == SI_BT)
3418 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3419 }
3420
3421 /*
3422 * setup_oem_data_handler
3423 * @info - smi_info.device_id must be filled in already
3424 *
3425 * Fills in smi_info.device_id.oem_data_available_handler
3426 * when we know what function to use there.
3427 */
3428
setup_oem_data_handler(struct smi_info * smi_info)3429 static void setup_oem_data_handler(struct smi_info *smi_info)
3430 {
3431 setup_dell_poweredge_oem_data_handler(smi_info);
3432 }
3433
setup_xaction_handlers(struct smi_info * smi_info)3434 static void setup_xaction_handlers(struct smi_info *smi_info)
3435 {
3436 setup_dell_poweredge_bt_xaction_handler(smi_info);
3437 }
3438
check_for_broken_irqs(struct smi_info * smi_info)3439 static void check_for_broken_irqs(struct smi_info *smi_info)
3440 {
3441 check_clr_rcv_irq(smi_info);
3442 check_set_rcv_irq(smi_info);
3443 }
3444
stop_timer_and_thread(struct smi_info * smi_info)3445 static inline void stop_timer_and_thread(struct smi_info *smi_info)
3446 {
3447 if (smi_info->thread != NULL)
3448 kthread_stop(smi_info->thread);
3449
3450 smi_info->timer_can_start = false;
3451 if (smi_info->timer_running)
3452 del_timer_sync(&smi_info->si_timer);
3453 }
3454
find_dup_si(struct smi_info * info)3455 static struct smi_info *find_dup_si(struct smi_info *info)
3456 {
3457 struct smi_info *e;
3458
3459 list_for_each_entry(e, &smi_infos, link) {
3460 if (e->io.addr_type != info->io.addr_type)
3461 continue;
3462 if (e->io.addr_data == info->io.addr_data) {
3463 /*
3464 * This is a cheap hack, ACPI doesn't have a defined
3465 * slave address but SMBIOS does. Pick it up from
3466 * any source that has it available.
3467 */
3468 if (info->slave_addr && !e->slave_addr)
3469 e->slave_addr = info->slave_addr;
3470 return e;
3471 }
3472 }
3473
3474 return NULL;
3475 }
3476
add_smi(struct smi_info * new_smi)3477 static int add_smi(struct smi_info *new_smi)
3478 {
3479 int rv = 0;
3480 struct smi_info *dup;
3481
3482 mutex_lock(&smi_infos_lock);
3483 dup = find_dup_si(new_smi);
3484 if (dup) {
3485 if (new_smi->addr_source == SI_ACPI &&
3486 dup->addr_source == SI_SMBIOS) {
3487 /* We prefer ACPI over SMBIOS. */
3488 dev_info(dup->dev,
3489 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
3490 si_to_str[new_smi->si_type]);
3491 cleanup_one_si(dup);
3492 } else {
3493 dev_info(new_smi->dev,
3494 "%s-specified %s state machine: duplicate\n",
3495 ipmi_addr_src_to_str(new_smi->addr_source),
3496 si_to_str[new_smi->si_type]);
3497 rv = -EBUSY;
3498 goto out_err;
3499 }
3500 }
3501
3502 pr_info(PFX "Adding %s-specified %s state machine\n",
3503 ipmi_addr_src_to_str(new_smi->addr_source),
3504 si_to_str[new_smi->si_type]);
3505
3506 /* So we know not to free it unless we have allocated one. */
3507 new_smi->intf = NULL;
3508 new_smi->si_sm = NULL;
3509 new_smi->handlers = NULL;
3510
3511 list_add_tail(&new_smi->link, &smi_infos);
3512
3513 out_err:
3514 mutex_unlock(&smi_infos_lock);
3515 return rv;
3516 }
3517
3518 /*
3519 * Try to start up an interface. Must be called with smi_infos_lock
3520 * held, primarily to keep smi_num consistent, we only one to do these
3521 * one at a time.
3522 */
try_smi_init(struct smi_info * new_smi)3523 static int try_smi_init(struct smi_info *new_smi)
3524 {
3525 int rv = 0;
3526 int i;
3527 char *init_name = NULL;
3528
3529 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3530 ipmi_addr_src_to_str(new_smi->addr_source),
3531 si_to_str[new_smi->si_type],
3532 addr_space_to_str[new_smi->io.addr_type],
3533 new_smi->io.addr_data,
3534 new_smi->slave_addr, new_smi->irq);
3535
3536 switch (new_smi->si_type) {
3537 case SI_KCS:
3538 new_smi->handlers = &kcs_smi_handlers;
3539 break;
3540
3541 case SI_SMIC:
3542 new_smi->handlers = &smic_smi_handlers;
3543 break;
3544
3545 case SI_BT:
3546 new_smi->handlers = &bt_smi_handlers;
3547 break;
3548
3549 default:
3550 /* No support for anything else yet. */
3551 rv = -EIO;
3552 goto out_err;
3553 }
3554
3555 new_smi->intf_num = smi_num;
3556
3557 /* Do this early so it's available for logs. */
3558 if (!new_smi->dev) {
3559 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
3560 new_smi->intf_num);
3561
3562 /*
3563 * If we don't already have a device from something
3564 * else (like PCI), then register a new one.
3565 */
3566 new_smi->pdev = platform_device_alloc("ipmi_si",
3567 new_smi->intf_num);
3568 if (!new_smi->pdev) {
3569 pr_err(PFX "Unable to allocate platform device\n");
3570 goto out_err;
3571 }
3572 new_smi->dev = &new_smi->pdev->dev;
3573 new_smi->dev->driver = &ipmi_driver.driver;
3574 /* Nulled by device_add() */
3575 new_smi->dev->init_name = init_name;
3576 }
3577
3578 /* Allocate the state machine's data and initialize it. */
3579 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3580 if (!new_smi->si_sm) {
3581 pr_err(PFX "Could not allocate state machine memory\n");
3582 rv = -ENOMEM;
3583 goto out_err;
3584 }
3585 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3586 &new_smi->io);
3587
3588 /* Now that we know the I/O size, we can set up the I/O. */
3589 rv = new_smi->io_setup(new_smi);
3590 if (rv) {
3591 dev_err(new_smi->dev, "Could not set up I/O space\n");
3592 goto out_err;
3593 }
3594
3595 /* Do low-level detection first. */
3596 if (new_smi->handlers->detect(new_smi->si_sm)) {
3597 if (new_smi->addr_source)
3598 dev_err(new_smi->dev, "Interface detection failed\n");
3599 rv = -ENODEV;
3600 goto out_err;
3601 }
3602
3603 /*
3604 * Attempt a get device id command. If it fails, we probably
3605 * don't have a BMC here.
3606 */
3607 rv = try_get_dev_id(new_smi);
3608 if (rv) {
3609 if (new_smi->addr_source)
3610 dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3611 goto out_err;
3612 }
3613
3614 setup_oem_data_handler(new_smi);
3615 setup_xaction_handlers(new_smi);
3616 check_for_broken_irqs(new_smi);
3617
3618 new_smi->waiting_msg = NULL;
3619 new_smi->curr_msg = NULL;
3620 atomic_set(&new_smi->req_events, 0);
3621 new_smi->run_to_completion = false;
3622 for (i = 0; i < SI_NUM_STATS; i++)
3623 atomic_set(&new_smi->stats[i], 0);
3624
3625 new_smi->interrupt_disabled = true;
3626 atomic_set(&new_smi->need_watch, 0);
3627
3628 rv = try_enable_event_buffer(new_smi);
3629 if (rv == 0)
3630 new_smi->has_event_buffer = true;
3631
3632 /*
3633 * Start clearing the flags before we enable interrupts or the
3634 * timer to avoid racing with the timer.
3635 */
3636 start_clear_flags(new_smi);
3637
3638 /*
3639 * IRQ is defined to be set when non-zero. req_events will
3640 * cause a global flags check that will enable interrupts.
3641 */
3642 if (new_smi->irq) {
3643 new_smi->interrupt_disabled = false;
3644 atomic_set(&new_smi->req_events, 1);
3645 }
3646
3647 if (new_smi->pdev) {
3648 rv = platform_device_add(new_smi->pdev);
3649 if (rv) {
3650 dev_err(new_smi->dev,
3651 "Unable to register system interface device: %d\n",
3652 rv);
3653 goto out_err;
3654 }
3655 new_smi->dev_registered = true;
3656 }
3657
3658 rv = ipmi_register_smi(&handlers,
3659 new_smi,
3660 &new_smi->device_id,
3661 new_smi->dev,
3662 new_smi->slave_addr);
3663 if (rv) {
3664 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3665 rv);
3666 goto out_err_stop_timer;
3667 }
3668
3669 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3670 &smi_type_proc_ops,
3671 new_smi);
3672 if (rv) {
3673 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3674 goto out_err_stop_timer;
3675 }
3676
3677 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3678 &smi_si_stats_proc_ops,
3679 new_smi);
3680 if (rv) {
3681 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3682 goto out_err_stop_timer;
3683 }
3684
3685 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3686 &smi_params_proc_ops,
3687 new_smi);
3688 if (rv) {
3689 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3690 goto out_err_stop_timer;
3691 }
3692
3693 /* Don't increment till we know we have succeeded. */
3694 smi_num++;
3695
3696 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3697 si_to_str[new_smi->si_type]);
3698
3699 WARN_ON(new_smi->dev->init_name != NULL);
3700 kfree(init_name);
3701
3702 return 0;
3703
3704 out_err_stop_timer:
3705 stop_timer_and_thread(new_smi);
3706
3707 out_err:
3708 new_smi->interrupt_disabled = true;
3709
3710 if (new_smi->intf) {
3711 ipmi_smi_t intf = new_smi->intf;
3712 new_smi->intf = NULL;
3713 ipmi_unregister_smi(intf);
3714 }
3715
3716 if (new_smi->irq_cleanup) {
3717 new_smi->irq_cleanup(new_smi);
3718 new_smi->irq_cleanup = NULL;
3719 }
3720
3721 /*
3722 * Wait until we know that we are out of any interrupt
3723 * handlers might have been running before we freed the
3724 * interrupt.
3725 */
3726 synchronize_sched();
3727
3728 if (new_smi->si_sm) {
3729 if (new_smi->handlers)
3730 new_smi->handlers->cleanup(new_smi->si_sm);
3731 kfree(new_smi->si_sm);
3732 new_smi->si_sm = NULL;
3733 }
3734 if (new_smi->addr_source_cleanup) {
3735 new_smi->addr_source_cleanup(new_smi);
3736 new_smi->addr_source_cleanup = NULL;
3737 }
3738 if (new_smi->io_cleanup) {
3739 new_smi->io_cleanup(new_smi);
3740 new_smi->io_cleanup = NULL;
3741 }
3742
3743 if (new_smi->dev_registered) {
3744 platform_device_unregister(new_smi->pdev);
3745 new_smi->dev_registered = false;
3746 new_smi->pdev = NULL;
3747 } else if (new_smi->pdev) {
3748 platform_device_put(new_smi->pdev);
3749 new_smi->pdev = NULL;
3750 }
3751
3752 kfree(init_name);
3753
3754 return rv;
3755 }
3756
init_ipmi_si(void)3757 static int init_ipmi_si(void)
3758 {
3759 int i;
3760 char *str;
3761 int rv;
3762 struct smi_info *e;
3763 enum ipmi_addr_src type = SI_INVALID;
3764
3765 if (initialized)
3766 return 0;
3767 initialized = 1;
3768
3769 if (si_tryplatform) {
3770 rv = platform_driver_register(&ipmi_driver);
3771 if (rv) {
3772 pr_err(PFX "Unable to register driver: %d\n", rv);
3773 return rv;
3774 }
3775 }
3776
3777 /* Parse out the si_type string into its components. */
3778 str = si_type_str;
3779 if (*str != '\0') {
3780 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3781 si_type[i] = str;
3782 str = strchr(str, ',');
3783 if (str) {
3784 *str = '\0';
3785 str++;
3786 } else {
3787 break;
3788 }
3789 }
3790 }
3791
3792 pr_info("IPMI System Interface driver.\n");
3793
3794 /* If the user gave us a device, they presumably want us to use it */
3795 if (!hardcode_find_bmc())
3796 return 0;
3797
3798 #ifdef CONFIG_PCI
3799 if (si_trypci) {
3800 rv = pci_register_driver(&ipmi_pci_driver);
3801 if (rv)
3802 pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3803 else
3804 pci_registered = true;
3805 }
3806 #endif
3807
3808 #ifdef CONFIG_ACPI
3809 if (si_tryacpi)
3810 spmi_find_bmc();
3811 #endif
3812
3813 #ifdef CONFIG_PARISC
3814 register_parisc_driver(&ipmi_parisc_driver);
3815 parisc_registered = true;
3816 #endif
3817
3818 /* We prefer devices with interrupts, but in the case of a machine
3819 with multiple BMCs we assume that there will be several instances
3820 of a given type so if we succeed in registering a type then also
3821 try to register everything else of the same type */
3822
3823 mutex_lock(&smi_infos_lock);
3824 list_for_each_entry(e, &smi_infos, link) {
3825 /* Try to register a device if it has an IRQ and we either
3826 haven't successfully registered a device yet or this
3827 device has the same type as one we successfully registered */
3828 if (e->irq && (!type || e->addr_source == type)) {
3829 if (!try_smi_init(e)) {
3830 type = e->addr_source;
3831 }
3832 }
3833 }
3834
3835 /* type will only have been set if we successfully registered an si */
3836 if (type) {
3837 mutex_unlock(&smi_infos_lock);
3838 return 0;
3839 }
3840
3841 /* Fall back to the preferred device */
3842
3843 list_for_each_entry(e, &smi_infos, link) {
3844 if (!e->irq && (!type || e->addr_source == type)) {
3845 if (!try_smi_init(e)) {
3846 type = e->addr_source;
3847 }
3848 }
3849 }
3850 mutex_unlock(&smi_infos_lock);
3851
3852 if (type)
3853 return 0;
3854
3855 mutex_lock(&smi_infos_lock);
3856 if (unload_when_empty && list_empty(&smi_infos)) {
3857 mutex_unlock(&smi_infos_lock);
3858 cleanup_ipmi_si();
3859 pr_warn(PFX "Unable to find any System Interface(s)\n");
3860 return -ENODEV;
3861 } else {
3862 mutex_unlock(&smi_infos_lock);
3863 return 0;
3864 }
3865 }
3866 module_init(init_ipmi_si);
3867
cleanup_one_si(struct smi_info * to_clean)3868 static void cleanup_one_si(struct smi_info *to_clean)
3869 {
3870 int rv = 0;
3871
3872 if (!to_clean)
3873 return;
3874
3875 if (to_clean->intf) {
3876 ipmi_smi_t intf = to_clean->intf;
3877
3878 to_clean->intf = NULL;
3879 rv = ipmi_unregister_smi(intf);
3880 if (rv) {
3881 pr_err(PFX "Unable to unregister device: errno=%d\n",
3882 rv);
3883 }
3884 }
3885
3886 if (to_clean->dev)
3887 dev_set_drvdata(to_clean->dev, NULL);
3888
3889 list_del(&to_clean->link);
3890
3891 /*
3892 * Make sure that interrupts, the timer and the thread are
3893 * stopped and will not run again.
3894 */
3895 if (to_clean->irq_cleanup)
3896 to_clean->irq_cleanup(to_clean);
3897 stop_timer_and_thread(to_clean);
3898
3899 /*
3900 * Timeouts are stopped, now make sure the interrupts are off
3901 * in the BMC. Note that timers and CPU interrupts are off,
3902 * so no need for locks.
3903 */
3904 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3905 poll(to_clean);
3906 schedule_timeout_uninterruptible(1);
3907 }
3908 if (to_clean->handlers)
3909 disable_si_irq(to_clean);
3910 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3911 poll(to_clean);
3912 schedule_timeout_uninterruptible(1);
3913 }
3914
3915 if (to_clean->handlers)
3916 to_clean->handlers->cleanup(to_clean->si_sm);
3917
3918 kfree(to_clean->si_sm);
3919
3920 if (to_clean->addr_source_cleanup)
3921 to_clean->addr_source_cleanup(to_clean);
3922 if (to_clean->io_cleanup)
3923 to_clean->io_cleanup(to_clean);
3924
3925 if (to_clean->dev_registered)
3926 platform_device_unregister(to_clean->pdev);
3927
3928 kfree(to_clean);
3929 }
3930
cleanup_ipmi_si(void)3931 static void cleanup_ipmi_si(void)
3932 {
3933 struct smi_info *e, *tmp_e;
3934
3935 if (!initialized)
3936 return;
3937
3938 #ifdef CONFIG_PCI
3939 if (pci_registered)
3940 pci_unregister_driver(&ipmi_pci_driver);
3941 #endif
3942 #ifdef CONFIG_PARISC
3943 if (parisc_registered)
3944 unregister_parisc_driver(&ipmi_parisc_driver);
3945 #endif
3946
3947 platform_driver_unregister(&ipmi_driver);
3948
3949 mutex_lock(&smi_infos_lock);
3950 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3951 cleanup_one_si(e);
3952 mutex_unlock(&smi_infos_lock);
3953 }
3954 module_exit(cleanup_ipmi_si);
3955
3956 MODULE_ALIAS("platform:dmi-ipmi-si");
3957 MODULE_LICENSE("GPL");
3958 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3959 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3960 " system interfaces.");
3961