• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 
35 struct sh_cmt_device;
36 
37 /*
38  * The CMT comes in 5 different identified flavours, depending not only on the
39  * SoC but also on the particular instance. The following table lists the main
40  * characteristics of those flavours.
41  *
42  *			16B	32B	32B-F	48B	48B-2
43  * -----------------------------------------------------------------------------
44  * Channels		2	1/4	1	6	2/8
45  * Control Width	16	16	16	16	32
46  * Counter Width	16	32	32	32/48	32/48
47  * Shared Start/Stop	Y	Y	Y	Y	N
48  *
49  * The 48-bit gen2 version has a per-channel start/stop register located in the
50  * channel registers block. All other versions have a shared start/stop register
51  * located in the global space.
52  *
53  * Channels are indexed from 0 to N-1 in the documentation. The channel index
54  * infers the start/stop bit position in the control register and the channel
55  * registers block address. Some CMT instances have a subset of channels
56  * available, in which case the index in the documentation doesn't match the
57  * "real" index as implemented in hardware. This is for instance the case with
58  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59  * in the documentation but using start/stop bit 5 and having its registers
60  * block at 0x60.
61  *
62  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64  */
65 
66 enum sh_cmt_model {
67 	SH_CMT_16BIT,
68 	SH_CMT_32BIT,
69 	SH_CMT_32BIT_FAST,
70 	SH_CMT_48BIT,
71 	SH_CMT_48BIT_GEN2,
72 };
73 
74 struct sh_cmt_info {
75 	enum sh_cmt_model model;
76 
77 	unsigned long width; /* 16 or 32 bit version of hardware block */
78 	u32 overflow_bit;
79 	u32 clear_bits;
80 
81 	/* callbacks for CMSTR and CMCSR access */
82 	u32 (*read_control)(void __iomem *base, unsigned long offs);
83 	void (*write_control)(void __iomem *base, unsigned long offs,
84 			      u32 value);
85 
86 	/* callbacks for CMCNT and CMCOR access */
87 	u32 (*read_count)(void __iomem *base, unsigned long offs);
88 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
89 };
90 
91 struct sh_cmt_channel {
92 	struct sh_cmt_device *cmt;
93 
94 	unsigned int index;	/* Index in the documentation */
95 	unsigned int hwidx;	/* Real hardware index */
96 
97 	void __iomem *iostart;
98 	void __iomem *ioctrl;
99 
100 	unsigned int timer_bit;
101 	unsigned long flags;
102 	u32 match_value;
103 	u32 next_match_value;
104 	u32 max_match_value;
105 	raw_spinlock_t lock;
106 	struct clock_event_device ced;
107 	struct clocksource cs;
108 	u64 total_cycles;
109 	bool cs_enabled;
110 };
111 
112 struct sh_cmt_device {
113 	struct platform_device *pdev;
114 
115 	const struct sh_cmt_info *info;
116 
117 	void __iomem *mapbase;
118 	struct clk *clk;
119 	unsigned long rate;
120 
121 	raw_spinlock_t lock; /* Protect the shared start/stop register */
122 
123 	struct sh_cmt_channel *channels;
124 	unsigned int num_channels;
125 	unsigned int hw_channels;
126 
127 	bool has_clockevent;
128 	bool has_clocksource;
129 };
130 
131 #define SH_CMT16_CMCSR_CMF		(1 << 7)
132 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
133 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
134 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
135 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
136 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
137 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
138 
139 #define SH_CMT32_CMCSR_CMF		(1 << 15)
140 #define SH_CMT32_CMCSR_OVF		(1 << 14)
141 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
142 #define SH_CMT32_CMCSR_STTF		(1 << 12)
143 #define SH_CMT32_CMCSR_STPF		(1 << 11)
144 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
145 #define SH_CMT32_CMCSR_CMS		(1 << 9)
146 #define SH_CMT32_CMCSR_CMM		(1 << 8)
147 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
148 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
149 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
150 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
151 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
152 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
153 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
157 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
158 
sh_cmt_read16(void __iomem * base,unsigned long offs)159 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160 {
161 	return ioread16(base + (offs << 1));
162 }
163 
sh_cmt_read32(void __iomem * base,unsigned long offs)164 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165 {
166 	return ioread32(base + (offs << 2));
167 }
168 
sh_cmt_write16(void __iomem * base,unsigned long offs,u32 value)169 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170 {
171 	iowrite16(value, base + (offs << 1));
172 }
173 
sh_cmt_write32(void __iomem * base,unsigned long offs,u32 value)174 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175 {
176 	iowrite32(value, base + (offs << 2));
177 }
178 
179 static const struct sh_cmt_info sh_cmt_info[] = {
180 	[SH_CMT_16BIT] = {
181 		.model = SH_CMT_16BIT,
182 		.width = 16,
183 		.overflow_bit = SH_CMT16_CMCSR_CMF,
184 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
185 		.read_control = sh_cmt_read16,
186 		.write_control = sh_cmt_write16,
187 		.read_count = sh_cmt_read16,
188 		.write_count = sh_cmt_write16,
189 	},
190 	[SH_CMT_32BIT] = {
191 		.model = SH_CMT_32BIT,
192 		.width = 32,
193 		.overflow_bit = SH_CMT32_CMCSR_CMF,
194 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
195 		.read_control = sh_cmt_read16,
196 		.write_control = sh_cmt_write16,
197 		.read_count = sh_cmt_read32,
198 		.write_count = sh_cmt_write32,
199 	},
200 	[SH_CMT_32BIT_FAST] = {
201 		.model = SH_CMT_32BIT_FAST,
202 		.width = 32,
203 		.overflow_bit = SH_CMT32_CMCSR_CMF,
204 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 		.read_control = sh_cmt_read16,
206 		.write_control = sh_cmt_write16,
207 		.read_count = sh_cmt_read32,
208 		.write_count = sh_cmt_write32,
209 	},
210 	[SH_CMT_48BIT] = {
211 		.model = SH_CMT_48BIT,
212 		.width = 32,
213 		.overflow_bit = SH_CMT32_CMCSR_CMF,
214 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
215 		.read_control = sh_cmt_read32,
216 		.write_control = sh_cmt_write32,
217 		.read_count = sh_cmt_read32,
218 		.write_count = sh_cmt_write32,
219 	},
220 	[SH_CMT_48BIT_GEN2] = {
221 		.model = SH_CMT_48BIT_GEN2,
222 		.width = 32,
223 		.overflow_bit = SH_CMT32_CMCSR_CMF,
224 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
225 		.read_control = sh_cmt_read32,
226 		.write_control = sh_cmt_write32,
227 		.read_count = sh_cmt_read32,
228 		.write_count = sh_cmt_write32,
229 	},
230 };
231 
232 #define CMCSR 0 /* channel register */
233 #define CMCNT 1 /* channel register */
234 #define CMCOR 2 /* channel register */
235 
sh_cmt_read_cmstr(struct sh_cmt_channel * ch)236 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
237 {
238 	if (ch->iostart)
239 		return ch->cmt->info->read_control(ch->iostart, 0);
240 	else
241 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
242 }
243 
sh_cmt_write_cmstr(struct sh_cmt_channel * ch,u32 value)244 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
245 {
246 	if (ch->iostart)
247 		ch->cmt->info->write_control(ch->iostart, 0, value);
248 	else
249 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
250 }
251 
sh_cmt_read_cmcsr(struct sh_cmt_channel * ch)252 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
253 {
254 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
255 }
256 
sh_cmt_write_cmcsr(struct sh_cmt_channel * ch,u32 value)257 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
258 {
259 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
260 }
261 
sh_cmt_read_cmcnt(struct sh_cmt_channel * ch)262 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
263 {
264 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
265 }
266 
sh_cmt_write_cmcnt(struct sh_cmt_channel * ch,u32 value)267 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
268 {
269 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
270 }
271 
sh_cmt_write_cmcor(struct sh_cmt_channel * ch,u32 value)272 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
273 {
274 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
275 }
276 
sh_cmt_get_counter(struct sh_cmt_channel * ch,u32 * has_wrapped)277 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
278 {
279 	u32 v1, v2, v3;
280 	u32 o1, o2;
281 
282 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
283 
284 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
285 	do {
286 		o2 = o1;
287 		v1 = sh_cmt_read_cmcnt(ch);
288 		v2 = sh_cmt_read_cmcnt(ch);
289 		v3 = sh_cmt_read_cmcnt(ch);
290 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
292 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
293 
294 	*has_wrapped = o1;
295 	return v2;
296 }
297 
sh_cmt_start_stop_ch(struct sh_cmt_channel * ch,int start)298 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
299 {
300 	unsigned long flags;
301 	u32 value;
302 
303 	/* start stop register shared by multiple timer channels */
304 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
305 	value = sh_cmt_read_cmstr(ch);
306 
307 	if (start)
308 		value |= 1 << ch->timer_bit;
309 	else
310 		value &= ~(1 << ch->timer_bit);
311 
312 	sh_cmt_write_cmstr(ch, value);
313 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
314 }
315 
sh_cmt_enable(struct sh_cmt_channel * ch)316 static int sh_cmt_enable(struct sh_cmt_channel *ch)
317 {
318 	int k, ret;
319 
320 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
321 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
322 
323 	/* enable clock */
324 	ret = clk_enable(ch->cmt->clk);
325 	if (ret) {
326 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
327 			ch->index);
328 		goto err0;
329 	}
330 
331 	/* make sure channel is disabled */
332 	sh_cmt_start_stop_ch(ch, 0);
333 
334 	/* configure channel, periodic mode and maximum timeout */
335 	if (ch->cmt->info->width == 16) {
336 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
337 				   SH_CMT16_CMCSR_CKS512);
338 	} else {
339 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
340 				   SH_CMT32_CMCSR_CMTOUT_IE |
341 				   SH_CMT32_CMCSR_CMR_IRQ |
342 				   SH_CMT32_CMCSR_CKS_RCLK8);
343 	}
344 
345 	sh_cmt_write_cmcor(ch, 0xffffffff);
346 	sh_cmt_write_cmcnt(ch, 0);
347 
348 	/*
349 	 * According to the sh73a0 user's manual, as CMCNT can be operated
350 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
351 	 * modifying CMCNT register; two RCLK cycles are necessary before
352 	 * this register is either read or any modification of the value
353 	 * it holds is reflected in the LSI's actual operation.
354 	 *
355 	 * While at it, we're supposed to clear out the CMCNT as of this
356 	 * moment, so make sure it's processed properly here.  This will
357 	 * take RCLKx2 at maximum.
358 	 */
359 	for (k = 0; k < 100; k++) {
360 		if (!sh_cmt_read_cmcnt(ch))
361 			break;
362 		udelay(1);
363 	}
364 
365 	if (sh_cmt_read_cmcnt(ch)) {
366 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
367 			ch->index);
368 		ret = -ETIMEDOUT;
369 		goto err1;
370 	}
371 
372 	/* enable channel */
373 	sh_cmt_start_stop_ch(ch, 1);
374 	return 0;
375  err1:
376 	/* stop clock */
377 	clk_disable(ch->cmt->clk);
378 
379  err0:
380 	return ret;
381 }
382 
sh_cmt_disable(struct sh_cmt_channel * ch)383 static void sh_cmt_disable(struct sh_cmt_channel *ch)
384 {
385 	/* disable channel */
386 	sh_cmt_start_stop_ch(ch, 0);
387 
388 	/* disable interrupts in CMT block */
389 	sh_cmt_write_cmcsr(ch, 0);
390 
391 	/* stop clock */
392 	clk_disable(ch->cmt->clk);
393 
394 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
395 	pm_runtime_put(&ch->cmt->pdev->dev);
396 }
397 
398 /* private flags */
399 #define FLAG_CLOCKEVENT (1 << 0)
400 #define FLAG_CLOCKSOURCE (1 << 1)
401 #define FLAG_REPROGRAM (1 << 2)
402 #define FLAG_SKIPEVENT (1 << 3)
403 #define FLAG_IRQCONTEXT (1 << 4)
404 
sh_cmt_clock_event_program_verify(struct sh_cmt_channel * ch,int absolute)405 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
406 					      int absolute)
407 {
408 	u32 value = ch->next_match_value;
409 	u32 new_match;
410 	u32 delay = 0;
411 	u32 now = 0;
412 	u32 has_wrapped;
413 
414 	now = sh_cmt_get_counter(ch, &has_wrapped);
415 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
416 
417 	if (has_wrapped) {
418 		/* we're competing with the interrupt handler.
419 		 *  -> let the interrupt handler reprogram the timer.
420 		 *  -> interrupt number two handles the event.
421 		 */
422 		ch->flags |= FLAG_SKIPEVENT;
423 		return;
424 	}
425 
426 	if (absolute)
427 		now = 0;
428 
429 	do {
430 		/* reprogram the timer hardware,
431 		 * but don't save the new match value yet.
432 		 */
433 		new_match = now + value + delay;
434 		if (new_match > ch->max_match_value)
435 			new_match = ch->max_match_value;
436 
437 		sh_cmt_write_cmcor(ch, new_match);
438 
439 		now = sh_cmt_get_counter(ch, &has_wrapped);
440 		if (has_wrapped && (new_match > ch->match_value)) {
441 			/* we are changing to a greater match value,
442 			 * so this wrap must be caused by the counter
443 			 * matching the old value.
444 			 * -> first interrupt reprograms the timer.
445 			 * -> interrupt number two handles the event.
446 			 */
447 			ch->flags |= FLAG_SKIPEVENT;
448 			break;
449 		}
450 
451 		if (has_wrapped) {
452 			/* we are changing to a smaller match value,
453 			 * so the wrap must be caused by the counter
454 			 * matching the new value.
455 			 * -> save programmed match value.
456 			 * -> let isr handle the event.
457 			 */
458 			ch->match_value = new_match;
459 			break;
460 		}
461 
462 		/* be safe: verify hardware settings */
463 		if (now < new_match) {
464 			/* timer value is below match value, all good.
465 			 * this makes sure we won't miss any match events.
466 			 * -> save programmed match value.
467 			 * -> let isr handle the event.
468 			 */
469 			ch->match_value = new_match;
470 			break;
471 		}
472 
473 		/* the counter has reached a value greater
474 		 * than our new match value. and since the
475 		 * has_wrapped flag isn't set we must have
476 		 * programmed a too close event.
477 		 * -> increase delay and retry.
478 		 */
479 		if (delay)
480 			delay <<= 1;
481 		else
482 			delay = 1;
483 
484 		if (!delay)
485 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
486 				 ch->index);
487 
488 	} while (delay);
489 }
490 
__sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)491 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
492 {
493 	if (delta > ch->max_match_value)
494 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
495 			 ch->index);
496 
497 	ch->next_match_value = delta;
498 	sh_cmt_clock_event_program_verify(ch, 0);
499 }
500 
sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)501 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
502 {
503 	unsigned long flags;
504 
505 	raw_spin_lock_irqsave(&ch->lock, flags);
506 	__sh_cmt_set_next(ch, delta);
507 	raw_spin_unlock_irqrestore(&ch->lock, flags);
508 }
509 
sh_cmt_interrupt(int irq,void * dev_id)510 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
511 {
512 	struct sh_cmt_channel *ch = dev_id;
513 
514 	/* clear flags */
515 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
516 			   ch->cmt->info->clear_bits);
517 
518 	/* update clock source counter to begin with if enabled
519 	 * the wrap flag should be cleared by the timer specific
520 	 * isr before we end up here.
521 	 */
522 	if (ch->flags & FLAG_CLOCKSOURCE)
523 		ch->total_cycles += ch->match_value + 1;
524 
525 	if (!(ch->flags & FLAG_REPROGRAM))
526 		ch->next_match_value = ch->max_match_value;
527 
528 	ch->flags |= FLAG_IRQCONTEXT;
529 
530 	if (ch->flags & FLAG_CLOCKEVENT) {
531 		if (!(ch->flags & FLAG_SKIPEVENT)) {
532 			if (clockevent_state_oneshot(&ch->ced)) {
533 				ch->next_match_value = ch->max_match_value;
534 				ch->flags |= FLAG_REPROGRAM;
535 			}
536 
537 			ch->ced.event_handler(&ch->ced);
538 		}
539 	}
540 
541 	ch->flags &= ~FLAG_SKIPEVENT;
542 
543 	if (ch->flags & FLAG_REPROGRAM) {
544 		ch->flags &= ~FLAG_REPROGRAM;
545 		sh_cmt_clock_event_program_verify(ch, 1);
546 
547 		if (ch->flags & FLAG_CLOCKEVENT)
548 			if ((clockevent_state_shutdown(&ch->ced))
549 			    || (ch->match_value == ch->next_match_value))
550 				ch->flags &= ~FLAG_REPROGRAM;
551 	}
552 
553 	ch->flags &= ~FLAG_IRQCONTEXT;
554 
555 	return IRQ_HANDLED;
556 }
557 
sh_cmt_start(struct sh_cmt_channel * ch,unsigned long flag)558 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
559 {
560 	int ret = 0;
561 	unsigned long flags;
562 
563 	raw_spin_lock_irqsave(&ch->lock, flags);
564 
565 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
566 		ret = sh_cmt_enable(ch);
567 
568 	if (ret)
569 		goto out;
570 	ch->flags |= flag;
571 
572 	/* setup timeout if no clockevent */
573 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
574 		__sh_cmt_set_next(ch, ch->max_match_value);
575  out:
576 	raw_spin_unlock_irqrestore(&ch->lock, flags);
577 
578 	return ret;
579 }
580 
sh_cmt_stop(struct sh_cmt_channel * ch,unsigned long flag)581 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
582 {
583 	unsigned long flags;
584 	unsigned long f;
585 
586 	raw_spin_lock_irqsave(&ch->lock, flags);
587 
588 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
589 	ch->flags &= ~flag;
590 
591 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
592 		sh_cmt_disable(ch);
593 
594 	/* adjust the timeout to maximum if only clocksource left */
595 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
596 		__sh_cmt_set_next(ch, ch->max_match_value);
597 
598 	raw_spin_unlock_irqrestore(&ch->lock, flags);
599 }
600 
cs_to_sh_cmt(struct clocksource * cs)601 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
602 {
603 	return container_of(cs, struct sh_cmt_channel, cs);
604 }
605 
sh_cmt_clocksource_read(struct clocksource * cs)606 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
607 {
608 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
609 	unsigned long flags;
610 	u32 has_wrapped;
611 	u64 value;
612 	u32 raw;
613 
614 	raw_spin_lock_irqsave(&ch->lock, flags);
615 	value = ch->total_cycles;
616 	raw = sh_cmt_get_counter(ch, &has_wrapped);
617 
618 	if (unlikely(has_wrapped))
619 		raw += ch->match_value + 1;
620 	raw_spin_unlock_irqrestore(&ch->lock, flags);
621 
622 	return value + raw;
623 }
624 
sh_cmt_clocksource_enable(struct clocksource * cs)625 static int sh_cmt_clocksource_enable(struct clocksource *cs)
626 {
627 	int ret;
628 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
629 
630 	WARN_ON(ch->cs_enabled);
631 
632 	ch->total_cycles = 0;
633 
634 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
635 	if (!ret)
636 		ch->cs_enabled = true;
637 
638 	return ret;
639 }
640 
sh_cmt_clocksource_disable(struct clocksource * cs)641 static void sh_cmt_clocksource_disable(struct clocksource *cs)
642 {
643 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
644 
645 	WARN_ON(!ch->cs_enabled);
646 
647 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
648 	ch->cs_enabled = false;
649 }
650 
sh_cmt_clocksource_suspend(struct clocksource * cs)651 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
652 {
653 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
654 
655 	if (!ch->cs_enabled)
656 		return;
657 
658 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
659 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
660 }
661 
sh_cmt_clocksource_resume(struct clocksource * cs)662 static void sh_cmt_clocksource_resume(struct clocksource *cs)
663 {
664 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
665 
666 	if (!ch->cs_enabled)
667 		return;
668 
669 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
670 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
671 }
672 
sh_cmt_register_clocksource(struct sh_cmt_channel * ch,const char * name)673 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
674 				       const char *name)
675 {
676 	struct clocksource *cs = &ch->cs;
677 
678 	cs->name = name;
679 	cs->rating = 125;
680 	cs->read = sh_cmt_clocksource_read;
681 	cs->enable = sh_cmt_clocksource_enable;
682 	cs->disable = sh_cmt_clocksource_disable;
683 	cs->suspend = sh_cmt_clocksource_suspend;
684 	cs->resume = sh_cmt_clocksource_resume;
685 	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
686 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
687 
688 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
689 		 ch->index);
690 
691 	clocksource_register_hz(cs, ch->cmt->rate);
692 	return 0;
693 }
694 
ced_to_sh_cmt(struct clock_event_device * ced)695 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
696 {
697 	return container_of(ced, struct sh_cmt_channel, ced);
698 }
699 
sh_cmt_clock_event_start(struct sh_cmt_channel * ch,int periodic)700 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
701 {
702 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
703 
704 	if (periodic)
705 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
706 	else
707 		sh_cmt_set_next(ch, ch->max_match_value);
708 }
709 
sh_cmt_clock_event_shutdown(struct clock_event_device * ced)710 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
711 {
712 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
713 
714 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
715 	return 0;
716 }
717 
sh_cmt_clock_event_set_state(struct clock_event_device * ced,int periodic)718 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
719 					int periodic)
720 {
721 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
722 
723 	/* deal with old setting first */
724 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
725 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
726 
727 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
728 		 ch->index, periodic ? "periodic" : "oneshot");
729 	sh_cmt_clock_event_start(ch, periodic);
730 	return 0;
731 }
732 
sh_cmt_clock_event_set_oneshot(struct clock_event_device * ced)733 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
734 {
735 	return sh_cmt_clock_event_set_state(ced, 0);
736 }
737 
sh_cmt_clock_event_set_periodic(struct clock_event_device * ced)738 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
739 {
740 	return sh_cmt_clock_event_set_state(ced, 1);
741 }
742 
sh_cmt_clock_event_next(unsigned long delta,struct clock_event_device * ced)743 static int sh_cmt_clock_event_next(unsigned long delta,
744 				   struct clock_event_device *ced)
745 {
746 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
747 
748 	BUG_ON(!clockevent_state_oneshot(ced));
749 	if (likely(ch->flags & FLAG_IRQCONTEXT))
750 		ch->next_match_value = delta - 1;
751 	else
752 		sh_cmt_set_next(ch, delta - 1);
753 
754 	return 0;
755 }
756 
sh_cmt_clock_event_suspend(struct clock_event_device * ced)757 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
758 {
759 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
760 
761 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
762 	clk_unprepare(ch->cmt->clk);
763 }
764 
sh_cmt_clock_event_resume(struct clock_event_device * ced)765 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
766 {
767 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
768 
769 	clk_prepare(ch->cmt->clk);
770 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
771 }
772 
sh_cmt_register_clockevent(struct sh_cmt_channel * ch,const char * name)773 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
774 				      const char *name)
775 {
776 	struct clock_event_device *ced = &ch->ced;
777 	int irq;
778 	int ret;
779 
780 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
781 	if (irq < 0) {
782 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
783 			ch->index);
784 		return irq;
785 	}
786 
787 	ret = request_irq(irq, sh_cmt_interrupt,
788 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
789 			  dev_name(&ch->cmt->pdev->dev), ch);
790 	if (ret) {
791 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
792 			ch->index, irq);
793 		return ret;
794 	}
795 
796 	ced->name = name;
797 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
798 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
799 	ced->rating = 125;
800 	ced->cpumask = cpu_possible_mask;
801 	ced->set_next_event = sh_cmt_clock_event_next;
802 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
803 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
804 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
805 	ced->suspend = sh_cmt_clock_event_suspend;
806 	ced->resume = sh_cmt_clock_event_resume;
807 
808 	/* TODO: calculate good shift from rate and counter bit width */
809 	ced->shift = 32;
810 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
811 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
812 	ced->max_delta_ticks = ch->max_match_value;
813 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
814 	ced->min_delta_ticks = 0x1f;
815 
816 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
817 		 ch->index);
818 	clockevents_register_device(ced);
819 
820 	return 0;
821 }
822 
sh_cmt_register(struct sh_cmt_channel * ch,const char * name,bool clockevent,bool clocksource)823 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
824 			   bool clockevent, bool clocksource)
825 {
826 	int ret;
827 
828 	if (clockevent) {
829 		ch->cmt->has_clockevent = true;
830 		ret = sh_cmt_register_clockevent(ch, name);
831 		if (ret < 0)
832 			return ret;
833 	}
834 
835 	if (clocksource) {
836 		ch->cmt->has_clocksource = true;
837 		sh_cmt_register_clocksource(ch, name);
838 	}
839 
840 	return 0;
841 }
842 
sh_cmt_setup_channel(struct sh_cmt_channel * ch,unsigned int index,unsigned int hwidx,bool clockevent,bool clocksource,struct sh_cmt_device * cmt)843 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
844 				unsigned int hwidx, bool clockevent,
845 				bool clocksource, struct sh_cmt_device *cmt)
846 {
847 	int ret;
848 
849 	/* Skip unused channels. */
850 	if (!clockevent && !clocksource)
851 		return 0;
852 
853 	ch->cmt = cmt;
854 	ch->index = index;
855 	ch->hwidx = hwidx;
856 
857 	/*
858 	 * Compute the address of the channel control register block. For the
859 	 * timers with a per-channel start/stop register, compute its address
860 	 * as well.
861 	 */
862 	switch (cmt->info->model) {
863 	case SH_CMT_16BIT:
864 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
865 		break;
866 	case SH_CMT_32BIT:
867 	case SH_CMT_48BIT:
868 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
869 		break;
870 	case SH_CMT_32BIT_FAST:
871 		/*
872 		 * The 32-bit "fast" timer has a single channel at hwidx 5 but
873 		 * is located at offset 0x40 instead of 0x60 for some reason.
874 		 */
875 		ch->ioctrl = cmt->mapbase + 0x40;
876 		break;
877 	case SH_CMT_48BIT_GEN2:
878 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
879 		ch->ioctrl = ch->iostart + 0x10;
880 		break;
881 	}
882 
883 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
884 		ch->max_match_value = ~0;
885 	else
886 		ch->max_match_value = (1 << cmt->info->width) - 1;
887 
888 	ch->match_value = ch->max_match_value;
889 	raw_spin_lock_init(&ch->lock);
890 
891 	ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
892 
893 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
894 			      clockevent, clocksource);
895 	if (ret) {
896 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
897 			ch->index);
898 		return ret;
899 	}
900 	ch->cs_enabled = false;
901 
902 	return 0;
903 }
904 
sh_cmt_map_memory(struct sh_cmt_device * cmt)905 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
906 {
907 	struct resource *mem;
908 
909 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
910 	if (!mem) {
911 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
912 		return -ENXIO;
913 	}
914 
915 	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
916 	if (cmt->mapbase == NULL) {
917 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
918 		return -ENXIO;
919 	}
920 
921 	return 0;
922 }
923 
924 static const struct platform_device_id sh_cmt_id_table[] = {
925 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
926 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
927 	{ }
928 };
929 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
930 
931 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
932 	{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
933 	{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
934 	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
935 	{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
936 	{ }
937 };
938 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
939 
sh_cmt_parse_dt(struct sh_cmt_device * cmt)940 static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
941 {
942 	struct device_node *np = cmt->pdev->dev.of_node;
943 
944 	return of_property_read_u32(np, "renesas,channels-mask",
945 				    &cmt->hw_channels);
946 }
947 
sh_cmt_setup(struct sh_cmt_device * cmt,struct platform_device * pdev)948 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
949 {
950 	unsigned int mask;
951 	unsigned int i;
952 	int ret;
953 
954 	cmt->pdev = pdev;
955 	raw_spin_lock_init(&cmt->lock);
956 
957 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
958 		const struct of_device_id *id;
959 
960 		id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
961 		cmt->info = id->data;
962 
963 		ret = sh_cmt_parse_dt(cmt);
964 		if (ret < 0)
965 			return ret;
966 	} else if (pdev->dev.platform_data) {
967 		struct sh_timer_config *cfg = pdev->dev.platform_data;
968 		const struct platform_device_id *id = pdev->id_entry;
969 
970 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
971 		cmt->hw_channels = cfg->channels_mask;
972 	} else {
973 		dev_err(&cmt->pdev->dev, "missing platform data\n");
974 		return -ENXIO;
975 	}
976 
977 	/* Get hold of clock. */
978 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
979 	if (IS_ERR(cmt->clk)) {
980 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
981 		return PTR_ERR(cmt->clk);
982 	}
983 
984 	ret = clk_prepare(cmt->clk);
985 	if (ret < 0)
986 		goto err_clk_put;
987 
988 	/* Determine clock rate. */
989 	ret = clk_enable(cmt->clk);
990 	if (ret < 0)
991 		goto err_clk_unprepare;
992 
993 	if (cmt->info->width == 16)
994 		cmt->rate = clk_get_rate(cmt->clk) / 512;
995 	else
996 		cmt->rate = clk_get_rate(cmt->clk) / 8;
997 
998 	clk_disable(cmt->clk);
999 
1000 	/* Map the memory resource(s). */
1001 	ret = sh_cmt_map_memory(cmt);
1002 	if (ret < 0)
1003 		goto err_clk_unprepare;
1004 
1005 	/* Allocate and setup the channels. */
1006 	cmt->num_channels = hweight8(cmt->hw_channels);
1007 	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1008 				GFP_KERNEL);
1009 	if (cmt->channels == NULL) {
1010 		ret = -ENOMEM;
1011 		goto err_unmap;
1012 	}
1013 
1014 	/*
1015 	 * Use the first channel as a clock event device and the second channel
1016 	 * as a clock source. If only one channel is available use it for both.
1017 	 */
1018 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1019 		unsigned int hwidx = ffs(mask) - 1;
1020 		bool clocksource = i == 1 || cmt->num_channels == 1;
1021 		bool clockevent = i == 0;
1022 
1023 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1024 					   clockevent, clocksource, cmt);
1025 		if (ret < 0)
1026 			goto err_unmap;
1027 
1028 		mask &= ~(1 << hwidx);
1029 	}
1030 
1031 	platform_set_drvdata(pdev, cmt);
1032 
1033 	return 0;
1034 
1035 err_unmap:
1036 	kfree(cmt->channels);
1037 	iounmap(cmt->mapbase);
1038 err_clk_unprepare:
1039 	clk_unprepare(cmt->clk);
1040 err_clk_put:
1041 	clk_put(cmt->clk);
1042 	return ret;
1043 }
1044 
sh_cmt_probe(struct platform_device * pdev)1045 static int sh_cmt_probe(struct platform_device *pdev)
1046 {
1047 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1048 	int ret;
1049 
1050 	if (!is_early_platform_device(pdev)) {
1051 		pm_runtime_set_active(&pdev->dev);
1052 		pm_runtime_enable(&pdev->dev);
1053 	}
1054 
1055 	if (cmt) {
1056 		dev_info(&pdev->dev, "kept as earlytimer\n");
1057 		goto out;
1058 	}
1059 
1060 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1061 	if (cmt == NULL)
1062 		return -ENOMEM;
1063 
1064 	ret = sh_cmt_setup(cmt, pdev);
1065 	if (ret) {
1066 		kfree(cmt);
1067 		pm_runtime_idle(&pdev->dev);
1068 		return ret;
1069 	}
1070 	if (is_early_platform_device(pdev))
1071 		return 0;
1072 
1073  out:
1074 	if (cmt->has_clockevent || cmt->has_clocksource)
1075 		pm_runtime_irq_safe(&pdev->dev);
1076 	else
1077 		pm_runtime_idle(&pdev->dev);
1078 
1079 	return 0;
1080 }
1081 
sh_cmt_remove(struct platform_device * pdev)1082 static int sh_cmt_remove(struct platform_device *pdev)
1083 {
1084 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1085 }
1086 
1087 static struct platform_driver sh_cmt_device_driver = {
1088 	.probe		= sh_cmt_probe,
1089 	.remove		= sh_cmt_remove,
1090 	.driver		= {
1091 		.name	= "sh_cmt",
1092 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1093 	},
1094 	.id_table	= sh_cmt_id_table,
1095 };
1096 
sh_cmt_init(void)1097 static int __init sh_cmt_init(void)
1098 {
1099 	return platform_driver_register(&sh_cmt_device_driver);
1100 }
1101 
sh_cmt_exit(void)1102 static void __exit sh_cmt_exit(void)
1103 {
1104 	platform_driver_unregister(&sh_cmt_device_driver);
1105 }
1106 
1107 early_platform_init("earlytimer", &sh_cmt_device_driver);
1108 subsys_initcall(sh_cmt_init);
1109 module_exit(sh_cmt_exit);
1110 
1111 MODULE_AUTHOR("Magnus Damm");
1112 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1113 MODULE_LICENSE("GPL v2");
1114