• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49 
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
mul_fp(int32_t x,int32_t y)59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
div_fp(s64 x,s64 y)64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
ceiling_fp(int32_t x)69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
percent_fp(int percent)80 static inline int32_t percent_fp(int percent)
81 {
82 	return div_fp(percent, 100);
83 }
84 
mul_ext_fp(u64 x,u64 y)85 static inline u64 mul_ext_fp(u64 x, u64 y)
86 {
87 	return (x * y) >> EXT_FRAC_BITS;
88 }
89 
div_ext_fp(u64 x,u64 y)90 static inline u64 div_ext_fp(u64 x, u64 y)
91 {
92 	return div64_u64(x << EXT_FRAC_BITS, y);
93 }
94 
percent_ext_fp(int percent)95 static inline int32_t percent_ext_fp(int percent)
96 {
97 	return div_ext_fp(percent, 100);
98 }
99 
100 /**
101  * struct sample -	Store performance sample
102  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103  *			performance during last sample period
104  * @busy_scaled:	Scaled busy value which is used to calculate next
105  *			P state. This can be different than core_avg_perf
106  *			to account for cpu idle period
107  * @aperf:		Difference of actual performance frequency clock count
108  *			read from APERF MSR between last and current sample
109  * @mperf:		Difference of maximum performance frequency clock count
110  *			read from MPERF MSR between last and current sample
111  * @tsc:		Difference of time stamp counter between last and
112  *			current sample
113  * @time:		Current time from scheduler
114  *
115  * This structure is used in the cpudata structure to store performance sample
116  * data for choosing next P State.
117  */
118 struct sample {
119 	int32_t core_avg_perf;
120 	int32_t busy_scaled;
121 	u64 aperf;
122 	u64 mperf;
123 	u64 tsc;
124 	u64 time;
125 };
126 
127 /**
128  * struct pstate_data - Store P state data
129  * @current_pstate:	Current requested P state
130  * @min_pstate:		Min P state possible for this platform
131  * @max_pstate:		Max P state possible for this platform
132  * @max_pstate_physical:This is physical Max P state for a processor
133  *			This can be higher than the max_pstate which can
134  *			be limited by platform thermal design power limits
135  * @scaling:		Scaling factor to  convert frequency to cpufreq
136  *			frequency units
137  * @turbo_pstate:	Max Turbo P state possible for this platform
138  * @max_freq:		@max_pstate frequency in cpufreq units
139  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140  *
141  * Stores the per cpu model P state limits and current P state.
142  */
143 struct pstate_data {
144 	int	current_pstate;
145 	int	min_pstate;
146 	int	max_pstate;
147 	int	max_pstate_physical;
148 	int	scaling;
149 	int	turbo_pstate;
150 	unsigned int max_freq;
151 	unsigned int turbo_freq;
152 };
153 
154 /**
155  * struct vid_data -	Stores voltage information data
156  * @min:		VID data for this platform corresponding to
157  *			the lowest P state
158  * @max:		VID data corresponding to the highest P State.
159  * @turbo:		VID data for turbo P state
160  * @ratio:		Ratio of (vid max - vid min) /
161  *			(max P state - Min P State)
162  *
163  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164  * This data is used in Atom platforms, where in addition to target P state,
165  * the voltage data needs to be specified to select next P State.
166  */
167 struct vid_data {
168 	int min;
169 	int max;
170 	int turbo;
171 	int32_t ratio;
172 };
173 
174 /**
175  * struct global_params - Global parameters, mostly tunable via sysfs.
176  * @no_turbo:		Whether or not to use turbo P-states.
177  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
178  *			based on the MSR_IA32_MISC_ENABLE value and whether or
179  *			not the maximum reported turbo P-state is different from
180  *			the maximum reported non-turbo one.
181  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
182  *			P-state capacity.
183  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
184  *			P-state capacity.
185  */
186 struct global_params {
187 	bool no_turbo;
188 	bool turbo_disabled;
189 	int max_perf_pct;
190 	int min_perf_pct;
191 };
192 
193 /**
194  * struct cpudata -	Per CPU instance data storage
195  * @cpu:		CPU number for this instance data
196  * @policy:		CPUFreq policy value
197  * @update_util:	CPUFreq utility callback information
198  * @update_util_set:	CPUFreq utility callback is set
199  * @iowait_boost:	iowait-related boost fraction
200  * @last_update:	Time of the last update.
201  * @pstate:		Stores P state limits for this CPU
202  * @vid:		Stores VID limits for this CPU
203  * @last_sample_time:	Last Sample time
204  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
205  *			This shift is a multiplier to mperf delta to
206  *			calculate CPU busy.
207  * @prev_aperf:		Last APERF value read from APERF MSR
208  * @prev_mperf:		Last MPERF value read from MPERF MSR
209  * @prev_tsc:		Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *			current sample
212  * @sample:		Storage for storing last Sample data
213  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
216  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:	Last saved HWP energy performance preference
218  *			(EPP) or energy performance bias (EPB),
219  *			when policy switched to performance
220  * @epp_policy:		Last saved policy used to set EPP/EPB
221  * @epp_default:	Power on default HWP energy performance
222  *			preference/bias
223  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
224  *			operation
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229 	int cpu;
230 
231 	unsigned int policy;
232 	struct update_util_data update_util;
233 	bool   update_util_set;
234 
235 	struct pstate_data pstate;
236 	struct vid_data vid;
237 
238 	u64	last_update;
239 	u64	last_sample_time;
240 	u64	aperf_mperf_shift;
241 	u64	prev_aperf;
242 	u64	prev_mperf;
243 	u64	prev_tsc;
244 	u64	prev_cummulative_iowait;
245 	struct sample sample;
246 	int32_t	min_perf_ratio;
247 	int32_t	max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 	struct acpi_processor_performance acpi_perf_data;
250 	bool valid_pss_table;
251 #endif
252 	unsigned int iowait_boost;
253 	s16 epp_powersave;
254 	s16 epp_policy;
255 	s16 epp_default;
256 	s16 epp_saved;
257 };
258 
259 static struct cpudata **all_cpu_data;
260 
261 /**
262  * struct pstate_funcs - Per CPU model specific callbacks
263  * @get_max:		Callback to get maximum non turbo effective P state
264  * @get_max_physical:	Callback to get maximum non turbo physical P state
265  * @get_min:		Callback to get minimum P state
266  * @get_turbo:		Callback to get turbo P state
267  * @get_scaling:	Callback to get frequency scaling factor
268  * @get_val:		Callback to convert P state to actual MSR write value
269  * @get_vid:		Callback to get VID data for Atom platforms
270  *
271  * Core and Atom CPU models have different way to get P State limits. This
272  * structure is used to store those callbacks.
273  */
274 struct pstate_funcs {
275 	int (*get_max)(void);
276 	int (*get_max_physical)(void);
277 	int (*get_min)(void);
278 	int (*get_turbo)(void);
279 	int (*get_scaling)(void);
280 	int (*get_aperf_mperf_shift)(void);
281 	u64 (*get_val)(struct cpudata*, int pstate);
282 	void (*get_vid)(struct cpudata *);
283 };
284 
285 static struct pstate_funcs pstate_funcs __read_mostly;
286 
287 static int hwp_active __read_mostly;
288 static int hwp_mode_bdw __read_mostly;
289 static bool per_cpu_limits __read_mostly;
290 
291 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
292 
293 #ifdef CONFIG_ACPI
294 static bool acpi_ppc;
295 #endif
296 
297 static struct global_params global;
298 
299 static DEFINE_MUTEX(intel_pstate_driver_lock);
300 static DEFINE_MUTEX(intel_pstate_limits_lock);
301 
302 #ifdef CONFIG_ACPI
303 
intel_pstate_get_ppc_enable_status(void)304 static bool intel_pstate_get_ppc_enable_status(void)
305 {
306 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
307 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
308 		return true;
309 
310 	return acpi_ppc;
311 }
312 
313 #ifdef CONFIG_ACPI_CPPC_LIB
314 
315 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)316 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
317 {
318 	sched_set_itmt_support();
319 }
320 
321 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
322 
intel_pstate_set_itmt_prio(int cpu)323 static void intel_pstate_set_itmt_prio(int cpu)
324 {
325 	struct cppc_perf_caps cppc_perf;
326 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
327 	int ret;
328 
329 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
330 	if (ret)
331 		return;
332 
333 	/*
334 	 * The priorities can be set regardless of whether or not
335 	 * sched_set_itmt_support(true) has been called and it is valid to
336 	 * update them at any time after it has been called.
337 	 */
338 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
339 
340 	if (max_highest_perf <= min_highest_perf) {
341 		if (cppc_perf.highest_perf > max_highest_perf)
342 			max_highest_perf = cppc_perf.highest_perf;
343 
344 		if (cppc_perf.highest_perf < min_highest_perf)
345 			min_highest_perf = cppc_perf.highest_perf;
346 
347 		if (max_highest_perf > min_highest_perf) {
348 			/*
349 			 * This code can be run during CPU online under the
350 			 * CPU hotplug locks, so sched_set_itmt_support()
351 			 * cannot be called from here.  Queue up a work item
352 			 * to invoke it.
353 			 */
354 			schedule_work(&sched_itmt_work);
355 		}
356 	}
357 }
358 #else
intel_pstate_set_itmt_prio(int cpu)359 static void intel_pstate_set_itmt_prio(int cpu)
360 {
361 }
362 #endif
363 
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)364 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
365 {
366 	struct cpudata *cpu;
367 	int ret;
368 	int i;
369 
370 	if (hwp_active) {
371 		intel_pstate_set_itmt_prio(policy->cpu);
372 		return;
373 	}
374 
375 	if (!intel_pstate_get_ppc_enable_status())
376 		return;
377 
378 	cpu = all_cpu_data[policy->cpu];
379 
380 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
381 						  policy->cpu);
382 	if (ret)
383 		return;
384 
385 	/*
386 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
387 	 * guarantee that the states returned by it map to the states in our
388 	 * list directly.
389 	 */
390 	if (cpu->acpi_perf_data.control_register.space_id !=
391 						ACPI_ADR_SPACE_FIXED_HARDWARE)
392 		goto err;
393 
394 	/*
395 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
396 	 * usual without taking _PSS into account
397 	 */
398 	if (cpu->acpi_perf_data.state_count < 2)
399 		goto err;
400 
401 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
402 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
403 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
404 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
405 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
406 			 (u32) cpu->acpi_perf_data.states[i].power,
407 			 (u32) cpu->acpi_perf_data.states[i].control);
408 	}
409 
410 	/*
411 	 * The _PSS table doesn't contain whole turbo frequency range.
412 	 * This just contains +1 MHZ above the max non turbo frequency,
413 	 * with control value corresponding to max turbo ratio. But
414 	 * when cpufreq set policy is called, it will call with this
415 	 * max frequency, which will cause a reduced performance as
416 	 * this driver uses real max turbo frequency as the max
417 	 * frequency. So correct this frequency in _PSS table to
418 	 * correct max turbo frequency based on the turbo state.
419 	 * Also need to convert to MHz as _PSS freq is in MHz.
420 	 */
421 	if (!global.turbo_disabled)
422 		cpu->acpi_perf_data.states[0].core_frequency =
423 					policy->cpuinfo.max_freq / 1000;
424 	cpu->valid_pss_table = true;
425 	pr_debug("_PPC limits will be enforced\n");
426 
427 	return;
428 
429  err:
430 	cpu->valid_pss_table = false;
431 	acpi_processor_unregister_performance(policy->cpu);
432 }
433 
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)434 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
435 {
436 	struct cpudata *cpu;
437 
438 	cpu = all_cpu_data[policy->cpu];
439 	if (!cpu->valid_pss_table)
440 		return;
441 
442 	acpi_processor_unregister_performance(policy->cpu);
443 }
444 #else
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)445 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
446 {
447 }
448 
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)449 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
450 {
451 }
452 #endif
453 
update_turbo_state(void)454 static inline void update_turbo_state(void)
455 {
456 	u64 misc_en;
457 	struct cpudata *cpu;
458 
459 	cpu = all_cpu_data[0];
460 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
461 	global.turbo_disabled =
462 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
463 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
464 }
465 
min_perf_pct_min(void)466 static int min_perf_pct_min(void)
467 {
468 	struct cpudata *cpu = all_cpu_data[0];
469 	int turbo_pstate = cpu->pstate.turbo_pstate;
470 
471 	return turbo_pstate ?
472 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
473 }
474 
intel_pstate_get_epb(struct cpudata * cpu_data)475 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
476 {
477 	u64 epb;
478 	int ret;
479 
480 	if (!static_cpu_has(X86_FEATURE_EPB))
481 		return -ENXIO;
482 
483 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
484 	if (ret)
485 		return (s16)ret;
486 
487 	return (s16)(epb & 0x0f);
488 }
489 
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)490 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
491 {
492 	s16 epp;
493 
494 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
495 		/*
496 		 * When hwp_req_data is 0, means that caller didn't read
497 		 * MSR_HWP_REQUEST, so need to read and get EPP.
498 		 */
499 		if (!hwp_req_data) {
500 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
501 					    &hwp_req_data);
502 			if (epp)
503 				return epp;
504 		}
505 		epp = (hwp_req_data >> 24) & 0xff;
506 	} else {
507 		/* When there is no EPP present, HWP uses EPB settings */
508 		epp = intel_pstate_get_epb(cpu_data);
509 	}
510 
511 	return epp;
512 }
513 
intel_pstate_set_epb(int cpu,s16 pref)514 static int intel_pstate_set_epb(int cpu, s16 pref)
515 {
516 	u64 epb;
517 	int ret;
518 
519 	if (!static_cpu_has(X86_FEATURE_EPB))
520 		return -ENXIO;
521 
522 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
523 	if (ret)
524 		return ret;
525 
526 	epb = (epb & ~0x0f) | pref;
527 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
528 
529 	return 0;
530 }
531 
532 /*
533  * EPP/EPB display strings corresponding to EPP index in the
534  * energy_perf_strings[]
535  *	index		String
536  *-------------------------------------
537  *	0		default
538  *	1		performance
539  *	2		balance_performance
540  *	3		balance_power
541  *	4		power
542  */
543 static const char * const energy_perf_strings[] = {
544 	"default",
545 	"performance",
546 	"balance_performance",
547 	"balance_power",
548 	"power",
549 	NULL
550 };
551 static const unsigned int epp_values[] = {
552 	HWP_EPP_PERFORMANCE,
553 	HWP_EPP_BALANCE_PERFORMANCE,
554 	HWP_EPP_BALANCE_POWERSAVE,
555 	HWP_EPP_POWERSAVE
556 };
557 
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data)558 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
559 {
560 	s16 epp;
561 	int index = -EINVAL;
562 
563 	epp = intel_pstate_get_epp(cpu_data, 0);
564 	if (epp < 0)
565 		return epp;
566 
567 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
568 		if (epp == HWP_EPP_PERFORMANCE)
569 			return 1;
570 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
571 			return 2;
572 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
573 			return 3;
574 		else
575 			return 4;
576 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
577 		/*
578 		 * Range:
579 		 *	0x00-0x03	:	Performance
580 		 *	0x04-0x07	:	Balance performance
581 		 *	0x08-0x0B	:	Balance power
582 		 *	0x0C-0x0F	:	Power
583 		 * The EPB is a 4 bit value, but our ranges restrict the
584 		 * value which can be set. Here only using top two bits
585 		 * effectively.
586 		 */
587 		index = (epp >> 2) + 1;
588 	}
589 
590 	return index;
591 }
592 
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index)593 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
594 					      int pref_index)
595 {
596 	int epp = -EINVAL;
597 	int ret;
598 
599 	if (!pref_index)
600 		epp = cpu_data->epp_default;
601 
602 	mutex_lock(&intel_pstate_limits_lock);
603 
604 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
605 		u64 value;
606 
607 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
608 		if (ret)
609 			goto return_pref;
610 
611 		value &= ~GENMASK_ULL(31, 24);
612 
613 		if (epp == -EINVAL)
614 			epp = epp_values[pref_index - 1];
615 
616 		value |= (u64)epp << 24;
617 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
618 	} else {
619 		if (epp == -EINVAL)
620 			epp = (pref_index - 1) << 2;
621 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
622 	}
623 return_pref:
624 	mutex_unlock(&intel_pstate_limits_lock);
625 
626 	return ret;
627 }
628 
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)629 static ssize_t show_energy_performance_available_preferences(
630 				struct cpufreq_policy *policy, char *buf)
631 {
632 	int i = 0;
633 	int ret = 0;
634 
635 	while (energy_perf_strings[i] != NULL)
636 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
637 
638 	ret += sprintf(&buf[ret], "\n");
639 
640 	return ret;
641 }
642 
643 cpufreq_freq_attr_ro(energy_performance_available_preferences);
644 
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)645 static ssize_t store_energy_performance_preference(
646 		struct cpufreq_policy *policy, const char *buf, size_t count)
647 {
648 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
649 	char str_preference[21];
650 	int ret, i = 0;
651 
652 	ret = sscanf(buf, "%20s", str_preference);
653 	if (ret != 1)
654 		return -EINVAL;
655 
656 	while (energy_perf_strings[i] != NULL) {
657 		if (!strcmp(str_preference, energy_perf_strings[i])) {
658 			intel_pstate_set_energy_pref_index(cpu_data, i);
659 			return count;
660 		}
661 		++i;
662 	}
663 
664 	return -EINVAL;
665 }
666 
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)667 static ssize_t show_energy_performance_preference(
668 				struct cpufreq_policy *policy, char *buf)
669 {
670 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
671 	int preference;
672 
673 	preference = intel_pstate_get_energy_pref_index(cpu_data);
674 	if (preference < 0)
675 		return preference;
676 
677 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
678 }
679 
680 cpufreq_freq_attr_rw(energy_performance_preference);
681 
682 static struct freq_attr *hwp_cpufreq_attrs[] = {
683 	&energy_performance_preference,
684 	&energy_performance_available_preferences,
685 	NULL,
686 };
687 
intel_pstate_get_hwp_max(unsigned int cpu,int * phy_max,int * current_max)688 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
689 				     int *current_max)
690 {
691 	u64 cap;
692 
693 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
694 	if (global.no_turbo)
695 		*current_max = HWP_GUARANTEED_PERF(cap);
696 	else
697 		*current_max = HWP_HIGHEST_PERF(cap);
698 
699 	*phy_max = HWP_HIGHEST_PERF(cap);
700 }
701 
intel_pstate_hwp_set(unsigned int cpu)702 static void intel_pstate_hwp_set(unsigned int cpu)
703 {
704 	struct cpudata *cpu_data = all_cpu_data[cpu];
705 	int max, min;
706 	u64 value;
707 	s16 epp;
708 
709 	max = cpu_data->max_perf_ratio;
710 	min = cpu_data->min_perf_ratio;
711 
712 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
713 		min = max;
714 
715 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
716 
717 	value &= ~HWP_MIN_PERF(~0L);
718 	value |= HWP_MIN_PERF(min);
719 
720 	value &= ~HWP_MAX_PERF(~0L);
721 	value |= HWP_MAX_PERF(max);
722 
723 	if (cpu_data->epp_policy == cpu_data->policy)
724 		goto skip_epp;
725 
726 	cpu_data->epp_policy = cpu_data->policy;
727 
728 	if (cpu_data->epp_saved >= 0) {
729 		epp = cpu_data->epp_saved;
730 		cpu_data->epp_saved = -EINVAL;
731 		goto update_epp;
732 	}
733 
734 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
735 		epp = intel_pstate_get_epp(cpu_data, value);
736 		cpu_data->epp_powersave = epp;
737 		/* If EPP read was failed, then don't try to write */
738 		if (epp < 0)
739 			goto skip_epp;
740 
741 		epp = 0;
742 	} else {
743 		/* skip setting EPP, when saved value is invalid */
744 		if (cpu_data->epp_powersave < 0)
745 			goto skip_epp;
746 
747 		/*
748 		 * No need to restore EPP when it is not zero. This
749 		 * means:
750 		 *  - Policy is not changed
751 		 *  - user has manually changed
752 		 *  - Error reading EPB
753 		 */
754 		epp = intel_pstate_get_epp(cpu_data, value);
755 		if (epp)
756 			goto skip_epp;
757 
758 		epp = cpu_data->epp_powersave;
759 	}
760 update_epp:
761 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
762 		value &= ~GENMASK_ULL(31, 24);
763 		value |= (u64)epp << 24;
764 	} else {
765 		intel_pstate_set_epb(cpu, epp);
766 	}
767 skip_epp:
768 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
769 }
770 
intel_pstate_hwp_save_state(struct cpufreq_policy * policy)771 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
772 {
773 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
774 
775 	if (!hwp_active)
776 		return 0;
777 
778 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
779 
780 	return 0;
781 }
782 
783 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
784 
intel_pstate_resume(struct cpufreq_policy * policy)785 static int intel_pstate_resume(struct cpufreq_policy *policy)
786 {
787 	if (!hwp_active)
788 		return 0;
789 
790 	mutex_lock(&intel_pstate_limits_lock);
791 
792 	if (policy->cpu == 0)
793 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
794 
795 	all_cpu_data[policy->cpu]->epp_policy = 0;
796 	intel_pstate_hwp_set(policy->cpu);
797 
798 	mutex_unlock(&intel_pstate_limits_lock);
799 
800 	return 0;
801 }
802 
intel_pstate_update_policies(void)803 static void intel_pstate_update_policies(void)
804 {
805 	int cpu;
806 
807 	for_each_possible_cpu(cpu)
808 		cpufreq_update_policy(cpu);
809 }
810 
811 /************************** sysfs begin ************************/
812 #define show_one(file_name, object)					\
813 	static ssize_t show_##file_name					\
814 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
815 	{								\
816 		return sprintf(buf, "%u\n", global.object);		\
817 	}
818 
819 static ssize_t intel_pstate_show_status(char *buf);
820 static int intel_pstate_update_status(const char *buf, size_t size);
821 
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)822 static ssize_t show_status(struct kobject *kobj,
823 			   struct kobj_attribute *attr, char *buf)
824 {
825 	ssize_t ret;
826 
827 	mutex_lock(&intel_pstate_driver_lock);
828 	ret = intel_pstate_show_status(buf);
829 	mutex_unlock(&intel_pstate_driver_lock);
830 
831 	return ret;
832 }
833 
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)834 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
835 			    const char *buf, size_t count)
836 {
837 	char *p = memchr(buf, '\n', count);
838 	int ret;
839 
840 	mutex_lock(&intel_pstate_driver_lock);
841 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
842 	mutex_unlock(&intel_pstate_driver_lock);
843 
844 	return ret < 0 ? ret : count;
845 }
846 
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)847 static ssize_t show_turbo_pct(struct kobject *kobj,
848 				struct kobj_attribute *attr, char *buf)
849 {
850 	struct cpudata *cpu;
851 	int total, no_turbo, turbo_pct;
852 	uint32_t turbo_fp;
853 
854 	mutex_lock(&intel_pstate_driver_lock);
855 
856 	if (!intel_pstate_driver) {
857 		mutex_unlock(&intel_pstate_driver_lock);
858 		return -EAGAIN;
859 	}
860 
861 	cpu = all_cpu_data[0];
862 
863 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
864 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
865 	turbo_fp = div_fp(no_turbo, total);
866 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
867 
868 	mutex_unlock(&intel_pstate_driver_lock);
869 
870 	return sprintf(buf, "%u\n", turbo_pct);
871 }
872 
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)873 static ssize_t show_num_pstates(struct kobject *kobj,
874 				struct kobj_attribute *attr, char *buf)
875 {
876 	struct cpudata *cpu;
877 	int total;
878 
879 	mutex_lock(&intel_pstate_driver_lock);
880 
881 	if (!intel_pstate_driver) {
882 		mutex_unlock(&intel_pstate_driver_lock);
883 		return -EAGAIN;
884 	}
885 
886 	cpu = all_cpu_data[0];
887 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
888 
889 	mutex_unlock(&intel_pstate_driver_lock);
890 
891 	return sprintf(buf, "%u\n", total);
892 }
893 
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)894 static ssize_t show_no_turbo(struct kobject *kobj,
895 			     struct kobj_attribute *attr, char *buf)
896 {
897 	ssize_t ret;
898 
899 	mutex_lock(&intel_pstate_driver_lock);
900 
901 	if (!intel_pstate_driver) {
902 		mutex_unlock(&intel_pstate_driver_lock);
903 		return -EAGAIN;
904 	}
905 
906 	update_turbo_state();
907 	if (global.turbo_disabled)
908 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
909 	else
910 		ret = sprintf(buf, "%u\n", global.no_turbo);
911 
912 	mutex_unlock(&intel_pstate_driver_lock);
913 
914 	return ret;
915 }
916 
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)917 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
918 			      const char *buf, size_t count)
919 {
920 	unsigned int input;
921 	int ret;
922 
923 	ret = sscanf(buf, "%u", &input);
924 	if (ret != 1)
925 		return -EINVAL;
926 
927 	mutex_lock(&intel_pstate_driver_lock);
928 
929 	if (!intel_pstate_driver) {
930 		mutex_unlock(&intel_pstate_driver_lock);
931 		return -EAGAIN;
932 	}
933 
934 	mutex_lock(&intel_pstate_limits_lock);
935 
936 	update_turbo_state();
937 	if (global.turbo_disabled) {
938 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
939 		mutex_unlock(&intel_pstate_limits_lock);
940 		mutex_unlock(&intel_pstate_driver_lock);
941 		return -EPERM;
942 	}
943 
944 	global.no_turbo = clamp_t(int, input, 0, 1);
945 
946 	if (global.no_turbo) {
947 		struct cpudata *cpu = all_cpu_data[0];
948 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
949 
950 		/* Squash the global minimum into the permitted range. */
951 		if (global.min_perf_pct > pct)
952 			global.min_perf_pct = pct;
953 	}
954 
955 	mutex_unlock(&intel_pstate_limits_lock);
956 
957 	intel_pstate_update_policies();
958 
959 	mutex_unlock(&intel_pstate_driver_lock);
960 
961 	return count;
962 }
963 
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)964 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
965 				  const char *buf, size_t count)
966 {
967 	unsigned int input;
968 	int ret;
969 
970 	ret = sscanf(buf, "%u", &input);
971 	if (ret != 1)
972 		return -EINVAL;
973 
974 	mutex_lock(&intel_pstate_driver_lock);
975 
976 	if (!intel_pstate_driver) {
977 		mutex_unlock(&intel_pstate_driver_lock);
978 		return -EAGAIN;
979 	}
980 
981 	mutex_lock(&intel_pstate_limits_lock);
982 
983 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
984 
985 	mutex_unlock(&intel_pstate_limits_lock);
986 
987 	intel_pstate_update_policies();
988 
989 	mutex_unlock(&intel_pstate_driver_lock);
990 
991 	return count;
992 }
993 
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)994 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
995 				  const char *buf, size_t count)
996 {
997 	unsigned int input;
998 	int ret;
999 
1000 	ret = sscanf(buf, "%u", &input);
1001 	if (ret != 1)
1002 		return -EINVAL;
1003 
1004 	mutex_lock(&intel_pstate_driver_lock);
1005 
1006 	if (!intel_pstate_driver) {
1007 		mutex_unlock(&intel_pstate_driver_lock);
1008 		return -EAGAIN;
1009 	}
1010 
1011 	mutex_lock(&intel_pstate_limits_lock);
1012 
1013 	global.min_perf_pct = clamp_t(int, input,
1014 				      min_perf_pct_min(), global.max_perf_pct);
1015 
1016 	mutex_unlock(&intel_pstate_limits_lock);
1017 
1018 	intel_pstate_update_policies();
1019 
1020 	mutex_unlock(&intel_pstate_driver_lock);
1021 
1022 	return count;
1023 }
1024 
1025 show_one(max_perf_pct, max_perf_pct);
1026 show_one(min_perf_pct, min_perf_pct);
1027 
1028 define_one_global_rw(status);
1029 define_one_global_rw(no_turbo);
1030 define_one_global_rw(max_perf_pct);
1031 define_one_global_rw(min_perf_pct);
1032 define_one_global_ro(turbo_pct);
1033 define_one_global_ro(num_pstates);
1034 
1035 static struct attribute *intel_pstate_attributes[] = {
1036 	&status.attr,
1037 	&no_turbo.attr,
1038 	&turbo_pct.attr,
1039 	&num_pstates.attr,
1040 	NULL
1041 };
1042 
1043 static const struct attribute_group intel_pstate_attr_group = {
1044 	.attrs = intel_pstate_attributes,
1045 };
1046 
intel_pstate_sysfs_expose_params(void)1047 static void __init intel_pstate_sysfs_expose_params(void)
1048 {
1049 	struct kobject *intel_pstate_kobject;
1050 	int rc;
1051 
1052 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1053 						&cpu_subsys.dev_root->kobj);
1054 	if (WARN_ON(!intel_pstate_kobject))
1055 		return;
1056 
1057 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1058 	if (WARN_ON(rc))
1059 		return;
1060 
1061 	/*
1062 	 * If per cpu limits are enforced there are no global limits, so
1063 	 * return without creating max/min_perf_pct attributes
1064 	 */
1065 	if (per_cpu_limits)
1066 		return;
1067 
1068 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1069 	WARN_ON(rc);
1070 
1071 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1072 	WARN_ON(rc);
1073 
1074 }
1075 /************************** sysfs end ************************/
1076 
intel_pstate_hwp_enable(struct cpudata * cpudata)1077 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1078 {
1079 	/* First disable HWP notification interrupt as we don't process them */
1080 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1081 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1082 
1083 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1084 	cpudata->epp_policy = 0;
1085 	if (cpudata->epp_default == -EINVAL)
1086 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1087 }
1088 
1089 #define MSR_IA32_POWER_CTL_BIT_EE	19
1090 
1091 /* Disable energy efficiency optimization */
intel_pstate_disable_ee(int cpu)1092 static void intel_pstate_disable_ee(int cpu)
1093 {
1094 	u64 power_ctl;
1095 	int ret;
1096 
1097 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1098 	if (ret)
1099 		return;
1100 
1101 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1102 		pr_info("Disabling energy efficiency optimization\n");
1103 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1104 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1105 	}
1106 }
1107 
atom_get_min_pstate(void)1108 static int atom_get_min_pstate(void)
1109 {
1110 	u64 value;
1111 
1112 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1113 	return (value >> 8) & 0x7F;
1114 }
1115 
atom_get_max_pstate(void)1116 static int atom_get_max_pstate(void)
1117 {
1118 	u64 value;
1119 
1120 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1121 	return (value >> 16) & 0x7F;
1122 }
1123 
atom_get_turbo_pstate(void)1124 static int atom_get_turbo_pstate(void)
1125 {
1126 	u64 value;
1127 
1128 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1129 	return value & 0x7F;
1130 }
1131 
atom_get_val(struct cpudata * cpudata,int pstate)1132 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1133 {
1134 	u64 val;
1135 	int32_t vid_fp;
1136 	u32 vid;
1137 
1138 	val = (u64)pstate << 8;
1139 	if (global.no_turbo && !global.turbo_disabled)
1140 		val |= (u64)1 << 32;
1141 
1142 	vid_fp = cpudata->vid.min + mul_fp(
1143 		int_tofp(pstate - cpudata->pstate.min_pstate),
1144 		cpudata->vid.ratio);
1145 
1146 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1147 	vid = ceiling_fp(vid_fp);
1148 
1149 	if (pstate > cpudata->pstate.max_pstate)
1150 		vid = cpudata->vid.turbo;
1151 
1152 	return val | vid;
1153 }
1154 
silvermont_get_scaling(void)1155 static int silvermont_get_scaling(void)
1156 {
1157 	u64 value;
1158 	int i;
1159 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1160 	static int silvermont_freq_table[] = {
1161 		83300, 100000, 133300, 116700, 80000};
1162 
1163 	rdmsrl(MSR_FSB_FREQ, value);
1164 	i = value & 0x7;
1165 	WARN_ON(i > 4);
1166 
1167 	return silvermont_freq_table[i];
1168 }
1169 
airmont_get_scaling(void)1170 static int airmont_get_scaling(void)
1171 {
1172 	u64 value;
1173 	int i;
1174 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1175 	static int airmont_freq_table[] = {
1176 		83300, 100000, 133300, 116700, 80000,
1177 		93300, 90000, 88900, 87500};
1178 
1179 	rdmsrl(MSR_FSB_FREQ, value);
1180 	i = value & 0xF;
1181 	WARN_ON(i > 8);
1182 
1183 	return airmont_freq_table[i];
1184 }
1185 
atom_get_vid(struct cpudata * cpudata)1186 static void atom_get_vid(struct cpudata *cpudata)
1187 {
1188 	u64 value;
1189 
1190 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1191 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1192 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1193 	cpudata->vid.ratio = div_fp(
1194 		cpudata->vid.max - cpudata->vid.min,
1195 		int_tofp(cpudata->pstate.max_pstate -
1196 			cpudata->pstate.min_pstate));
1197 
1198 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1199 	cpudata->vid.turbo = value & 0x7f;
1200 }
1201 
core_get_min_pstate(void)1202 static int core_get_min_pstate(void)
1203 {
1204 	u64 value;
1205 
1206 	rdmsrl(MSR_PLATFORM_INFO, value);
1207 	return (value >> 40) & 0xFF;
1208 }
1209 
core_get_max_pstate_physical(void)1210 static int core_get_max_pstate_physical(void)
1211 {
1212 	u64 value;
1213 
1214 	rdmsrl(MSR_PLATFORM_INFO, value);
1215 	return (value >> 8) & 0xFF;
1216 }
1217 
core_get_tdp_ratio(u64 plat_info)1218 static int core_get_tdp_ratio(u64 plat_info)
1219 {
1220 	/* Check how many TDP levels present */
1221 	if (plat_info & 0x600000000) {
1222 		u64 tdp_ctrl;
1223 		u64 tdp_ratio;
1224 		int tdp_msr;
1225 		int err;
1226 
1227 		/* Get the TDP level (0, 1, 2) to get ratios */
1228 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1229 		if (err)
1230 			return err;
1231 
1232 		/* TDP MSR are continuous starting at 0x648 */
1233 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1234 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1235 		if (err)
1236 			return err;
1237 
1238 		/* For level 1 and 2, bits[23:16] contain the ratio */
1239 		if (tdp_ctrl & 0x03)
1240 			tdp_ratio >>= 16;
1241 
1242 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1243 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1244 
1245 		return (int)tdp_ratio;
1246 	}
1247 
1248 	return -ENXIO;
1249 }
1250 
core_get_max_pstate(void)1251 static int core_get_max_pstate(void)
1252 {
1253 	u64 tar;
1254 	u64 plat_info;
1255 	int max_pstate;
1256 	int tdp_ratio;
1257 	int err;
1258 
1259 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1260 	max_pstate = (plat_info >> 8) & 0xFF;
1261 
1262 	tdp_ratio = core_get_tdp_ratio(plat_info);
1263 	if (tdp_ratio <= 0)
1264 		return max_pstate;
1265 
1266 	if (hwp_active) {
1267 		/* Turbo activation ratio is not used on HWP platforms */
1268 		return tdp_ratio;
1269 	}
1270 
1271 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1272 	if (!err) {
1273 		int tar_levels;
1274 
1275 		/* Do some sanity checking for safety */
1276 		tar_levels = tar & 0xff;
1277 		if (tdp_ratio - 1 == tar_levels) {
1278 			max_pstate = tar_levels;
1279 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1280 		}
1281 	}
1282 
1283 	return max_pstate;
1284 }
1285 
core_get_turbo_pstate(void)1286 static int core_get_turbo_pstate(void)
1287 {
1288 	u64 value;
1289 	int nont, ret;
1290 
1291 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1292 	nont = core_get_max_pstate();
1293 	ret = (value) & 255;
1294 	if (ret <= nont)
1295 		ret = nont;
1296 	return ret;
1297 }
1298 
core_get_scaling(void)1299 static inline int core_get_scaling(void)
1300 {
1301 	return 100000;
1302 }
1303 
core_get_val(struct cpudata * cpudata,int pstate)1304 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1305 {
1306 	u64 val;
1307 
1308 	val = (u64)pstate << 8;
1309 	if (global.no_turbo && !global.turbo_disabled)
1310 		val |= (u64)1 << 32;
1311 
1312 	return val;
1313 }
1314 
knl_get_aperf_mperf_shift(void)1315 static int knl_get_aperf_mperf_shift(void)
1316 {
1317 	return 10;
1318 }
1319 
knl_get_turbo_pstate(void)1320 static int knl_get_turbo_pstate(void)
1321 {
1322 	u64 value;
1323 	int nont, ret;
1324 
1325 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1326 	nont = core_get_max_pstate();
1327 	ret = (((value) >> 8) & 0xFF);
1328 	if (ret <= nont)
1329 		ret = nont;
1330 	return ret;
1331 }
1332 
intel_pstate_get_base_pstate(struct cpudata * cpu)1333 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1334 {
1335 	return global.no_turbo || global.turbo_disabled ?
1336 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1337 }
1338 
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)1339 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1340 {
1341 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1342 	cpu->pstate.current_pstate = pstate;
1343 	/*
1344 	 * Generally, there is no guarantee that this code will always run on
1345 	 * the CPU being updated, so force the register update to run on the
1346 	 * right CPU.
1347 	 */
1348 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1349 		      pstate_funcs.get_val(cpu, pstate));
1350 }
1351 
intel_pstate_set_min_pstate(struct cpudata * cpu)1352 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1353 {
1354 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1355 }
1356 
intel_pstate_max_within_limits(struct cpudata * cpu)1357 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1358 {
1359 	int pstate;
1360 
1361 	update_turbo_state();
1362 	pstate = intel_pstate_get_base_pstate(cpu);
1363 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1364 	intel_pstate_set_pstate(cpu, pstate);
1365 }
1366 
intel_pstate_get_cpu_pstates(struct cpudata * cpu)1367 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1368 {
1369 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1370 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1371 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1372 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1373 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1374 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1375 
1376 	if (hwp_active && !hwp_mode_bdw) {
1377 		unsigned int phy_max, current_max;
1378 
1379 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1380 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1381 	} else {
1382 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1383 	}
1384 
1385 	if (pstate_funcs.get_aperf_mperf_shift)
1386 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1387 
1388 	if (pstate_funcs.get_vid)
1389 		pstate_funcs.get_vid(cpu);
1390 
1391 	intel_pstate_set_min_pstate(cpu);
1392 }
1393 
intel_pstate_calc_avg_perf(struct cpudata * cpu)1394 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1395 {
1396 	struct sample *sample = &cpu->sample;
1397 
1398 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1399 }
1400 
intel_pstate_sample(struct cpudata * cpu,u64 time)1401 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1402 {
1403 	u64 aperf, mperf;
1404 	unsigned long flags;
1405 	u64 tsc;
1406 
1407 	local_irq_save(flags);
1408 	rdmsrl(MSR_IA32_APERF, aperf);
1409 	rdmsrl(MSR_IA32_MPERF, mperf);
1410 	tsc = rdtsc();
1411 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1412 		local_irq_restore(flags);
1413 		return false;
1414 	}
1415 	local_irq_restore(flags);
1416 
1417 	cpu->last_sample_time = cpu->sample.time;
1418 	cpu->sample.time = time;
1419 	cpu->sample.aperf = aperf;
1420 	cpu->sample.mperf = mperf;
1421 	cpu->sample.tsc =  tsc;
1422 	cpu->sample.aperf -= cpu->prev_aperf;
1423 	cpu->sample.mperf -= cpu->prev_mperf;
1424 	cpu->sample.tsc -= cpu->prev_tsc;
1425 
1426 	cpu->prev_aperf = aperf;
1427 	cpu->prev_mperf = mperf;
1428 	cpu->prev_tsc = tsc;
1429 	/*
1430 	 * First time this function is invoked in a given cycle, all of the
1431 	 * previous sample data fields are equal to zero or stale and they must
1432 	 * be populated with meaningful numbers for things to work, so assume
1433 	 * that sample.time will always be reset before setting the utilization
1434 	 * update hook and make the caller skip the sample then.
1435 	 */
1436 	if (cpu->last_sample_time) {
1437 		intel_pstate_calc_avg_perf(cpu);
1438 		return true;
1439 	}
1440 	return false;
1441 }
1442 
get_avg_frequency(struct cpudata * cpu)1443 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1444 {
1445 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1446 }
1447 
get_avg_pstate(struct cpudata * cpu)1448 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1449 {
1450 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1451 			  cpu->sample.core_avg_perf);
1452 }
1453 
get_target_pstate(struct cpudata * cpu)1454 static inline int32_t get_target_pstate(struct cpudata *cpu)
1455 {
1456 	struct sample *sample = &cpu->sample;
1457 	int32_t busy_frac, boost;
1458 	int target, avg_pstate;
1459 
1460 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1461 			   sample->tsc);
1462 
1463 	boost = cpu->iowait_boost;
1464 	cpu->iowait_boost >>= 1;
1465 
1466 	if (busy_frac < boost)
1467 		busy_frac = boost;
1468 
1469 	sample->busy_scaled = busy_frac * 100;
1470 
1471 	target = global.no_turbo || global.turbo_disabled ?
1472 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1473 	target += target >> 2;
1474 	target = mul_fp(target, busy_frac);
1475 	if (target < cpu->pstate.min_pstate)
1476 		target = cpu->pstate.min_pstate;
1477 
1478 	/*
1479 	 * If the average P-state during the previous cycle was higher than the
1480 	 * current target, add 50% of the difference to the target to reduce
1481 	 * possible performance oscillations and offset possible performance
1482 	 * loss related to moving the workload from one CPU to another within
1483 	 * a package/module.
1484 	 */
1485 	avg_pstate = get_avg_pstate(cpu);
1486 	if (avg_pstate > target)
1487 		target += (avg_pstate - target) >> 1;
1488 
1489 	return target;
1490 }
1491 
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)1492 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1493 {
1494 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1495 	int min_pstate;
1496 
1497 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1498 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1499 	return clamp_t(int, pstate, min_pstate, max_pstate);
1500 }
1501 
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)1502 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1503 {
1504 	if (pstate == cpu->pstate.current_pstate)
1505 		return;
1506 
1507 	cpu->pstate.current_pstate = pstate;
1508 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1509 }
1510 
intel_pstate_adjust_pstate(struct cpudata * cpu)1511 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1512 {
1513 	int from = cpu->pstate.current_pstate;
1514 	struct sample *sample;
1515 	int target_pstate;
1516 
1517 	update_turbo_state();
1518 
1519 	target_pstate = get_target_pstate(cpu);
1520 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1521 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1522 	intel_pstate_update_pstate(cpu, target_pstate);
1523 
1524 	sample = &cpu->sample;
1525 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1526 		fp_toint(sample->busy_scaled),
1527 		from,
1528 		cpu->pstate.current_pstate,
1529 		sample->mperf,
1530 		sample->aperf,
1531 		sample->tsc,
1532 		get_avg_frequency(cpu),
1533 		fp_toint(cpu->iowait_boost * 100));
1534 }
1535 
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)1536 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1537 				     unsigned int flags)
1538 {
1539 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1540 	u64 delta_ns;
1541 
1542 	/* Don't allow remote callbacks */
1543 	if (smp_processor_id() != cpu->cpu)
1544 		return;
1545 
1546 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1547 		cpu->iowait_boost = int_tofp(1);
1548 		cpu->last_update = time;
1549 		/*
1550 		 * The last time the busy was 100% so P-state was max anyway
1551 		 * so avoid overhead of computation.
1552 		 */
1553 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1554 			return;
1555 
1556 		goto set_pstate;
1557 	} else if (cpu->iowait_boost) {
1558 		/* Clear iowait_boost if the CPU may have been idle. */
1559 		delta_ns = time - cpu->last_update;
1560 		if (delta_ns > TICK_NSEC)
1561 			cpu->iowait_boost = 0;
1562 	}
1563 	cpu->last_update = time;
1564 	delta_ns = time - cpu->sample.time;
1565 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1566 		return;
1567 
1568 set_pstate:
1569 	if (intel_pstate_sample(cpu, time))
1570 		intel_pstate_adjust_pstate(cpu);
1571 }
1572 
1573 static struct pstate_funcs core_funcs = {
1574 	.get_max = core_get_max_pstate,
1575 	.get_max_physical = core_get_max_pstate_physical,
1576 	.get_min = core_get_min_pstate,
1577 	.get_turbo = core_get_turbo_pstate,
1578 	.get_scaling = core_get_scaling,
1579 	.get_val = core_get_val,
1580 };
1581 
1582 static const struct pstate_funcs silvermont_funcs = {
1583 	.get_max = atom_get_max_pstate,
1584 	.get_max_physical = atom_get_max_pstate,
1585 	.get_min = atom_get_min_pstate,
1586 	.get_turbo = atom_get_turbo_pstate,
1587 	.get_val = atom_get_val,
1588 	.get_scaling = silvermont_get_scaling,
1589 	.get_vid = atom_get_vid,
1590 };
1591 
1592 static const struct pstate_funcs airmont_funcs = {
1593 	.get_max = atom_get_max_pstate,
1594 	.get_max_physical = atom_get_max_pstate,
1595 	.get_min = atom_get_min_pstate,
1596 	.get_turbo = atom_get_turbo_pstate,
1597 	.get_val = atom_get_val,
1598 	.get_scaling = airmont_get_scaling,
1599 	.get_vid = atom_get_vid,
1600 };
1601 
1602 static const struct pstate_funcs knl_funcs = {
1603 	.get_max = core_get_max_pstate,
1604 	.get_max_physical = core_get_max_pstate_physical,
1605 	.get_min = core_get_min_pstate,
1606 	.get_turbo = knl_get_turbo_pstate,
1607 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1608 	.get_scaling = core_get_scaling,
1609 	.get_val = core_get_val,
1610 };
1611 
1612 static const struct pstate_funcs bxt_funcs = {
1613 	.get_max = core_get_max_pstate,
1614 	.get_max_physical = core_get_max_pstate_physical,
1615 	.get_min = core_get_min_pstate,
1616 	.get_turbo = core_get_turbo_pstate,
1617 	.get_scaling = core_get_scaling,
1618 	.get_val = core_get_val,
1619 };
1620 
1621 #define ICPU(model, policy) \
1622 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1623 			(unsigned long)&policy }
1624 
1625 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1626 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1627 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1628 	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1629 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1630 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1631 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1632 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1633 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1634 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1635 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1636 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1637 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1638 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1639 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1640 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1641 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1642 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1643 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1644 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1645 	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     bxt_funcs),
1646 	{}
1647 };
1648 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1649 
1650 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1651 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1652 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1653 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1654 	{}
1655 };
1656 
1657 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1658 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1659 	{}
1660 };
1661 
intel_pstate_init_cpu(unsigned int cpunum)1662 static int intel_pstate_init_cpu(unsigned int cpunum)
1663 {
1664 	struct cpudata *cpu;
1665 
1666 	cpu = all_cpu_data[cpunum];
1667 
1668 	if (!cpu) {
1669 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1670 		if (!cpu)
1671 			return -ENOMEM;
1672 
1673 		all_cpu_data[cpunum] = cpu;
1674 
1675 		cpu->epp_default = -EINVAL;
1676 		cpu->epp_powersave = -EINVAL;
1677 		cpu->epp_saved = -EINVAL;
1678 	}
1679 
1680 	cpu = all_cpu_data[cpunum];
1681 
1682 	cpu->cpu = cpunum;
1683 
1684 	if (hwp_active) {
1685 		const struct x86_cpu_id *id;
1686 
1687 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1688 		if (id)
1689 			intel_pstate_disable_ee(cpunum);
1690 
1691 		intel_pstate_hwp_enable(cpu);
1692 	}
1693 
1694 	intel_pstate_get_cpu_pstates(cpu);
1695 
1696 	pr_debug("controlling: cpu %d\n", cpunum);
1697 
1698 	return 0;
1699 }
1700 
intel_pstate_set_update_util_hook(unsigned int cpu_num)1701 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1702 {
1703 	struct cpudata *cpu = all_cpu_data[cpu_num];
1704 
1705 	if (hwp_active)
1706 		return;
1707 
1708 	if (cpu->update_util_set)
1709 		return;
1710 
1711 	/* Prevent intel_pstate_update_util() from using stale data. */
1712 	cpu->sample.time = 0;
1713 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1714 				     intel_pstate_update_util);
1715 	cpu->update_util_set = true;
1716 }
1717 
intel_pstate_clear_update_util_hook(unsigned int cpu)1718 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1719 {
1720 	struct cpudata *cpu_data = all_cpu_data[cpu];
1721 
1722 	if (!cpu_data->update_util_set)
1723 		return;
1724 
1725 	cpufreq_remove_update_util_hook(cpu);
1726 	cpu_data->update_util_set = false;
1727 	synchronize_sched();
1728 }
1729 
intel_pstate_get_max_freq(struct cpudata * cpu)1730 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1731 {
1732 	return global.turbo_disabled || global.no_turbo ?
1733 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1734 }
1735 
intel_pstate_update_perf_limits(struct cpufreq_policy * policy,struct cpudata * cpu)1736 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1737 					    struct cpudata *cpu)
1738 {
1739 	int max_freq = intel_pstate_get_max_freq(cpu);
1740 	int32_t max_policy_perf, min_policy_perf;
1741 	int max_state, turbo_max;
1742 
1743 	/*
1744 	 * HWP needs some special consideration, because on BDX the
1745 	 * HWP_REQUEST uses abstract value to represent performance
1746 	 * rather than pure ratios.
1747 	 */
1748 	if (hwp_active) {
1749 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1750 	} else {
1751 		max_state = intel_pstate_get_base_pstate(cpu);
1752 		turbo_max = cpu->pstate.turbo_pstate;
1753 	}
1754 
1755 	max_policy_perf = max_state * policy->max / max_freq;
1756 	if (policy->max == policy->min) {
1757 		min_policy_perf = max_policy_perf;
1758 	} else {
1759 		min_policy_perf = max_state * policy->min / max_freq;
1760 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1761 					  0, max_policy_perf);
1762 	}
1763 
1764 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1765 		 policy->cpu, max_state,
1766 		 min_policy_perf, max_policy_perf);
1767 
1768 	/* Normalize user input to [min_perf, max_perf] */
1769 	if (per_cpu_limits) {
1770 		cpu->min_perf_ratio = min_policy_perf;
1771 		cpu->max_perf_ratio = max_policy_perf;
1772 	} else {
1773 		int32_t global_min, global_max;
1774 
1775 		/* Global limits are in percent of the maximum turbo P-state. */
1776 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1777 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1778 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1779 
1780 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1781 			 global_min, global_max);
1782 
1783 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1784 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1785 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1786 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1787 
1788 		/* Make sure min_perf <= max_perf */
1789 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1790 					  cpu->max_perf_ratio);
1791 
1792 	}
1793 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1794 		 cpu->max_perf_ratio,
1795 		 cpu->min_perf_ratio);
1796 }
1797 
intel_pstate_set_policy(struct cpufreq_policy * policy)1798 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1799 {
1800 	struct cpudata *cpu;
1801 
1802 	if (!policy->cpuinfo.max_freq)
1803 		return -ENODEV;
1804 
1805 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1806 		 policy->cpuinfo.max_freq, policy->max);
1807 
1808 	cpu = all_cpu_data[policy->cpu];
1809 	cpu->policy = policy->policy;
1810 
1811 	mutex_lock(&intel_pstate_limits_lock);
1812 
1813 	intel_pstate_update_perf_limits(policy, cpu);
1814 
1815 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1816 		/*
1817 		 * NOHZ_FULL CPUs need this as the governor callback may not
1818 		 * be invoked on them.
1819 		 */
1820 		intel_pstate_clear_update_util_hook(policy->cpu);
1821 		intel_pstate_max_within_limits(cpu);
1822 	} else {
1823 		intel_pstate_set_update_util_hook(policy->cpu);
1824 	}
1825 
1826 	if (hwp_active)
1827 		intel_pstate_hwp_set(policy->cpu);
1828 
1829 	mutex_unlock(&intel_pstate_limits_lock);
1830 
1831 	return 0;
1832 }
1833 
intel_pstate_adjust_policy_max(struct cpufreq_policy * policy,struct cpudata * cpu)1834 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1835 					 struct cpudata *cpu)
1836 {
1837 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1838 	    policy->max < policy->cpuinfo.max_freq &&
1839 	    policy->max > cpu->pstate.max_freq) {
1840 		pr_debug("policy->max > max non turbo frequency\n");
1841 		policy->max = policy->cpuinfo.max_freq;
1842 	}
1843 }
1844 
intel_pstate_verify_policy(struct cpufreq_policy * policy)1845 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1846 {
1847 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1848 
1849 	update_turbo_state();
1850 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1851 				     intel_pstate_get_max_freq(cpu));
1852 
1853 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1854 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1855 		return -EINVAL;
1856 
1857 	intel_pstate_adjust_policy_max(policy, cpu);
1858 
1859 	return 0;
1860 }
1861 
intel_cpufreq_stop_cpu(struct cpufreq_policy * policy)1862 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1863 {
1864 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1865 }
1866 
intel_pstate_stop_cpu(struct cpufreq_policy * policy)1867 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1868 {
1869 	pr_debug("CPU %d exiting\n", policy->cpu);
1870 
1871 	intel_pstate_clear_update_util_hook(policy->cpu);
1872 	if (hwp_active)
1873 		intel_pstate_hwp_save_state(policy);
1874 	else
1875 		intel_cpufreq_stop_cpu(policy);
1876 }
1877 
intel_pstate_cpu_exit(struct cpufreq_policy * policy)1878 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1879 {
1880 	intel_pstate_exit_perf_limits(policy);
1881 
1882 	policy->fast_switch_possible = false;
1883 
1884 	return 0;
1885 }
1886 
__intel_pstate_cpu_init(struct cpufreq_policy * policy)1887 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1888 {
1889 	struct cpudata *cpu;
1890 	int rc;
1891 
1892 	rc = intel_pstate_init_cpu(policy->cpu);
1893 	if (rc)
1894 		return rc;
1895 
1896 	cpu = all_cpu_data[policy->cpu];
1897 
1898 	cpu->max_perf_ratio = 0xFF;
1899 	cpu->min_perf_ratio = 0;
1900 
1901 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1902 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1903 
1904 	/* cpuinfo and default policy values */
1905 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1906 	update_turbo_state();
1907 	policy->cpuinfo.max_freq = global.turbo_disabled ?
1908 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1909 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1910 
1911 	intel_pstate_init_acpi_perf_limits(policy);
1912 
1913 	policy->fast_switch_possible = true;
1914 
1915 	return 0;
1916 }
1917 
intel_pstate_cpu_init(struct cpufreq_policy * policy)1918 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1919 {
1920 	int ret = __intel_pstate_cpu_init(policy);
1921 
1922 	if (ret)
1923 		return ret;
1924 
1925 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1926 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1927 	else
1928 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1929 
1930 	return 0;
1931 }
1932 
1933 static struct cpufreq_driver intel_pstate = {
1934 	.flags		= CPUFREQ_CONST_LOOPS,
1935 	.verify		= intel_pstate_verify_policy,
1936 	.setpolicy	= intel_pstate_set_policy,
1937 	.suspend	= intel_pstate_hwp_save_state,
1938 	.resume		= intel_pstate_resume,
1939 	.init		= intel_pstate_cpu_init,
1940 	.exit		= intel_pstate_cpu_exit,
1941 	.stop_cpu	= intel_pstate_stop_cpu,
1942 	.name		= "intel_pstate",
1943 };
1944 
intel_cpufreq_verify_policy(struct cpufreq_policy * policy)1945 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1946 {
1947 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1948 
1949 	update_turbo_state();
1950 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1951 				     intel_pstate_get_max_freq(cpu));
1952 
1953 	intel_pstate_adjust_policy_max(policy, cpu);
1954 
1955 	intel_pstate_update_perf_limits(policy, cpu);
1956 
1957 	return 0;
1958 }
1959 
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)1960 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1961 				unsigned int target_freq,
1962 				unsigned int relation)
1963 {
1964 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1965 	struct cpufreq_freqs freqs;
1966 	int target_pstate;
1967 
1968 	update_turbo_state();
1969 
1970 	freqs.old = policy->cur;
1971 	freqs.new = target_freq;
1972 
1973 	cpufreq_freq_transition_begin(policy, &freqs);
1974 	switch (relation) {
1975 	case CPUFREQ_RELATION_L:
1976 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1977 		break;
1978 	case CPUFREQ_RELATION_H:
1979 		target_pstate = freqs.new / cpu->pstate.scaling;
1980 		break;
1981 	default:
1982 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1983 		break;
1984 	}
1985 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1986 	if (target_pstate != cpu->pstate.current_pstate) {
1987 		cpu->pstate.current_pstate = target_pstate;
1988 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1989 			      pstate_funcs.get_val(cpu, target_pstate));
1990 	}
1991 	freqs.new = target_pstate * cpu->pstate.scaling;
1992 	cpufreq_freq_transition_end(policy, &freqs, false);
1993 
1994 	return 0;
1995 }
1996 
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)1997 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1998 					      unsigned int target_freq)
1999 {
2000 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2001 	int target_pstate;
2002 
2003 	update_turbo_state();
2004 
2005 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2006 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2007 	intel_pstate_update_pstate(cpu, target_pstate);
2008 	return target_pstate * cpu->pstate.scaling;
2009 }
2010 
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)2011 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2012 {
2013 	int ret = __intel_pstate_cpu_init(policy);
2014 
2015 	if (ret)
2016 		return ret;
2017 
2018 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2019 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2020 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2021 	policy->cur = policy->cpuinfo.min_freq;
2022 
2023 	return 0;
2024 }
2025 
2026 static struct cpufreq_driver intel_cpufreq = {
2027 	.flags		= CPUFREQ_CONST_LOOPS,
2028 	.verify		= intel_cpufreq_verify_policy,
2029 	.target		= intel_cpufreq_target,
2030 	.fast_switch	= intel_cpufreq_fast_switch,
2031 	.init		= intel_cpufreq_cpu_init,
2032 	.exit		= intel_pstate_cpu_exit,
2033 	.stop_cpu	= intel_cpufreq_stop_cpu,
2034 	.name		= "intel_cpufreq",
2035 };
2036 
2037 static struct cpufreq_driver *default_driver = &intel_pstate;
2038 
intel_pstate_driver_cleanup(void)2039 static void intel_pstate_driver_cleanup(void)
2040 {
2041 	unsigned int cpu;
2042 
2043 	get_online_cpus();
2044 	for_each_online_cpu(cpu) {
2045 		if (all_cpu_data[cpu]) {
2046 			if (intel_pstate_driver == &intel_pstate)
2047 				intel_pstate_clear_update_util_hook(cpu);
2048 
2049 			kfree(all_cpu_data[cpu]);
2050 			all_cpu_data[cpu] = NULL;
2051 		}
2052 	}
2053 	put_online_cpus();
2054 	intel_pstate_driver = NULL;
2055 }
2056 
intel_pstate_register_driver(struct cpufreq_driver * driver)2057 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2058 {
2059 	int ret;
2060 
2061 	memset(&global, 0, sizeof(global));
2062 	global.max_perf_pct = 100;
2063 
2064 	intel_pstate_driver = driver;
2065 	ret = cpufreq_register_driver(intel_pstate_driver);
2066 	if (ret) {
2067 		intel_pstate_driver_cleanup();
2068 		return ret;
2069 	}
2070 
2071 	global.min_perf_pct = min_perf_pct_min();
2072 
2073 	return 0;
2074 }
2075 
intel_pstate_unregister_driver(void)2076 static int intel_pstate_unregister_driver(void)
2077 {
2078 	if (hwp_active)
2079 		return -EBUSY;
2080 
2081 	cpufreq_unregister_driver(intel_pstate_driver);
2082 	intel_pstate_driver_cleanup();
2083 
2084 	return 0;
2085 }
2086 
intel_pstate_show_status(char * buf)2087 static ssize_t intel_pstate_show_status(char *buf)
2088 {
2089 	if (!intel_pstate_driver)
2090 		return sprintf(buf, "off\n");
2091 
2092 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2093 					"active" : "passive");
2094 }
2095 
intel_pstate_update_status(const char * buf,size_t size)2096 static int intel_pstate_update_status(const char *buf, size_t size)
2097 {
2098 	int ret;
2099 
2100 	if (size == 3 && !strncmp(buf, "off", size))
2101 		return intel_pstate_driver ?
2102 			intel_pstate_unregister_driver() : -EINVAL;
2103 
2104 	if (size == 6 && !strncmp(buf, "active", size)) {
2105 		if (intel_pstate_driver) {
2106 			if (intel_pstate_driver == &intel_pstate)
2107 				return 0;
2108 
2109 			ret = intel_pstate_unregister_driver();
2110 			if (ret)
2111 				return ret;
2112 		}
2113 
2114 		return intel_pstate_register_driver(&intel_pstate);
2115 	}
2116 
2117 	if (size == 7 && !strncmp(buf, "passive", size)) {
2118 		if (intel_pstate_driver) {
2119 			if (intel_pstate_driver == &intel_cpufreq)
2120 				return 0;
2121 
2122 			ret = intel_pstate_unregister_driver();
2123 			if (ret)
2124 				return ret;
2125 		}
2126 
2127 		return intel_pstate_register_driver(&intel_cpufreq);
2128 	}
2129 
2130 	return -EINVAL;
2131 }
2132 
2133 static int no_load __initdata;
2134 static int no_hwp __initdata;
2135 static int hwp_only __initdata;
2136 static unsigned int force_load __initdata;
2137 
intel_pstate_msrs_not_valid(void)2138 static int __init intel_pstate_msrs_not_valid(void)
2139 {
2140 	if (!pstate_funcs.get_max() ||
2141 	    !pstate_funcs.get_min() ||
2142 	    !pstate_funcs.get_turbo())
2143 		return -ENODEV;
2144 
2145 	return 0;
2146 }
2147 
copy_cpu_funcs(struct pstate_funcs * funcs)2148 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2149 {
2150 	pstate_funcs.get_max   = funcs->get_max;
2151 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2152 	pstate_funcs.get_min   = funcs->get_min;
2153 	pstate_funcs.get_turbo = funcs->get_turbo;
2154 	pstate_funcs.get_scaling = funcs->get_scaling;
2155 	pstate_funcs.get_val   = funcs->get_val;
2156 	pstate_funcs.get_vid   = funcs->get_vid;
2157 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2158 }
2159 
2160 #ifdef CONFIG_ACPI
2161 
intel_pstate_no_acpi_pss(void)2162 static bool __init intel_pstate_no_acpi_pss(void)
2163 {
2164 	int i;
2165 
2166 	for_each_possible_cpu(i) {
2167 		acpi_status status;
2168 		union acpi_object *pss;
2169 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2170 		struct acpi_processor *pr = per_cpu(processors, i);
2171 
2172 		if (!pr)
2173 			continue;
2174 
2175 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2176 		if (ACPI_FAILURE(status))
2177 			continue;
2178 
2179 		pss = buffer.pointer;
2180 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2181 			kfree(pss);
2182 			return false;
2183 		}
2184 
2185 		kfree(pss);
2186 	}
2187 
2188 	return true;
2189 }
2190 
intel_pstate_no_acpi_pcch(void)2191 static bool __init intel_pstate_no_acpi_pcch(void)
2192 {
2193 	acpi_status status;
2194 	acpi_handle handle;
2195 
2196 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2197 	if (ACPI_FAILURE(status))
2198 		return true;
2199 
2200 	return !acpi_has_method(handle, "PCCH");
2201 }
2202 
intel_pstate_has_acpi_ppc(void)2203 static bool __init intel_pstate_has_acpi_ppc(void)
2204 {
2205 	int i;
2206 
2207 	for_each_possible_cpu(i) {
2208 		struct acpi_processor *pr = per_cpu(processors, i);
2209 
2210 		if (!pr)
2211 			continue;
2212 		if (acpi_has_method(pr->handle, "_PPC"))
2213 			return true;
2214 	}
2215 	return false;
2216 }
2217 
2218 enum {
2219 	PSS,
2220 	PPC,
2221 };
2222 
2223 /* Hardware vendor-specific info that has its own power management modes */
2224 static struct acpi_platform_list plat_info[] __initdata = {
2225 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2226 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2227 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2228 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2229 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2230 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2231 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2232 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2233 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2234 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2235 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2236 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2237 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2238 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2239 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2240 	{ } /* End */
2241 };
2242 
intel_pstate_platform_pwr_mgmt_exists(void)2243 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2244 {
2245 	const struct x86_cpu_id *id;
2246 	u64 misc_pwr;
2247 	int idx;
2248 
2249 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2250 	if (id) {
2251 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2252 		if ( misc_pwr & (1 << 8))
2253 			return true;
2254 	}
2255 
2256 	idx = acpi_match_platform_list(plat_info);
2257 	if (idx < 0)
2258 		return false;
2259 
2260 	switch (plat_info[idx].data) {
2261 	case PSS:
2262 		if (!intel_pstate_no_acpi_pss())
2263 			return false;
2264 
2265 		return intel_pstate_no_acpi_pcch();
2266 	case PPC:
2267 		return intel_pstate_has_acpi_ppc() && !force_load;
2268 	}
2269 
2270 	return false;
2271 }
2272 
intel_pstate_request_control_from_smm(void)2273 static void intel_pstate_request_control_from_smm(void)
2274 {
2275 	/*
2276 	 * It may be unsafe to request P-states control from SMM if _PPC support
2277 	 * has not been enabled.
2278 	 */
2279 	if (acpi_ppc)
2280 		acpi_processor_pstate_control();
2281 }
2282 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)2283 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)2284 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)2285 static inline void intel_pstate_request_control_from_smm(void) {}
2286 #endif /* CONFIG_ACPI */
2287 
2288 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2289 
2290 #define ICPU_HWP(model, hwp_mode) \
2291 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2292 
2293 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2294 	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2295 	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2296 	ICPU_HWP(X86_MODEL_ANY, 0),
2297 	{}
2298 };
2299 
intel_pstate_init(void)2300 static int __init intel_pstate_init(void)
2301 {
2302 	const struct x86_cpu_id *id;
2303 	int rc;
2304 
2305 	if (no_load)
2306 		return -ENODEV;
2307 
2308 	id = x86_match_cpu(hwp_support_ids);
2309 	if (id) {
2310 		copy_cpu_funcs(&core_funcs);
2311 		if (!no_hwp) {
2312 			hwp_active++;
2313 			hwp_mode_bdw = id->driver_data;
2314 			intel_pstate.attr = hwp_cpufreq_attrs;
2315 			goto hwp_cpu_matched;
2316 		}
2317 	} else {
2318 		id = x86_match_cpu(intel_pstate_cpu_ids);
2319 		if (!id)
2320 			return -ENODEV;
2321 
2322 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2323 	}
2324 
2325 	if (intel_pstate_msrs_not_valid())
2326 		return -ENODEV;
2327 
2328 hwp_cpu_matched:
2329 	/*
2330 	 * The Intel pstate driver will be ignored if the platform
2331 	 * firmware has its own power management modes.
2332 	 */
2333 	if (intel_pstate_platform_pwr_mgmt_exists())
2334 		return -ENODEV;
2335 
2336 	if (!hwp_active && hwp_only)
2337 		return -ENOTSUPP;
2338 
2339 	pr_info("Intel P-state driver initializing\n");
2340 
2341 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2342 	if (!all_cpu_data)
2343 		return -ENOMEM;
2344 
2345 	intel_pstate_request_control_from_smm();
2346 
2347 	intel_pstate_sysfs_expose_params();
2348 
2349 	mutex_lock(&intel_pstate_driver_lock);
2350 	rc = intel_pstate_register_driver(default_driver);
2351 	mutex_unlock(&intel_pstate_driver_lock);
2352 	if (rc)
2353 		return rc;
2354 
2355 	if (hwp_active)
2356 		pr_info("HWP enabled\n");
2357 
2358 	return 0;
2359 }
2360 device_initcall(intel_pstate_init);
2361 
intel_pstate_setup(char * str)2362 static int __init intel_pstate_setup(char *str)
2363 {
2364 	if (!str)
2365 		return -EINVAL;
2366 
2367 	if (!strcmp(str, "disable")) {
2368 		no_load = 1;
2369 	} else if (!strcmp(str, "passive")) {
2370 		pr_info("Passive mode enabled\n");
2371 		default_driver = &intel_cpufreq;
2372 		no_hwp = 1;
2373 	}
2374 	if (!strcmp(str, "no_hwp")) {
2375 		pr_info("HWP disabled\n");
2376 		no_hwp = 1;
2377 	}
2378 	if (!strcmp(str, "force"))
2379 		force_load = 1;
2380 	if (!strcmp(str, "hwp_only"))
2381 		hwp_only = 1;
2382 	if (!strcmp(str, "per_cpu_perf_limits"))
2383 		per_cpu_limits = true;
2384 
2385 #ifdef CONFIG_ACPI
2386 	if (!strcmp(str, "support_acpi_ppc"))
2387 		acpi_ppc = true;
2388 #endif
2389 
2390 	return 0;
2391 }
2392 early_param("intel_pstate", intel_pstate_setup);
2393 
2394 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2395 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2396 MODULE_LICENSE("GPL");
2397