• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include "ipmi_dmi.h"
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 #include <linux/acpi.h>
73 
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
78 
79 #define PFX "ipmi_si: "
80 
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83 
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC	10000
86 #define SI_USEC_PER_JIFFY	(1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
89 				      short timeout */
90 
91 enum si_intf_state {
92 	SI_NORMAL,
93 	SI_GETTING_FLAGS,
94 	SI_GETTING_EVENTS,
95 	SI_CLEARING_FLAGS,
96 	SI_GETTING_MESSAGES,
97 	SI_CHECKING_ENABLES,
98 	SI_SETTING_ENABLES
99 	/* FIXME - add watchdog stuff. */
100 };
101 
102 /* Some BT-specific defines we need here. */
103 #define IPMI_BT_INTMASK_REG		2
104 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
105 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
106 
107 enum si_type {
108 	SI_KCS, SI_SMIC, SI_BT
109 };
110 
111 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
112 
113 #define DEVICE_NAME "ipmi_si"
114 
115 static struct platform_driver ipmi_driver;
116 
117 /*
118  * Indexes into stats[] in smi_info below.
119  */
120 enum si_stat_indexes {
121 	/*
122 	 * Number of times the driver requested a timer while an operation
123 	 * was in progress.
124 	 */
125 	SI_STAT_short_timeouts = 0,
126 
127 	/*
128 	 * Number of times the driver requested a timer while nothing was in
129 	 * progress.
130 	 */
131 	SI_STAT_long_timeouts,
132 
133 	/* Number of times the interface was idle while being polled. */
134 	SI_STAT_idles,
135 
136 	/* Number of interrupts the driver handled. */
137 	SI_STAT_interrupts,
138 
139 	/* Number of time the driver got an ATTN from the hardware. */
140 	SI_STAT_attentions,
141 
142 	/* Number of times the driver requested flags from the hardware. */
143 	SI_STAT_flag_fetches,
144 
145 	/* Number of times the hardware didn't follow the state machine. */
146 	SI_STAT_hosed_count,
147 
148 	/* Number of completed messages. */
149 	SI_STAT_complete_transactions,
150 
151 	/* Number of IPMI events received from the hardware. */
152 	SI_STAT_events,
153 
154 	/* Number of watchdog pretimeouts. */
155 	SI_STAT_watchdog_pretimeouts,
156 
157 	/* Number of asynchronous messages received. */
158 	SI_STAT_incoming_messages,
159 
160 
161 	/* This *must* remain last, add new values above this. */
162 	SI_NUM_STATS
163 };
164 
165 struct smi_info {
166 	int                    intf_num;
167 	ipmi_smi_t             intf;
168 	struct si_sm_data      *si_sm;
169 	const struct si_sm_handlers *handlers;
170 	enum si_type           si_type;
171 	spinlock_t             si_lock;
172 	struct ipmi_smi_msg    *waiting_msg;
173 	struct ipmi_smi_msg    *curr_msg;
174 	enum si_intf_state     si_state;
175 
176 	/*
177 	 * Used to handle the various types of I/O that can occur with
178 	 * IPMI
179 	 */
180 	struct si_sm_io io;
181 	int (*io_setup)(struct smi_info *info);
182 	void (*io_cleanup)(struct smi_info *info);
183 	int (*irq_setup)(struct smi_info *info);
184 	void (*irq_cleanup)(struct smi_info *info);
185 	unsigned int io_size;
186 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
187 	void (*addr_source_cleanup)(struct smi_info *info);
188 	void *addr_source_data;
189 
190 	/*
191 	 * Per-OEM handler, called from handle_flags().  Returns 1
192 	 * when handle_flags() needs to be re-run or 0 indicating it
193 	 * set si_state itself.
194 	 */
195 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
196 
197 	/*
198 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
199 	 * is set to hold the flags until we are done handling everything
200 	 * from the flags.
201 	 */
202 #define RECEIVE_MSG_AVAIL	0x01
203 #define EVENT_MSG_BUFFER_FULL	0x02
204 #define WDT_PRE_TIMEOUT_INT	0x08
205 #define OEM0_DATA_AVAIL     0x20
206 #define OEM1_DATA_AVAIL     0x40
207 #define OEM2_DATA_AVAIL     0x80
208 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
209 			     OEM1_DATA_AVAIL | \
210 			     OEM2_DATA_AVAIL)
211 	unsigned char       msg_flags;
212 
213 	/* Does the BMC have an event buffer? */
214 	bool		    has_event_buffer;
215 
216 	/*
217 	 * If set to true, this will request events the next time the
218 	 * state machine is idle.
219 	 */
220 	atomic_t            req_events;
221 
222 	/*
223 	 * If true, run the state machine to completion on every send
224 	 * call.  Generally used after a panic to make sure stuff goes
225 	 * out.
226 	 */
227 	bool                run_to_completion;
228 
229 	/* The I/O port of an SI interface. */
230 	int                 port;
231 
232 	/*
233 	 * The space between start addresses of the two ports.  For
234 	 * instance, if the first port is 0xca2 and the spacing is 4, then
235 	 * the second port is 0xca6.
236 	 */
237 	unsigned int        spacing;
238 
239 	/* zero if no irq; */
240 	int                 irq;
241 
242 	/* The timer for this si. */
243 	struct timer_list   si_timer;
244 
245 	/* This flag is set, if the timer can be set */
246 	bool		    timer_can_start;
247 
248 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
249 	bool		    timer_running;
250 
251 	/* The time (in jiffies) the last timeout occurred at. */
252 	unsigned long       last_timeout_jiffies;
253 
254 	/* Are we waiting for the events, pretimeouts, received msgs? */
255 	atomic_t            need_watch;
256 
257 	/*
258 	 * The driver will disable interrupts when it gets into a
259 	 * situation where it cannot handle messages due to lack of
260 	 * memory.  Once that situation clears up, it will re-enable
261 	 * interrupts.
262 	 */
263 	bool interrupt_disabled;
264 
265 	/*
266 	 * Does the BMC support events?
267 	 */
268 	bool supports_event_msg_buff;
269 
270 	/*
271 	 * Can we disable interrupts the global enables receive irq
272 	 * bit?  There are currently two forms of brokenness, some
273 	 * systems cannot disable the bit (which is technically within
274 	 * the spec but a bad idea) and some systems have the bit
275 	 * forced to zero even though interrupts work (which is
276 	 * clearly outside the spec).  The next bool tells which form
277 	 * of brokenness is present.
278 	 */
279 	bool cannot_disable_irq;
280 
281 	/*
282 	 * Some systems are broken and cannot set the irq enable
283 	 * bit, even if they support interrupts.
284 	 */
285 	bool irq_enable_broken;
286 
287 	/* Is the driver in maintenance mode? */
288 	bool in_maintenance_mode;
289 
290 	/*
291 	 * Did we get an attention that we did not handle?
292 	 */
293 	bool got_attn;
294 
295 	/* From the get device id response... */
296 	struct ipmi_device_id device_id;
297 
298 	/* Driver model stuff. */
299 	struct device *dev;
300 	struct platform_device *pdev;
301 
302 	/*
303 	 * True if we allocated the device, false if it came from
304 	 * someplace else (like PCI).
305 	 */
306 	bool dev_registered;
307 
308 	/* Slave address, could be reported from DMI. */
309 	unsigned char slave_addr;
310 
311 	/* Counters and things for the proc filesystem. */
312 	atomic_t stats[SI_NUM_STATS];
313 
314 	struct task_struct *thread;
315 
316 	struct list_head link;
317 	union ipmi_smi_info_union addr_info;
318 };
319 
320 #define smi_inc_stat(smi, stat) \
321 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
322 #define smi_get_stat(smi, stat) \
323 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
324 
325 #define SI_MAX_PARMS 4
326 
327 static int force_kipmid[SI_MAX_PARMS];
328 static int num_force_kipmid;
329 #ifdef CONFIG_PCI
330 static bool pci_registered;
331 #endif
332 #ifdef CONFIG_PARISC
333 static bool parisc_registered;
334 #endif
335 
336 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
337 static int num_max_busy_us;
338 
339 static bool unload_when_empty = true;
340 
341 static int add_smi(struct smi_info *smi);
342 static int try_smi_init(struct smi_info *smi);
343 static void cleanup_one_si(struct smi_info *to_clean);
344 static void cleanup_ipmi_si(void);
345 
346 #ifdef DEBUG_TIMING
debug_timestamp(char * msg)347 void debug_timestamp(char *msg)
348 {
349 	struct timespec64 t;
350 
351 	getnstimeofday64(&t);
352 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
353 }
354 #else
355 #define debug_timestamp(x)
356 #endif
357 
358 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)359 static int register_xaction_notifier(struct notifier_block *nb)
360 {
361 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
362 }
363 
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)364 static void deliver_recv_msg(struct smi_info *smi_info,
365 			     struct ipmi_smi_msg *msg)
366 {
367 	/* Deliver the message to the upper layer. */
368 	if (smi_info->intf)
369 		ipmi_smi_msg_received(smi_info->intf, msg);
370 	else
371 		ipmi_free_smi_msg(msg);
372 }
373 
return_hosed_msg(struct smi_info * smi_info,int cCode)374 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
375 {
376 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
377 
378 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
379 		cCode = IPMI_ERR_UNSPECIFIED;
380 	/* else use it as is */
381 
382 	/* Make it a response */
383 	msg->rsp[0] = msg->data[0] | 4;
384 	msg->rsp[1] = msg->data[1];
385 	msg->rsp[2] = cCode;
386 	msg->rsp_size = 3;
387 
388 	smi_info->curr_msg = NULL;
389 	deliver_recv_msg(smi_info, msg);
390 }
391 
start_next_msg(struct smi_info * smi_info)392 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
393 {
394 	int              rv;
395 
396 	if (!smi_info->waiting_msg) {
397 		smi_info->curr_msg = NULL;
398 		rv = SI_SM_IDLE;
399 	} else {
400 		int err;
401 
402 		smi_info->curr_msg = smi_info->waiting_msg;
403 		smi_info->waiting_msg = NULL;
404 		debug_timestamp("Start2");
405 		err = atomic_notifier_call_chain(&xaction_notifier_list,
406 				0, smi_info);
407 		if (err & NOTIFY_STOP_MASK) {
408 			rv = SI_SM_CALL_WITHOUT_DELAY;
409 			goto out;
410 		}
411 		err = smi_info->handlers->start_transaction(
412 			smi_info->si_sm,
413 			smi_info->curr_msg->data,
414 			smi_info->curr_msg->data_size);
415 		if (err)
416 			return_hosed_msg(smi_info, err);
417 
418 		rv = SI_SM_CALL_WITHOUT_DELAY;
419 	}
420 out:
421 	return rv;
422 }
423 
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)424 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
425 {
426 	if (!smi_info->timer_can_start)
427 		return;
428 	smi_info->last_timeout_jiffies = jiffies;
429 	mod_timer(&smi_info->si_timer, new_val);
430 	smi_info->timer_running = true;
431 }
432 
433 /*
434  * Start a new message and (re)start the timer and thread.
435  */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)436 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
437 			  unsigned int size)
438 {
439 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
440 
441 	if (smi_info->thread)
442 		wake_up_process(smi_info->thread);
443 
444 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
445 }
446 
start_check_enables(struct smi_info * smi_info)447 static void start_check_enables(struct smi_info *smi_info)
448 {
449 	unsigned char msg[2];
450 
451 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
452 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
453 
454 	start_new_msg(smi_info, msg, 2);
455 	smi_info->si_state = SI_CHECKING_ENABLES;
456 }
457 
start_clear_flags(struct smi_info * smi_info)458 static void start_clear_flags(struct smi_info *smi_info)
459 {
460 	unsigned char msg[3];
461 
462 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
463 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
464 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
465 	msg[2] = WDT_PRE_TIMEOUT_INT;
466 
467 	start_new_msg(smi_info, msg, 3);
468 	smi_info->si_state = SI_CLEARING_FLAGS;
469 }
470 
start_getting_msg_queue(struct smi_info * smi_info)471 static void start_getting_msg_queue(struct smi_info *smi_info)
472 {
473 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
474 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
475 	smi_info->curr_msg->data_size = 2;
476 
477 	start_new_msg(smi_info, smi_info->curr_msg->data,
478 		      smi_info->curr_msg->data_size);
479 	smi_info->si_state = SI_GETTING_MESSAGES;
480 }
481 
start_getting_events(struct smi_info * smi_info)482 static void start_getting_events(struct smi_info *smi_info)
483 {
484 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
485 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
486 	smi_info->curr_msg->data_size = 2;
487 
488 	start_new_msg(smi_info, smi_info->curr_msg->data,
489 		      smi_info->curr_msg->data_size);
490 	smi_info->si_state = SI_GETTING_EVENTS;
491 }
492 
493 /*
494  * When we have a situtaion where we run out of memory and cannot
495  * allocate messages, we just leave them in the BMC and run the system
496  * polled until we can allocate some memory.  Once we have some
497  * memory, we will re-enable the interrupt.
498  *
499  * Note that we cannot just use disable_irq(), since the interrupt may
500  * be shared.
501  */
disable_si_irq(struct smi_info * smi_info)502 static inline bool disable_si_irq(struct smi_info *smi_info)
503 {
504 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
505 		smi_info->interrupt_disabled = true;
506 		start_check_enables(smi_info);
507 		return true;
508 	}
509 	return false;
510 }
511 
enable_si_irq(struct smi_info * smi_info)512 static inline bool enable_si_irq(struct smi_info *smi_info)
513 {
514 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
515 		smi_info->interrupt_disabled = false;
516 		start_check_enables(smi_info);
517 		return true;
518 	}
519 	return false;
520 }
521 
522 /*
523  * Allocate a message.  If unable to allocate, start the interrupt
524  * disable process and return NULL.  If able to allocate but
525  * interrupts are disabled, free the message and return NULL after
526  * starting the interrupt enable process.
527  */
alloc_msg_handle_irq(struct smi_info * smi_info)528 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
529 {
530 	struct ipmi_smi_msg *msg;
531 
532 	msg = ipmi_alloc_smi_msg();
533 	if (!msg) {
534 		if (!disable_si_irq(smi_info))
535 			smi_info->si_state = SI_NORMAL;
536 	} else if (enable_si_irq(smi_info)) {
537 		ipmi_free_smi_msg(msg);
538 		msg = NULL;
539 	}
540 	return msg;
541 }
542 
handle_flags(struct smi_info * smi_info)543 static void handle_flags(struct smi_info *smi_info)
544 {
545 retry:
546 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
547 		/* Watchdog pre-timeout */
548 		smi_inc_stat(smi_info, watchdog_pretimeouts);
549 
550 		start_clear_flags(smi_info);
551 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
552 		if (smi_info->intf)
553 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
554 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
555 		/* Messages available. */
556 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
557 		if (!smi_info->curr_msg)
558 			return;
559 
560 		start_getting_msg_queue(smi_info);
561 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
562 		/* Events available. */
563 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
564 		if (!smi_info->curr_msg)
565 			return;
566 
567 		start_getting_events(smi_info);
568 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
569 		   smi_info->oem_data_avail_handler) {
570 		if (smi_info->oem_data_avail_handler(smi_info))
571 			goto retry;
572 	} else
573 		smi_info->si_state = SI_NORMAL;
574 }
575 
576 /*
577  * Global enables we care about.
578  */
579 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
580 			     IPMI_BMC_EVT_MSG_INTR)
581 
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)582 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
583 				 bool *irq_on)
584 {
585 	u8 enables = 0;
586 
587 	if (smi_info->supports_event_msg_buff)
588 		enables |= IPMI_BMC_EVT_MSG_BUFF;
589 
590 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
591 	     smi_info->cannot_disable_irq) &&
592 	    !smi_info->irq_enable_broken)
593 		enables |= IPMI_BMC_RCV_MSG_INTR;
594 
595 	if (smi_info->supports_event_msg_buff &&
596 	    smi_info->irq && !smi_info->interrupt_disabled &&
597 	    !smi_info->irq_enable_broken)
598 		enables |= IPMI_BMC_EVT_MSG_INTR;
599 
600 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
601 
602 	return enables;
603 }
604 
check_bt_irq(struct smi_info * smi_info,bool irq_on)605 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
606 {
607 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
608 
609 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
610 
611 	if ((bool)irqstate == irq_on)
612 		return;
613 
614 	if (irq_on)
615 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
616 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
617 	else
618 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
619 }
620 
handle_transaction_done(struct smi_info * smi_info)621 static void handle_transaction_done(struct smi_info *smi_info)
622 {
623 	struct ipmi_smi_msg *msg;
624 
625 	debug_timestamp("Done");
626 	switch (smi_info->si_state) {
627 	case SI_NORMAL:
628 		if (!smi_info->curr_msg)
629 			break;
630 
631 		smi_info->curr_msg->rsp_size
632 			= smi_info->handlers->get_result(
633 				smi_info->si_sm,
634 				smi_info->curr_msg->rsp,
635 				IPMI_MAX_MSG_LENGTH);
636 
637 		/*
638 		 * Do this here becase deliver_recv_msg() releases the
639 		 * lock, and a new message can be put in during the
640 		 * time the lock is released.
641 		 */
642 		msg = smi_info->curr_msg;
643 		smi_info->curr_msg = NULL;
644 		deliver_recv_msg(smi_info, msg);
645 		break;
646 
647 	case SI_GETTING_FLAGS:
648 	{
649 		unsigned char msg[4];
650 		unsigned int  len;
651 
652 		/* We got the flags from the SMI, now handle them. */
653 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
654 		if (msg[2] != 0) {
655 			/* Error fetching flags, just give up for now. */
656 			smi_info->si_state = SI_NORMAL;
657 		} else if (len < 4) {
658 			/*
659 			 * Hmm, no flags.  That's technically illegal, but
660 			 * don't use uninitialized data.
661 			 */
662 			smi_info->si_state = SI_NORMAL;
663 		} else {
664 			smi_info->msg_flags = msg[3];
665 			handle_flags(smi_info);
666 		}
667 		break;
668 	}
669 
670 	case SI_CLEARING_FLAGS:
671 	{
672 		unsigned char msg[3];
673 
674 		/* We cleared the flags. */
675 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
676 		if (msg[2] != 0) {
677 			/* Error clearing flags */
678 			dev_warn(smi_info->dev,
679 				 "Error clearing flags: %2.2x\n", msg[2]);
680 		}
681 		smi_info->si_state = SI_NORMAL;
682 		break;
683 	}
684 
685 	case SI_GETTING_EVENTS:
686 	{
687 		smi_info->curr_msg->rsp_size
688 			= smi_info->handlers->get_result(
689 				smi_info->si_sm,
690 				smi_info->curr_msg->rsp,
691 				IPMI_MAX_MSG_LENGTH);
692 
693 		/*
694 		 * Do this here becase deliver_recv_msg() releases the
695 		 * lock, and a new message can be put in during the
696 		 * time the lock is released.
697 		 */
698 		msg = smi_info->curr_msg;
699 		smi_info->curr_msg = NULL;
700 		if (msg->rsp[2] != 0) {
701 			/* Error getting event, probably done. */
702 			msg->done(msg);
703 
704 			/* Take off the event flag. */
705 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
706 			handle_flags(smi_info);
707 		} else {
708 			smi_inc_stat(smi_info, events);
709 
710 			/*
711 			 * Do this before we deliver the message
712 			 * because delivering the message releases the
713 			 * lock and something else can mess with the
714 			 * state.
715 			 */
716 			handle_flags(smi_info);
717 
718 			deliver_recv_msg(smi_info, msg);
719 		}
720 		break;
721 	}
722 
723 	case SI_GETTING_MESSAGES:
724 	{
725 		smi_info->curr_msg->rsp_size
726 			= smi_info->handlers->get_result(
727 				smi_info->si_sm,
728 				smi_info->curr_msg->rsp,
729 				IPMI_MAX_MSG_LENGTH);
730 
731 		/*
732 		 * Do this here becase deliver_recv_msg() releases the
733 		 * lock, and a new message can be put in during the
734 		 * time the lock is released.
735 		 */
736 		msg = smi_info->curr_msg;
737 		smi_info->curr_msg = NULL;
738 		if (msg->rsp[2] != 0) {
739 			/* Error getting event, probably done. */
740 			msg->done(msg);
741 
742 			/* Take off the msg flag. */
743 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
744 			handle_flags(smi_info);
745 		} else {
746 			smi_inc_stat(smi_info, incoming_messages);
747 
748 			/*
749 			 * Do this before we deliver the message
750 			 * because delivering the message releases the
751 			 * lock and something else can mess with the
752 			 * state.
753 			 */
754 			handle_flags(smi_info);
755 
756 			deliver_recv_msg(smi_info, msg);
757 		}
758 		break;
759 	}
760 
761 	case SI_CHECKING_ENABLES:
762 	{
763 		unsigned char msg[4];
764 		u8 enables;
765 		bool irq_on;
766 
767 		/* We got the flags from the SMI, now handle them. */
768 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
769 		if (msg[2] != 0) {
770 			dev_warn(smi_info->dev,
771 				 "Couldn't get irq info: %x.\n", msg[2]);
772 			dev_warn(smi_info->dev,
773 				 "Maybe ok, but ipmi might run very slowly.\n");
774 			smi_info->si_state = SI_NORMAL;
775 			break;
776 		}
777 		enables = current_global_enables(smi_info, 0, &irq_on);
778 		if (smi_info->si_type == SI_BT)
779 			/* BT has its own interrupt enable bit. */
780 			check_bt_irq(smi_info, irq_on);
781 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
782 			/* Enables are not correct, fix them. */
783 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
784 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
785 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
786 			smi_info->handlers->start_transaction(
787 				smi_info->si_sm, msg, 3);
788 			smi_info->si_state = SI_SETTING_ENABLES;
789 		} else if (smi_info->supports_event_msg_buff) {
790 			smi_info->curr_msg = ipmi_alloc_smi_msg();
791 			if (!smi_info->curr_msg) {
792 				smi_info->si_state = SI_NORMAL;
793 				break;
794 			}
795 			start_getting_events(smi_info);
796 		} else {
797 			smi_info->si_state = SI_NORMAL;
798 		}
799 		break;
800 	}
801 
802 	case SI_SETTING_ENABLES:
803 	{
804 		unsigned char msg[4];
805 
806 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
807 		if (msg[2] != 0)
808 			dev_warn(smi_info->dev,
809 				 "Could not set the global enables: 0x%x.\n",
810 				 msg[2]);
811 
812 		if (smi_info->supports_event_msg_buff) {
813 			smi_info->curr_msg = ipmi_alloc_smi_msg();
814 			if (!smi_info->curr_msg) {
815 				smi_info->si_state = SI_NORMAL;
816 				break;
817 			}
818 			start_getting_events(smi_info);
819 		} else {
820 			smi_info->si_state = SI_NORMAL;
821 		}
822 		break;
823 	}
824 	}
825 }
826 
827 /*
828  * Called on timeouts and events.  Timeouts should pass the elapsed
829  * time, interrupts should pass in zero.  Must be called with
830  * si_lock held and interrupts disabled.
831  */
smi_event_handler(struct smi_info * smi_info,int time)832 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
833 					   int time)
834 {
835 	enum si_sm_result si_sm_result;
836 
837 restart:
838 	/*
839 	 * There used to be a loop here that waited a little while
840 	 * (around 25us) before giving up.  That turned out to be
841 	 * pointless, the minimum delays I was seeing were in the 300us
842 	 * range, which is far too long to wait in an interrupt.  So
843 	 * we just run until the state machine tells us something
844 	 * happened or it needs a delay.
845 	 */
846 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
847 	time = 0;
848 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
849 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
850 
851 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
852 		smi_inc_stat(smi_info, complete_transactions);
853 
854 		handle_transaction_done(smi_info);
855 		goto restart;
856 	} else if (si_sm_result == SI_SM_HOSED) {
857 		smi_inc_stat(smi_info, hosed_count);
858 
859 		/*
860 		 * Do the before return_hosed_msg, because that
861 		 * releases the lock.
862 		 */
863 		smi_info->si_state = SI_NORMAL;
864 		if (smi_info->curr_msg != NULL) {
865 			/*
866 			 * If we were handling a user message, format
867 			 * a response to send to the upper layer to
868 			 * tell it about the error.
869 			 */
870 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
871 		}
872 		goto restart;
873 	}
874 
875 	/*
876 	 * We prefer handling attn over new messages.  But don't do
877 	 * this if there is not yet an upper layer to handle anything.
878 	 */
879 	if (likely(smi_info->intf) &&
880 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
881 		unsigned char msg[2];
882 
883 		if (smi_info->si_state != SI_NORMAL) {
884 			/*
885 			 * We got an ATTN, but we are doing something else.
886 			 * Handle the ATTN later.
887 			 */
888 			smi_info->got_attn = true;
889 		} else {
890 			smi_info->got_attn = false;
891 			smi_inc_stat(smi_info, attentions);
892 
893 			/*
894 			 * Got a attn, send down a get message flags to see
895 			 * what's causing it.  It would be better to handle
896 			 * this in the upper layer, but due to the way
897 			 * interrupts work with the SMI, that's not really
898 			 * possible.
899 			 */
900 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
901 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
902 
903 			start_new_msg(smi_info, msg, 2);
904 			smi_info->si_state = SI_GETTING_FLAGS;
905 			goto restart;
906 		}
907 	}
908 
909 	/* If we are currently idle, try to start the next message. */
910 	if (si_sm_result == SI_SM_IDLE) {
911 		smi_inc_stat(smi_info, idles);
912 
913 		si_sm_result = start_next_msg(smi_info);
914 		if (si_sm_result != SI_SM_IDLE)
915 			goto restart;
916 	}
917 
918 	if ((si_sm_result == SI_SM_IDLE)
919 	    && (atomic_read(&smi_info->req_events))) {
920 		/*
921 		 * We are idle and the upper layer requested that I fetch
922 		 * events, so do so.
923 		 */
924 		atomic_set(&smi_info->req_events, 0);
925 
926 		/*
927 		 * Take this opportunity to check the interrupt and
928 		 * message enable state for the BMC.  The BMC can be
929 		 * asynchronously reset, and may thus get interrupts
930 		 * disable and messages disabled.
931 		 */
932 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
933 			start_check_enables(smi_info);
934 		} else {
935 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
936 			if (!smi_info->curr_msg)
937 				goto out;
938 
939 			start_getting_events(smi_info);
940 		}
941 		goto restart;
942 	}
943 
944 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
945 		/* Ok it if fails, the timer will just go off. */
946 		if (del_timer(&smi_info->si_timer))
947 			smi_info->timer_running = false;
948 	}
949 
950 out:
951 	return si_sm_result;
952 }
953 
check_start_timer_thread(struct smi_info * smi_info)954 static void check_start_timer_thread(struct smi_info *smi_info)
955 {
956 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
957 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
958 
959 		if (smi_info->thread)
960 			wake_up_process(smi_info->thread);
961 
962 		start_next_msg(smi_info);
963 		smi_event_handler(smi_info, 0);
964 	}
965 }
966 
flush_messages(void * send_info)967 static void flush_messages(void *send_info)
968 {
969 	struct smi_info *smi_info = send_info;
970 	enum si_sm_result result;
971 
972 	/*
973 	 * Currently, this function is called only in run-to-completion
974 	 * mode.  This means we are single-threaded, no need for locks.
975 	 */
976 	result = smi_event_handler(smi_info, 0);
977 	while (result != SI_SM_IDLE) {
978 		udelay(SI_SHORT_TIMEOUT_USEC);
979 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
980 	}
981 }
982 
sender(void * send_info,struct ipmi_smi_msg * msg)983 static void sender(void                *send_info,
984 		   struct ipmi_smi_msg *msg)
985 {
986 	struct smi_info   *smi_info = send_info;
987 	unsigned long     flags;
988 
989 	debug_timestamp("Enqueue");
990 
991 	if (smi_info->run_to_completion) {
992 		/*
993 		 * If we are running to completion, start it.  Upper
994 		 * layer will call flush_messages to clear it out.
995 		 */
996 		smi_info->waiting_msg = msg;
997 		return;
998 	}
999 
1000 	spin_lock_irqsave(&smi_info->si_lock, flags);
1001 	/*
1002 	 * The following two lines don't need to be under the lock for
1003 	 * the lock's sake, but they do need SMP memory barriers to
1004 	 * avoid getting things out of order.  We are already claiming
1005 	 * the lock, anyway, so just do it under the lock to avoid the
1006 	 * ordering problem.
1007 	 */
1008 	BUG_ON(smi_info->waiting_msg);
1009 	smi_info->waiting_msg = msg;
1010 	check_start_timer_thread(smi_info);
1011 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1012 }
1013 
set_run_to_completion(void * send_info,bool i_run_to_completion)1014 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1015 {
1016 	struct smi_info   *smi_info = send_info;
1017 
1018 	smi_info->run_to_completion = i_run_to_completion;
1019 	if (i_run_to_completion)
1020 		flush_messages(smi_info);
1021 }
1022 
1023 /*
1024  * Use -1 in the nsec value of the busy waiting timespec to tell that
1025  * we are spinning in kipmid looking for something and not delaying
1026  * between checks
1027  */
ipmi_si_set_not_busy(struct timespec64 * ts)1028 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1029 {
1030 	ts->tv_nsec = -1;
1031 }
ipmi_si_is_busy(struct timespec64 * ts)1032 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1033 {
1034 	return ts->tv_nsec != -1;
1035 }
1036 
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,struct timespec64 * busy_until)1037 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1038 					const struct smi_info *smi_info,
1039 					struct timespec64 *busy_until)
1040 {
1041 	unsigned int max_busy_us = 0;
1042 
1043 	if (smi_info->intf_num < num_max_busy_us)
1044 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1045 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1046 		ipmi_si_set_not_busy(busy_until);
1047 	else if (!ipmi_si_is_busy(busy_until)) {
1048 		getnstimeofday64(busy_until);
1049 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1050 	} else {
1051 		struct timespec64 now;
1052 
1053 		getnstimeofday64(&now);
1054 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1055 			ipmi_si_set_not_busy(busy_until);
1056 			return 0;
1057 		}
1058 	}
1059 	return 1;
1060 }
1061 
1062 
1063 /*
1064  * A busy-waiting loop for speeding up IPMI operation.
1065  *
1066  * Lousy hardware makes this hard.  This is only enabled for systems
1067  * that are not BT and do not have interrupts.  It starts spinning
1068  * when an operation is complete or until max_busy tells it to stop
1069  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1070  * Documentation/IPMI.txt for details.
1071  */
ipmi_thread(void * data)1072 static int ipmi_thread(void *data)
1073 {
1074 	struct smi_info *smi_info = data;
1075 	unsigned long flags;
1076 	enum si_sm_result smi_result;
1077 	struct timespec64 busy_until;
1078 
1079 	ipmi_si_set_not_busy(&busy_until);
1080 	set_user_nice(current, MAX_NICE);
1081 	while (!kthread_should_stop()) {
1082 		int busy_wait;
1083 
1084 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1085 		smi_result = smi_event_handler(smi_info, 0);
1086 
1087 		/*
1088 		 * If the driver is doing something, there is a possible
1089 		 * race with the timer.  If the timer handler see idle,
1090 		 * and the thread here sees something else, the timer
1091 		 * handler won't restart the timer even though it is
1092 		 * required.  So start it here if necessary.
1093 		 */
1094 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1095 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1096 
1097 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1098 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1099 						  &busy_until);
1100 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1101 			; /* do nothing */
1102 		} else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1103 			/*
1104 			 * In maintenance mode we run as fast as
1105 			 * possible to allow firmware updates to
1106 			 * complete as fast as possible, but normally
1107 			 * don't bang on the scheduler.
1108 			 */
1109 			if (smi_info->in_maintenance_mode)
1110 				schedule();
1111 			else
1112 				usleep_range(100, 200);
1113 		} else if (smi_result == SI_SM_IDLE) {
1114 			if (atomic_read(&smi_info->need_watch)) {
1115 				schedule_timeout_interruptible(100);
1116 			} else {
1117 				/* Wait to be woken up when we are needed. */
1118 				__set_current_state(TASK_INTERRUPTIBLE);
1119 				schedule();
1120 			}
1121 		} else {
1122 			schedule_timeout_interruptible(1);
1123 		}
1124 	}
1125 	return 0;
1126 }
1127 
1128 
poll(void * send_info)1129 static void poll(void *send_info)
1130 {
1131 	struct smi_info *smi_info = send_info;
1132 	unsigned long flags = 0;
1133 	bool run_to_completion = smi_info->run_to_completion;
1134 
1135 	/*
1136 	 * Make sure there is some delay in the poll loop so we can
1137 	 * drive time forward and timeout things.
1138 	 */
1139 	udelay(10);
1140 	if (!run_to_completion)
1141 		spin_lock_irqsave(&smi_info->si_lock, flags);
1142 	smi_event_handler(smi_info, 10);
1143 	if (!run_to_completion)
1144 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1145 }
1146 
request_events(void * send_info)1147 static void request_events(void *send_info)
1148 {
1149 	struct smi_info *smi_info = send_info;
1150 
1151 	if (!smi_info->has_event_buffer)
1152 		return;
1153 
1154 	atomic_set(&smi_info->req_events, 1);
1155 }
1156 
set_need_watch(void * send_info,bool enable)1157 static void set_need_watch(void *send_info, bool enable)
1158 {
1159 	struct smi_info *smi_info = send_info;
1160 	unsigned long flags;
1161 
1162 	atomic_set(&smi_info->need_watch, enable);
1163 	spin_lock_irqsave(&smi_info->si_lock, flags);
1164 	check_start_timer_thread(smi_info);
1165 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1166 }
1167 
1168 static int initialized;
1169 
smi_timeout(unsigned long data)1170 static void smi_timeout(unsigned long data)
1171 {
1172 	struct smi_info   *smi_info = (struct smi_info *) data;
1173 	enum si_sm_result smi_result;
1174 	unsigned long     flags;
1175 	unsigned long     jiffies_now;
1176 	long              time_diff;
1177 	long		  timeout;
1178 
1179 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1180 	debug_timestamp("Timer");
1181 
1182 	jiffies_now = jiffies;
1183 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1184 		     * SI_USEC_PER_JIFFY);
1185 	smi_result = smi_event_handler(smi_info, time_diff);
1186 
1187 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1188 		/* Running with interrupts, only do long timeouts. */
1189 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1190 		smi_inc_stat(smi_info, long_timeouts);
1191 		goto do_mod_timer;
1192 	}
1193 
1194 	/*
1195 	 * If the state machine asks for a short delay, then shorten
1196 	 * the timer timeout.
1197 	 */
1198 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1199 		smi_inc_stat(smi_info, short_timeouts);
1200 		timeout = jiffies + 1;
1201 	} else {
1202 		smi_inc_stat(smi_info, long_timeouts);
1203 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1204 	}
1205 
1206 do_mod_timer:
1207 	if (smi_result != SI_SM_IDLE)
1208 		smi_mod_timer(smi_info, timeout);
1209 	else
1210 		smi_info->timer_running = false;
1211 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1212 }
1213 
si_irq_handler(int irq,void * data)1214 static irqreturn_t si_irq_handler(int irq, void *data)
1215 {
1216 	struct smi_info *smi_info = data;
1217 	unsigned long   flags;
1218 
1219 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1220 
1221 	smi_inc_stat(smi_info, interrupts);
1222 
1223 	debug_timestamp("Interrupt");
1224 
1225 	smi_event_handler(smi_info, 0);
1226 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1227 	return IRQ_HANDLED;
1228 }
1229 
si_bt_irq_handler(int irq,void * data)1230 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1231 {
1232 	struct smi_info *smi_info = data;
1233 	/* We need to clear the IRQ flag for the BT interface. */
1234 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1235 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1236 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1237 	return si_irq_handler(irq, data);
1238 }
1239 
smi_start_processing(void * send_info,ipmi_smi_t intf)1240 static int smi_start_processing(void       *send_info,
1241 				ipmi_smi_t intf)
1242 {
1243 	struct smi_info *new_smi = send_info;
1244 	int             enable = 0;
1245 
1246 	new_smi->intf = intf;
1247 
1248 	/* Set up the timer that drives the interface. */
1249 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1250 	new_smi->timer_can_start = true;
1251 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1252 
1253 	/* Try to claim any interrupts. */
1254 	if (new_smi->irq_setup)
1255 		new_smi->irq_setup(new_smi);
1256 
1257 	/*
1258 	 * Check if the user forcefully enabled the daemon.
1259 	 */
1260 	if (new_smi->intf_num < num_force_kipmid)
1261 		enable = force_kipmid[new_smi->intf_num];
1262 	/*
1263 	 * The BT interface is efficient enough to not need a thread,
1264 	 * and there is no need for a thread if we have interrupts.
1265 	 */
1266 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1267 		enable = 1;
1268 
1269 	if (enable) {
1270 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1271 					      "kipmi%d", new_smi->intf_num);
1272 		if (IS_ERR(new_smi->thread)) {
1273 			dev_notice(new_smi->dev, "Could not start"
1274 				   " kernel thread due to error %ld, only using"
1275 				   " timers to drive the interface\n",
1276 				   PTR_ERR(new_smi->thread));
1277 			new_smi->thread = NULL;
1278 		}
1279 	}
1280 
1281 	return 0;
1282 }
1283 
get_smi_info(void * send_info,struct ipmi_smi_info * data)1284 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1285 {
1286 	struct smi_info *smi = send_info;
1287 
1288 	data->addr_src = smi->addr_source;
1289 	data->dev = smi->dev;
1290 	data->addr_info = smi->addr_info;
1291 	get_device(smi->dev);
1292 
1293 	return 0;
1294 }
1295 
set_maintenance_mode(void * send_info,bool enable)1296 static void set_maintenance_mode(void *send_info, bool enable)
1297 {
1298 	struct smi_info   *smi_info = send_info;
1299 
1300 	if (!enable)
1301 		atomic_set(&smi_info->req_events, 0);
1302 	smi_info->in_maintenance_mode = enable;
1303 }
1304 
1305 static const struct ipmi_smi_handlers handlers = {
1306 	.owner                  = THIS_MODULE,
1307 	.start_processing       = smi_start_processing,
1308 	.get_smi_info		= get_smi_info,
1309 	.sender			= sender,
1310 	.request_events		= request_events,
1311 	.set_need_watch		= set_need_watch,
1312 	.set_maintenance_mode   = set_maintenance_mode,
1313 	.set_run_to_completion  = set_run_to_completion,
1314 	.flush_messages		= flush_messages,
1315 	.poll			= poll,
1316 };
1317 
1318 /*
1319  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1320  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1321  */
1322 
1323 static LIST_HEAD(smi_infos);
1324 static DEFINE_MUTEX(smi_infos_lock);
1325 static int smi_num; /* Used to sequence the SMIs */
1326 
1327 #define DEFAULT_REGSPACING	1
1328 #define DEFAULT_REGSIZE		1
1329 
1330 #ifdef CONFIG_ACPI
1331 static bool          si_tryacpi = true;
1332 #endif
1333 #ifdef CONFIG_DMI
1334 static bool          si_trydmi = true;
1335 #endif
1336 static bool          si_tryplatform = true;
1337 #ifdef CONFIG_PCI
1338 static bool          si_trypci = true;
1339 #endif
1340 static char          *si_type[SI_MAX_PARMS];
1341 #define MAX_SI_TYPE_STR 30
1342 static char          si_type_str[MAX_SI_TYPE_STR];
1343 static unsigned long addrs[SI_MAX_PARMS];
1344 static unsigned int num_addrs;
1345 static unsigned int  ports[SI_MAX_PARMS];
1346 static unsigned int num_ports;
1347 static int           irqs[SI_MAX_PARMS];
1348 static unsigned int num_irqs;
1349 static int           regspacings[SI_MAX_PARMS];
1350 static unsigned int num_regspacings;
1351 static int           regsizes[SI_MAX_PARMS];
1352 static unsigned int num_regsizes;
1353 static int           regshifts[SI_MAX_PARMS];
1354 static unsigned int num_regshifts;
1355 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1356 static unsigned int num_slave_addrs;
1357 
1358 #define IPMI_IO_ADDR_SPACE  0
1359 #define IPMI_MEM_ADDR_SPACE 1
1360 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1361 
1362 static int hotmod_handler(const char *val, const struct kernel_param *kp);
1363 
1364 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1365 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1366 		 " Documentation/IPMI.txt in the kernel sources for the"
1367 		 " gory details.");
1368 
1369 #ifdef CONFIG_ACPI
1370 module_param_named(tryacpi, si_tryacpi, bool, 0);
1371 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1372 		 " default scan of the interfaces identified via ACPI");
1373 #endif
1374 #ifdef CONFIG_DMI
1375 module_param_named(trydmi, si_trydmi, bool, 0);
1376 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1377 		 " default scan of the interfaces identified via DMI");
1378 #endif
1379 module_param_named(tryplatform, si_tryplatform, bool, 0);
1380 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1381 		 " default scan of the interfaces identified via platform"
1382 		 " interfaces like openfirmware");
1383 #ifdef CONFIG_PCI
1384 module_param_named(trypci, si_trypci, bool, 0);
1385 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1386 		 " default scan of the interfaces identified via pci");
1387 #endif
1388 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1389 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1390 		 " interface separated by commas.  The types are 'kcs',"
1391 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1392 		 " the first interface to kcs and the second to bt");
1393 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1394 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1395 		 " addresses separated by commas.  Only use if an interface"
1396 		 " is in memory.  Otherwise, set it to zero or leave"
1397 		 " it blank.");
1398 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1399 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1400 		 " addresses separated by commas.  Only use if an interface"
1401 		 " is a port.  Otherwise, set it to zero or leave"
1402 		 " it blank.");
1403 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1404 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1405 		 " addresses separated by commas.  Only use if an interface"
1406 		 " has an interrupt.  Otherwise, set it to zero or leave"
1407 		 " it blank.");
1408 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1409 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1410 		 " and each successive register used by the interface.  For"
1411 		 " instance, if the start address is 0xca2 and the spacing"
1412 		 " is 2, then the second address is at 0xca4.  Defaults"
1413 		 " to 1.");
1414 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1415 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1416 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1417 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1418 		 " the 8-bit IPMI register has to be read from a larger"
1419 		 " register.");
1420 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1421 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1422 		 " IPMI register, in bits.  For instance, if the data"
1423 		 " is read from a 32-bit word and the IPMI data is in"
1424 		 " bit 8-15, then the shift would be 8");
1425 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1426 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1427 		 " the controller.  Normally this is 0x20, but can be"
1428 		 " overridden by this parm.  This is an array indexed"
1429 		 " by interface number.");
1430 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1431 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1432 		 " disabled(0).  Normally the IPMI driver auto-detects"
1433 		 " this, but the value may be overridden by this parm.");
1434 module_param(unload_when_empty, bool, 0);
1435 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1436 		 " specified or found, default is 1.  Setting to 0"
1437 		 " is useful for hot add of devices using hotmod.");
1438 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1439 MODULE_PARM_DESC(kipmid_max_busy_us,
1440 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1441 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1442 		 " if kipmid is using up a lot of CPU time.");
1443 
1444 
std_irq_cleanup(struct smi_info * info)1445 static void std_irq_cleanup(struct smi_info *info)
1446 {
1447 	if (info->si_type == SI_BT)
1448 		/* Disable the interrupt in the BT interface. */
1449 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1450 	free_irq(info->irq, info);
1451 }
1452 
std_irq_setup(struct smi_info * info)1453 static int std_irq_setup(struct smi_info *info)
1454 {
1455 	int rv;
1456 
1457 	if (!info->irq)
1458 		return 0;
1459 
1460 	if (info->si_type == SI_BT) {
1461 		rv = request_irq(info->irq,
1462 				 si_bt_irq_handler,
1463 				 IRQF_SHARED,
1464 				 DEVICE_NAME,
1465 				 info);
1466 		if (!rv)
1467 			/* Enable the interrupt in the BT interface. */
1468 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1469 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1470 	} else
1471 		rv = request_irq(info->irq,
1472 				 si_irq_handler,
1473 				 IRQF_SHARED,
1474 				 DEVICE_NAME,
1475 				 info);
1476 	if (rv) {
1477 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1478 			 " running polled\n",
1479 			 DEVICE_NAME, info->irq);
1480 		info->irq = 0;
1481 	} else {
1482 		info->irq_cleanup = std_irq_cleanup;
1483 		dev_info(info->dev, "Using irq %d\n", info->irq);
1484 	}
1485 
1486 	return rv;
1487 }
1488 
port_inb(const struct si_sm_io * io,unsigned int offset)1489 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1490 {
1491 	unsigned int addr = io->addr_data;
1492 
1493 	return inb(addr + (offset * io->regspacing));
1494 }
1495 
port_outb(const struct si_sm_io * io,unsigned int offset,unsigned char b)1496 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1497 		      unsigned char b)
1498 {
1499 	unsigned int addr = io->addr_data;
1500 
1501 	outb(b, addr + (offset * io->regspacing));
1502 }
1503 
port_inw(const struct si_sm_io * io,unsigned int offset)1504 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1505 {
1506 	unsigned int addr = io->addr_data;
1507 
1508 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1509 }
1510 
port_outw(const struct si_sm_io * io,unsigned int offset,unsigned char b)1511 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1512 		      unsigned char b)
1513 {
1514 	unsigned int addr = io->addr_data;
1515 
1516 	outw(b << io->regshift, addr + (offset * io->regspacing));
1517 }
1518 
port_inl(const struct si_sm_io * io,unsigned int offset)1519 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1520 {
1521 	unsigned int addr = io->addr_data;
1522 
1523 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1524 }
1525 
port_outl(const struct si_sm_io * io,unsigned int offset,unsigned char b)1526 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1527 		      unsigned char b)
1528 {
1529 	unsigned int addr = io->addr_data;
1530 
1531 	outl(b << io->regshift, addr+(offset * io->regspacing));
1532 }
1533 
port_cleanup(struct smi_info * info)1534 static void port_cleanup(struct smi_info *info)
1535 {
1536 	unsigned int addr = info->io.addr_data;
1537 	int          idx;
1538 
1539 	if (addr) {
1540 		for (idx = 0; idx < info->io_size; idx++)
1541 			release_region(addr + idx * info->io.regspacing,
1542 				       info->io.regsize);
1543 	}
1544 }
1545 
port_setup(struct smi_info * info)1546 static int port_setup(struct smi_info *info)
1547 {
1548 	unsigned int addr = info->io.addr_data;
1549 	int          idx;
1550 
1551 	if (!addr)
1552 		return -ENODEV;
1553 
1554 	info->io_cleanup = port_cleanup;
1555 
1556 	/*
1557 	 * Figure out the actual inb/inw/inl/etc routine to use based
1558 	 * upon the register size.
1559 	 */
1560 	switch (info->io.regsize) {
1561 	case 1:
1562 		info->io.inputb = port_inb;
1563 		info->io.outputb = port_outb;
1564 		break;
1565 	case 2:
1566 		info->io.inputb = port_inw;
1567 		info->io.outputb = port_outw;
1568 		break;
1569 	case 4:
1570 		info->io.inputb = port_inl;
1571 		info->io.outputb = port_outl;
1572 		break;
1573 	default:
1574 		dev_warn(info->dev, "Invalid register size: %d\n",
1575 			 info->io.regsize);
1576 		return -EINVAL;
1577 	}
1578 
1579 	/*
1580 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1581 	 * tables.  This causes problems when trying to register the
1582 	 * entire I/O region.  Therefore we must register each I/O
1583 	 * port separately.
1584 	 */
1585 	for (idx = 0; idx < info->io_size; idx++) {
1586 		if (request_region(addr + idx * info->io.regspacing,
1587 				   info->io.regsize, DEVICE_NAME) == NULL) {
1588 			/* Undo allocations */
1589 			while (idx--)
1590 				release_region(addr + idx * info->io.regspacing,
1591 					       info->io.regsize);
1592 			return -EIO;
1593 		}
1594 	}
1595 	return 0;
1596 }
1597 
intf_mem_inb(const struct si_sm_io * io,unsigned int offset)1598 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1599 				  unsigned int offset)
1600 {
1601 	return readb((io->addr)+(offset * io->regspacing));
1602 }
1603 
intf_mem_outb(const struct si_sm_io * io,unsigned int offset,unsigned char b)1604 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1605 			  unsigned char b)
1606 {
1607 	writeb(b, (io->addr)+(offset * io->regspacing));
1608 }
1609 
intf_mem_inw(const struct si_sm_io * io,unsigned int offset)1610 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1611 				  unsigned int offset)
1612 {
1613 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1614 		& 0xff;
1615 }
1616 
intf_mem_outw(const struct si_sm_io * io,unsigned int offset,unsigned char b)1617 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1618 			  unsigned char b)
1619 {
1620 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1621 }
1622 
intf_mem_inl(const struct si_sm_io * io,unsigned int offset)1623 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1624 				  unsigned int offset)
1625 {
1626 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1627 		& 0xff;
1628 }
1629 
intf_mem_outl(const struct si_sm_io * io,unsigned int offset,unsigned char b)1630 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1631 			  unsigned char b)
1632 {
1633 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1634 }
1635 
1636 #ifdef readq
mem_inq(const struct si_sm_io * io,unsigned int offset)1637 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1638 {
1639 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1640 		& 0xff;
1641 }
1642 
mem_outq(const struct si_sm_io * io,unsigned int offset,unsigned char b)1643 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1644 		     unsigned char b)
1645 {
1646 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1647 }
1648 #endif
1649 
mem_region_cleanup(struct smi_info * info,int num)1650 static void mem_region_cleanup(struct smi_info *info, int num)
1651 {
1652 	unsigned long addr = info->io.addr_data;
1653 	int idx;
1654 
1655 	for (idx = 0; idx < num; idx++)
1656 		release_mem_region(addr + idx * info->io.regspacing,
1657 				   info->io.regsize);
1658 }
1659 
mem_cleanup(struct smi_info * info)1660 static void mem_cleanup(struct smi_info *info)
1661 {
1662 	if (info->io.addr) {
1663 		iounmap(info->io.addr);
1664 		mem_region_cleanup(info, info->io_size);
1665 	}
1666 }
1667 
mem_setup(struct smi_info * info)1668 static int mem_setup(struct smi_info *info)
1669 {
1670 	unsigned long addr = info->io.addr_data;
1671 	int           mapsize, idx;
1672 
1673 	if (!addr)
1674 		return -ENODEV;
1675 
1676 	info->io_cleanup = mem_cleanup;
1677 
1678 	/*
1679 	 * Figure out the actual readb/readw/readl/etc routine to use based
1680 	 * upon the register size.
1681 	 */
1682 	switch (info->io.regsize) {
1683 	case 1:
1684 		info->io.inputb = intf_mem_inb;
1685 		info->io.outputb = intf_mem_outb;
1686 		break;
1687 	case 2:
1688 		info->io.inputb = intf_mem_inw;
1689 		info->io.outputb = intf_mem_outw;
1690 		break;
1691 	case 4:
1692 		info->io.inputb = intf_mem_inl;
1693 		info->io.outputb = intf_mem_outl;
1694 		break;
1695 #ifdef readq
1696 	case 8:
1697 		info->io.inputb = mem_inq;
1698 		info->io.outputb = mem_outq;
1699 		break;
1700 #endif
1701 	default:
1702 		dev_warn(info->dev, "Invalid register size: %d\n",
1703 			 info->io.regsize);
1704 		return -EINVAL;
1705 	}
1706 
1707 	/*
1708 	 * Some BIOSes reserve disjoint memory regions in their ACPI
1709 	 * tables.  This causes problems when trying to request the
1710 	 * entire region.  Therefore we must request each register
1711 	 * separately.
1712 	 */
1713 	for (idx = 0; idx < info->io_size; idx++) {
1714 		if (request_mem_region(addr + idx * info->io.regspacing,
1715 				       info->io.regsize, DEVICE_NAME) == NULL) {
1716 			/* Undo allocations */
1717 			mem_region_cleanup(info, idx);
1718 			return -EIO;
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * Calculate the total amount of memory to claim.  This is an
1724 	 * unusual looking calculation, but it avoids claiming any
1725 	 * more memory than it has to.  It will claim everything
1726 	 * between the first address to the end of the last full
1727 	 * register.
1728 	 */
1729 	mapsize = ((info->io_size * info->io.regspacing)
1730 		   - (info->io.regspacing - info->io.regsize));
1731 	info->io.addr = ioremap(addr, mapsize);
1732 	if (info->io.addr == NULL) {
1733 		mem_region_cleanup(info, info->io_size);
1734 		return -EIO;
1735 	}
1736 	return 0;
1737 }
1738 
1739 /*
1740  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1741  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1742  * Options are:
1743  *   rsp=<regspacing>
1744  *   rsi=<regsize>
1745  *   rsh=<regshift>
1746  *   irq=<irq>
1747  *   ipmb=<ipmb addr>
1748  */
1749 enum hotmod_op { HM_ADD, HM_REMOVE };
1750 struct hotmod_vals {
1751 	const char *name;
1752 	const int  val;
1753 };
1754 
1755 static const struct hotmod_vals hotmod_ops[] = {
1756 	{ "add",	HM_ADD },
1757 	{ "remove",	HM_REMOVE },
1758 	{ NULL }
1759 };
1760 
1761 static const struct hotmod_vals hotmod_si[] = {
1762 	{ "kcs",	SI_KCS },
1763 	{ "smic",	SI_SMIC },
1764 	{ "bt",		SI_BT },
1765 	{ NULL }
1766 };
1767 
1768 static const struct hotmod_vals hotmod_as[] = {
1769 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1770 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1771 	{ NULL }
1772 };
1773 
parse_str(const struct hotmod_vals * v,int * val,char * name,char ** curr)1774 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1775 		     char **curr)
1776 {
1777 	char *s;
1778 	int  i;
1779 
1780 	s = strchr(*curr, ',');
1781 	if (!s) {
1782 		pr_warn(PFX "No hotmod %s given.\n", name);
1783 		return -EINVAL;
1784 	}
1785 	*s = '\0';
1786 	s++;
1787 	for (i = 0; v[i].name; i++) {
1788 		if (strcmp(*curr, v[i].name) == 0) {
1789 			*val = v[i].val;
1790 			*curr = s;
1791 			return 0;
1792 		}
1793 	}
1794 
1795 	pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1796 	return -EINVAL;
1797 }
1798 
check_hotmod_int_op(const char * curr,const char * option,const char * name,int * val)1799 static int check_hotmod_int_op(const char *curr, const char *option,
1800 			       const char *name, int *val)
1801 {
1802 	char *n;
1803 
1804 	if (strcmp(curr, name) == 0) {
1805 		if (!option) {
1806 			pr_warn(PFX "No option given for '%s'\n", curr);
1807 			return -EINVAL;
1808 		}
1809 		*val = simple_strtoul(option, &n, 0);
1810 		if ((*n != '\0') || (*option == '\0')) {
1811 			pr_warn(PFX "Bad option given for '%s'\n", curr);
1812 			return -EINVAL;
1813 		}
1814 		return 1;
1815 	}
1816 	return 0;
1817 }
1818 
smi_info_alloc(void)1819 static struct smi_info *smi_info_alloc(void)
1820 {
1821 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1822 
1823 	if (info)
1824 		spin_lock_init(&info->si_lock);
1825 	return info;
1826 }
1827 
hotmod_handler(const char * val,const struct kernel_param * kp)1828 static int hotmod_handler(const char *val, const struct kernel_param *kp)
1829 {
1830 	char *str = kstrdup(val, GFP_KERNEL);
1831 	int  rv;
1832 	char *next, *curr, *s, *n, *o;
1833 	enum hotmod_op op;
1834 	enum si_type si_type;
1835 	int  addr_space;
1836 	unsigned long addr;
1837 	int regspacing;
1838 	int regsize;
1839 	int regshift;
1840 	int irq;
1841 	int ipmb;
1842 	int ival;
1843 	int len;
1844 	struct smi_info *info;
1845 
1846 	if (!str)
1847 		return -ENOMEM;
1848 
1849 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1850 	len = strlen(str);
1851 	ival = len - 1;
1852 	while ((ival >= 0) && isspace(str[ival])) {
1853 		str[ival] = '\0';
1854 		ival--;
1855 	}
1856 
1857 	for (curr = str; curr; curr = next) {
1858 		regspacing = 1;
1859 		regsize = 1;
1860 		regshift = 0;
1861 		irq = 0;
1862 		ipmb = 0; /* Choose the default if not specified */
1863 
1864 		next = strchr(curr, ':');
1865 		if (next) {
1866 			*next = '\0';
1867 			next++;
1868 		}
1869 
1870 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1871 		if (rv)
1872 			break;
1873 		op = ival;
1874 
1875 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1876 		if (rv)
1877 			break;
1878 		si_type = ival;
1879 
1880 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1881 		if (rv)
1882 			break;
1883 
1884 		s = strchr(curr, ',');
1885 		if (s) {
1886 			*s = '\0';
1887 			s++;
1888 		}
1889 		addr = simple_strtoul(curr, &n, 0);
1890 		if ((*n != '\0') || (*curr == '\0')) {
1891 			pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1892 			break;
1893 		}
1894 
1895 		while (s) {
1896 			curr = s;
1897 			s = strchr(curr, ',');
1898 			if (s) {
1899 				*s = '\0';
1900 				s++;
1901 			}
1902 			o = strchr(curr, '=');
1903 			if (o) {
1904 				*o = '\0';
1905 				o++;
1906 			}
1907 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1908 			if (rv < 0)
1909 				goto out;
1910 			else if (rv)
1911 				continue;
1912 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1913 			if (rv < 0)
1914 				goto out;
1915 			else if (rv)
1916 				continue;
1917 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1918 			if (rv < 0)
1919 				goto out;
1920 			else if (rv)
1921 				continue;
1922 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1923 			if (rv < 0)
1924 				goto out;
1925 			else if (rv)
1926 				continue;
1927 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1928 			if (rv < 0)
1929 				goto out;
1930 			else if (rv)
1931 				continue;
1932 
1933 			rv = -EINVAL;
1934 			pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1935 			goto out;
1936 		}
1937 
1938 		if (op == HM_ADD) {
1939 			info = smi_info_alloc();
1940 			if (!info) {
1941 				rv = -ENOMEM;
1942 				goto out;
1943 			}
1944 
1945 			info->addr_source = SI_HOTMOD;
1946 			info->si_type = si_type;
1947 			info->io.addr_data = addr;
1948 			info->io.addr_type = addr_space;
1949 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1950 				info->io_setup = mem_setup;
1951 			else
1952 				info->io_setup = port_setup;
1953 
1954 			info->io.addr = NULL;
1955 			info->io.regspacing = regspacing;
1956 			if (!info->io.regspacing)
1957 				info->io.regspacing = DEFAULT_REGSPACING;
1958 			info->io.regsize = regsize;
1959 			if (!info->io.regsize)
1960 				info->io.regsize = DEFAULT_REGSIZE;
1961 			info->io.regshift = regshift;
1962 			info->irq = irq;
1963 			if (info->irq)
1964 				info->irq_setup = std_irq_setup;
1965 			info->slave_addr = ipmb;
1966 
1967 			rv = add_smi(info);
1968 			if (rv) {
1969 				kfree(info);
1970 				goto out;
1971 			}
1972 			mutex_lock(&smi_infos_lock);
1973 			rv = try_smi_init(info);
1974 			mutex_unlock(&smi_infos_lock);
1975 			if (rv) {
1976 				cleanup_one_si(info);
1977 				goto out;
1978 			}
1979 		} else {
1980 			/* remove */
1981 			struct smi_info *e, *tmp_e;
1982 
1983 			mutex_lock(&smi_infos_lock);
1984 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1985 				if (e->io.addr_type != addr_space)
1986 					continue;
1987 				if (e->si_type != si_type)
1988 					continue;
1989 				if (e->io.addr_data == addr)
1990 					cleanup_one_si(e);
1991 			}
1992 			mutex_unlock(&smi_infos_lock);
1993 		}
1994 	}
1995 	rv = len;
1996 out:
1997 	kfree(str);
1998 	return rv;
1999 }
2000 
hardcode_find_bmc(void)2001 static int hardcode_find_bmc(void)
2002 {
2003 	int ret = -ENODEV;
2004 	int             i;
2005 	struct smi_info *info;
2006 
2007 	for (i = 0; i < SI_MAX_PARMS; i++) {
2008 		if (!ports[i] && !addrs[i])
2009 			continue;
2010 
2011 		info = smi_info_alloc();
2012 		if (!info)
2013 			return -ENOMEM;
2014 
2015 		info->addr_source = SI_HARDCODED;
2016 		pr_info(PFX "probing via hardcoded address\n");
2017 
2018 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2019 			info->si_type = SI_KCS;
2020 		} else if (strcmp(si_type[i], "smic") == 0) {
2021 			info->si_type = SI_SMIC;
2022 		} else if (strcmp(si_type[i], "bt") == 0) {
2023 			info->si_type = SI_BT;
2024 		} else {
2025 			pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2026 				i, si_type[i]);
2027 			kfree(info);
2028 			continue;
2029 		}
2030 
2031 		if (ports[i]) {
2032 			/* An I/O port */
2033 			info->io_setup = port_setup;
2034 			info->io.addr_data = ports[i];
2035 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
2036 		} else if (addrs[i]) {
2037 			/* A memory port */
2038 			info->io_setup = mem_setup;
2039 			info->io.addr_data = addrs[i];
2040 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2041 		} else {
2042 			pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2043 				i);
2044 			kfree(info);
2045 			continue;
2046 		}
2047 
2048 		info->io.addr = NULL;
2049 		info->io.regspacing = regspacings[i];
2050 		if (!info->io.regspacing)
2051 			info->io.regspacing = DEFAULT_REGSPACING;
2052 		info->io.regsize = regsizes[i];
2053 		if (!info->io.regsize)
2054 			info->io.regsize = DEFAULT_REGSIZE;
2055 		info->io.regshift = regshifts[i];
2056 		info->irq = irqs[i];
2057 		if (info->irq)
2058 			info->irq_setup = std_irq_setup;
2059 		info->slave_addr = slave_addrs[i];
2060 
2061 		if (!add_smi(info)) {
2062 			mutex_lock(&smi_infos_lock);
2063 			if (try_smi_init(info))
2064 				cleanup_one_si(info);
2065 			mutex_unlock(&smi_infos_lock);
2066 			ret = 0;
2067 		} else {
2068 			kfree(info);
2069 		}
2070 	}
2071 	return ret;
2072 }
2073 
2074 #ifdef CONFIG_ACPI
2075 
2076 /*
2077  * Once we get an ACPI failure, we don't try any more, because we go
2078  * through the tables sequentially.  Once we don't find a table, there
2079  * are no more.
2080  */
2081 static int acpi_failure;
2082 
2083 /* For GPE-type interrupts. */
ipmi_acpi_gpe(acpi_handle gpe_device,u32 gpe_number,void * context)2084 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2085 	u32 gpe_number, void *context)
2086 {
2087 	struct smi_info *smi_info = context;
2088 	unsigned long   flags;
2089 
2090 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2091 
2092 	smi_inc_stat(smi_info, interrupts);
2093 
2094 	debug_timestamp("ACPI_GPE");
2095 
2096 	smi_event_handler(smi_info, 0);
2097 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2098 
2099 	return ACPI_INTERRUPT_HANDLED;
2100 }
2101 
acpi_gpe_irq_cleanup(struct smi_info * info)2102 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2103 {
2104 	if (!info->irq)
2105 		return;
2106 
2107 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2108 }
2109 
acpi_gpe_irq_setup(struct smi_info * info)2110 static int acpi_gpe_irq_setup(struct smi_info *info)
2111 {
2112 	acpi_status status;
2113 
2114 	if (!info->irq)
2115 		return 0;
2116 
2117 	status = acpi_install_gpe_handler(NULL,
2118 					  info->irq,
2119 					  ACPI_GPE_LEVEL_TRIGGERED,
2120 					  &ipmi_acpi_gpe,
2121 					  info);
2122 	if (status != AE_OK) {
2123 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2124 			 " running polled\n", DEVICE_NAME, info->irq);
2125 		info->irq = 0;
2126 		return -EINVAL;
2127 	} else {
2128 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2129 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2130 		return 0;
2131 	}
2132 }
2133 
2134 /*
2135  * Defined at
2136  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2137  */
2138 struct SPMITable {
2139 	s8	Signature[4];
2140 	u32	Length;
2141 	u8	Revision;
2142 	u8	Checksum;
2143 	s8	OEMID[6];
2144 	s8	OEMTableID[8];
2145 	s8	OEMRevision[4];
2146 	s8	CreatorID[4];
2147 	s8	CreatorRevision[4];
2148 	u8	InterfaceType;
2149 	u8	IPMIlegacy;
2150 	s16	SpecificationRevision;
2151 
2152 	/*
2153 	 * Bit 0 - SCI interrupt supported
2154 	 * Bit 1 - I/O APIC/SAPIC
2155 	 */
2156 	u8	InterruptType;
2157 
2158 	/*
2159 	 * If bit 0 of InterruptType is set, then this is the SCI
2160 	 * interrupt in the GPEx_STS register.
2161 	 */
2162 	u8	GPE;
2163 
2164 	s16	Reserved;
2165 
2166 	/*
2167 	 * If bit 1 of InterruptType is set, then this is the I/O
2168 	 * APIC/SAPIC interrupt.
2169 	 */
2170 	u32	GlobalSystemInterrupt;
2171 
2172 	/* The actual register address. */
2173 	struct acpi_generic_address addr;
2174 
2175 	u8	UID[4];
2176 
2177 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2178 };
2179 
try_init_spmi(struct SPMITable * spmi)2180 static int try_init_spmi(struct SPMITable *spmi)
2181 {
2182 	struct smi_info  *info;
2183 	int rv;
2184 
2185 	if (spmi->IPMIlegacy != 1) {
2186 		pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2187 		return -ENODEV;
2188 	}
2189 
2190 	info = smi_info_alloc();
2191 	if (!info) {
2192 		pr_err(PFX "Could not allocate SI data (3)\n");
2193 		return -ENOMEM;
2194 	}
2195 
2196 	info->addr_source = SI_SPMI;
2197 	pr_info(PFX "probing via SPMI\n");
2198 
2199 	/* Figure out the interface type. */
2200 	switch (spmi->InterfaceType) {
2201 	case 1:	/* KCS */
2202 		info->si_type = SI_KCS;
2203 		break;
2204 	case 2:	/* SMIC */
2205 		info->si_type = SI_SMIC;
2206 		break;
2207 	case 3:	/* BT */
2208 		info->si_type = SI_BT;
2209 		break;
2210 	case 4: /* SSIF, just ignore */
2211 		kfree(info);
2212 		return -EIO;
2213 	default:
2214 		pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2215 			spmi->InterfaceType);
2216 		kfree(info);
2217 		return -EIO;
2218 	}
2219 
2220 	if (spmi->InterruptType & 1) {
2221 		/* We've got a GPE interrupt. */
2222 		info->irq = spmi->GPE;
2223 		info->irq_setup = acpi_gpe_irq_setup;
2224 	} else if (spmi->InterruptType & 2) {
2225 		/* We've got an APIC/SAPIC interrupt. */
2226 		info->irq = spmi->GlobalSystemInterrupt;
2227 		info->irq_setup = std_irq_setup;
2228 	} else {
2229 		/* Use the default interrupt setting. */
2230 		info->irq = 0;
2231 		info->irq_setup = NULL;
2232 	}
2233 
2234 	if (spmi->addr.bit_width) {
2235 		/* A (hopefully) properly formed register bit width. */
2236 		info->io.regspacing = spmi->addr.bit_width / 8;
2237 	} else {
2238 		info->io.regspacing = DEFAULT_REGSPACING;
2239 	}
2240 	info->io.regsize = info->io.regspacing;
2241 	info->io.regshift = spmi->addr.bit_offset;
2242 
2243 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2244 		info->io_setup = mem_setup;
2245 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2246 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2247 		info->io_setup = port_setup;
2248 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2249 	} else {
2250 		kfree(info);
2251 		pr_warn(PFX "Unknown ACPI I/O Address type\n");
2252 		return -EIO;
2253 	}
2254 	info->io.addr_data = spmi->addr.address;
2255 
2256 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2257 		(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2258 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2259 		info->irq);
2260 
2261 	rv = add_smi(info);
2262 	if (rv)
2263 		kfree(info);
2264 
2265 	return rv;
2266 }
2267 
spmi_find_bmc(void)2268 static void spmi_find_bmc(void)
2269 {
2270 	acpi_status      status;
2271 	struct SPMITable *spmi;
2272 	int              i;
2273 
2274 	if (acpi_disabled)
2275 		return;
2276 
2277 	if (acpi_failure)
2278 		return;
2279 
2280 	for (i = 0; ; i++) {
2281 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2282 					(struct acpi_table_header **)&spmi);
2283 		if (status != AE_OK)
2284 			return;
2285 
2286 		try_init_spmi(spmi);
2287 	}
2288 }
2289 #endif
2290 
2291 #if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
ipmi_get_info_from_resources(struct platform_device * pdev,struct smi_info * info)2292 struct resource *ipmi_get_info_from_resources(struct platform_device *pdev,
2293 					      struct smi_info *info)
2294 {
2295 	struct resource *res, *res_second;
2296 
2297 	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
2298 	if (res) {
2299 		info->io_setup = port_setup;
2300 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2301 	} else {
2302 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2303 		if (res) {
2304 			info->io_setup = mem_setup;
2305 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2306 		}
2307 	}
2308 	if (!res) {
2309 		dev_err(&pdev->dev, "no I/O or memory address\n");
2310 		return NULL;
2311 	}
2312 	info->io.addr_data = res->start;
2313 
2314 	info->io.regspacing = DEFAULT_REGSPACING;
2315 	res_second = platform_get_resource(pdev,
2316 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2317 					IORESOURCE_IO : IORESOURCE_MEM,
2318 			       1);
2319 	if (res_second) {
2320 		if (res_second->start > info->io.addr_data)
2321 			info->io.regspacing =
2322 				res_second->start - info->io.addr_data;
2323 	}
2324 	info->io.regsize = DEFAULT_REGSIZE;
2325 	info->io.regshift = 0;
2326 
2327 	return res;
2328 }
2329 
2330 #endif
2331 
2332 #ifdef CONFIG_DMI
dmi_ipmi_probe(struct platform_device * pdev)2333 static int dmi_ipmi_probe(struct platform_device *pdev)
2334 {
2335 	struct smi_info *info;
2336 	u8 type, slave_addr;
2337 	int rv;
2338 
2339 	if (!si_trydmi)
2340 		return -ENODEV;
2341 
2342 	rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
2343 	if (rv)
2344 		return -ENODEV;
2345 
2346 	info = smi_info_alloc();
2347 	if (!info) {
2348 		pr_err(PFX "Could not allocate SI data\n");
2349 		return -ENOMEM;
2350 	}
2351 
2352 	info->addr_source = SI_SMBIOS;
2353 	pr_info(PFX "probing via SMBIOS\n");
2354 
2355 	switch (type) {
2356 	case IPMI_DMI_TYPE_KCS:
2357 		info->si_type = SI_KCS;
2358 		break;
2359 	case IPMI_DMI_TYPE_SMIC:
2360 		info->si_type = SI_SMIC;
2361 		break;
2362 	case IPMI_DMI_TYPE_BT:
2363 		info->si_type = SI_BT;
2364 		break;
2365 	default:
2366 		kfree(info);
2367 		return -EINVAL;
2368 	}
2369 
2370 	if (!ipmi_get_info_from_resources(pdev, info)) {
2371 		rv = -EINVAL;
2372 		goto err_free;
2373 	}
2374 
2375 	rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
2376 	if (rv) {
2377 		dev_warn(&pdev->dev, "device has no slave-addr property");
2378 		info->slave_addr = 0x20;
2379 	} else {
2380 		info->slave_addr = slave_addr;
2381 	}
2382 
2383 	info->irq = platform_get_irq(pdev, 0);
2384 	if (info->irq > 0)
2385 		info->irq_setup = std_irq_setup;
2386 	else
2387 		info->irq = 0;
2388 
2389 	info->dev = &pdev->dev;
2390 
2391 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2392 		(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2393 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2394 		info->irq);
2395 
2396 	if (add_smi(info))
2397 		kfree(info);
2398 
2399 	return 0;
2400 
2401 err_free:
2402 	kfree(info);
2403 	return rv;
2404 }
2405 #else
dmi_ipmi_probe(struct platform_device * pdev)2406 static int dmi_ipmi_probe(struct platform_device *pdev)
2407 {
2408 	return -ENODEV;
2409 }
2410 #endif /* CONFIG_DMI */
2411 
2412 #ifdef CONFIG_PCI
2413 
2414 #define PCI_ERMC_CLASSCODE		0x0C0700
2415 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2416 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2417 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2418 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2419 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2420 
2421 #define PCI_HP_VENDOR_ID    0x103C
2422 #define PCI_MMC_DEVICE_ID   0x121A
2423 #define PCI_MMC_ADDR_CW     0x10
2424 
ipmi_pci_cleanup(struct smi_info * info)2425 static void ipmi_pci_cleanup(struct smi_info *info)
2426 {
2427 	struct pci_dev *pdev = info->addr_source_data;
2428 
2429 	pci_disable_device(pdev);
2430 }
2431 
ipmi_pci_probe_regspacing(struct smi_info * info)2432 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2433 {
2434 	if (info->si_type == SI_KCS) {
2435 		unsigned char	status;
2436 		int		regspacing;
2437 
2438 		info->io.regsize = DEFAULT_REGSIZE;
2439 		info->io.regshift = 0;
2440 		info->io_size = 2;
2441 		info->handlers = &kcs_smi_handlers;
2442 
2443 		/* detect 1, 4, 16byte spacing */
2444 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2445 			info->io.regspacing = regspacing;
2446 			if (info->io_setup(info)) {
2447 				dev_err(info->dev,
2448 					"Could not setup I/O space\n");
2449 				return DEFAULT_REGSPACING;
2450 			}
2451 			/* write invalid cmd */
2452 			info->io.outputb(&info->io, 1, 0x10);
2453 			/* read status back */
2454 			status = info->io.inputb(&info->io, 1);
2455 			info->io_cleanup(info);
2456 			if (status)
2457 				return regspacing;
2458 			regspacing *= 4;
2459 		}
2460 	}
2461 	return DEFAULT_REGSPACING;
2462 }
2463 
2464 static struct pci_device_id ipmi_pci_blacklist[] = {
2465 	/*
2466 	 * This is a "Virtual IPMI device", whatever that is.  It appears
2467 	 * as a KCS device by the class, but it is not one.
2468 	 */
2469 	{ PCI_VDEVICE(REALTEK, 0x816c) },
2470 	{ 0, }
2471 };
2472 
ipmi_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2473 static int ipmi_pci_probe(struct pci_dev *pdev,
2474 				    const struct pci_device_id *ent)
2475 {
2476 	int rv;
2477 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2478 	struct smi_info *info;
2479 
2480 	if (pci_match_id(ipmi_pci_blacklist, pdev))
2481 		return -ENODEV;
2482 
2483 	info = smi_info_alloc();
2484 	if (!info)
2485 		return -ENOMEM;
2486 
2487 	info->addr_source = SI_PCI;
2488 	dev_info(&pdev->dev, "probing via PCI");
2489 
2490 	switch (class_type) {
2491 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2492 		info->si_type = SI_SMIC;
2493 		break;
2494 
2495 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2496 		info->si_type = SI_KCS;
2497 		break;
2498 
2499 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2500 		info->si_type = SI_BT;
2501 		break;
2502 
2503 	default:
2504 		kfree(info);
2505 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2506 		return -ENOMEM;
2507 	}
2508 
2509 	rv = pci_enable_device(pdev);
2510 	if (rv) {
2511 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2512 		kfree(info);
2513 		return rv;
2514 	}
2515 
2516 	info->addr_source_cleanup = ipmi_pci_cleanup;
2517 	info->addr_source_data = pdev;
2518 
2519 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2520 		info->io_setup = port_setup;
2521 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2522 	} else {
2523 		info->io_setup = mem_setup;
2524 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2525 	}
2526 	info->io.addr_data = pci_resource_start(pdev, 0);
2527 
2528 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2529 	info->io.regsize = DEFAULT_REGSIZE;
2530 	info->io.regshift = 0;
2531 
2532 	info->irq = pdev->irq;
2533 	if (info->irq)
2534 		info->irq_setup = std_irq_setup;
2535 
2536 	info->dev = &pdev->dev;
2537 	pci_set_drvdata(pdev, info);
2538 
2539 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2540 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2541 		info->irq);
2542 
2543 	rv = add_smi(info);
2544 	if (rv) {
2545 		kfree(info);
2546 		pci_disable_device(pdev);
2547 	}
2548 
2549 	return rv;
2550 }
2551 
ipmi_pci_remove(struct pci_dev * pdev)2552 static void ipmi_pci_remove(struct pci_dev *pdev)
2553 {
2554 	struct smi_info *info = pci_get_drvdata(pdev);
2555 	cleanup_one_si(info);
2556 }
2557 
2558 static const struct pci_device_id ipmi_pci_devices[] = {
2559 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2560 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2561 	{ 0, }
2562 };
2563 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2564 
2565 static struct pci_driver ipmi_pci_driver = {
2566 	.name =         DEVICE_NAME,
2567 	.id_table =     ipmi_pci_devices,
2568 	.probe =        ipmi_pci_probe,
2569 	.remove =       ipmi_pci_remove,
2570 };
2571 #endif /* CONFIG_PCI */
2572 
2573 #ifdef CONFIG_OF
2574 static const struct of_device_id of_ipmi_match[] = {
2575 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2576 	  .data = (void *)(unsigned long) SI_KCS },
2577 	{ .type = "ipmi", .compatible = "ipmi-smic",
2578 	  .data = (void *)(unsigned long) SI_SMIC },
2579 	{ .type = "ipmi", .compatible = "ipmi-bt",
2580 	  .data = (void *)(unsigned long) SI_BT },
2581 	{},
2582 };
2583 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2584 
of_ipmi_probe(struct platform_device * dev)2585 static int of_ipmi_probe(struct platform_device *dev)
2586 {
2587 	const struct of_device_id *match;
2588 	struct smi_info *info;
2589 	struct resource resource;
2590 	const __be32 *regsize, *regspacing, *regshift;
2591 	struct device_node *np = dev->dev.of_node;
2592 	int ret;
2593 	int proplen;
2594 
2595 	dev_info(&dev->dev, "probing via device tree\n");
2596 
2597 	match = of_match_device(of_ipmi_match, &dev->dev);
2598 	if (!match)
2599 		return -ENODEV;
2600 
2601 	if (!of_device_is_available(np))
2602 		return -EINVAL;
2603 
2604 	ret = of_address_to_resource(np, 0, &resource);
2605 	if (ret) {
2606 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2607 		return ret;
2608 	}
2609 
2610 	regsize = of_get_property(np, "reg-size", &proplen);
2611 	if (regsize && proplen != 4) {
2612 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2613 		return -EINVAL;
2614 	}
2615 
2616 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2617 	if (regspacing && proplen != 4) {
2618 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2619 		return -EINVAL;
2620 	}
2621 
2622 	regshift = of_get_property(np, "reg-shift", &proplen);
2623 	if (regshift && proplen != 4) {
2624 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2625 		return -EINVAL;
2626 	}
2627 
2628 	info = smi_info_alloc();
2629 
2630 	if (!info) {
2631 		dev_err(&dev->dev,
2632 			"could not allocate memory for OF probe\n");
2633 		return -ENOMEM;
2634 	}
2635 
2636 	info->si_type		= (enum si_type) match->data;
2637 	info->addr_source	= SI_DEVICETREE;
2638 	info->irq_setup		= std_irq_setup;
2639 
2640 	if (resource.flags & IORESOURCE_IO) {
2641 		info->io_setup		= port_setup;
2642 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2643 	} else {
2644 		info->io_setup		= mem_setup;
2645 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2646 	}
2647 
2648 	info->io.addr_data	= resource.start;
2649 
2650 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2651 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2652 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2653 
2654 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2655 	info->dev		= &dev->dev;
2656 
2657 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2658 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2659 		info->irq);
2660 
2661 	dev_set_drvdata(&dev->dev, info);
2662 
2663 	ret = add_smi(info);
2664 	if (ret) {
2665 		kfree(info);
2666 		return ret;
2667 	}
2668 	return 0;
2669 }
2670 #else
2671 #define of_ipmi_match NULL
of_ipmi_probe(struct platform_device * dev)2672 static int of_ipmi_probe(struct platform_device *dev)
2673 {
2674 	return -ENODEV;
2675 }
2676 #endif
2677 
2678 #ifdef CONFIG_ACPI
find_slave_address(struct smi_info * info,int slave_addr)2679 static int find_slave_address(struct smi_info *info, int slave_addr)
2680 {
2681 #ifdef CONFIG_IPMI_DMI_DECODE
2682 	if (!slave_addr) {
2683 		int type = -1;
2684 		u32 flags = IORESOURCE_IO;
2685 
2686 		switch (info->si_type) {
2687 		case SI_KCS:
2688 			type = IPMI_DMI_TYPE_KCS;
2689 			break;
2690 		case SI_BT:
2691 			type = IPMI_DMI_TYPE_BT;
2692 			break;
2693 		case SI_SMIC:
2694 			type = IPMI_DMI_TYPE_SMIC;
2695 			break;
2696 		}
2697 
2698 		if (info->io.addr_type == IPMI_MEM_ADDR_SPACE)
2699 			flags = IORESOURCE_MEM;
2700 
2701 		slave_addr = ipmi_dmi_get_slave_addr(type, flags,
2702 						     info->io.addr_data);
2703 	}
2704 #endif
2705 
2706 	return slave_addr;
2707 }
2708 
acpi_ipmi_probe(struct platform_device * dev)2709 static int acpi_ipmi_probe(struct platform_device *dev)
2710 {
2711 	struct smi_info *info;
2712 	acpi_handle handle;
2713 	acpi_status status;
2714 	unsigned long long tmp;
2715 	struct resource *res;
2716 	int rv = -EINVAL;
2717 
2718 	if (!si_tryacpi)
2719 		return -ENODEV;
2720 
2721 	handle = ACPI_HANDLE(&dev->dev);
2722 	if (!handle)
2723 		return -ENODEV;
2724 
2725 	info = smi_info_alloc();
2726 	if (!info)
2727 		return -ENOMEM;
2728 
2729 	info->addr_source = SI_ACPI;
2730 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2731 
2732 	info->addr_info.acpi_info.acpi_handle = handle;
2733 
2734 	/* _IFT tells us the interface type: KCS, BT, etc */
2735 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2736 	if (ACPI_FAILURE(status)) {
2737 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2738 		goto err_free;
2739 	}
2740 
2741 	switch (tmp) {
2742 	case 1:
2743 		info->si_type = SI_KCS;
2744 		break;
2745 	case 2:
2746 		info->si_type = SI_SMIC;
2747 		break;
2748 	case 3:
2749 		info->si_type = SI_BT;
2750 		break;
2751 	case 4: /* SSIF, just ignore */
2752 		rv = -ENODEV;
2753 		goto err_free;
2754 	default:
2755 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2756 		goto err_free;
2757 	}
2758 
2759 	res = ipmi_get_info_from_resources(dev, info);
2760 	if (!res) {
2761 		rv = -EINVAL;
2762 		goto err_free;
2763 	}
2764 
2765 	/* If _GPE exists, use it; otherwise use standard interrupts */
2766 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2767 	if (ACPI_SUCCESS(status)) {
2768 		info->irq = tmp;
2769 		info->irq_setup = acpi_gpe_irq_setup;
2770 	} else {
2771 		int irq = platform_get_irq(dev, 0);
2772 
2773 		if (irq > 0) {
2774 			info->irq = irq;
2775 			info->irq_setup = std_irq_setup;
2776 		}
2777 	}
2778 
2779 	info->slave_addr = find_slave_address(info, info->slave_addr);
2780 
2781 	info->dev = &dev->dev;
2782 	platform_set_drvdata(dev, info);
2783 
2784 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2785 		 res, info->io.regsize, info->io.regspacing,
2786 		 info->irq);
2787 
2788 	rv = add_smi(info);
2789 	if (rv)
2790 		kfree(info);
2791 
2792 	return rv;
2793 
2794 err_free:
2795 	kfree(info);
2796 	return rv;
2797 }
2798 
2799 static const struct acpi_device_id acpi_ipmi_match[] = {
2800 	{ "IPI0001", 0 },
2801 	{ },
2802 };
2803 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2804 #else
acpi_ipmi_probe(struct platform_device * dev)2805 static int acpi_ipmi_probe(struct platform_device *dev)
2806 {
2807 	return -ENODEV;
2808 }
2809 #endif
2810 
ipmi_probe(struct platform_device * dev)2811 static int ipmi_probe(struct platform_device *dev)
2812 {
2813 	if (of_ipmi_probe(dev) == 0)
2814 		return 0;
2815 
2816 	if (acpi_ipmi_probe(dev) == 0)
2817 		return 0;
2818 
2819 	return dmi_ipmi_probe(dev);
2820 }
2821 
ipmi_remove(struct platform_device * dev)2822 static int ipmi_remove(struct platform_device *dev)
2823 {
2824 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2825 
2826 	cleanup_one_si(info);
2827 	return 0;
2828 }
2829 
2830 static struct platform_driver ipmi_driver = {
2831 	.driver = {
2832 		.name = DEVICE_NAME,
2833 		.of_match_table = of_ipmi_match,
2834 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2835 	},
2836 	.probe		= ipmi_probe,
2837 	.remove		= ipmi_remove,
2838 };
2839 
2840 #ifdef CONFIG_PARISC
ipmi_parisc_probe(struct parisc_device * dev)2841 static int __init ipmi_parisc_probe(struct parisc_device *dev)
2842 {
2843 	struct smi_info *info;
2844 	int rv;
2845 
2846 	info = smi_info_alloc();
2847 
2848 	if (!info) {
2849 		dev_err(&dev->dev,
2850 			"could not allocate memory for PARISC probe\n");
2851 		return -ENOMEM;
2852 	}
2853 
2854 	info->si_type		= SI_KCS;
2855 	info->addr_source	= SI_DEVICETREE;
2856 	info->io_setup		= mem_setup;
2857 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2858 	info->io.addr_data	= dev->hpa.start;
2859 	info->io.regsize	= 1;
2860 	info->io.regspacing	= 1;
2861 	info->io.regshift	= 0;
2862 	info->irq		= 0; /* no interrupt */
2863 	info->irq_setup		= NULL;
2864 	info->dev		= &dev->dev;
2865 
2866 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2867 
2868 	dev_set_drvdata(&dev->dev, info);
2869 
2870 	rv = add_smi(info);
2871 	if (rv) {
2872 		kfree(info);
2873 		return rv;
2874 	}
2875 
2876 	return 0;
2877 }
2878 
ipmi_parisc_remove(struct parisc_device * dev)2879 static int __exit ipmi_parisc_remove(struct parisc_device *dev)
2880 {
2881 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2882 	return 0;
2883 }
2884 
2885 static const struct parisc_device_id ipmi_parisc_tbl[] __initconst = {
2886 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2887 	{ 0, }
2888 };
2889 
2890 MODULE_DEVICE_TABLE(parisc, ipmi_parisc_tbl);
2891 
2892 static struct parisc_driver ipmi_parisc_driver __refdata = {
2893 	.name =		"ipmi",
2894 	.id_table =	ipmi_parisc_tbl,
2895 	.probe =	ipmi_parisc_probe,
2896 	.remove =	__exit_p(ipmi_parisc_remove),
2897 };
2898 #endif /* CONFIG_PARISC */
2899 
wait_for_msg_done(struct smi_info * smi_info)2900 static int wait_for_msg_done(struct smi_info *smi_info)
2901 {
2902 	enum si_sm_result     smi_result;
2903 
2904 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2905 	for (;;) {
2906 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2907 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2908 			schedule_timeout_uninterruptible(1);
2909 			smi_result = smi_info->handlers->event(
2910 				smi_info->si_sm, jiffies_to_usecs(1));
2911 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2912 			smi_result = smi_info->handlers->event(
2913 				smi_info->si_sm, 0);
2914 		} else
2915 			break;
2916 	}
2917 	if (smi_result == SI_SM_HOSED)
2918 		/*
2919 		 * We couldn't get the state machine to run, so whatever's at
2920 		 * the port is probably not an IPMI SMI interface.
2921 		 */
2922 		return -ENODEV;
2923 
2924 	return 0;
2925 }
2926 
try_get_dev_id(struct smi_info * smi_info)2927 static int try_get_dev_id(struct smi_info *smi_info)
2928 {
2929 	unsigned char         msg[2];
2930 	unsigned char         *resp;
2931 	unsigned long         resp_len;
2932 	int                   rv = 0;
2933 
2934 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2935 	if (!resp)
2936 		return -ENOMEM;
2937 
2938 	/*
2939 	 * Do a Get Device ID command, since it comes back with some
2940 	 * useful info.
2941 	 */
2942 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2943 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2944 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2945 
2946 	rv = wait_for_msg_done(smi_info);
2947 	if (rv)
2948 		goto out;
2949 
2950 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2951 						  resp, IPMI_MAX_MSG_LENGTH);
2952 
2953 	/* Check and record info from the get device id, in case we need it. */
2954 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2955 
2956 out:
2957 	kfree(resp);
2958 	return rv;
2959 }
2960 
get_global_enables(struct smi_info * smi_info,u8 * enables)2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2962 {
2963 	unsigned char         msg[3];
2964 	unsigned char         *resp;
2965 	unsigned long         resp_len;
2966 	int                   rv;
2967 
2968 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2969 	if (!resp)
2970 		return -ENOMEM;
2971 
2972 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2973 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2974 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2975 
2976 	rv = wait_for_msg_done(smi_info);
2977 	if (rv) {
2978 		dev_warn(smi_info->dev,
2979 			 "Error getting response from get global enables command: %d\n",
2980 			 rv);
2981 		goto out;
2982 	}
2983 
2984 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2985 						  resp, IPMI_MAX_MSG_LENGTH);
2986 
2987 	if (resp_len < 4 ||
2988 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2989 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2990 			resp[2] != 0) {
2991 		dev_warn(smi_info->dev,
2992 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2993 			 resp_len, resp[0], resp[1], resp[2]);
2994 		rv = -EINVAL;
2995 		goto out;
2996 	} else {
2997 		*enables = resp[3];
2998 	}
2999 
3000 out:
3001 	kfree(resp);
3002 	return rv;
3003 }
3004 
3005 /*
3006  * Returns 1 if it gets an error from the command.
3007  */
set_global_enables(struct smi_info * smi_info,u8 enables)3008 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3009 {
3010 	unsigned char         msg[3];
3011 	unsigned char         *resp;
3012 	unsigned long         resp_len;
3013 	int                   rv;
3014 
3015 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3016 	if (!resp)
3017 		return -ENOMEM;
3018 
3019 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3020 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3021 	msg[2] = enables;
3022 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3023 
3024 	rv = wait_for_msg_done(smi_info);
3025 	if (rv) {
3026 		dev_warn(smi_info->dev,
3027 			 "Error getting response from set global enables command: %d\n",
3028 			 rv);
3029 		goto out;
3030 	}
3031 
3032 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3033 						  resp, IPMI_MAX_MSG_LENGTH);
3034 
3035 	if (resp_len < 3 ||
3036 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3037 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3038 		dev_warn(smi_info->dev,
3039 			 "Invalid return from set global enables command: %ld %x %x\n",
3040 			 resp_len, resp[0], resp[1]);
3041 		rv = -EINVAL;
3042 		goto out;
3043 	}
3044 
3045 	if (resp[2] != 0)
3046 		rv = 1;
3047 
3048 out:
3049 	kfree(resp);
3050 	return rv;
3051 }
3052 
3053 /*
3054  * Some BMCs do not support clearing the receive irq bit in the global
3055  * enables (even if they don't support interrupts on the BMC).  Check
3056  * for this and handle it properly.
3057  */
check_clr_rcv_irq(struct smi_info * smi_info)3058 static void check_clr_rcv_irq(struct smi_info *smi_info)
3059 {
3060 	u8 enables = 0;
3061 	int rv;
3062 
3063 	rv = get_global_enables(smi_info, &enables);
3064 	if (!rv) {
3065 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3066 			/* Already clear, should work ok. */
3067 			return;
3068 
3069 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3070 		rv = set_global_enables(smi_info, enables);
3071 	}
3072 
3073 	if (rv < 0) {
3074 		dev_err(smi_info->dev,
3075 			"Cannot check clearing the rcv irq: %d\n", rv);
3076 		return;
3077 	}
3078 
3079 	if (rv) {
3080 		/*
3081 		 * An error when setting the event buffer bit means
3082 		 * clearing the bit is not supported.
3083 		 */
3084 		dev_warn(smi_info->dev,
3085 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 		smi_info->cannot_disable_irq = true;
3087 	}
3088 }
3089 
3090 /*
3091  * Some BMCs do not support setting the interrupt bits in the global
3092  * enables even if they support interrupts.  Clearly bad, but we can
3093  * compensate.
3094  */
check_set_rcv_irq(struct smi_info * smi_info)3095 static void check_set_rcv_irq(struct smi_info *smi_info)
3096 {
3097 	u8 enables = 0;
3098 	int rv;
3099 
3100 	if (!smi_info->irq)
3101 		return;
3102 
3103 	rv = get_global_enables(smi_info, &enables);
3104 	if (!rv) {
3105 		enables |= IPMI_BMC_RCV_MSG_INTR;
3106 		rv = set_global_enables(smi_info, enables);
3107 	}
3108 
3109 	if (rv < 0) {
3110 		dev_err(smi_info->dev,
3111 			"Cannot check setting the rcv irq: %d\n", rv);
3112 		return;
3113 	}
3114 
3115 	if (rv) {
3116 		/*
3117 		 * An error when setting the event buffer bit means
3118 		 * setting the bit is not supported.
3119 		 */
3120 		dev_warn(smi_info->dev,
3121 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122 		smi_info->cannot_disable_irq = true;
3123 		smi_info->irq_enable_broken = true;
3124 	}
3125 }
3126 
try_enable_event_buffer(struct smi_info * smi_info)3127 static int try_enable_event_buffer(struct smi_info *smi_info)
3128 {
3129 	unsigned char         msg[3];
3130 	unsigned char         *resp;
3131 	unsigned long         resp_len;
3132 	int                   rv = 0;
3133 
3134 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3135 	if (!resp)
3136 		return -ENOMEM;
3137 
3138 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3140 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3141 
3142 	rv = wait_for_msg_done(smi_info);
3143 	if (rv) {
3144 		pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3145 		goto out;
3146 	}
3147 
3148 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3149 						  resp, IPMI_MAX_MSG_LENGTH);
3150 
3151 	if (resp_len < 4 ||
3152 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3153 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3154 			resp[2] != 0) {
3155 		pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3156 		rv = -EINVAL;
3157 		goto out;
3158 	}
3159 
3160 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3161 		/* buffer is already enabled, nothing to do. */
3162 		smi_info->supports_event_msg_buff = true;
3163 		goto out;
3164 	}
3165 
3166 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3167 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3168 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3169 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3170 
3171 	rv = wait_for_msg_done(smi_info);
3172 	if (rv) {
3173 		pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3174 		goto out;
3175 	}
3176 
3177 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3178 						  resp, IPMI_MAX_MSG_LENGTH);
3179 
3180 	if (resp_len < 3 ||
3181 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3182 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3183 		pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3184 		rv = -EINVAL;
3185 		goto out;
3186 	}
3187 
3188 	if (resp[2] != 0)
3189 		/*
3190 		 * An error when setting the event buffer bit means
3191 		 * that the event buffer is not supported.
3192 		 */
3193 		rv = -ENOENT;
3194 	else
3195 		smi_info->supports_event_msg_buff = true;
3196 
3197 out:
3198 	kfree(resp);
3199 	return rv;
3200 }
3201 
smi_type_proc_show(struct seq_file * m,void * v)3202 static int smi_type_proc_show(struct seq_file *m, void *v)
3203 {
3204 	struct smi_info *smi = m->private;
3205 
3206 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3207 
3208 	return 0;
3209 }
3210 
smi_type_proc_open(struct inode * inode,struct file * file)3211 static int smi_type_proc_open(struct inode *inode, struct file *file)
3212 {
3213 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3214 }
3215 
3216 static const struct file_operations smi_type_proc_ops = {
3217 	.open		= smi_type_proc_open,
3218 	.read		= seq_read,
3219 	.llseek		= seq_lseek,
3220 	.release	= single_release,
3221 };
3222 
smi_si_stats_proc_show(struct seq_file * m,void * v)3223 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3224 {
3225 	struct smi_info *smi = m->private;
3226 
3227 	seq_printf(m, "interrupts_enabled:    %d\n",
3228 		       smi->irq && !smi->interrupt_disabled);
3229 	seq_printf(m, "short_timeouts:        %u\n",
3230 		       smi_get_stat(smi, short_timeouts));
3231 	seq_printf(m, "long_timeouts:         %u\n",
3232 		       smi_get_stat(smi, long_timeouts));
3233 	seq_printf(m, "idles:                 %u\n",
3234 		       smi_get_stat(smi, idles));
3235 	seq_printf(m, "interrupts:            %u\n",
3236 		       smi_get_stat(smi, interrupts));
3237 	seq_printf(m, "attentions:            %u\n",
3238 		       smi_get_stat(smi, attentions));
3239 	seq_printf(m, "flag_fetches:          %u\n",
3240 		       smi_get_stat(smi, flag_fetches));
3241 	seq_printf(m, "hosed_count:           %u\n",
3242 		       smi_get_stat(smi, hosed_count));
3243 	seq_printf(m, "complete_transactions: %u\n",
3244 		       smi_get_stat(smi, complete_transactions));
3245 	seq_printf(m, "events:                %u\n",
3246 		       smi_get_stat(smi, events));
3247 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3248 		       smi_get_stat(smi, watchdog_pretimeouts));
3249 	seq_printf(m, "incoming_messages:     %u\n",
3250 		       smi_get_stat(smi, incoming_messages));
3251 	return 0;
3252 }
3253 
smi_si_stats_proc_open(struct inode * inode,struct file * file)3254 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3255 {
3256 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3257 }
3258 
3259 static const struct file_operations smi_si_stats_proc_ops = {
3260 	.open		= smi_si_stats_proc_open,
3261 	.read		= seq_read,
3262 	.llseek		= seq_lseek,
3263 	.release	= single_release,
3264 };
3265 
smi_params_proc_show(struct seq_file * m,void * v)3266 static int smi_params_proc_show(struct seq_file *m, void *v)
3267 {
3268 	struct smi_info *smi = m->private;
3269 
3270 	seq_printf(m,
3271 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3272 		   si_to_str[smi->si_type],
3273 		   addr_space_to_str[smi->io.addr_type],
3274 		   smi->io.addr_data,
3275 		   smi->io.regspacing,
3276 		   smi->io.regsize,
3277 		   smi->io.regshift,
3278 		   smi->irq,
3279 		   smi->slave_addr);
3280 
3281 	return 0;
3282 }
3283 
smi_params_proc_open(struct inode * inode,struct file * file)3284 static int smi_params_proc_open(struct inode *inode, struct file *file)
3285 {
3286 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3287 }
3288 
3289 static const struct file_operations smi_params_proc_ops = {
3290 	.open		= smi_params_proc_open,
3291 	.read		= seq_read,
3292 	.llseek		= seq_lseek,
3293 	.release	= single_release,
3294 };
3295 
3296 /*
3297  * oem_data_avail_to_receive_msg_avail
3298  * @info - smi_info structure with msg_flags set
3299  *
3300  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3301  * Returns 1 indicating need to re-run handle_flags().
3302  */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)3303 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3304 {
3305 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3306 			       RECEIVE_MSG_AVAIL);
3307 	return 1;
3308 }
3309 
3310 /*
3311  * setup_dell_poweredge_oem_data_handler
3312  * @info - smi_info.device_id must be populated
3313  *
3314  * Systems that match, but have firmware version < 1.40 may assert
3315  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3316  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3317  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3318  * as RECEIVE_MSG_AVAIL instead.
3319  *
3320  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3321  * assert the OEM[012] bits, and if it did, the driver would have to
3322  * change to handle that properly, we don't actually check for the
3323  * firmware version.
3324  * Device ID = 0x20                BMC on PowerEdge 8G servers
3325  * Device Revision = 0x80
3326  * Firmware Revision1 = 0x01       BMC version 1.40
3327  * Firmware Revision2 = 0x40       BCD encoded
3328  * IPMI Version = 0x51             IPMI 1.5
3329  * Manufacturer ID = A2 02 00      Dell IANA
3330  *
3331  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3332  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3333  *
3334  */
3335 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3336 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3337 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3338 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)3339 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3340 {
3341 	struct ipmi_device_id *id = &smi_info->device_id;
3342 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3343 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3344 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3345 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3346 			smi_info->oem_data_avail_handler =
3347 				oem_data_avail_to_receive_msg_avail;
3348 		} else if (ipmi_version_major(id) < 1 ||
3349 			   (ipmi_version_major(id) == 1 &&
3350 			    ipmi_version_minor(id) < 5)) {
3351 			smi_info->oem_data_avail_handler =
3352 				oem_data_avail_to_receive_msg_avail;
3353 		}
3354 	}
3355 }
3356 
3357 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)3358 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3359 {
3360 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3361 
3362 	/* Make it a response */
3363 	msg->rsp[0] = msg->data[0] | 4;
3364 	msg->rsp[1] = msg->data[1];
3365 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3366 	msg->rsp_size = 3;
3367 	smi_info->curr_msg = NULL;
3368 	deliver_recv_msg(smi_info, msg);
3369 }
3370 
3371 /*
3372  * dell_poweredge_bt_xaction_handler
3373  * @info - smi_info.device_id must be populated
3374  *
3375  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3376  * not respond to a Get SDR command if the length of the data
3377  * requested is exactly 0x3A, which leads to command timeouts and no
3378  * data returned.  This intercepts such commands, and causes userspace
3379  * callers to try again with a different-sized buffer, which succeeds.
3380  */
3381 
3382 #define STORAGE_NETFN 0x0A
3383 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)3384 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3385 					     unsigned long unused,
3386 					     void *in)
3387 {
3388 	struct smi_info *smi_info = in;
3389 	unsigned char *data = smi_info->curr_msg->data;
3390 	unsigned int size   = smi_info->curr_msg->data_size;
3391 	if (size >= 8 &&
3392 	    (data[0]>>2) == STORAGE_NETFN &&
3393 	    data[1] == STORAGE_CMD_GET_SDR &&
3394 	    data[7] == 0x3A) {
3395 		return_hosed_msg_badsize(smi_info);
3396 		return NOTIFY_STOP;
3397 	}
3398 	return NOTIFY_DONE;
3399 }
3400 
3401 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3402 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3403 };
3404 
3405 /*
3406  * setup_dell_poweredge_bt_xaction_handler
3407  * @info - smi_info.device_id must be filled in already
3408  *
3409  * Fills in smi_info.device_id.start_transaction_pre_hook
3410  * when we know what function to use there.
3411  */
3412 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)3413 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3414 {
3415 	struct ipmi_device_id *id = &smi_info->device_id;
3416 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3417 	    smi_info->si_type == SI_BT)
3418 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3419 }
3420 
3421 /*
3422  * setup_oem_data_handler
3423  * @info - smi_info.device_id must be filled in already
3424  *
3425  * Fills in smi_info.device_id.oem_data_available_handler
3426  * when we know what function to use there.
3427  */
3428 
setup_oem_data_handler(struct smi_info * smi_info)3429 static void setup_oem_data_handler(struct smi_info *smi_info)
3430 {
3431 	setup_dell_poweredge_oem_data_handler(smi_info);
3432 }
3433 
setup_xaction_handlers(struct smi_info * smi_info)3434 static void setup_xaction_handlers(struct smi_info *smi_info)
3435 {
3436 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3437 }
3438 
check_for_broken_irqs(struct smi_info * smi_info)3439 static void check_for_broken_irqs(struct smi_info *smi_info)
3440 {
3441 	check_clr_rcv_irq(smi_info);
3442 	check_set_rcv_irq(smi_info);
3443 }
3444 
stop_timer_and_thread(struct smi_info * smi_info)3445 static inline void stop_timer_and_thread(struct smi_info *smi_info)
3446 {
3447 	if (smi_info->thread != NULL)
3448 		kthread_stop(smi_info->thread);
3449 
3450 	smi_info->timer_can_start = false;
3451 	if (smi_info->timer_running)
3452 		del_timer_sync(&smi_info->si_timer);
3453 }
3454 
find_dup_si(struct smi_info * info)3455 static struct smi_info *find_dup_si(struct smi_info *info)
3456 {
3457 	struct smi_info *e;
3458 
3459 	list_for_each_entry(e, &smi_infos, link) {
3460 		if (e->io.addr_type != info->io.addr_type)
3461 			continue;
3462 		if (e->io.addr_data == info->io.addr_data) {
3463 			/*
3464 			 * This is a cheap hack, ACPI doesn't have a defined
3465 			 * slave address but SMBIOS does.  Pick it up from
3466 			 * any source that has it available.
3467 			 */
3468 			if (info->slave_addr && !e->slave_addr)
3469 				e->slave_addr = info->slave_addr;
3470 			return e;
3471 		}
3472 	}
3473 
3474 	return NULL;
3475 }
3476 
add_smi(struct smi_info * new_smi)3477 static int add_smi(struct smi_info *new_smi)
3478 {
3479 	int rv = 0;
3480 	struct smi_info *dup;
3481 
3482 	mutex_lock(&smi_infos_lock);
3483 	dup = find_dup_si(new_smi);
3484 	if (dup) {
3485 		if (new_smi->addr_source == SI_ACPI &&
3486 		    dup->addr_source == SI_SMBIOS) {
3487 			/* We prefer ACPI over SMBIOS. */
3488 			dev_info(dup->dev,
3489 				 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
3490 				 si_to_str[new_smi->si_type]);
3491 			cleanup_one_si(dup);
3492 		} else {
3493 			dev_info(new_smi->dev,
3494 				 "%s-specified %s state machine: duplicate\n",
3495 				 ipmi_addr_src_to_str(new_smi->addr_source),
3496 				 si_to_str[new_smi->si_type]);
3497 			rv = -EBUSY;
3498 			goto out_err;
3499 		}
3500 	}
3501 
3502 	pr_info(PFX "Adding %s-specified %s state machine\n",
3503 		ipmi_addr_src_to_str(new_smi->addr_source),
3504 		si_to_str[new_smi->si_type]);
3505 
3506 	/* So we know not to free it unless we have allocated one. */
3507 	new_smi->intf = NULL;
3508 	new_smi->si_sm = NULL;
3509 	new_smi->handlers = NULL;
3510 
3511 	list_add_tail(&new_smi->link, &smi_infos);
3512 
3513 out_err:
3514 	mutex_unlock(&smi_infos_lock);
3515 	return rv;
3516 }
3517 
3518 /*
3519  * Try to start up an interface.  Must be called with smi_infos_lock
3520  * held, primarily to keep smi_num consistent, we only one to do these
3521  * one at a time.
3522  */
try_smi_init(struct smi_info * new_smi)3523 static int try_smi_init(struct smi_info *new_smi)
3524 {
3525 	int rv = 0;
3526 	int i;
3527 	char *init_name = NULL;
3528 
3529 	pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3530 		ipmi_addr_src_to_str(new_smi->addr_source),
3531 		si_to_str[new_smi->si_type],
3532 		addr_space_to_str[new_smi->io.addr_type],
3533 		new_smi->io.addr_data,
3534 		new_smi->slave_addr, new_smi->irq);
3535 
3536 	switch (new_smi->si_type) {
3537 	case SI_KCS:
3538 		new_smi->handlers = &kcs_smi_handlers;
3539 		break;
3540 
3541 	case SI_SMIC:
3542 		new_smi->handlers = &smic_smi_handlers;
3543 		break;
3544 
3545 	case SI_BT:
3546 		new_smi->handlers = &bt_smi_handlers;
3547 		break;
3548 
3549 	default:
3550 		/* No support for anything else yet. */
3551 		rv = -EIO;
3552 		goto out_err;
3553 	}
3554 
3555 	new_smi->intf_num = smi_num;
3556 
3557 	/* Do this early so it's available for logs. */
3558 	if (!new_smi->dev) {
3559 		init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
3560 				      new_smi->intf_num);
3561 
3562 		/*
3563 		 * If we don't already have a device from something
3564 		 * else (like PCI), then register a new one.
3565 		 */
3566 		new_smi->pdev = platform_device_alloc("ipmi_si",
3567 						      new_smi->intf_num);
3568 		if (!new_smi->pdev) {
3569 			pr_err(PFX "Unable to allocate platform device\n");
3570 			goto out_err;
3571 		}
3572 		new_smi->dev = &new_smi->pdev->dev;
3573 		new_smi->dev->driver = &ipmi_driver.driver;
3574 		/* Nulled by device_add() */
3575 		new_smi->dev->init_name = init_name;
3576 	}
3577 
3578 	/* Allocate the state machine's data and initialize it. */
3579 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3580 	if (!new_smi->si_sm) {
3581 		pr_err(PFX "Could not allocate state machine memory\n");
3582 		rv = -ENOMEM;
3583 		goto out_err;
3584 	}
3585 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3586 							&new_smi->io);
3587 
3588 	/* Now that we know the I/O size, we can set up the I/O. */
3589 	rv = new_smi->io_setup(new_smi);
3590 	if (rv) {
3591 		dev_err(new_smi->dev, "Could not set up I/O space\n");
3592 		goto out_err;
3593 	}
3594 
3595 	/* Do low-level detection first. */
3596 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3597 		if (new_smi->addr_source)
3598 			dev_err(new_smi->dev, "Interface detection failed\n");
3599 		rv = -ENODEV;
3600 		goto out_err;
3601 	}
3602 
3603 	/*
3604 	 * Attempt a get device id command.  If it fails, we probably
3605 	 * don't have a BMC here.
3606 	 */
3607 	rv = try_get_dev_id(new_smi);
3608 	if (rv) {
3609 		if (new_smi->addr_source)
3610 			dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3611 		goto out_err;
3612 	}
3613 
3614 	setup_oem_data_handler(new_smi);
3615 	setup_xaction_handlers(new_smi);
3616 	check_for_broken_irqs(new_smi);
3617 
3618 	new_smi->waiting_msg = NULL;
3619 	new_smi->curr_msg = NULL;
3620 	atomic_set(&new_smi->req_events, 0);
3621 	new_smi->run_to_completion = false;
3622 	for (i = 0; i < SI_NUM_STATS; i++)
3623 		atomic_set(&new_smi->stats[i], 0);
3624 
3625 	new_smi->interrupt_disabled = true;
3626 	atomic_set(&new_smi->need_watch, 0);
3627 
3628 	rv = try_enable_event_buffer(new_smi);
3629 	if (rv == 0)
3630 		new_smi->has_event_buffer = true;
3631 
3632 	/*
3633 	 * Start clearing the flags before we enable interrupts or the
3634 	 * timer to avoid racing with the timer.
3635 	 */
3636 	start_clear_flags(new_smi);
3637 
3638 	/*
3639 	 * IRQ is defined to be set when non-zero.  req_events will
3640 	 * cause a global flags check that will enable interrupts.
3641 	 */
3642 	if (new_smi->irq) {
3643 		new_smi->interrupt_disabled = false;
3644 		atomic_set(&new_smi->req_events, 1);
3645 	}
3646 
3647 	if (new_smi->pdev) {
3648 		rv = platform_device_add(new_smi->pdev);
3649 		if (rv) {
3650 			dev_err(new_smi->dev,
3651 				"Unable to register system interface device: %d\n",
3652 				rv);
3653 			goto out_err;
3654 		}
3655 		new_smi->dev_registered = true;
3656 	}
3657 
3658 	rv = ipmi_register_smi(&handlers,
3659 			       new_smi,
3660 			       &new_smi->device_id,
3661 			       new_smi->dev,
3662 			       new_smi->slave_addr);
3663 	if (rv) {
3664 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3665 			rv);
3666 		goto out_err_stop_timer;
3667 	}
3668 
3669 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3670 				     &smi_type_proc_ops,
3671 				     new_smi);
3672 	if (rv) {
3673 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3674 		goto out_err_stop_timer;
3675 	}
3676 
3677 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3678 				     &smi_si_stats_proc_ops,
3679 				     new_smi);
3680 	if (rv) {
3681 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3682 		goto out_err_stop_timer;
3683 	}
3684 
3685 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3686 				     &smi_params_proc_ops,
3687 				     new_smi);
3688 	if (rv) {
3689 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3690 		goto out_err_stop_timer;
3691 	}
3692 
3693 	/* Don't increment till we know we have succeeded. */
3694 	smi_num++;
3695 
3696 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3697 		 si_to_str[new_smi->si_type]);
3698 
3699 	WARN_ON(new_smi->dev->init_name != NULL);
3700 	kfree(init_name);
3701 
3702 	return 0;
3703 
3704 out_err_stop_timer:
3705 	stop_timer_and_thread(new_smi);
3706 
3707 out_err:
3708 	new_smi->interrupt_disabled = true;
3709 
3710 	if (new_smi->intf) {
3711 		ipmi_smi_t intf = new_smi->intf;
3712 		new_smi->intf = NULL;
3713 		ipmi_unregister_smi(intf);
3714 	}
3715 
3716 	if (new_smi->irq_cleanup) {
3717 		new_smi->irq_cleanup(new_smi);
3718 		new_smi->irq_cleanup = NULL;
3719 	}
3720 
3721 	/*
3722 	 * Wait until we know that we are out of any interrupt
3723 	 * handlers might have been running before we freed the
3724 	 * interrupt.
3725 	 */
3726 	synchronize_sched();
3727 
3728 	if (new_smi->si_sm) {
3729 		if (new_smi->handlers)
3730 			new_smi->handlers->cleanup(new_smi->si_sm);
3731 		kfree(new_smi->si_sm);
3732 		new_smi->si_sm = NULL;
3733 	}
3734 	if (new_smi->addr_source_cleanup) {
3735 		new_smi->addr_source_cleanup(new_smi);
3736 		new_smi->addr_source_cleanup = NULL;
3737 	}
3738 	if (new_smi->io_cleanup) {
3739 		new_smi->io_cleanup(new_smi);
3740 		new_smi->io_cleanup = NULL;
3741 	}
3742 
3743 	if (new_smi->dev_registered) {
3744 		platform_device_unregister(new_smi->pdev);
3745 		new_smi->dev_registered = false;
3746 		new_smi->pdev = NULL;
3747 	} else if (new_smi->pdev) {
3748 		platform_device_put(new_smi->pdev);
3749 		new_smi->pdev = NULL;
3750 	}
3751 
3752 	kfree(init_name);
3753 
3754 	return rv;
3755 }
3756 
init_ipmi_si(void)3757 static int init_ipmi_si(void)
3758 {
3759 	int  i;
3760 	char *str;
3761 	int  rv;
3762 	struct smi_info *e;
3763 	enum ipmi_addr_src type = SI_INVALID;
3764 
3765 	if (initialized)
3766 		return 0;
3767 	initialized = 1;
3768 
3769 	if (si_tryplatform) {
3770 		rv = platform_driver_register(&ipmi_driver);
3771 		if (rv) {
3772 			pr_err(PFX "Unable to register driver: %d\n", rv);
3773 			return rv;
3774 		}
3775 	}
3776 
3777 	/* Parse out the si_type string into its components. */
3778 	str = si_type_str;
3779 	if (*str != '\0') {
3780 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3781 			si_type[i] = str;
3782 			str = strchr(str, ',');
3783 			if (str) {
3784 				*str = '\0';
3785 				str++;
3786 			} else {
3787 				break;
3788 			}
3789 		}
3790 	}
3791 
3792 	pr_info("IPMI System Interface driver.\n");
3793 
3794 	/* If the user gave us a device, they presumably want us to use it */
3795 	if (!hardcode_find_bmc())
3796 		return 0;
3797 
3798 #ifdef CONFIG_PCI
3799 	if (si_trypci) {
3800 		rv = pci_register_driver(&ipmi_pci_driver);
3801 		if (rv)
3802 			pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3803 		else
3804 			pci_registered = true;
3805 	}
3806 #endif
3807 
3808 #ifdef CONFIG_ACPI
3809 	if (si_tryacpi)
3810 		spmi_find_bmc();
3811 #endif
3812 
3813 #ifdef CONFIG_PARISC
3814 	register_parisc_driver(&ipmi_parisc_driver);
3815 	parisc_registered = true;
3816 #endif
3817 
3818 	/* We prefer devices with interrupts, but in the case of a machine
3819 	   with multiple BMCs we assume that there will be several instances
3820 	   of a given type so if we succeed in registering a type then also
3821 	   try to register everything else of the same type */
3822 
3823 	mutex_lock(&smi_infos_lock);
3824 	list_for_each_entry(e, &smi_infos, link) {
3825 		/* Try to register a device if it has an IRQ and we either
3826 		   haven't successfully registered a device yet or this
3827 		   device has the same type as one we successfully registered */
3828 		if (e->irq && (!type || e->addr_source == type)) {
3829 			if (!try_smi_init(e)) {
3830 				type = e->addr_source;
3831 			}
3832 		}
3833 	}
3834 
3835 	/* type will only have been set if we successfully registered an si */
3836 	if (type) {
3837 		mutex_unlock(&smi_infos_lock);
3838 		return 0;
3839 	}
3840 
3841 	/* Fall back to the preferred device */
3842 
3843 	list_for_each_entry(e, &smi_infos, link) {
3844 		if (!e->irq && (!type || e->addr_source == type)) {
3845 			if (!try_smi_init(e)) {
3846 				type = e->addr_source;
3847 			}
3848 		}
3849 	}
3850 	mutex_unlock(&smi_infos_lock);
3851 
3852 	if (type)
3853 		return 0;
3854 
3855 	mutex_lock(&smi_infos_lock);
3856 	if (unload_when_empty && list_empty(&smi_infos)) {
3857 		mutex_unlock(&smi_infos_lock);
3858 		cleanup_ipmi_si();
3859 		pr_warn(PFX "Unable to find any System Interface(s)\n");
3860 		return -ENODEV;
3861 	} else {
3862 		mutex_unlock(&smi_infos_lock);
3863 		return 0;
3864 	}
3865 }
3866 module_init(init_ipmi_si);
3867 
cleanup_one_si(struct smi_info * to_clean)3868 static void cleanup_one_si(struct smi_info *to_clean)
3869 {
3870 	int           rv = 0;
3871 
3872 	if (!to_clean)
3873 		return;
3874 
3875 	if (to_clean->intf) {
3876 		ipmi_smi_t intf = to_clean->intf;
3877 
3878 		to_clean->intf = NULL;
3879 		rv = ipmi_unregister_smi(intf);
3880 		if (rv) {
3881 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3882 			       rv);
3883 		}
3884 	}
3885 
3886 	if (to_clean->dev)
3887 		dev_set_drvdata(to_clean->dev, NULL);
3888 
3889 	list_del(&to_clean->link);
3890 
3891 	/*
3892 	 * Make sure that interrupts, the timer and the thread are
3893 	 * stopped and will not run again.
3894 	 */
3895 	if (to_clean->irq_cleanup)
3896 		to_clean->irq_cleanup(to_clean);
3897 	stop_timer_and_thread(to_clean);
3898 
3899 	/*
3900 	 * Timeouts are stopped, now make sure the interrupts are off
3901 	 * in the BMC.  Note that timers and CPU interrupts are off,
3902 	 * so no need for locks.
3903 	 */
3904 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3905 		poll(to_clean);
3906 		schedule_timeout_uninterruptible(1);
3907 	}
3908 	if (to_clean->handlers)
3909 		disable_si_irq(to_clean);
3910 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3911 		poll(to_clean);
3912 		schedule_timeout_uninterruptible(1);
3913 	}
3914 
3915 	if (to_clean->handlers)
3916 		to_clean->handlers->cleanup(to_clean->si_sm);
3917 
3918 	kfree(to_clean->si_sm);
3919 
3920 	if (to_clean->addr_source_cleanup)
3921 		to_clean->addr_source_cleanup(to_clean);
3922 	if (to_clean->io_cleanup)
3923 		to_clean->io_cleanup(to_clean);
3924 
3925 	if (to_clean->dev_registered)
3926 		platform_device_unregister(to_clean->pdev);
3927 
3928 	kfree(to_clean);
3929 }
3930 
cleanup_ipmi_si(void)3931 static void cleanup_ipmi_si(void)
3932 {
3933 	struct smi_info *e, *tmp_e;
3934 
3935 	if (!initialized)
3936 		return;
3937 
3938 #ifdef CONFIG_PCI
3939 	if (pci_registered)
3940 		pci_unregister_driver(&ipmi_pci_driver);
3941 #endif
3942 #ifdef CONFIG_PARISC
3943 	if (parisc_registered)
3944 		unregister_parisc_driver(&ipmi_parisc_driver);
3945 #endif
3946 
3947 	platform_driver_unregister(&ipmi_driver);
3948 
3949 	mutex_lock(&smi_infos_lock);
3950 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3951 		cleanup_one_si(e);
3952 	mutex_unlock(&smi_infos_lock);
3953 }
3954 module_exit(cleanup_ipmi_si);
3955 
3956 MODULE_ALIAS("platform:dmi-ipmi-si");
3957 MODULE_LICENSE("GPL");
3958 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3959 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3960 		   " system interfaces.");
3961