• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Real Time Clock interface for Linux
3  *
4  *	Copyright (C) 1996 Paul Gortmaker
5  *
6  *	This driver allows use of the real time clock (built into
7  *	nearly all computers) from user space. It exports the /dev/rtc
8  *	interface supporting various ioctl() and also the
9  *	/proc/driver/rtc pseudo-file for status information.
10  *
11  *	The ioctls can be used to set the interrupt behaviour and
12  *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13  *	interface can be used to make use of these timer interrupts,
14  *	be they interval or alarm based.
15  *
16  *	The /dev/rtc interface will block on reads until an interrupt
17  *	has been received. If a RTC interrupt has already happened,
18  *	it will output an unsigned long and then block. The output value
19  *	contains the interrupt status in the low byte and the number of
20  *	interrupts since the last read in the remaining high bytes. The
21  *	/dev/rtc interface can also be used with the select(2) call.
22  *
23  *	This program is free software; you can redistribute it and/or
24  *	modify it under the terms of the GNU General Public License
25  *	as published by the Free Software Foundation; either version
26  *	2 of the License, or (at your option) any later version.
27  *
28  *	Based on other minimal char device drivers, like Alan's
29  *	watchdog, Ted's random, etc. etc.
30  *
31  *	1.07	Paul Gortmaker.
32  *	1.08	Miquel van Smoorenburg: disallow certain things on the
33  *		DEC Alpha as the CMOS clock is also used for other things.
34  *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35  *	1.09a	Pete Zaitcev: Sun SPARC
36  *	1.09b	Jeff Garzik: Modularize, init cleanup
37  *	1.09c	Jeff Garzik: SMP cleanup
38  *	1.10	Paul Barton-Davis: add support for async I/O
39  *	1.10a	Andrea Arcangeli: Alpha updates
40  *	1.10b	Andrew Morton: SMP lock fix
41  *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42  *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43  *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44  *	1.11	Takashi Iwai: Kernel access functions
45  *			      rtc_register/rtc_unregister/rtc_control
46  *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47  *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48  *		CONFIG_HPET_EMULATE_RTC
49  *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50  *	1.12ac	Alan Cox: Allow read access to the day of week register
51  *	1.12b	David John: Remove calls to the BKL.
52  */
53 
54 #define RTC_VERSION		"1.12b"
55 
56 /*
57  *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58  *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59  *	design of the RTC, we don't want two different things trying to
60  *	get to it at once. (e.g. the periodic 11 min sync from
61  *      kernel/time/ntp.c vs. this driver.)
62  */
63 
64 #include <linux/interrupt.h>
65 #include <linux/module.h>
66 #include <linux/kernel.h>
67 #include <linux/types.h>
68 #include <linux/miscdevice.h>
69 #include <linux/ioport.h>
70 #include <linux/fcntl.h>
71 #include <linux/mc146818rtc.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/proc_fs.h>
75 #include <linux/seq_file.h>
76 #include <linux/spinlock.h>
77 #include <linux/sched/signal.h>
78 #include <linux/sysctl.h>
79 #include <linux/wait.h>
80 #include <linux/bcd.h>
81 #include <linux/delay.h>
82 #include <linux/uaccess.h>
83 #include <linux/ratelimit.h>
84 
85 #include <asm/current.h>
86 
87 #ifdef CONFIG_X86
88 #include <asm/hpet.h>
89 #endif
90 
91 #ifdef CONFIG_SPARC32
92 #include <linux/of.h>
93 #include <linux/of_device.h>
94 #include <asm/io.h>
95 
96 static unsigned long rtc_port;
97 static int rtc_irq;
98 #endif
99 
100 #ifdef	CONFIG_HPET_EMULATE_RTC
101 #undef	RTC_IRQ
102 #endif
103 
104 #ifdef RTC_IRQ
105 static int rtc_has_irq = 1;
106 #endif
107 
108 #ifndef CONFIG_HPET_EMULATE_RTC
109 #define is_hpet_enabled()			0
110 #define hpet_set_alarm_time(hrs, min, sec)	0
111 #define hpet_set_periodic_freq(arg)		0
112 #define hpet_mask_rtc_irq_bit(arg)		0
113 #define hpet_set_rtc_irq_bit(arg)		0
114 #define hpet_rtc_timer_init()			do { } while (0)
115 #define hpet_rtc_dropped_irq()			0
116 #define hpet_register_irq_handler(h)		({ 0; })
117 #define hpet_unregister_irq_handler(h)		({ 0; })
118 #ifdef RTC_IRQ
hpet_rtc_interrupt(int irq,void * dev_id)119 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
120 {
121 	return 0;
122 }
123 #endif
124 #endif
125 
126 /*
127  *	We sponge a minor off of the misc major. No need slurping
128  *	up another valuable major dev number for this. If you add
129  *	an ioctl, make sure you don't conflict with SPARC's RTC
130  *	ioctls.
131  */
132 
133 static struct fasync_struct *rtc_async_queue;
134 
135 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136 
137 #ifdef RTC_IRQ
138 static void rtc_dropped_irq(unsigned long data);
139 
140 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141 #endif
142 
143 static ssize_t rtc_read(struct file *file, char __user *buf,
144 			size_t count, loff_t *ppos);
145 
146 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
148 
149 #ifdef RTC_IRQ
150 static unsigned int rtc_poll(struct file *file, poll_table *wait);
151 #endif
152 
153 static void get_rtc_alm_time(struct rtc_time *alm_tm);
154 #ifdef RTC_IRQ
155 static void set_rtc_irq_bit_locked(unsigned char bit);
156 static void mask_rtc_irq_bit_locked(unsigned char bit);
157 
set_rtc_irq_bit(unsigned char bit)158 static inline void set_rtc_irq_bit(unsigned char bit)
159 {
160 	spin_lock_irq(&rtc_lock);
161 	set_rtc_irq_bit_locked(bit);
162 	spin_unlock_irq(&rtc_lock);
163 }
164 
mask_rtc_irq_bit(unsigned char bit)165 static void mask_rtc_irq_bit(unsigned char bit)
166 {
167 	spin_lock_irq(&rtc_lock);
168 	mask_rtc_irq_bit_locked(bit);
169 	spin_unlock_irq(&rtc_lock);
170 }
171 #endif
172 
173 #ifdef CONFIG_PROC_FS
174 static int rtc_proc_open(struct inode *inode, struct file *file);
175 #endif
176 
177 /*
178  *	Bits in rtc_status. (6 bits of room for future expansion)
179  */
180 
181 #define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
182 #define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
183 
184 /*
185  * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186  * protected by the spin lock rtc_lock. However, ioctl can still disable the
187  * timer in rtc_status and then with del_timer after the interrupt has read
188  * rtc_status but before mod_timer is called, which would then reenable the
189  * timer (but you would need to have an awful timing before you'd trip on it)
190  */
191 static unsigned long rtc_status;	/* bitmapped status byte.	*/
192 static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
193 static unsigned long rtc_irq_data;	/* our output to the world	*/
194 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195 
196 #ifdef RTC_IRQ
197 /*
198  * rtc_task_lock nests inside rtc_lock.
199  */
200 static DEFINE_SPINLOCK(rtc_task_lock);
201 static rtc_task_t *rtc_callback;
202 #endif
203 
204 /*
205  *	If this driver ever becomes modularised, it will be really nice
206  *	to make the epoch retain its value across module reload...
207  */
208 
209 static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
210 
211 static const unsigned char days_in_mo[] =
212 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
213 
214 /*
215  * Returns true if a clock update is in progress
216  */
rtc_is_updating(void)217 static inline unsigned char rtc_is_updating(void)
218 {
219 	unsigned long flags;
220 	unsigned char uip;
221 
222 	spin_lock_irqsave(&rtc_lock, flags);
223 	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224 	spin_unlock_irqrestore(&rtc_lock, flags);
225 	return uip;
226 }
227 
228 #ifdef RTC_IRQ
229 /*
230  *	A very tiny interrupt handler. It runs with interrupts disabled,
231  *	but there is possibility of conflicting with the set_rtc_mmss()
232  *	call (the rtc irq and the timer irq can easily run at the same
233  *	time in two different CPUs). So we need to serialize
234  *	accesses to the chip with the rtc_lock spinlock that each
235  *	architecture should implement in the timer code.
236  *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
237  */
238 
rtc_interrupt(int irq,void * dev_id)239 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
240 {
241 	/*
242 	 *	Can be an alarm interrupt, update complete interrupt,
243 	 *	or a periodic interrupt. We store the status in the
244 	 *	low byte and the number of interrupts received since
245 	 *	the last read in the remainder of rtc_irq_data.
246 	 */
247 
248 	spin_lock(&rtc_lock);
249 	rtc_irq_data += 0x100;
250 	rtc_irq_data &= ~0xff;
251 	if (is_hpet_enabled()) {
252 		/*
253 		 * In this case it is HPET RTC interrupt handler
254 		 * calling us, with the interrupt information
255 		 * passed as arg1, instead of irq.
256 		 */
257 		rtc_irq_data |= (unsigned long)irq & 0xF0;
258 	} else {
259 		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
260 	}
261 
262 	if (rtc_status & RTC_TIMER_ON)
263 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
264 
265 	spin_unlock(&rtc_lock);
266 
267 	/* Now do the rest of the actions */
268 	spin_lock(&rtc_task_lock);
269 	if (rtc_callback)
270 		rtc_callback->func(rtc_callback->private_data);
271 	spin_unlock(&rtc_task_lock);
272 	wake_up_interruptible(&rtc_wait);
273 
274 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
275 
276 	return IRQ_HANDLED;
277 }
278 #endif
279 
280 /*
281  * sysctl-tuning infrastructure.
282  */
283 static struct ctl_table rtc_table[] = {
284 	{
285 		.procname	= "max-user-freq",
286 		.data		= &rtc_max_user_freq,
287 		.maxlen		= sizeof(int),
288 		.mode		= 0644,
289 		.proc_handler	= proc_dointvec,
290 	},
291 	{ }
292 };
293 
294 static struct ctl_table rtc_root[] = {
295 	{
296 		.procname	= "rtc",
297 		.mode		= 0555,
298 		.child		= rtc_table,
299 	},
300 	{ }
301 };
302 
303 static struct ctl_table dev_root[] = {
304 	{
305 		.procname	= "dev",
306 		.mode		= 0555,
307 		.child		= rtc_root,
308 	},
309 	{ }
310 };
311 
312 static struct ctl_table_header *sysctl_header;
313 
init_sysctl(void)314 static int __init init_sysctl(void)
315 {
316     sysctl_header = register_sysctl_table(dev_root);
317     return 0;
318 }
319 
cleanup_sysctl(void)320 static void __exit cleanup_sysctl(void)
321 {
322     unregister_sysctl_table(sysctl_header);
323 }
324 
325 /*
326  *	Now all the various file operations that we export.
327  */
328 
rtc_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)329 static ssize_t rtc_read(struct file *file, char __user *buf,
330 			size_t count, loff_t *ppos)
331 {
332 #ifndef RTC_IRQ
333 	return -EIO;
334 #else
335 	DECLARE_WAITQUEUE(wait, current);
336 	unsigned long data;
337 	ssize_t retval;
338 
339 	if (rtc_has_irq == 0)
340 		return -EIO;
341 
342 	/*
343 	 * Historically this function used to assume that sizeof(unsigned long)
344 	 * is the same in userspace and kernelspace.  This lead to problems
345 	 * for configurations with multiple ABIs such a the MIPS o32 and 64
346 	 * ABIs supported on the same kernel.  So now we support read of both
347 	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
348 	 * userspace ABI.
349 	 */
350 	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
351 		return -EINVAL;
352 
353 	add_wait_queue(&rtc_wait, &wait);
354 
355 	do {
356 		/* First make it right. Then make it fast. Putting this whole
357 		 * block within the parentheses of a while would be too
358 		 * confusing. And no, xchg() is not the answer. */
359 
360 		__set_current_state(TASK_INTERRUPTIBLE);
361 
362 		spin_lock_irq(&rtc_lock);
363 		data = rtc_irq_data;
364 		rtc_irq_data = 0;
365 		spin_unlock_irq(&rtc_lock);
366 
367 		if (data != 0)
368 			break;
369 
370 		if (file->f_flags & O_NONBLOCK) {
371 			retval = -EAGAIN;
372 			goto out;
373 		}
374 		if (signal_pending(current)) {
375 			retval = -ERESTARTSYS;
376 			goto out;
377 		}
378 		schedule();
379 	} while (1);
380 
381 	if (count == sizeof(unsigned int)) {
382 		retval = put_user(data,
383 				  (unsigned int __user *)buf) ?: sizeof(int);
384 	} else {
385 		retval = put_user(data,
386 				  (unsigned long __user *)buf) ?: sizeof(long);
387 	}
388 	if (!retval)
389 		retval = count;
390  out:
391 	__set_current_state(TASK_RUNNING);
392 	remove_wait_queue(&rtc_wait, &wait);
393 
394 	return retval;
395 #endif
396 }
397 
rtc_do_ioctl(unsigned int cmd,unsigned long arg,int kernel)398 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
399 {
400 	struct rtc_time wtime;
401 
402 #ifdef RTC_IRQ
403 	if (rtc_has_irq == 0) {
404 		switch (cmd) {
405 		case RTC_AIE_OFF:
406 		case RTC_AIE_ON:
407 		case RTC_PIE_OFF:
408 		case RTC_PIE_ON:
409 		case RTC_UIE_OFF:
410 		case RTC_UIE_ON:
411 		case RTC_IRQP_READ:
412 		case RTC_IRQP_SET:
413 			return -EINVAL;
414 		}
415 	}
416 #endif
417 
418 	switch (cmd) {
419 #ifdef RTC_IRQ
420 	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
421 	{
422 		mask_rtc_irq_bit(RTC_AIE);
423 		return 0;
424 	}
425 	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
426 	{
427 		set_rtc_irq_bit(RTC_AIE);
428 		return 0;
429 	}
430 	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
431 	{
432 		/* can be called from isr via rtc_control() */
433 		unsigned long flags;
434 
435 		spin_lock_irqsave(&rtc_lock, flags);
436 		mask_rtc_irq_bit_locked(RTC_PIE);
437 		if (rtc_status & RTC_TIMER_ON) {
438 			rtc_status &= ~RTC_TIMER_ON;
439 			del_timer(&rtc_irq_timer);
440 		}
441 		spin_unlock_irqrestore(&rtc_lock, flags);
442 
443 		return 0;
444 	}
445 	case RTC_PIE_ON:	/* Allow periodic ints		*/
446 	{
447 		/* can be called from isr via rtc_control() */
448 		unsigned long flags;
449 
450 		/*
451 		 * We don't really want Joe User enabling more
452 		 * than 64Hz of interrupts on a multi-user machine.
453 		 */
454 		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
455 						(!capable(CAP_SYS_RESOURCE)))
456 			return -EACCES;
457 
458 		spin_lock_irqsave(&rtc_lock, flags);
459 		if (!(rtc_status & RTC_TIMER_ON)) {
460 			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
461 					2*HZ/100);
462 			rtc_status |= RTC_TIMER_ON;
463 		}
464 		set_rtc_irq_bit_locked(RTC_PIE);
465 		spin_unlock_irqrestore(&rtc_lock, flags);
466 
467 		return 0;
468 	}
469 	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
470 	{
471 		mask_rtc_irq_bit(RTC_UIE);
472 		return 0;
473 	}
474 	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
475 	{
476 		set_rtc_irq_bit(RTC_UIE);
477 		return 0;
478 	}
479 #endif
480 	case RTC_ALM_READ:	/* Read the present alarm time */
481 	{
482 		/*
483 		 * This returns a struct rtc_time. Reading >= 0xc0
484 		 * means "don't care" or "match all". Only the tm_hour,
485 		 * tm_min, and tm_sec values are filled in.
486 		 */
487 		memset(&wtime, 0, sizeof(struct rtc_time));
488 		get_rtc_alm_time(&wtime);
489 		break;
490 	}
491 	case RTC_ALM_SET:	/* Store a time into the alarm */
492 	{
493 		/*
494 		 * This expects a struct rtc_time. Writing 0xff means
495 		 * "don't care" or "match all". Only the tm_hour,
496 		 * tm_min and tm_sec are used.
497 		 */
498 		unsigned char hrs, min, sec;
499 		struct rtc_time alm_tm;
500 
501 		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
502 				   sizeof(struct rtc_time)))
503 			return -EFAULT;
504 
505 		hrs = alm_tm.tm_hour;
506 		min = alm_tm.tm_min;
507 		sec = alm_tm.tm_sec;
508 
509 		spin_lock_irq(&rtc_lock);
510 		if (hpet_set_alarm_time(hrs, min, sec)) {
511 			/*
512 			 * Fallthru and set alarm time in CMOS too,
513 			 * so that we will get proper value in RTC_ALM_READ
514 			 */
515 		}
516 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
517 							RTC_ALWAYS_BCD) {
518 			if (sec < 60)
519 				sec = bin2bcd(sec);
520 			else
521 				sec = 0xff;
522 
523 			if (min < 60)
524 				min = bin2bcd(min);
525 			else
526 				min = 0xff;
527 
528 			if (hrs < 24)
529 				hrs = bin2bcd(hrs);
530 			else
531 				hrs = 0xff;
532 		}
533 		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
534 		CMOS_WRITE(min, RTC_MINUTES_ALARM);
535 		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
536 		spin_unlock_irq(&rtc_lock);
537 
538 		return 0;
539 	}
540 	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
541 	{
542 		memset(&wtime, 0, sizeof(struct rtc_time));
543 		rtc_get_rtc_time(&wtime);
544 		break;
545 	}
546 	case RTC_SET_TIME:	/* Set the RTC */
547 	{
548 		struct rtc_time rtc_tm;
549 		unsigned char mon, day, hrs, min, sec, leap_yr;
550 		unsigned char save_control, save_freq_select;
551 		unsigned int yrs;
552 #ifdef CONFIG_MACH_DECSTATION
553 		unsigned int real_yrs;
554 #endif
555 
556 		if (!capable(CAP_SYS_TIME))
557 			return -EACCES;
558 
559 		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
560 				   sizeof(struct rtc_time)))
561 			return -EFAULT;
562 
563 		yrs = rtc_tm.tm_year + 1900;
564 		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
565 		day = rtc_tm.tm_mday;
566 		hrs = rtc_tm.tm_hour;
567 		min = rtc_tm.tm_min;
568 		sec = rtc_tm.tm_sec;
569 
570 		if (yrs < 1970)
571 			return -EINVAL;
572 
573 		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
574 
575 		if ((mon > 12) || (day == 0))
576 			return -EINVAL;
577 
578 		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
579 			return -EINVAL;
580 
581 		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
582 			return -EINVAL;
583 
584 		yrs -= epoch;
585 		if (yrs > 255)		/* They are unsigned */
586 			return -EINVAL;
587 
588 		spin_lock_irq(&rtc_lock);
589 #ifdef CONFIG_MACH_DECSTATION
590 		real_yrs = yrs;
591 		yrs = 72;
592 
593 		/*
594 		 * We want to keep the year set to 73 until March
595 		 * for non-leap years, so that Feb, 29th is handled
596 		 * correctly.
597 		 */
598 		if (!leap_yr && mon < 3) {
599 			real_yrs--;
600 			yrs = 73;
601 		}
602 #endif
603 		/* These limits and adjustments are independent of
604 		 * whether the chip is in binary mode or not.
605 		 */
606 		if (yrs > 169) {
607 			spin_unlock_irq(&rtc_lock);
608 			return -EINVAL;
609 		}
610 		if (yrs >= 100)
611 			yrs -= 100;
612 
613 		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
614 		    || RTC_ALWAYS_BCD) {
615 			sec = bin2bcd(sec);
616 			min = bin2bcd(min);
617 			hrs = bin2bcd(hrs);
618 			day = bin2bcd(day);
619 			mon = bin2bcd(mon);
620 			yrs = bin2bcd(yrs);
621 		}
622 
623 		save_control = CMOS_READ(RTC_CONTROL);
624 		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
625 		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
626 		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
627 
628 #ifdef CONFIG_MACH_DECSTATION
629 		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
630 #endif
631 		CMOS_WRITE(yrs, RTC_YEAR);
632 		CMOS_WRITE(mon, RTC_MONTH);
633 		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
634 		CMOS_WRITE(hrs, RTC_HOURS);
635 		CMOS_WRITE(min, RTC_MINUTES);
636 		CMOS_WRITE(sec, RTC_SECONDS);
637 
638 		CMOS_WRITE(save_control, RTC_CONTROL);
639 		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
640 
641 		spin_unlock_irq(&rtc_lock);
642 		return 0;
643 	}
644 #ifdef RTC_IRQ
645 	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
646 	{
647 		return put_user(rtc_freq, (unsigned long __user *)arg);
648 	}
649 	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
650 	{
651 		int tmp = 0;
652 		unsigned char val;
653 		/* can be called from isr via rtc_control() */
654 		unsigned long flags;
655 
656 		/*
657 		 * The max we can do is 8192Hz.
658 		 */
659 		if ((arg < 2) || (arg > 8192))
660 			return -EINVAL;
661 		/*
662 		 * We don't really want Joe User generating more
663 		 * than 64Hz of interrupts on a multi-user machine.
664 		 */
665 		if (!kernel && (arg > rtc_max_user_freq) &&
666 					!capable(CAP_SYS_RESOURCE))
667 			return -EACCES;
668 
669 		while (arg > (1<<tmp))
670 			tmp++;
671 
672 		/*
673 		 * Check that the input was really a power of 2.
674 		 */
675 		if (arg != (1<<tmp))
676 			return -EINVAL;
677 
678 		rtc_freq = arg;
679 
680 		spin_lock_irqsave(&rtc_lock, flags);
681 		if (hpet_set_periodic_freq(arg)) {
682 			spin_unlock_irqrestore(&rtc_lock, flags);
683 			return 0;
684 		}
685 
686 		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
687 		val |= (16 - tmp);
688 		CMOS_WRITE(val, RTC_FREQ_SELECT);
689 		spin_unlock_irqrestore(&rtc_lock, flags);
690 		return 0;
691 	}
692 #endif
693 	case RTC_EPOCH_READ:	/* Read the epoch.	*/
694 	{
695 		return put_user(epoch, (unsigned long __user *)arg);
696 	}
697 	case RTC_EPOCH_SET:	/* Set the epoch.	*/
698 	{
699 		/*
700 		 * There were no RTC clocks before 1900.
701 		 */
702 		if (arg < 1900)
703 			return -EINVAL;
704 
705 		if (!capable(CAP_SYS_TIME))
706 			return -EACCES;
707 
708 		epoch = arg;
709 		return 0;
710 	}
711 	default:
712 		return -ENOTTY;
713 	}
714 	return copy_to_user((void __user *)arg,
715 			    &wtime, sizeof wtime) ? -EFAULT : 0;
716 }
717 
rtc_ioctl(struct file * file,unsigned int cmd,unsigned long arg)718 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
719 {
720 	long ret;
721 	ret = rtc_do_ioctl(cmd, arg, 0);
722 	return ret;
723 }
724 
725 /*
726  *	We enforce only one user at a time here with the open/close.
727  *	Also clear the previous interrupt data on an open, and clean
728  *	up things on a close.
729  */
rtc_open(struct inode * inode,struct file * file)730 static int rtc_open(struct inode *inode, struct file *file)
731 {
732 	spin_lock_irq(&rtc_lock);
733 
734 	if (rtc_status & RTC_IS_OPEN)
735 		goto out_busy;
736 
737 	rtc_status |= RTC_IS_OPEN;
738 
739 	rtc_irq_data = 0;
740 	spin_unlock_irq(&rtc_lock);
741 	return 0;
742 
743 out_busy:
744 	spin_unlock_irq(&rtc_lock);
745 	return -EBUSY;
746 }
747 
rtc_fasync(int fd,struct file * filp,int on)748 static int rtc_fasync(int fd, struct file *filp, int on)
749 {
750 	return fasync_helper(fd, filp, on, &rtc_async_queue);
751 }
752 
rtc_release(struct inode * inode,struct file * file)753 static int rtc_release(struct inode *inode, struct file *file)
754 {
755 #ifdef RTC_IRQ
756 	unsigned char tmp;
757 
758 	if (rtc_has_irq == 0)
759 		goto no_irq;
760 
761 	/*
762 	 * Turn off all interrupts once the device is no longer
763 	 * in use, and clear the data.
764 	 */
765 
766 	spin_lock_irq(&rtc_lock);
767 	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
768 		tmp = CMOS_READ(RTC_CONTROL);
769 		tmp &=  ~RTC_PIE;
770 		tmp &=  ~RTC_AIE;
771 		tmp &=  ~RTC_UIE;
772 		CMOS_WRITE(tmp, RTC_CONTROL);
773 		CMOS_READ(RTC_INTR_FLAGS);
774 	}
775 	if (rtc_status & RTC_TIMER_ON) {
776 		rtc_status &= ~RTC_TIMER_ON;
777 		del_timer(&rtc_irq_timer);
778 	}
779 	spin_unlock_irq(&rtc_lock);
780 
781 no_irq:
782 #endif
783 
784 	spin_lock_irq(&rtc_lock);
785 	rtc_irq_data = 0;
786 	rtc_status &= ~RTC_IS_OPEN;
787 	spin_unlock_irq(&rtc_lock);
788 
789 	return 0;
790 }
791 
792 #ifdef RTC_IRQ
rtc_poll(struct file * file,poll_table * wait)793 static unsigned int rtc_poll(struct file *file, poll_table *wait)
794 {
795 	unsigned long l;
796 
797 	if (rtc_has_irq == 0)
798 		return 0;
799 
800 	poll_wait(file, &rtc_wait, wait);
801 
802 	spin_lock_irq(&rtc_lock);
803 	l = rtc_irq_data;
804 	spin_unlock_irq(&rtc_lock);
805 
806 	if (l != 0)
807 		return POLLIN | POLLRDNORM;
808 	return 0;
809 }
810 #endif
811 
rtc_register(rtc_task_t * task)812 int rtc_register(rtc_task_t *task)
813 {
814 #ifndef RTC_IRQ
815 	return -EIO;
816 #else
817 	if (task == NULL || task->func == NULL)
818 		return -EINVAL;
819 	spin_lock_irq(&rtc_lock);
820 	if (rtc_status & RTC_IS_OPEN) {
821 		spin_unlock_irq(&rtc_lock);
822 		return -EBUSY;
823 	}
824 	spin_lock(&rtc_task_lock);
825 	if (rtc_callback) {
826 		spin_unlock(&rtc_task_lock);
827 		spin_unlock_irq(&rtc_lock);
828 		return -EBUSY;
829 	}
830 	rtc_status |= RTC_IS_OPEN;
831 	rtc_callback = task;
832 	spin_unlock(&rtc_task_lock);
833 	spin_unlock_irq(&rtc_lock);
834 	return 0;
835 #endif
836 }
837 EXPORT_SYMBOL(rtc_register);
838 
rtc_unregister(rtc_task_t * task)839 int rtc_unregister(rtc_task_t *task)
840 {
841 #ifndef RTC_IRQ
842 	return -EIO;
843 #else
844 	unsigned char tmp;
845 
846 	spin_lock_irq(&rtc_lock);
847 	spin_lock(&rtc_task_lock);
848 	if (rtc_callback != task) {
849 		spin_unlock(&rtc_task_lock);
850 		spin_unlock_irq(&rtc_lock);
851 		return -ENXIO;
852 	}
853 	rtc_callback = NULL;
854 
855 	/* disable controls */
856 	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
857 		tmp = CMOS_READ(RTC_CONTROL);
858 		tmp &= ~RTC_PIE;
859 		tmp &= ~RTC_AIE;
860 		tmp &= ~RTC_UIE;
861 		CMOS_WRITE(tmp, RTC_CONTROL);
862 		CMOS_READ(RTC_INTR_FLAGS);
863 	}
864 	if (rtc_status & RTC_TIMER_ON) {
865 		rtc_status &= ~RTC_TIMER_ON;
866 		del_timer(&rtc_irq_timer);
867 	}
868 	rtc_status &= ~RTC_IS_OPEN;
869 	spin_unlock(&rtc_task_lock);
870 	spin_unlock_irq(&rtc_lock);
871 	return 0;
872 #endif
873 }
874 EXPORT_SYMBOL(rtc_unregister);
875 
rtc_control(rtc_task_t * task,unsigned int cmd,unsigned long arg)876 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
877 {
878 #ifndef RTC_IRQ
879 	return -EIO;
880 #else
881 	unsigned long flags;
882 	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
883 		return -EINVAL;
884 	spin_lock_irqsave(&rtc_task_lock, flags);
885 	if (rtc_callback != task) {
886 		spin_unlock_irqrestore(&rtc_task_lock, flags);
887 		return -ENXIO;
888 	}
889 	spin_unlock_irqrestore(&rtc_task_lock, flags);
890 	return rtc_do_ioctl(cmd, arg, 1);
891 #endif
892 }
893 EXPORT_SYMBOL(rtc_control);
894 
895 /*
896  *	The various file operations we support.
897  */
898 
899 static const struct file_operations rtc_fops = {
900 	.owner		= THIS_MODULE,
901 	.llseek		= no_llseek,
902 	.read		= rtc_read,
903 #ifdef RTC_IRQ
904 	.poll		= rtc_poll,
905 #endif
906 	.unlocked_ioctl	= rtc_ioctl,
907 	.open		= rtc_open,
908 	.release	= rtc_release,
909 	.fasync		= rtc_fasync,
910 };
911 
912 static struct miscdevice rtc_dev = {
913 	.minor		= RTC_MINOR,
914 	.name		= "rtc",
915 	.fops		= &rtc_fops,
916 };
917 
918 #ifdef CONFIG_PROC_FS
919 static const struct file_operations rtc_proc_fops = {
920 	.owner		= THIS_MODULE,
921 	.open		= rtc_proc_open,
922 	.read		= seq_read,
923 	.llseek		= seq_lseek,
924 	.release	= single_release,
925 };
926 #endif
927 
928 static resource_size_t rtc_size;
929 
rtc_request_region(resource_size_t size)930 static struct resource * __init rtc_request_region(resource_size_t size)
931 {
932 	struct resource *r;
933 
934 	if (RTC_IOMAPPED)
935 		r = request_region(RTC_PORT(0), size, "rtc");
936 	else
937 		r = request_mem_region(RTC_PORT(0), size, "rtc");
938 
939 	if (r)
940 		rtc_size = size;
941 
942 	return r;
943 }
944 
rtc_release_region(void)945 static void rtc_release_region(void)
946 {
947 	if (RTC_IOMAPPED)
948 		release_region(RTC_PORT(0), rtc_size);
949 	else
950 		release_mem_region(RTC_PORT(0), rtc_size);
951 }
952 
rtc_init(void)953 static int __init rtc_init(void)
954 {
955 #ifdef CONFIG_PROC_FS
956 	struct proc_dir_entry *ent;
957 #endif
958 #if defined(__alpha__) || defined(__mips__)
959 	unsigned int year, ctrl;
960 	char *guess = NULL;
961 #endif
962 #ifdef CONFIG_SPARC32
963 	struct device_node *ebus_dp;
964 	struct platform_device *op;
965 #else
966 	void *r;
967 #ifdef RTC_IRQ
968 	irq_handler_t rtc_int_handler_ptr;
969 #endif
970 #endif
971 
972 #ifdef CONFIG_SPARC32
973 	for_each_node_by_name(ebus_dp, "ebus") {
974 		struct device_node *dp;
975 		for (dp = ebus_dp; dp; dp = dp->sibling) {
976 			if (!strcmp(dp->name, "rtc")) {
977 				op = of_find_device_by_node(dp);
978 				if (op) {
979 					rtc_port = op->resource[0].start;
980 					rtc_irq = op->irqs[0];
981 					goto found;
982 				}
983 			}
984 		}
985 	}
986 	rtc_has_irq = 0;
987 	printk(KERN_ERR "rtc_init: no PC rtc found\n");
988 	return -EIO;
989 
990 found:
991 	if (!rtc_irq) {
992 		rtc_has_irq = 0;
993 		goto no_irq;
994 	}
995 
996 	/*
997 	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
998 	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
999 	 */
1000 	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1001 			(void *)&rtc_port)) {
1002 		rtc_has_irq = 0;
1003 		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1004 		return -EIO;
1005 	}
1006 no_irq:
1007 #else
1008 	r = rtc_request_region(RTC_IO_EXTENT);
1009 
1010 	/*
1011 	 * If we've already requested a smaller range (for example, because
1012 	 * PNPBIOS or ACPI told us how the device is configured), the request
1013 	 * above might fail because it's too big.
1014 	 *
1015 	 * If so, request just the range we actually use.
1016 	 */
1017 	if (!r)
1018 		r = rtc_request_region(RTC_IO_EXTENT_USED);
1019 	if (!r) {
1020 #ifdef RTC_IRQ
1021 		rtc_has_irq = 0;
1022 #endif
1023 		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1024 		       (long)(RTC_PORT(0)));
1025 		return -EIO;
1026 	}
1027 
1028 #ifdef RTC_IRQ
1029 	if (is_hpet_enabled()) {
1030 		int err;
1031 
1032 		rtc_int_handler_ptr = hpet_rtc_interrupt;
1033 		err = hpet_register_irq_handler(rtc_interrupt);
1034 		if (err != 0) {
1035 			printk(KERN_WARNING "hpet_register_irq_handler failed "
1036 					"in rtc_init().");
1037 			return err;
1038 		}
1039 	} else {
1040 		rtc_int_handler_ptr = rtc_interrupt;
1041 	}
1042 
1043 	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
1044 		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1045 		rtc_has_irq = 0;
1046 		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1047 		rtc_release_region();
1048 
1049 		return -EIO;
1050 	}
1051 	hpet_rtc_timer_init();
1052 
1053 #endif
1054 
1055 #endif /* CONFIG_SPARC32 vs. others */
1056 
1057 	if (misc_register(&rtc_dev)) {
1058 #ifdef RTC_IRQ
1059 		free_irq(RTC_IRQ, NULL);
1060 		hpet_unregister_irq_handler(rtc_interrupt);
1061 		rtc_has_irq = 0;
1062 #endif
1063 		rtc_release_region();
1064 		return -ENODEV;
1065 	}
1066 
1067 #ifdef CONFIG_PROC_FS
1068 	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1069 	if (!ent)
1070 		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1071 #endif
1072 
1073 #if defined(__alpha__) || defined(__mips__)
1074 	rtc_freq = HZ;
1075 
1076 	/* Each operating system on an Alpha uses its own epoch.
1077 	   Let's try to guess which one we are using now. */
1078 
1079 	if (rtc_is_updating() != 0)
1080 		msleep(20);
1081 
1082 	spin_lock_irq(&rtc_lock);
1083 	year = CMOS_READ(RTC_YEAR);
1084 	ctrl = CMOS_READ(RTC_CONTROL);
1085 	spin_unlock_irq(&rtc_lock);
1086 
1087 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1088 		year = bcd2bin(year);       /* This should never happen... */
1089 
1090 	if (year < 20) {
1091 		epoch = 2000;
1092 		guess = "SRM (post-2000)";
1093 	} else if (year >= 20 && year < 48) {
1094 		epoch = 1980;
1095 		guess = "ARC console";
1096 	} else if (year >= 48 && year < 72) {
1097 		epoch = 1952;
1098 		guess = "Digital UNIX";
1099 #if defined(__mips__)
1100 	} else if (year >= 72 && year < 74) {
1101 		epoch = 2000;
1102 		guess = "Digital DECstation";
1103 #else
1104 	} else if (year >= 70) {
1105 		epoch = 1900;
1106 		guess = "Standard PC (1900)";
1107 #endif
1108 	}
1109 	if (guess)
1110 		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1111 			guess, epoch);
1112 #endif
1113 #ifdef RTC_IRQ
1114 	if (rtc_has_irq == 0)
1115 		goto no_irq2;
1116 
1117 	spin_lock_irq(&rtc_lock);
1118 	rtc_freq = 1024;
1119 	if (!hpet_set_periodic_freq(rtc_freq)) {
1120 		/*
1121 		 * Initialize periodic frequency to CMOS reset default,
1122 		 * which is 1024Hz
1123 		 */
1124 		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1125 			   RTC_FREQ_SELECT);
1126 	}
1127 	spin_unlock_irq(&rtc_lock);
1128 no_irq2:
1129 #endif
1130 
1131 	(void) init_sysctl();
1132 
1133 	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1134 
1135 	return 0;
1136 }
1137 
rtc_exit(void)1138 static void __exit rtc_exit(void)
1139 {
1140 	cleanup_sysctl();
1141 	remove_proc_entry("driver/rtc", NULL);
1142 	misc_deregister(&rtc_dev);
1143 
1144 #ifdef CONFIG_SPARC32
1145 	if (rtc_has_irq)
1146 		free_irq(rtc_irq, &rtc_port);
1147 #else
1148 	rtc_release_region();
1149 #ifdef RTC_IRQ
1150 	if (rtc_has_irq) {
1151 		free_irq(RTC_IRQ, NULL);
1152 		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1153 	}
1154 #endif
1155 #endif /* CONFIG_SPARC32 */
1156 }
1157 
1158 module_init(rtc_init);
1159 module_exit(rtc_exit);
1160 
1161 #ifdef RTC_IRQ
1162 /*
1163  *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1164  *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1165  *	Since the interrupt handler doesn't get called, the IRQ status
1166  *	byte doesn't get read, and the RTC stops generating interrupts.
1167  *	A timer is set, and will call this function if/when that happens.
1168  *	To get it out of this stalled state, we just read the status.
1169  *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1170  *	(You *really* shouldn't be trying to use a non-realtime system
1171  *	for something that requires a steady > 1KHz signal anyways.)
1172  */
1173 
rtc_dropped_irq(unsigned long data)1174 static void rtc_dropped_irq(unsigned long data)
1175 {
1176 	unsigned long freq;
1177 
1178 	spin_lock_irq(&rtc_lock);
1179 
1180 	if (hpet_rtc_dropped_irq()) {
1181 		spin_unlock_irq(&rtc_lock);
1182 		return;
1183 	}
1184 
1185 	/* Just in case someone disabled the timer from behind our back... */
1186 	if (rtc_status & RTC_TIMER_ON)
1187 		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1188 
1189 	rtc_irq_data += ((rtc_freq/HZ)<<8);
1190 	rtc_irq_data &= ~0xff;
1191 	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1192 
1193 	freq = rtc_freq;
1194 
1195 	spin_unlock_irq(&rtc_lock);
1196 
1197 	printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1198 			   freq);
1199 
1200 	/* Now we have new data */
1201 	wake_up_interruptible(&rtc_wait);
1202 
1203 	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1204 }
1205 #endif
1206 
1207 #ifdef CONFIG_PROC_FS
1208 /*
1209  *	Info exported via "/proc/driver/rtc".
1210  */
1211 
rtc_proc_show(struct seq_file * seq,void * v)1212 static int rtc_proc_show(struct seq_file *seq, void *v)
1213 {
1214 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1215 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1216 	struct rtc_time tm;
1217 	unsigned char batt, ctrl;
1218 	unsigned long freq;
1219 
1220 	spin_lock_irq(&rtc_lock);
1221 	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1222 	ctrl = CMOS_READ(RTC_CONTROL);
1223 	freq = rtc_freq;
1224 	spin_unlock_irq(&rtc_lock);
1225 
1226 
1227 	rtc_get_rtc_time(&tm);
1228 
1229 	/*
1230 	 * There is no way to tell if the luser has the RTC set for local
1231 	 * time or for Universal Standard Time (GMT). Probably local though.
1232 	 */
1233 	seq_printf(seq,
1234 		   "rtc_time\t: %02d:%02d:%02d\n"
1235 		   "rtc_date\t: %04d-%02d-%02d\n"
1236 		   "rtc_epoch\t: %04lu\n",
1237 		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1238 		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1239 
1240 	get_rtc_alm_time(&tm);
1241 
1242 	/*
1243 	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1244 	 * match any value for that particular field. Values that are
1245 	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1246 	 */
1247 	seq_puts(seq, "alarm\t\t: ");
1248 	if (tm.tm_hour <= 24)
1249 		seq_printf(seq, "%02d:", tm.tm_hour);
1250 	else
1251 		seq_puts(seq, "**:");
1252 
1253 	if (tm.tm_min <= 59)
1254 		seq_printf(seq, "%02d:", tm.tm_min);
1255 	else
1256 		seq_puts(seq, "**:");
1257 
1258 	if (tm.tm_sec <= 59)
1259 		seq_printf(seq, "%02d\n", tm.tm_sec);
1260 	else
1261 		seq_puts(seq, "**\n");
1262 
1263 	seq_printf(seq,
1264 		   "DST_enable\t: %s\n"
1265 		   "BCD\t\t: %s\n"
1266 		   "24hr\t\t: %s\n"
1267 		   "square_wave\t: %s\n"
1268 		   "alarm_IRQ\t: %s\n"
1269 		   "update_IRQ\t: %s\n"
1270 		   "periodic_IRQ\t: %s\n"
1271 		   "periodic_freq\t: %ld\n"
1272 		   "batt_status\t: %s\n",
1273 		   YN(RTC_DST_EN),
1274 		   NY(RTC_DM_BINARY),
1275 		   YN(RTC_24H),
1276 		   YN(RTC_SQWE),
1277 		   YN(RTC_AIE),
1278 		   YN(RTC_UIE),
1279 		   YN(RTC_PIE),
1280 		   freq,
1281 		   batt ? "okay" : "dead");
1282 
1283 	return  0;
1284 #undef YN
1285 #undef NY
1286 }
1287 
rtc_proc_open(struct inode * inode,struct file * file)1288 static int rtc_proc_open(struct inode *inode, struct file *file)
1289 {
1290 	return single_open(file, rtc_proc_show, NULL);
1291 }
1292 #endif
1293 
rtc_get_rtc_time(struct rtc_time * rtc_tm)1294 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1295 {
1296 	unsigned long uip_watchdog = jiffies, flags;
1297 	unsigned char ctrl;
1298 #ifdef CONFIG_MACH_DECSTATION
1299 	unsigned int real_year;
1300 #endif
1301 
1302 	/*
1303 	 * read RTC once any update in progress is done. The update
1304 	 * can take just over 2ms. We wait 20ms. There is no need to
1305 	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1306 	 * If you need to know *exactly* when a second has started, enable
1307 	 * periodic update complete interrupts, (via ioctl) and then
1308 	 * immediately read /dev/rtc which will block until you get the IRQ.
1309 	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1310 	 */
1311 
1312 	while (rtc_is_updating() != 0 &&
1313 	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1314 		cpu_relax();
1315 
1316 	/*
1317 	 * Only the values that we read from the RTC are set. We leave
1318 	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1319 	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1320 	 * only updated by the RTC when initially set to a non-zero value.
1321 	 */
1322 	spin_lock_irqsave(&rtc_lock, flags);
1323 	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1324 	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1325 	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1326 	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1327 	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1328 	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1329 	/* Only set from 2.6.16 onwards */
1330 	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1331 
1332 #ifdef CONFIG_MACH_DECSTATION
1333 	real_year = CMOS_READ(RTC_DEC_YEAR);
1334 #endif
1335 	ctrl = CMOS_READ(RTC_CONTROL);
1336 	spin_unlock_irqrestore(&rtc_lock, flags);
1337 
1338 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1339 		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1340 		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1341 		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1342 		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1343 		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1344 		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1345 		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1346 	}
1347 
1348 #ifdef CONFIG_MACH_DECSTATION
1349 	rtc_tm->tm_year += real_year - 72;
1350 #endif
1351 
1352 	/*
1353 	 * Account for differences between how the RTC uses the values
1354 	 * and how they are defined in a struct rtc_time;
1355 	 */
1356 	rtc_tm->tm_year += epoch - 1900;
1357 	if (rtc_tm->tm_year <= 69)
1358 		rtc_tm->tm_year += 100;
1359 
1360 	rtc_tm->tm_mon--;
1361 }
1362 
get_rtc_alm_time(struct rtc_time * alm_tm)1363 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1364 {
1365 	unsigned char ctrl;
1366 
1367 	/*
1368 	 * Only the values that we read from the RTC are set. That
1369 	 * means only tm_hour, tm_min, and tm_sec.
1370 	 */
1371 	spin_lock_irq(&rtc_lock);
1372 	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1373 	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1374 	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1375 	ctrl = CMOS_READ(RTC_CONTROL);
1376 	spin_unlock_irq(&rtc_lock);
1377 
1378 	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1379 		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1380 		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1381 		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1382 	}
1383 }
1384 
1385 #ifdef RTC_IRQ
1386 /*
1387  * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1388  * Rumour has it that if you frob the interrupt enable/disable
1389  * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1390  * ensure you actually start getting interrupts. Probably for
1391  * compatibility with older/broken chipset RTC implementations.
1392  * We also clear out any old irq data after an ioctl() that
1393  * meddles with the interrupt enable/disable bits.
1394  */
1395 
mask_rtc_irq_bit_locked(unsigned char bit)1396 static void mask_rtc_irq_bit_locked(unsigned char bit)
1397 {
1398 	unsigned char val;
1399 
1400 	if (hpet_mask_rtc_irq_bit(bit))
1401 		return;
1402 	val = CMOS_READ(RTC_CONTROL);
1403 	val &=  ~bit;
1404 	CMOS_WRITE(val, RTC_CONTROL);
1405 	CMOS_READ(RTC_INTR_FLAGS);
1406 
1407 	rtc_irq_data = 0;
1408 }
1409 
set_rtc_irq_bit_locked(unsigned char bit)1410 static void set_rtc_irq_bit_locked(unsigned char bit)
1411 {
1412 	unsigned char val;
1413 
1414 	if (hpet_set_rtc_irq_bit(bit))
1415 		return;
1416 	val = CMOS_READ(RTC_CONTROL);
1417 	val |= bit;
1418 	CMOS_WRITE(val, RTC_CONTROL);
1419 	CMOS_READ(RTC_INTR_FLAGS);
1420 
1421 	rtc_irq_data = 0;
1422 }
1423 #endif
1424 
1425 MODULE_AUTHOR("Paul Gortmaker");
1426 MODULE_LICENSE("GPL");
1427 MODULE_ALIAS_MISCDEV(RTC_MINOR);
1428