• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL AES HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-aes.c driver.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/xts.h>
40 #include <crypto/internal/aead.h>
41 #include <linux/platform_data/crypto-atmel.h>
42 #include <dt-bindings/dma/at91.h>
43 #include "atmel-aes-regs.h"
44 #include "atmel-authenc.h"
45 
46 #define ATMEL_AES_PRIORITY	300
47 
48 #define ATMEL_AES_BUFFER_ORDER	2
49 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
50 
51 #define CFB8_BLOCK_SIZE		1
52 #define CFB16_BLOCK_SIZE	2
53 #define CFB32_BLOCK_SIZE	4
54 #define CFB64_BLOCK_SIZE	8
55 
56 #define SIZE_IN_WORDS(x)	((x) >> 2)
57 
58 /* AES flags */
59 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
60 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
61 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
62 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
63 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
64 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
65 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
66 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
67 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
68 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
69 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
70 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
71 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
72 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
73 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
74 
75 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
76 				 AES_FLAGS_ENCRYPT |		\
77 				 AES_FLAGS_GTAGEN)
78 
79 #define AES_FLAGS_INIT		BIT(2)
80 #define AES_FLAGS_BUSY		BIT(3)
81 #define AES_FLAGS_DUMP_REG	BIT(4)
82 #define AES_FLAGS_OWN_SHA	BIT(5)
83 
84 #define AES_FLAGS_PERSISTENT	(AES_FLAGS_INIT | AES_FLAGS_BUSY)
85 
86 #define ATMEL_AES_QUEUE_LENGTH	50
87 
88 #define ATMEL_AES_DMA_THRESHOLD		256
89 
90 
91 struct atmel_aes_caps {
92 	bool			has_dualbuff;
93 	bool			has_cfb64;
94 	bool			has_gcm;
95 	bool			has_xts;
96 	bool			has_authenc;
97 	u32			max_burst_size;
98 };
99 
100 struct atmel_aes_dev;
101 
102 
103 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
104 
105 
106 struct atmel_aes_base_ctx {
107 	struct atmel_aes_dev	*dd;
108 	atmel_aes_fn_t		start;
109 	int			keylen;
110 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
111 	u16			block_size;
112 };
113 
114 struct atmel_aes_ctx {
115 	struct atmel_aes_base_ctx	base;
116 };
117 
118 struct atmel_aes_ctr_ctx {
119 	struct atmel_aes_base_ctx	base;
120 
121 	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
122 	size_t			offset;
123 	struct scatterlist	src[2];
124 	struct scatterlist	dst[2];
125 };
126 
127 struct atmel_aes_gcm_ctx {
128 	struct atmel_aes_base_ctx	base;
129 
130 	struct scatterlist	src[2];
131 	struct scatterlist	dst[2];
132 
133 	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
134 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
135 	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
136 	size_t			textlen;
137 
138 	const u32		*ghash_in;
139 	u32			*ghash_out;
140 	atmel_aes_fn_t		ghash_resume;
141 };
142 
143 struct atmel_aes_xts_ctx {
144 	struct atmel_aes_base_ctx	base;
145 
146 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
147 };
148 
149 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
150 struct atmel_aes_authenc_ctx {
151 	struct atmel_aes_base_ctx	base;
152 	struct atmel_sha_authenc_ctx	*auth;
153 };
154 #endif
155 
156 struct atmel_aes_reqctx {
157 	unsigned long		mode;
158 };
159 
160 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
161 struct atmel_aes_authenc_reqctx {
162 	struct atmel_aes_reqctx	base;
163 
164 	struct scatterlist	src[2];
165 	struct scatterlist	dst[2];
166 	size_t			textlen;
167 	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
168 
169 	/* auth_req MUST be place last. */
170 	struct ahash_request	auth_req;
171 };
172 #endif
173 
174 struct atmel_aes_dma {
175 	struct dma_chan		*chan;
176 	struct scatterlist	*sg;
177 	int			nents;
178 	unsigned int		remainder;
179 	unsigned int		sg_len;
180 };
181 
182 struct atmel_aes_dev {
183 	struct list_head	list;
184 	unsigned long		phys_base;
185 	void __iomem		*io_base;
186 
187 	struct crypto_async_request	*areq;
188 	struct atmel_aes_base_ctx	*ctx;
189 
190 	bool			is_async;
191 	atmel_aes_fn_t		resume;
192 	atmel_aes_fn_t		cpu_transfer_complete;
193 
194 	struct device		*dev;
195 	struct clk		*iclk;
196 	int			irq;
197 
198 	unsigned long		flags;
199 
200 	spinlock_t		lock;
201 	struct crypto_queue	queue;
202 
203 	struct tasklet_struct	done_task;
204 	struct tasklet_struct	queue_task;
205 
206 	size_t			total;
207 	size_t			datalen;
208 	u32			*data;
209 
210 	struct atmel_aes_dma	src;
211 	struct atmel_aes_dma	dst;
212 
213 	size_t			buflen;
214 	void			*buf;
215 	struct scatterlist	aligned_sg;
216 	struct scatterlist	*real_dst;
217 
218 	struct atmel_aes_caps	caps;
219 
220 	u32			hw_version;
221 };
222 
223 struct atmel_aes_drv {
224 	struct list_head	dev_list;
225 	spinlock_t		lock;
226 };
227 
228 static struct atmel_aes_drv atmel_aes = {
229 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
230 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
231 };
232 
233 #ifdef VERBOSE_DEBUG
atmel_aes_reg_name(u32 offset,char * tmp,size_t sz)234 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
235 {
236 	switch (offset) {
237 	case AES_CR:
238 		return "CR";
239 
240 	case AES_MR:
241 		return "MR";
242 
243 	case AES_ISR:
244 		return "ISR";
245 
246 	case AES_IMR:
247 		return "IMR";
248 
249 	case AES_IER:
250 		return "IER";
251 
252 	case AES_IDR:
253 		return "IDR";
254 
255 	case AES_KEYWR(0):
256 	case AES_KEYWR(1):
257 	case AES_KEYWR(2):
258 	case AES_KEYWR(3):
259 	case AES_KEYWR(4):
260 	case AES_KEYWR(5):
261 	case AES_KEYWR(6):
262 	case AES_KEYWR(7):
263 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
264 		break;
265 
266 	case AES_IDATAR(0):
267 	case AES_IDATAR(1):
268 	case AES_IDATAR(2):
269 	case AES_IDATAR(3):
270 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
271 		break;
272 
273 	case AES_ODATAR(0):
274 	case AES_ODATAR(1):
275 	case AES_ODATAR(2):
276 	case AES_ODATAR(3):
277 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
278 		break;
279 
280 	case AES_IVR(0):
281 	case AES_IVR(1):
282 	case AES_IVR(2):
283 	case AES_IVR(3):
284 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
285 		break;
286 
287 	case AES_AADLENR:
288 		return "AADLENR";
289 
290 	case AES_CLENR:
291 		return "CLENR";
292 
293 	case AES_GHASHR(0):
294 	case AES_GHASHR(1):
295 	case AES_GHASHR(2):
296 	case AES_GHASHR(3):
297 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
298 		break;
299 
300 	case AES_TAGR(0):
301 	case AES_TAGR(1):
302 	case AES_TAGR(2):
303 	case AES_TAGR(3):
304 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
305 		break;
306 
307 	case AES_CTRR:
308 		return "CTRR";
309 
310 	case AES_GCMHR(0):
311 	case AES_GCMHR(1):
312 	case AES_GCMHR(2):
313 	case AES_GCMHR(3):
314 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
315 		break;
316 
317 	case AES_EMR:
318 		return "EMR";
319 
320 	case AES_TWR(0):
321 	case AES_TWR(1):
322 	case AES_TWR(2):
323 	case AES_TWR(3):
324 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
325 		break;
326 
327 	case AES_ALPHAR(0):
328 	case AES_ALPHAR(1):
329 	case AES_ALPHAR(2):
330 	case AES_ALPHAR(3):
331 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
332 		break;
333 
334 	default:
335 		snprintf(tmp, sz, "0x%02x", offset);
336 		break;
337 	}
338 
339 	return tmp;
340 }
341 #endif /* VERBOSE_DEBUG */
342 
343 /* Shared functions */
344 
atmel_aes_read(struct atmel_aes_dev * dd,u32 offset)345 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
346 {
347 	u32 value = readl_relaxed(dd->io_base + offset);
348 
349 #ifdef VERBOSE_DEBUG
350 	if (dd->flags & AES_FLAGS_DUMP_REG) {
351 		char tmp[16];
352 
353 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
354 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
355 	}
356 #endif /* VERBOSE_DEBUG */
357 
358 	return value;
359 }
360 
atmel_aes_write(struct atmel_aes_dev * dd,u32 offset,u32 value)361 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
362 					u32 offset, u32 value)
363 {
364 #ifdef VERBOSE_DEBUG
365 	if (dd->flags & AES_FLAGS_DUMP_REG) {
366 		char tmp[16];
367 
368 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
369 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
370 	}
371 #endif /* VERBOSE_DEBUG */
372 
373 	writel_relaxed(value, dd->io_base + offset);
374 }
375 
atmel_aes_read_n(struct atmel_aes_dev * dd,u32 offset,u32 * value,int count)376 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
377 					u32 *value, int count)
378 {
379 	for (; count--; value++, offset += 4)
380 		*value = atmel_aes_read(dd, offset);
381 }
382 
atmel_aes_write_n(struct atmel_aes_dev * dd,u32 offset,const u32 * value,int count)383 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
384 			      const u32 *value, int count)
385 {
386 	for (; count--; value++, offset += 4)
387 		atmel_aes_write(dd, offset, *value);
388 }
389 
atmel_aes_read_block(struct atmel_aes_dev * dd,u32 offset,u32 * value)390 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
391 					u32 *value)
392 {
393 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
394 }
395 
atmel_aes_write_block(struct atmel_aes_dev * dd,u32 offset,const u32 * value)396 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
397 					 const u32 *value)
398 {
399 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
400 }
401 
atmel_aes_wait_for_data_ready(struct atmel_aes_dev * dd,atmel_aes_fn_t resume)402 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
403 						atmel_aes_fn_t resume)
404 {
405 	u32 isr = atmel_aes_read(dd, AES_ISR);
406 
407 	if (unlikely(isr & AES_INT_DATARDY))
408 		return resume(dd);
409 
410 	dd->resume = resume;
411 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
412 	return -EINPROGRESS;
413 }
414 
atmel_aes_padlen(size_t len,size_t block_size)415 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
416 {
417 	len &= block_size - 1;
418 	return len ? block_size - len : 0;
419 }
420 
atmel_aes_find_dev(struct atmel_aes_base_ctx * ctx)421 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
422 {
423 	struct atmel_aes_dev *aes_dd = NULL;
424 	struct atmel_aes_dev *tmp;
425 
426 	spin_lock_bh(&atmel_aes.lock);
427 	if (!ctx->dd) {
428 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
429 			aes_dd = tmp;
430 			break;
431 		}
432 		ctx->dd = aes_dd;
433 	} else {
434 		aes_dd = ctx->dd;
435 	}
436 
437 	spin_unlock_bh(&atmel_aes.lock);
438 
439 	return aes_dd;
440 }
441 
atmel_aes_hw_init(struct atmel_aes_dev * dd)442 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
443 {
444 	int err;
445 
446 	err = clk_enable(dd->iclk);
447 	if (err)
448 		return err;
449 
450 	if (!(dd->flags & AES_FLAGS_INIT)) {
451 		atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
452 		atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
453 		dd->flags |= AES_FLAGS_INIT;
454 	}
455 
456 	return 0;
457 }
458 
atmel_aes_get_version(struct atmel_aes_dev * dd)459 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
460 {
461 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
462 }
463 
atmel_aes_hw_version_init(struct atmel_aes_dev * dd)464 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
465 {
466 	int err;
467 
468 	err = atmel_aes_hw_init(dd);
469 	if (err)
470 		return err;
471 
472 	dd->hw_version = atmel_aes_get_version(dd);
473 
474 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
475 
476 	clk_disable(dd->iclk);
477 	return 0;
478 }
479 
atmel_aes_set_mode(struct atmel_aes_dev * dd,const struct atmel_aes_reqctx * rctx)480 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
481 				      const struct atmel_aes_reqctx *rctx)
482 {
483 	/* Clear all but persistent flags and set request flags. */
484 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
485 }
486 
atmel_aes_is_encrypt(const struct atmel_aes_dev * dd)487 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
488 {
489 	return (dd->flags & AES_FLAGS_ENCRYPT);
490 }
491 
492 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
493 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
494 #endif
495 
atmel_aes_complete(struct atmel_aes_dev * dd,int err)496 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
497 {
498 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
499 	atmel_aes_authenc_complete(dd, err);
500 #endif
501 
502 	clk_disable(dd->iclk);
503 	dd->flags &= ~AES_FLAGS_BUSY;
504 
505 	if (dd->is_async)
506 		dd->areq->complete(dd->areq, err);
507 
508 	tasklet_schedule(&dd->queue_task);
509 
510 	return err;
511 }
512 
atmel_aes_write_ctrl_key(struct atmel_aes_dev * dd,bool use_dma,const u32 * iv,const u32 * key,int keylen)513 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
514 				     const u32 *iv, const u32 *key, int keylen)
515 {
516 	u32 valmr = 0;
517 
518 	/* MR register must be set before IV registers */
519 	if (keylen == AES_KEYSIZE_128)
520 		valmr |= AES_MR_KEYSIZE_128;
521 	else if (keylen == AES_KEYSIZE_192)
522 		valmr |= AES_MR_KEYSIZE_192;
523 	else
524 		valmr |= AES_MR_KEYSIZE_256;
525 
526 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
527 
528 	if (use_dma) {
529 		valmr |= AES_MR_SMOD_IDATAR0;
530 		if (dd->caps.has_dualbuff)
531 			valmr |= AES_MR_DUALBUFF;
532 	} else {
533 		valmr |= AES_MR_SMOD_AUTO;
534 	}
535 
536 	atmel_aes_write(dd, AES_MR, valmr);
537 
538 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
539 
540 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
541 		atmel_aes_write_block(dd, AES_IVR(0), iv);
542 }
543 
atmel_aes_write_ctrl(struct atmel_aes_dev * dd,bool use_dma,const u32 * iv)544 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
545 					const u32 *iv)
546 
547 {
548 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
549 				 dd->ctx->key, dd->ctx->keylen);
550 }
551 
552 /* CPU transfer */
553 
atmel_aes_cpu_transfer(struct atmel_aes_dev * dd)554 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
555 {
556 	int err = 0;
557 	u32 isr;
558 
559 	for (;;) {
560 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
561 		dd->data += 4;
562 		dd->datalen -= AES_BLOCK_SIZE;
563 
564 		if (dd->datalen < AES_BLOCK_SIZE)
565 			break;
566 
567 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
568 
569 		isr = atmel_aes_read(dd, AES_ISR);
570 		if (!(isr & AES_INT_DATARDY)) {
571 			dd->resume = atmel_aes_cpu_transfer;
572 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
573 			return -EINPROGRESS;
574 		}
575 	}
576 
577 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
578 				 dd->buf, dd->total))
579 		err = -EINVAL;
580 
581 	if (err)
582 		return atmel_aes_complete(dd, err);
583 
584 	return dd->cpu_transfer_complete(dd);
585 }
586 
atmel_aes_cpu_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)587 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
588 			       struct scatterlist *src,
589 			       struct scatterlist *dst,
590 			       size_t len,
591 			       atmel_aes_fn_t resume)
592 {
593 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
594 
595 	if (unlikely(len == 0))
596 		return -EINVAL;
597 
598 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
599 
600 	dd->total = len;
601 	dd->real_dst = dst;
602 	dd->cpu_transfer_complete = resume;
603 	dd->datalen = len + padlen;
604 	dd->data = (u32 *)dd->buf;
605 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
606 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
607 }
608 
609 
610 /* DMA transfer */
611 
612 static void atmel_aes_dma_callback(void *data);
613 
atmel_aes_check_aligned(struct atmel_aes_dev * dd,struct scatterlist * sg,size_t len,struct atmel_aes_dma * dma)614 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
615 				    struct scatterlist *sg,
616 				    size_t len,
617 				    struct atmel_aes_dma *dma)
618 {
619 	int nents;
620 
621 	if (!IS_ALIGNED(len, dd->ctx->block_size))
622 		return false;
623 
624 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
625 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
626 			return false;
627 
628 		if (len <= sg->length) {
629 			if (!IS_ALIGNED(len, dd->ctx->block_size))
630 				return false;
631 
632 			dma->nents = nents+1;
633 			dma->remainder = sg->length - len;
634 			sg->length = len;
635 			return true;
636 		}
637 
638 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
639 			return false;
640 
641 		len -= sg->length;
642 	}
643 
644 	return false;
645 }
646 
atmel_aes_restore_sg(const struct atmel_aes_dma * dma)647 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
648 {
649 	struct scatterlist *sg = dma->sg;
650 	int nents = dma->nents;
651 
652 	if (!dma->remainder)
653 		return;
654 
655 	while (--nents > 0 && sg)
656 		sg = sg_next(sg);
657 
658 	if (!sg)
659 		return;
660 
661 	sg->length += dma->remainder;
662 }
663 
atmel_aes_map(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len)664 static int atmel_aes_map(struct atmel_aes_dev *dd,
665 			 struct scatterlist *src,
666 			 struct scatterlist *dst,
667 			 size_t len)
668 {
669 	bool src_aligned, dst_aligned;
670 	size_t padlen;
671 
672 	dd->total = len;
673 	dd->src.sg = src;
674 	dd->dst.sg = dst;
675 	dd->real_dst = dst;
676 
677 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
678 	if (src == dst)
679 		dst_aligned = src_aligned;
680 	else
681 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
682 	if (!src_aligned || !dst_aligned) {
683 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
684 
685 		if (dd->buflen < len + padlen)
686 			return -ENOMEM;
687 
688 		if (!src_aligned) {
689 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
690 			dd->src.sg = &dd->aligned_sg;
691 			dd->src.nents = 1;
692 			dd->src.remainder = 0;
693 		}
694 
695 		if (!dst_aligned) {
696 			dd->dst.sg = &dd->aligned_sg;
697 			dd->dst.nents = 1;
698 			dd->dst.remainder = 0;
699 		}
700 
701 		sg_init_table(&dd->aligned_sg, 1);
702 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
703 	}
704 
705 	if (dd->src.sg == dd->dst.sg) {
706 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
707 					    DMA_BIDIRECTIONAL);
708 		dd->dst.sg_len = dd->src.sg_len;
709 		if (!dd->src.sg_len)
710 			return -EFAULT;
711 	} else {
712 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
713 					    DMA_TO_DEVICE);
714 		if (!dd->src.sg_len)
715 			return -EFAULT;
716 
717 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
718 					    DMA_FROM_DEVICE);
719 		if (!dd->dst.sg_len) {
720 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
721 				     DMA_TO_DEVICE);
722 			return -EFAULT;
723 		}
724 	}
725 
726 	return 0;
727 }
728 
atmel_aes_unmap(struct atmel_aes_dev * dd)729 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
730 {
731 	if (dd->src.sg == dd->dst.sg) {
732 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
733 			     DMA_BIDIRECTIONAL);
734 
735 		if (dd->src.sg != &dd->aligned_sg)
736 			atmel_aes_restore_sg(&dd->src);
737 	} else {
738 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
739 			     DMA_FROM_DEVICE);
740 
741 		if (dd->dst.sg != &dd->aligned_sg)
742 			atmel_aes_restore_sg(&dd->dst);
743 
744 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
745 			     DMA_TO_DEVICE);
746 
747 		if (dd->src.sg != &dd->aligned_sg)
748 			atmel_aes_restore_sg(&dd->src);
749 	}
750 
751 	if (dd->dst.sg == &dd->aligned_sg)
752 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
753 				    dd->buf, dd->total);
754 }
755 
atmel_aes_dma_transfer_start(struct atmel_aes_dev * dd,enum dma_slave_buswidth addr_width,enum dma_transfer_direction dir,u32 maxburst)756 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
757 					enum dma_slave_buswidth addr_width,
758 					enum dma_transfer_direction dir,
759 					u32 maxburst)
760 {
761 	struct dma_async_tx_descriptor *desc;
762 	struct dma_slave_config config;
763 	dma_async_tx_callback callback;
764 	struct atmel_aes_dma *dma;
765 	int err;
766 
767 	memset(&config, 0, sizeof(config));
768 	config.direction = dir;
769 	config.src_addr_width = addr_width;
770 	config.dst_addr_width = addr_width;
771 	config.src_maxburst = maxburst;
772 	config.dst_maxburst = maxburst;
773 
774 	switch (dir) {
775 	case DMA_MEM_TO_DEV:
776 		dma = &dd->src;
777 		callback = NULL;
778 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
779 		break;
780 
781 	case DMA_DEV_TO_MEM:
782 		dma = &dd->dst;
783 		callback = atmel_aes_dma_callback;
784 		config.src_addr = dd->phys_base + AES_ODATAR(0);
785 		break;
786 
787 	default:
788 		return -EINVAL;
789 	}
790 
791 	err = dmaengine_slave_config(dma->chan, &config);
792 	if (err)
793 		return err;
794 
795 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
796 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
797 	if (!desc)
798 		return -ENOMEM;
799 
800 	desc->callback = callback;
801 	desc->callback_param = dd;
802 	dmaengine_submit(desc);
803 	dma_async_issue_pending(dma->chan);
804 
805 	return 0;
806 }
807 
atmel_aes_dma_transfer_stop(struct atmel_aes_dev * dd,enum dma_transfer_direction dir)808 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
809 					enum dma_transfer_direction dir)
810 {
811 	struct atmel_aes_dma *dma;
812 
813 	switch (dir) {
814 	case DMA_MEM_TO_DEV:
815 		dma = &dd->src;
816 		break;
817 
818 	case DMA_DEV_TO_MEM:
819 		dma = &dd->dst;
820 		break;
821 
822 	default:
823 		return;
824 	}
825 
826 	dmaengine_terminate_all(dma->chan);
827 }
828 
atmel_aes_dma_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)829 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
830 			       struct scatterlist *src,
831 			       struct scatterlist *dst,
832 			       size_t len,
833 			       atmel_aes_fn_t resume)
834 {
835 	enum dma_slave_buswidth addr_width;
836 	u32 maxburst;
837 	int err;
838 
839 	switch (dd->ctx->block_size) {
840 	case CFB8_BLOCK_SIZE:
841 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
842 		maxburst = 1;
843 		break;
844 
845 	case CFB16_BLOCK_SIZE:
846 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
847 		maxburst = 1;
848 		break;
849 
850 	case CFB32_BLOCK_SIZE:
851 	case CFB64_BLOCK_SIZE:
852 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
853 		maxburst = 1;
854 		break;
855 
856 	case AES_BLOCK_SIZE:
857 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
858 		maxburst = dd->caps.max_burst_size;
859 		break;
860 
861 	default:
862 		err = -EINVAL;
863 		goto exit;
864 	}
865 
866 	err = atmel_aes_map(dd, src, dst, len);
867 	if (err)
868 		goto exit;
869 
870 	dd->resume = resume;
871 
872 	/* Set output DMA transfer first */
873 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
874 					   maxburst);
875 	if (err)
876 		goto unmap;
877 
878 	/* Then set input DMA transfer */
879 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
880 					   maxburst);
881 	if (err)
882 		goto output_transfer_stop;
883 
884 	return -EINPROGRESS;
885 
886 output_transfer_stop:
887 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
888 unmap:
889 	atmel_aes_unmap(dd);
890 exit:
891 	return atmel_aes_complete(dd, err);
892 }
893 
atmel_aes_dma_stop(struct atmel_aes_dev * dd)894 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
895 {
896 	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
897 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
898 	atmel_aes_unmap(dd);
899 }
900 
atmel_aes_dma_callback(void * data)901 static void atmel_aes_dma_callback(void *data)
902 {
903 	struct atmel_aes_dev *dd = data;
904 
905 	atmel_aes_dma_stop(dd);
906 	dd->is_async = true;
907 	(void)dd->resume(dd);
908 }
909 
atmel_aes_handle_queue(struct atmel_aes_dev * dd,struct crypto_async_request * new_areq)910 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
911 				  struct crypto_async_request *new_areq)
912 {
913 	struct crypto_async_request *areq, *backlog;
914 	struct atmel_aes_base_ctx *ctx;
915 	unsigned long flags;
916 	bool start_async;
917 	int err, ret = 0;
918 
919 	spin_lock_irqsave(&dd->lock, flags);
920 	if (new_areq)
921 		ret = crypto_enqueue_request(&dd->queue, new_areq);
922 	if (dd->flags & AES_FLAGS_BUSY) {
923 		spin_unlock_irqrestore(&dd->lock, flags);
924 		return ret;
925 	}
926 	backlog = crypto_get_backlog(&dd->queue);
927 	areq = crypto_dequeue_request(&dd->queue);
928 	if (areq)
929 		dd->flags |= AES_FLAGS_BUSY;
930 	spin_unlock_irqrestore(&dd->lock, flags);
931 
932 	if (!areq)
933 		return ret;
934 
935 	if (backlog)
936 		backlog->complete(backlog, -EINPROGRESS);
937 
938 	ctx = crypto_tfm_ctx(areq->tfm);
939 
940 	dd->areq = areq;
941 	dd->ctx = ctx;
942 	start_async = (areq != new_areq);
943 	dd->is_async = start_async;
944 
945 	/* WARNING: ctx->start() MAY change dd->is_async. */
946 	err = ctx->start(dd);
947 	return (start_async) ? ret : err;
948 }
949 
950 
951 /* AES async block ciphers */
952 
atmel_aes_transfer_complete(struct atmel_aes_dev * dd)953 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
954 {
955 	return atmel_aes_complete(dd, 0);
956 }
957 
atmel_aes_start(struct atmel_aes_dev * dd)958 static int atmel_aes_start(struct atmel_aes_dev *dd)
959 {
960 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
961 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
962 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
963 			dd->ctx->block_size != AES_BLOCK_SIZE);
964 	int err;
965 
966 	atmel_aes_set_mode(dd, rctx);
967 
968 	err = atmel_aes_hw_init(dd);
969 	if (err)
970 		return atmel_aes_complete(dd, err);
971 
972 	atmel_aes_write_ctrl(dd, use_dma, req->info);
973 	if (use_dma)
974 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
975 					   atmel_aes_transfer_complete);
976 
977 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
978 				   atmel_aes_transfer_complete);
979 }
980 
981 static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx * ctx)982 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
983 {
984 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
985 }
986 
atmel_aes_ctr_transfer(struct atmel_aes_dev * dd)987 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
988 {
989 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
990 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
991 	struct scatterlist *src, *dst;
992 	size_t datalen;
993 	u32 ctr;
994 	u16 blocks, start, end;
995 	bool use_dma, fragmented = false;
996 
997 	/* Check for transfer completion. */
998 	ctx->offset += dd->total;
999 	if (ctx->offset >= req->nbytes)
1000 		return atmel_aes_transfer_complete(dd);
1001 
1002 	/* Compute data length. */
1003 	datalen = req->nbytes - ctx->offset;
1004 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1005 	ctr = be32_to_cpu(ctx->iv[3]);
1006 
1007 	/* Check 16bit counter overflow. */
1008 	start = ctr & 0xffff;
1009 	end = start + blocks - 1;
1010 
1011 	if (blocks >> 16 || end < start) {
1012 		ctr |= 0xffff;
1013 		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1014 		fragmented = true;
1015 	}
1016 
1017 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1018 
1019 	/* Jump to offset. */
1020 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1021 	dst = ((req->src == req->dst) ? src :
1022 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1023 
1024 	/* Configure hardware. */
1025 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1026 	if (unlikely(fragmented)) {
1027 		/*
1028 		 * Increment the counter manually to cope with the hardware
1029 		 * counter overflow.
1030 		 */
1031 		ctx->iv[3] = cpu_to_be32(ctr);
1032 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1033 	}
1034 
1035 	if (use_dma)
1036 		return atmel_aes_dma_start(dd, src, dst, datalen,
1037 					   atmel_aes_ctr_transfer);
1038 
1039 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1040 				   atmel_aes_ctr_transfer);
1041 }
1042 
atmel_aes_ctr_start(struct atmel_aes_dev * dd)1043 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1044 {
1045 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1046 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1047 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1048 	int err;
1049 
1050 	atmel_aes_set_mode(dd, rctx);
1051 
1052 	err = atmel_aes_hw_init(dd);
1053 	if (err)
1054 		return atmel_aes_complete(dd, err);
1055 
1056 	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1057 	ctx->offset = 0;
1058 	dd->total = 0;
1059 	return atmel_aes_ctr_transfer(dd);
1060 }
1061 
atmel_aes_crypt(struct ablkcipher_request * req,unsigned long mode)1062 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1063 {
1064 	struct atmel_aes_base_ctx *ctx;
1065 	struct atmel_aes_reqctx *rctx;
1066 	struct atmel_aes_dev *dd;
1067 
1068 	ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1069 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1070 	case AES_FLAGS_CFB8:
1071 		ctx->block_size = CFB8_BLOCK_SIZE;
1072 		break;
1073 
1074 	case AES_FLAGS_CFB16:
1075 		ctx->block_size = CFB16_BLOCK_SIZE;
1076 		break;
1077 
1078 	case AES_FLAGS_CFB32:
1079 		ctx->block_size = CFB32_BLOCK_SIZE;
1080 		break;
1081 
1082 	case AES_FLAGS_CFB64:
1083 		ctx->block_size = CFB64_BLOCK_SIZE;
1084 		break;
1085 
1086 	default:
1087 		ctx->block_size = AES_BLOCK_SIZE;
1088 		break;
1089 	}
1090 
1091 	dd = atmel_aes_find_dev(ctx);
1092 	if (!dd)
1093 		return -ENODEV;
1094 
1095 	rctx = ablkcipher_request_ctx(req);
1096 	rctx->mode = mode;
1097 
1098 	return atmel_aes_handle_queue(dd, &req->base);
1099 }
1100 
atmel_aes_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)1101 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1102 			   unsigned int keylen)
1103 {
1104 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1105 
1106 	if (keylen != AES_KEYSIZE_128 &&
1107 	    keylen != AES_KEYSIZE_192 &&
1108 	    keylen != AES_KEYSIZE_256) {
1109 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1110 		return -EINVAL;
1111 	}
1112 
1113 	memcpy(ctx->key, key, keylen);
1114 	ctx->keylen = keylen;
1115 
1116 	return 0;
1117 }
1118 
atmel_aes_ecb_encrypt(struct ablkcipher_request * req)1119 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1120 {
1121 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1122 }
1123 
atmel_aes_ecb_decrypt(struct ablkcipher_request * req)1124 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1125 {
1126 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1127 }
1128 
atmel_aes_cbc_encrypt(struct ablkcipher_request * req)1129 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1130 {
1131 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1132 }
1133 
atmel_aes_cbc_decrypt(struct ablkcipher_request * req)1134 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1135 {
1136 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1137 }
1138 
atmel_aes_ofb_encrypt(struct ablkcipher_request * req)1139 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1140 {
1141 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1142 }
1143 
atmel_aes_ofb_decrypt(struct ablkcipher_request * req)1144 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1145 {
1146 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1147 }
1148 
atmel_aes_cfb_encrypt(struct ablkcipher_request * req)1149 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1150 {
1151 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1152 }
1153 
atmel_aes_cfb_decrypt(struct ablkcipher_request * req)1154 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1155 {
1156 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1157 }
1158 
atmel_aes_cfb64_encrypt(struct ablkcipher_request * req)1159 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1160 {
1161 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1162 }
1163 
atmel_aes_cfb64_decrypt(struct ablkcipher_request * req)1164 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1165 {
1166 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1167 }
1168 
atmel_aes_cfb32_encrypt(struct ablkcipher_request * req)1169 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1170 {
1171 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1172 }
1173 
atmel_aes_cfb32_decrypt(struct ablkcipher_request * req)1174 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1175 {
1176 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1177 }
1178 
atmel_aes_cfb16_encrypt(struct ablkcipher_request * req)1179 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1180 {
1181 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1182 }
1183 
atmel_aes_cfb16_decrypt(struct ablkcipher_request * req)1184 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1185 {
1186 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1187 }
1188 
atmel_aes_cfb8_encrypt(struct ablkcipher_request * req)1189 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1190 {
1191 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1192 }
1193 
atmel_aes_cfb8_decrypt(struct ablkcipher_request * req)1194 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1195 {
1196 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1197 }
1198 
atmel_aes_ctr_encrypt(struct ablkcipher_request * req)1199 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1200 {
1201 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1202 }
1203 
atmel_aes_ctr_decrypt(struct ablkcipher_request * req)1204 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1205 {
1206 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1207 }
1208 
atmel_aes_cra_init(struct crypto_tfm * tfm)1209 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1210 {
1211 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1212 
1213 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1214 	ctx->base.start = atmel_aes_start;
1215 
1216 	return 0;
1217 }
1218 
atmel_aes_ctr_cra_init(struct crypto_tfm * tfm)1219 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1220 {
1221 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1222 
1223 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1224 	ctx->base.start = atmel_aes_ctr_start;
1225 
1226 	return 0;
1227 }
1228 
atmel_aes_cra_exit(struct crypto_tfm * tfm)1229 static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1230 {
1231 }
1232 
1233 static struct crypto_alg aes_algs[] = {
1234 {
1235 	.cra_name		= "ecb(aes)",
1236 	.cra_driver_name	= "atmel-ecb-aes",
1237 	.cra_priority		= ATMEL_AES_PRIORITY,
1238 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1239 	.cra_blocksize		= AES_BLOCK_SIZE,
1240 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1241 	.cra_alignmask		= 0xf,
1242 	.cra_type		= &crypto_ablkcipher_type,
1243 	.cra_module		= THIS_MODULE,
1244 	.cra_init		= atmel_aes_cra_init,
1245 	.cra_exit		= atmel_aes_cra_exit,
1246 	.cra_u.ablkcipher = {
1247 		.min_keysize	= AES_MIN_KEY_SIZE,
1248 		.max_keysize	= AES_MAX_KEY_SIZE,
1249 		.setkey		= atmel_aes_setkey,
1250 		.encrypt	= atmel_aes_ecb_encrypt,
1251 		.decrypt	= atmel_aes_ecb_decrypt,
1252 	}
1253 },
1254 {
1255 	.cra_name		= "cbc(aes)",
1256 	.cra_driver_name	= "atmel-cbc-aes",
1257 	.cra_priority		= ATMEL_AES_PRIORITY,
1258 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1259 	.cra_blocksize		= AES_BLOCK_SIZE,
1260 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1261 	.cra_alignmask		= 0xf,
1262 	.cra_type		= &crypto_ablkcipher_type,
1263 	.cra_module		= THIS_MODULE,
1264 	.cra_init		= atmel_aes_cra_init,
1265 	.cra_exit		= atmel_aes_cra_exit,
1266 	.cra_u.ablkcipher = {
1267 		.min_keysize	= AES_MIN_KEY_SIZE,
1268 		.max_keysize	= AES_MAX_KEY_SIZE,
1269 		.ivsize		= AES_BLOCK_SIZE,
1270 		.setkey		= atmel_aes_setkey,
1271 		.encrypt	= atmel_aes_cbc_encrypt,
1272 		.decrypt	= atmel_aes_cbc_decrypt,
1273 	}
1274 },
1275 {
1276 	.cra_name		= "ofb(aes)",
1277 	.cra_driver_name	= "atmel-ofb-aes",
1278 	.cra_priority		= ATMEL_AES_PRIORITY,
1279 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1280 	.cra_blocksize		= AES_BLOCK_SIZE,
1281 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1282 	.cra_alignmask		= 0xf,
1283 	.cra_type		= &crypto_ablkcipher_type,
1284 	.cra_module		= THIS_MODULE,
1285 	.cra_init		= atmel_aes_cra_init,
1286 	.cra_exit		= atmel_aes_cra_exit,
1287 	.cra_u.ablkcipher = {
1288 		.min_keysize	= AES_MIN_KEY_SIZE,
1289 		.max_keysize	= AES_MAX_KEY_SIZE,
1290 		.ivsize		= AES_BLOCK_SIZE,
1291 		.setkey		= atmel_aes_setkey,
1292 		.encrypt	= atmel_aes_ofb_encrypt,
1293 		.decrypt	= atmel_aes_ofb_decrypt,
1294 	}
1295 },
1296 {
1297 	.cra_name		= "cfb(aes)",
1298 	.cra_driver_name	= "atmel-cfb-aes",
1299 	.cra_priority		= ATMEL_AES_PRIORITY,
1300 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1301 	.cra_blocksize		= AES_BLOCK_SIZE,
1302 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1303 	.cra_alignmask		= 0xf,
1304 	.cra_type		= &crypto_ablkcipher_type,
1305 	.cra_module		= THIS_MODULE,
1306 	.cra_init		= atmel_aes_cra_init,
1307 	.cra_exit		= atmel_aes_cra_exit,
1308 	.cra_u.ablkcipher = {
1309 		.min_keysize	= AES_MIN_KEY_SIZE,
1310 		.max_keysize	= AES_MAX_KEY_SIZE,
1311 		.ivsize		= AES_BLOCK_SIZE,
1312 		.setkey		= atmel_aes_setkey,
1313 		.encrypt	= atmel_aes_cfb_encrypt,
1314 		.decrypt	= atmel_aes_cfb_decrypt,
1315 	}
1316 },
1317 {
1318 	.cra_name		= "cfb32(aes)",
1319 	.cra_driver_name	= "atmel-cfb32-aes",
1320 	.cra_priority		= ATMEL_AES_PRIORITY,
1321 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1322 	.cra_blocksize		= CFB32_BLOCK_SIZE,
1323 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1324 	.cra_alignmask		= 0x3,
1325 	.cra_type		= &crypto_ablkcipher_type,
1326 	.cra_module		= THIS_MODULE,
1327 	.cra_init		= atmel_aes_cra_init,
1328 	.cra_exit		= atmel_aes_cra_exit,
1329 	.cra_u.ablkcipher = {
1330 		.min_keysize	= AES_MIN_KEY_SIZE,
1331 		.max_keysize	= AES_MAX_KEY_SIZE,
1332 		.ivsize		= AES_BLOCK_SIZE,
1333 		.setkey		= atmel_aes_setkey,
1334 		.encrypt	= atmel_aes_cfb32_encrypt,
1335 		.decrypt	= atmel_aes_cfb32_decrypt,
1336 	}
1337 },
1338 {
1339 	.cra_name		= "cfb16(aes)",
1340 	.cra_driver_name	= "atmel-cfb16-aes",
1341 	.cra_priority		= ATMEL_AES_PRIORITY,
1342 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1343 	.cra_blocksize		= CFB16_BLOCK_SIZE,
1344 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1345 	.cra_alignmask		= 0x1,
1346 	.cra_type		= &crypto_ablkcipher_type,
1347 	.cra_module		= THIS_MODULE,
1348 	.cra_init		= atmel_aes_cra_init,
1349 	.cra_exit		= atmel_aes_cra_exit,
1350 	.cra_u.ablkcipher = {
1351 		.min_keysize	= AES_MIN_KEY_SIZE,
1352 		.max_keysize	= AES_MAX_KEY_SIZE,
1353 		.ivsize		= AES_BLOCK_SIZE,
1354 		.setkey		= atmel_aes_setkey,
1355 		.encrypt	= atmel_aes_cfb16_encrypt,
1356 		.decrypt	= atmel_aes_cfb16_decrypt,
1357 	}
1358 },
1359 {
1360 	.cra_name		= "cfb8(aes)",
1361 	.cra_driver_name	= "atmel-cfb8-aes",
1362 	.cra_priority		= ATMEL_AES_PRIORITY,
1363 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1364 	.cra_blocksize		= CFB8_BLOCK_SIZE,
1365 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1366 	.cra_alignmask		= 0x0,
1367 	.cra_type		= &crypto_ablkcipher_type,
1368 	.cra_module		= THIS_MODULE,
1369 	.cra_init		= atmel_aes_cra_init,
1370 	.cra_exit		= atmel_aes_cra_exit,
1371 	.cra_u.ablkcipher = {
1372 		.min_keysize	= AES_MIN_KEY_SIZE,
1373 		.max_keysize	= AES_MAX_KEY_SIZE,
1374 		.ivsize		= AES_BLOCK_SIZE,
1375 		.setkey		= atmel_aes_setkey,
1376 		.encrypt	= atmel_aes_cfb8_encrypt,
1377 		.decrypt	= atmel_aes_cfb8_decrypt,
1378 	}
1379 },
1380 {
1381 	.cra_name		= "ctr(aes)",
1382 	.cra_driver_name	= "atmel-ctr-aes",
1383 	.cra_priority		= ATMEL_AES_PRIORITY,
1384 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1385 	.cra_blocksize		= 1,
1386 	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1387 	.cra_alignmask		= 0xf,
1388 	.cra_type		= &crypto_ablkcipher_type,
1389 	.cra_module		= THIS_MODULE,
1390 	.cra_init		= atmel_aes_ctr_cra_init,
1391 	.cra_exit		= atmel_aes_cra_exit,
1392 	.cra_u.ablkcipher = {
1393 		.min_keysize	= AES_MIN_KEY_SIZE,
1394 		.max_keysize	= AES_MAX_KEY_SIZE,
1395 		.ivsize		= AES_BLOCK_SIZE,
1396 		.setkey		= atmel_aes_setkey,
1397 		.encrypt	= atmel_aes_ctr_encrypt,
1398 		.decrypt	= atmel_aes_ctr_decrypt,
1399 	}
1400 },
1401 };
1402 
1403 static struct crypto_alg aes_cfb64_alg = {
1404 	.cra_name		= "cfb64(aes)",
1405 	.cra_driver_name	= "atmel-cfb64-aes",
1406 	.cra_priority		= ATMEL_AES_PRIORITY,
1407 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1408 	.cra_blocksize		= CFB64_BLOCK_SIZE,
1409 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1410 	.cra_alignmask		= 0x7,
1411 	.cra_type		= &crypto_ablkcipher_type,
1412 	.cra_module		= THIS_MODULE,
1413 	.cra_init		= atmel_aes_cra_init,
1414 	.cra_exit		= atmel_aes_cra_exit,
1415 	.cra_u.ablkcipher = {
1416 		.min_keysize	= AES_MIN_KEY_SIZE,
1417 		.max_keysize	= AES_MAX_KEY_SIZE,
1418 		.ivsize		= AES_BLOCK_SIZE,
1419 		.setkey		= atmel_aes_setkey,
1420 		.encrypt	= atmel_aes_cfb64_encrypt,
1421 		.decrypt	= atmel_aes_cfb64_decrypt,
1422 	}
1423 };
1424 
1425 
1426 /* gcm aead functions */
1427 
1428 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1429 			       const u32 *data, size_t datalen,
1430 			       const u32 *ghash_in, u32 *ghash_out,
1431 			       atmel_aes_fn_t resume);
1432 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1433 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1434 
1435 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1436 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1437 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1438 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1439 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1440 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1441 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1442 
1443 static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx * ctx)1444 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1445 {
1446 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1447 }
1448 
atmel_aes_gcm_ghash(struct atmel_aes_dev * dd,const u32 * data,size_t datalen,const u32 * ghash_in,u32 * ghash_out,atmel_aes_fn_t resume)1449 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1450 			       const u32 *data, size_t datalen,
1451 			       const u32 *ghash_in, u32 *ghash_out,
1452 			       atmel_aes_fn_t resume)
1453 {
1454 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1455 
1456 	dd->data = (u32 *)data;
1457 	dd->datalen = datalen;
1458 	ctx->ghash_in = ghash_in;
1459 	ctx->ghash_out = ghash_out;
1460 	ctx->ghash_resume = resume;
1461 
1462 	atmel_aes_write_ctrl(dd, false, NULL);
1463 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1464 }
1465 
atmel_aes_gcm_ghash_init(struct atmel_aes_dev * dd)1466 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1467 {
1468 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1469 
1470 	/* Set the data length. */
1471 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1472 	atmel_aes_write(dd, AES_CLENR, 0);
1473 
1474 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1475 	if (ctx->ghash_in)
1476 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1477 
1478 	return atmel_aes_gcm_ghash_finalize(dd);
1479 }
1480 
atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev * dd)1481 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1482 {
1483 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1484 	u32 isr;
1485 
1486 	/* Write data into the Input Data Registers. */
1487 	while (dd->datalen > 0) {
1488 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1489 		dd->data += 4;
1490 		dd->datalen -= AES_BLOCK_SIZE;
1491 
1492 		isr = atmel_aes_read(dd, AES_ISR);
1493 		if (!(isr & AES_INT_DATARDY)) {
1494 			dd->resume = atmel_aes_gcm_ghash_finalize;
1495 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1496 			return -EINPROGRESS;
1497 		}
1498 	}
1499 
1500 	/* Read the computed hash from GHASHRx. */
1501 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1502 
1503 	return ctx->ghash_resume(dd);
1504 }
1505 
1506 
atmel_aes_gcm_start(struct atmel_aes_dev * dd)1507 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1508 {
1509 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1510 	struct aead_request *req = aead_request_cast(dd->areq);
1511 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1512 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1513 	size_t ivsize = crypto_aead_ivsize(tfm);
1514 	size_t datalen, padlen;
1515 	const void *iv = req->iv;
1516 	u8 *data = dd->buf;
1517 	int err;
1518 
1519 	atmel_aes_set_mode(dd, rctx);
1520 
1521 	err = atmel_aes_hw_init(dd);
1522 	if (err)
1523 		return atmel_aes_complete(dd, err);
1524 
1525 	if (likely(ivsize == 12)) {
1526 		memcpy(ctx->j0, iv, ivsize);
1527 		ctx->j0[3] = cpu_to_be32(1);
1528 		return atmel_aes_gcm_process(dd);
1529 	}
1530 
1531 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1532 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1533 	if (datalen > dd->buflen)
1534 		return atmel_aes_complete(dd, -EINVAL);
1535 
1536 	memcpy(data, iv, ivsize);
1537 	memset(data + ivsize, 0, padlen + sizeof(u64));
1538 	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1539 
1540 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1541 				   NULL, ctx->j0, atmel_aes_gcm_process);
1542 }
1543 
atmel_aes_gcm_process(struct atmel_aes_dev * dd)1544 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1545 {
1546 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1547 	struct aead_request *req = aead_request_cast(dd->areq);
1548 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1549 	bool enc = atmel_aes_is_encrypt(dd);
1550 	u32 authsize;
1551 
1552 	/* Compute text length. */
1553 	authsize = crypto_aead_authsize(tfm);
1554 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1555 
1556 	/*
1557 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1558 	 * fails when both the message and its associated data are empty.
1559 	 */
1560 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1561 		dd->flags |= AES_FLAGS_GTAGEN;
1562 
1563 	atmel_aes_write_ctrl(dd, false, NULL);
1564 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1565 }
1566 
atmel_aes_gcm_length(struct atmel_aes_dev * dd)1567 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1568 {
1569 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1570 	struct aead_request *req = aead_request_cast(dd->areq);
1571 	u32 j0_lsw, *j0 = ctx->j0;
1572 	size_t padlen;
1573 
1574 	/* Write incr32(J0) into IV. */
1575 	j0_lsw = j0[3];
1576 	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1577 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1578 	j0[3] = j0_lsw;
1579 
1580 	/* Set aad and text lengths. */
1581 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1582 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1583 
1584 	/* Check whether AAD are present. */
1585 	if (unlikely(req->assoclen == 0)) {
1586 		dd->datalen = 0;
1587 		return atmel_aes_gcm_data(dd);
1588 	}
1589 
1590 	/* Copy assoc data and add padding. */
1591 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1592 	if (unlikely(req->assoclen + padlen > dd->buflen))
1593 		return atmel_aes_complete(dd, -EINVAL);
1594 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1595 
1596 	/* Write assoc data into the Input Data register. */
1597 	dd->data = (u32 *)dd->buf;
1598 	dd->datalen = req->assoclen + padlen;
1599 	return atmel_aes_gcm_data(dd);
1600 }
1601 
atmel_aes_gcm_data(struct atmel_aes_dev * dd)1602 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1603 {
1604 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1605 	struct aead_request *req = aead_request_cast(dd->areq);
1606 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1607 	struct scatterlist *src, *dst;
1608 	u32 isr, mr;
1609 
1610 	/* Write AAD first. */
1611 	while (dd->datalen > 0) {
1612 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1613 		dd->data += 4;
1614 		dd->datalen -= AES_BLOCK_SIZE;
1615 
1616 		isr = atmel_aes_read(dd, AES_ISR);
1617 		if (!(isr & AES_INT_DATARDY)) {
1618 			dd->resume = atmel_aes_gcm_data;
1619 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1620 			return -EINPROGRESS;
1621 		}
1622 	}
1623 
1624 	/* GMAC only. */
1625 	if (unlikely(ctx->textlen == 0))
1626 		return atmel_aes_gcm_tag_init(dd);
1627 
1628 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1629 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1630 	dst = ((req->src == req->dst) ? src :
1631 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1632 
1633 	if (use_dma) {
1634 		/* Update the Mode Register for DMA transfers. */
1635 		mr = atmel_aes_read(dd, AES_MR);
1636 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1637 		mr |= AES_MR_SMOD_IDATAR0;
1638 		if (dd->caps.has_dualbuff)
1639 			mr |= AES_MR_DUALBUFF;
1640 		atmel_aes_write(dd, AES_MR, mr);
1641 
1642 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1643 					   atmel_aes_gcm_tag_init);
1644 	}
1645 
1646 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1647 				   atmel_aes_gcm_tag_init);
1648 }
1649 
atmel_aes_gcm_tag_init(struct atmel_aes_dev * dd)1650 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1651 {
1652 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1653 	struct aead_request *req = aead_request_cast(dd->areq);
1654 	u64 *data = dd->buf;
1655 
1656 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1657 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1658 			dd->resume = atmel_aes_gcm_tag_init;
1659 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1660 			return -EINPROGRESS;
1661 		}
1662 
1663 		return atmel_aes_gcm_finalize(dd);
1664 	}
1665 
1666 	/* Read the GCM Intermediate Hash Word Registers. */
1667 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1668 
1669 	data[0] = cpu_to_be64(req->assoclen * 8);
1670 	data[1] = cpu_to_be64(ctx->textlen * 8);
1671 
1672 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1673 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1674 }
1675 
atmel_aes_gcm_tag(struct atmel_aes_dev * dd)1676 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1677 {
1678 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1679 	unsigned long flags;
1680 
1681 	/*
1682 	 * Change mode to CTR to complete the tag generation.
1683 	 * Use J0 as Initialization Vector.
1684 	 */
1685 	flags = dd->flags;
1686 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1687 	dd->flags |= AES_FLAGS_CTR;
1688 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1689 	dd->flags = flags;
1690 
1691 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1692 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1693 }
1694 
atmel_aes_gcm_finalize(struct atmel_aes_dev * dd)1695 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1696 {
1697 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1698 	struct aead_request *req = aead_request_cast(dd->areq);
1699 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1700 	bool enc = atmel_aes_is_encrypt(dd);
1701 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1702 	int err;
1703 
1704 	/* Read the computed tag. */
1705 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1706 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1707 	else
1708 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1709 
1710 	offset = req->assoclen + ctx->textlen;
1711 	authsize = crypto_aead_authsize(tfm);
1712 	if (enc) {
1713 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1714 		err = 0;
1715 	} else {
1716 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1717 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1718 	}
1719 
1720 	return atmel_aes_complete(dd, err);
1721 }
1722 
atmel_aes_gcm_crypt(struct aead_request * req,unsigned long mode)1723 static int atmel_aes_gcm_crypt(struct aead_request *req,
1724 			       unsigned long mode)
1725 {
1726 	struct atmel_aes_base_ctx *ctx;
1727 	struct atmel_aes_reqctx *rctx;
1728 	struct atmel_aes_dev *dd;
1729 
1730 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1731 	ctx->block_size = AES_BLOCK_SIZE;
1732 
1733 	dd = atmel_aes_find_dev(ctx);
1734 	if (!dd)
1735 		return -ENODEV;
1736 
1737 	rctx = aead_request_ctx(req);
1738 	rctx->mode = AES_FLAGS_GCM | mode;
1739 
1740 	return atmel_aes_handle_queue(dd, &req->base);
1741 }
1742 
atmel_aes_gcm_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1743 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1744 				unsigned int keylen)
1745 {
1746 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1747 
1748 	if (keylen != AES_KEYSIZE_256 &&
1749 	    keylen != AES_KEYSIZE_192 &&
1750 	    keylen != AES_KEYSIZE_128) {
1751 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1752 		return -EINVAL;
1753 	}
1754 
1755 	memcpy(ctx->key, key, keylen);
1756 	ctx->keylen = keylen;
1757 
1758 	return 0;
1759 }
1760 
atmel_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1761 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1762 				     unsigned int authsize)
1763 {
1764 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1765 	switch (authsize) {
1766 	case 4:
1767 	case 8:
1768 	case 12:
1769 	case 13:
1770 	case 14:
1771 	case 15:
1772 	case 16:
1773 		break;
1774 	default:
1775 		return -EINVAL;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
atmel_aes_gcm_encrypt(struct aead_request * req)1781 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1782 {
1783 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1784 }
1785 
atmel_aes_gcm_decrypt(struct aead_request * req)1786 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1787 {
1788 	return atmel_aes_gcm_crypt(req, 0);
1789 }
1790 
atmel_aes_gcm_init(struct crypto_aead * tfm)1791 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1792 {
1793 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1794 
1795 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1796 	ctx->base.start = atmel_aes_gcm_start;
1797 
1798 	return 0;
1799 }
1800 
atmel_aes_gcm_exit(struct crypto_aead * tfm)1801 static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1802 {
1803 
1804 }
1805 
1806 static struct aead_alg aes_gcm_alg = {
1807 	.setkey		= atmel_aes_gcm_setkey,
1808 	.setauthsize	= atmel_aes_gcm_setauthsize,
1809 	.encrypt	= atmel_aes_gcm_encrypt,
1810 	.decrypt	= atmel_aes_gcm_decrypt,
1811 	.init		= atmel_aes_gcm_init,
1812 	.exit		= atmel_aes_gcm_exit,
1813 	.ivsize		= 12,
1814 	.maxauthsize	= AES_BLOCK_SIZE,
1815 
1816 	.base = {
1817 		.cra_name		= "gcm(aes)",
1818 		.cra_driver_name	= "atmel-gcm-aes",
1819 		.cra_priority		= ATMEL_AES_PRIORITY,
1820 		.cra_flags		= CRYPTO_ALG_ASYNC,
1821 		.cra_blocksize		= 1,
1822 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1823 		.cra_alignmask		= 0xf,
1824 		.cra_module		= THIS_MODULE,
1825 	},
1826 };
1827 
1828 
1829 /* xts functions */
1830 
1831 static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx * ctx)1832 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1833 {
1834 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1835 }
1836 
1837 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1838 
atmel_aes_xts_start(struct atmel_aes_dev * dd)1839 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1840 {
1841 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1842 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1843 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1844 	unsigned long flags;
1845 	int err;
1846 
1847 	atmel_aes_set_mode(dd, rctx);
1848 
1849 	err = atmel_aes_hw_init(dd);
1850 	if (err)
1851 		return atmel_aes_complete(dd, err);
1852 
1853 	/* Compute the tweak value from req->info with ecb(aes). */
1854 	flags = dd->flags;
1855 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1856 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1857 	atmel_aes_write_ctrl_key(dd, false, NULL,
1858 				 ctx->key2, ctx->base.keylen);
1859 	dd->flags = flags;
1860 
1861 	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1862 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1863 }
1864 
atmel_aes_xts_process_data(struct atmel_aes_dev * dd)1865 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1866 {
1867 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1868 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1869 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1870 	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1871 	u8 *tweak_bytes = (u8 *)tweak;
1872 	int i;
1873 
1874 	/* Read the computed ciphered tweak value. */
1875 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1876 	/*
1877 	 * Hardware quirk:
1878 	 * the order of the ciphered tweak bytes need to be reversed before
1879 	 * writing them into the ODATARx registers.
1880 	 */
1881 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1882 		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1883 
1884 		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1885 		tweak_bytes[i] = tmp;
1886 	}
1887 
1888 	/* Process the data. */
1889 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1890 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1891 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1892 	if (use_dma)
1893 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1894 					   atmel_aes_transfer_complete);
1895 
1896 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1897 				   atmel_aes_transfer_complete);
1898 }
1899 
atmel_aes_xts_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)1900 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1901 				unsigned int keylen)
1902 {
1903 	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1904 	int err;
1905 
1906 	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1907 	if (err)
1908 		return err;
1909 
1910 	memcpy(ctx->base.key, key, keylen/2);
1911 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1912 	ctx->base.keylen = keylen/2;
1913 
1914 	return 0;
1915 }
1916 
atmel_aes_xts_encrypt(struct ablkcipher_request * req)1917 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1918 {
1919 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1920 }
1921 
atmel_aes_xts_decrypt(struct ablkcipher_request * req)1922 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1923 {
1924 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1925 }
1926 
atmel_aes_xts_cra_init(struct crypto_tfm * tfm)1927 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1928 {
1929 	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1930 
1931 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1932 	ctx->base.start = atmel_aes_xts_start;
1933 
1934 	return 0;
1935 }
1936 
1937 static struct crypto_alg aes_xts_alg = {
1938 	.cra_name		= "xts(aes)",
1939 	.cra_driver_name	= "atmel-xts-aes",
1940 	.cra_priority		= ATMEL_AES_PRIORITY,
1941 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1942 	.cra_blocksize		= AES_BLOCK_SIZE,
1943 	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1944 	.cra_alignmask		= 0xf,
1945 	.cra_type		= &crypto_ablkcipher_type,
1946 	.cra_module		= THIS_MODULE,
1947 	.cra_init		= atmel_aes_xts_cra_init,
1948 	.cra_exit		= atmel_aes_cra_exit,
1949 	.cra_u.ablkcipher = {
1950 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1951 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1952 		.ivsize		= AES_BLOCK_SIZE,
1953 		.setkey		= atmel_aes_xts_setkey,
1954 		.encrypt	= atmel_aes_xts_encrypt,
1955 		.decrypt	= atmel_aes_xts_decrypt,
1956 	}
1957 };
1958 
1959 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
1960 /* authenc aead functions */
1961 
1962 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1963 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1964 				  bool is_async);
1965 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1966 				      bool is_async);
1967 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1968 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1969 				   bool is_async);
1970 
atmel_aes_authenc_complete(struct atmel_aes_dev * dd,int err)1971 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1972 {
1973 	struct aead_request *req = aead_request_cast(dd->areq);
1974 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1975 
1976 	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1977 		atmel_sha_authenc_abort(&rctx->auth_req);
1978 	dd->flags &= ~AES_FLAGS_OWN_SHA;
1979 }
1980 
atmel_aes_authenc_start(struct atmel_aes_dev * dd)1981 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1982 {
1983 	struct aead_request *req = aead_request_cast(dd->areq);
1984 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1985 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1986 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1987 	int err;
1988 
1989 	atmel_aes_set_mode(dd, &rctx->base);
1990 
1991 	err = atmel_aes_hw_init(dd);
1992 	if (err)
1993 		return atmel_aes_complete(dd, err);
1994 
1995 	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1996 					  atmel_aes_authenc_init, dd);
1997 }
1998 
atmel_aes_authenc_init(struct atmel_aes_dev * dd,int err,bool is_async)1999 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2000 				  bool is_async)
2001 {
2002 	struct aead_request *req = aead_request_cast(dd->areq);
2003 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2004 
2005 	if (is_async)
2006 		dd->is_async = true;
2007 	if (err)
2008 		return atmel_aes_complete(dd, err);
2009 
2010 	/* If here, we've got the ownership of the SHA device. */
2011 	dd->flags |= AES_FLAGS_OWN_SHA;
2012 
2013 	/* Configure the SHA device. */
2014 	return atmel_sha_authenc_init(&rctx->auth_req,
2015 				      req->src, req->assoclen,
2016 				      rctx->textlen,
2017 				      atmel_aes_authenc_transfer, dd);
2018 }
2019 
atmel_aes_authenc_transfer(struct atmel_aes_dev * dd,int err,bool is_async)2020 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2021 				      bool is_async)
2022 {
2023 	struct aead_request *req = aead_request_cast(dd->areq);
2024 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2025 	bool enc = atmel_aes_is_encrypt(dd);
2026 	struct scatterlist *src, *dst;
2027 	u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2028 	u32 emr;
2029 
2030 	if (is_async)
2031 		dd->is_async = true;
2032 	if (err)
2033 		return atmel_aes_complete(dd, err);
2034 
2035 	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2036 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2037 	dst = src;
2038 
2039 	if (req->src != req->dst)
2040 		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2041 
2042 	/* Configure the AES device. */
2043 	memcpy(iv, req->iv, sizeof(iv));
2044 
2045 	/*
2046 	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2047 	 * 'true' even if the data transfer is actually performed by the CPU (so
2048 	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2049 	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2050 	 * must be set to *_MR_SMOD_IDATAR0.
2051 	 */
2052 	atmel_aes_write_ctrl(dd, true, iv);
2053 	emr = AES_EMR_PLIPEN;
2054 	if (!enc)
2055 		emr |= AES_EMR_PLIPD;
2056 	atmel_aes_write(dd, AES_EMR, emr);
2057 
2058 	/* Transfer data. */
2059 	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2060 				   atmel_aes_authenc_digest);
2061 }
2062 
atmel_aes_authenc_digest(struct atmel_aes_dev * dd)2063 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2064 {
2065 	struct aead_request *req = aead_request_cast(dd->areq);
2066 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2067 
2068 	/* atmel_sha_authenc_final() releases the SHA device. */
2069 	dd->flags &= ~AES_FLAGS_OWN_SHA;
2070 	return atmel_sha_authenc_final(&rctx->auth_req,
2071 				       rctx->digest, sizeof(rctx->digest),
2072 				       atmel_aes_authenc_final, dd);
2073 }
2074 
atmel_aes_authenc_final(struct atmel_aes_dev * dd,int err,bool is_async)2075 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2076 				   bool is_async)
2077 {
2078 	struct aead_request *req = aead_request_cast(dd->areq);
2079 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2080 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2081 	bool enc = atmel_aes_is_encrypt(dd);
2082 	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2083 	u32 offs, authsize;
2084 
2085 	if (is_async)
2086 		dd->is_async = true;
2087 	if (err)
2088 		goto complete;
2089 
2090 	offs = req->assoclen + rctx->textlen;
2091 	authsize = crypto_aead_authsize(tfm);
2092 	if (enc) {
2093 		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2094 	} else {
2095 		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2096 		if (crypto_memneq(idigest, odigest, authsize))
2097 			err = -EBADMSG;
2098 	}
2099 
2100 complete:
2101 	return atmel_aes_complete(dd, err);
2102 }
2103 
atmel_aes_authenc_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)2104 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2105 				    unsigned int keylen)
2106 {
2107 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2108 	struct crypto_authenc_keys keys;
2109 	u32 flags;
2110 	int err;
2111 
2112 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2113 		goto badkey;
2114 
2115 	if (keys.enckeylen > sizeof(ctx->base.key))
2116 		goto badkey;
2117 
2118 	/* Save auth key. */
2119 	flags = crypto_aead_get_flags(tfm);
2120 	err = atmel_sha_authenc_setkey(ctx->auth,
2121 				       keys.authkey, keys.authkeylen,
2122 				       &flags);
2123 	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2124 	if (err) {
2125 		memzero_explicit(&keys, sizeof(keys));
2126 		return err;
2127 	}
2128 
2129 	/* Save enc key. */
2130 	ctx->base.keylen = keys.enckeylen;
2131 	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2132 
2133 	memzero_explicit(&keys, sizeof(keys));
2134 	return 0;
2135 
2136 badkey:
2137 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2138 	memzero_explicit(&keys, sizeof(keys));
2139 	return -EINVAL;
2140 }
2141 
atmel_aes_authenc_init_tfm(struct crypto_aead * tfm,unsigned long auth_mode)2142 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2143 				      unsigned long auth_mode)
2144 {
2145 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2146 	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2147 
2148 	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2149 	if (IS_ERR(ctx->auth))
2150 		return PTR_ERR(ctx->auth);
2151 
2152 	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2153 				      auth_reqsize));
2154 	ctx->base.start = atmel_aes_authenc_start;
2155 
2156 	return 0;
2157 }
2158 
atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead * tfm)2159 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2160 {
2161 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2162 }
2163 
atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead * tfm)2164 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2165 {
2166 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2167 }
2168 
atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead * tfm)2169 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2170 {
2171 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2172 }
2173 
atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead * tfm)2174 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2175 {
2176 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2177 }
2178 
atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead * tfm)2179 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2180 {
2181 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2182 }
2183 
atmel_aes_authenc_exit_tfm(struct crypto_aead * tfm)2184 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2185 {
2186 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2187 
2188 	atmel_sha_authenc_free(ctx->auth);
2189 }
2190 
atmel_aes_authenc_crypt(struct aead_request * req,unsigned long mode)2191 static int atmel_aes_authenc_crypt(struct aead_request *req,
2192 				   unsigned long mode)
2193 {
2194 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2195 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2196 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2197 	u32 authsize = crypto_aead_authsize(tfm);
2198 	bool enc = (mode & AES_FLAGS_ENCRYPT);
2199 	struct atmel_aes_dev *dd;
2200 
2201 	/* Compute text length. */
2202 	if (!enc && req->cryptlen < authsize)
2203 		return -EINVAL;
2204 	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2205 
2206 	/*
2207 	 * Currently, empty messages are not supported yet:
2208 	 * the SHA auto-padding can be used only on non-empty messages.
2209 	 * Hence a special case needs to be implemented for empty message.
2210 	 */
2211 	if (!rctx->textlen && !req->assoclen)
2212 		return -EINVAL;
2213 
2214 	rctx->base.mode = mode;
2215 	ctx->block_size = AES_BLOCK_SIZE;
2216 
2217 	dd = atmel_aes_find_dev(ctx);
2218 	if (!dd)
2219 		return -ENODEV;
2220 
2221 	return atmel_aes_handle_queue(dd, &req->base);
2222 }
2223 
atmel_aes_authenc_cbc_aes_encrypt(struct aead_request * req)2224 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2225 {
2226 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2227 }
2228 
atmel_aes_authenc_cbc_aes_decrypt(struct aead_request * req)2229 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2230 {
2231 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2232 }
2233 
2234 static struct aead_alg aes_authenc_algs[] = {
2235 {
2236 	.setkey		= atmel_aes_authenc_setkey,
2237 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2238 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2239 	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2240 	.exit		= atmel_aes_authenc_exit_tfm,
2241 	.ivsize		= AES_BLOCK_SIZE,
2242 	.maxauthsize	= SHA1_DIGEST_SIZE,
2243 
2244 	.base = {
2245 		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2246 		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2247 		.cra_priority		= ATMEL_AES_PRIORITY,
2248 		.cra_flags		= CRYPTO_ALG_ASYNC,
2249 		.cra_blocksize		= AES_BLOCK_SIZE,
2250 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2251 		.cra_alignmask		= 0xf,
2252 		.cra_module		= THIS_MODULE,
2253 	},
2254 },
2255 {
2256 	.setkey		= atmel_aes_authenc_setkey,
2257 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2258 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2259 	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2260 	.exit		= atmel_aes_authenc_exit_tfm,
2261 	.ivsize		= AES_BLOCK_SIZE,
2262 	.maxauthsize	= SHA224_DIGEST_SIZE,
2263 
2264 	.base = {
2265 		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2266 		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2267 		.cra_priority		= ATMEL_AES_PRIORITY,
2268 		.cra_flags		= CRYPTO_ALG_ASYNC,
2269 		.cra_blocksize		= AES_BLOCK_SIZE,
2270 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2271 		.cra_alignmask		= 0xf,
2272 		.cra_module		= THIS_MODULE,
2273 	},
2274 },
2275 {
2276 	.setkey		= atmel_aes_authenc_setkey,
2277 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2278 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2279 	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2280 	.exit		= atmel_aes_authenc_exit_tfm,
2281 	.ivsize		= AES_BLOCK_SIZE,
2282 	.maxauthsize	= SHA256_DIGEST_SIZE,
2283 
2284 	.base = {
2285 		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2286 		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2287 		.cra_priority		= ATMEL_AES_PRIORITY,
2288 		.cra_flags		= CRYPTO_ALG_ASYNC,
2289 		.cra_blocksize		= AES_BLOCK_SIZE,
2290 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2291 		.cra_alignmask		= 0xf,
2292 		.cra_module		= THIS_MODULE,
2293 	},
2294 },
2295 {
2296 	.setkey		= atmel_aes_authenc_setkey,
2297 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2298 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2299 	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2300 	.exit		= atmel_aes_authenc_exit_tfm,
2301 	.ivsize		= AES_BLOCK_SIZE,
2302 	.maxauthsize	= SHA384_DIGEST_SIZE,
2303 
2304 	.base = {
2305 		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2306 		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2307 		.cra_priority		= ATMEL_AES_PRIORITY,
2308 		.cra_flags		= CRYPTO_ALG_ASYNC,
2309 		.cra_blocksize		= AES_BLOCK_SIZE,
2310 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2311 		.cra_alignmask		= 0xf,
2312 		.cra_module		= THIS_MODULE,
2313 	},
2314 },
2315 {
2316 	.setkey		= atmel_aes_authenc_setkey,
2317 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2318 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2319 	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2320 	.exit		= atmel_aes_authenc_exit_tfm,
2321 	.ivsize		= AES_BLOCK_SIZE,
2322 	.maxauthsize	= SHA512_DIGEST_SIZE,
2323 
2324 	.base = {
2325 		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2326 		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2327 		.cra_priority		= ATMEL_AES_PRIORITY,
2328 		.cra_flags		= CRYPTO_ALG_ASYNC,
2329 		.cra_blocksize		= AES_BLOCK_SIZE,
2330 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2331 		.cra_alignmask		= 0xf,
2332 		.cra_module		= THIS_MODULE,
2333 	},
2334 },
2335 };
2336 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2337 
2338 /* Probe functions */
2339 
atmel_aes_buff_init(struct atmel_aes_dev * dd)2340 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2341 {
2342 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2343 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2344 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2345 
2346 	if (!dd->buf) {
2347 		dev_err(dd->dev, "unable to alloc pages.\n");
2348 		return -ENOMEM;
2349 	}
2350 
2351 	return 0;
2352 }
2353 
atmel_aes_buff_cleanup(struct atmel_aes_dev * dd)2354 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2355 {
2356 	free_page((unsigned long)dd->buf);
2357 }
2358 
atmel_aes_filter(struct dma_chan * chan,void * slave)2359 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2360 {
2361 	struct at_dma_slave	*sl = slave;
2362 
2363 	if (sl && sl->dma_dev == chan->device->dev) {
2364 		chan->private = sl;
2365 		return true;
2366 	} else {
2367 		return false;
2368 	}
2369 }
2370 
atmel_aes_dma_init(struct atmel_aes_dev * dd,struct crypto_platform_data * pdata)2371 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2372 			      struct crypto_platform_data *pdata)
2373 {
2374 	struct at_dma_slave *slave;
2375 	int err = -ENOMEM;
2376 	dma_cap_mask_t mask;
2377 
2378 	dma_cap_zero(mask);
2379 	dma_cap_set(DMA_SLAVE, mask);
2380 
2381 	/* Try to grab 2 DMA channels */
2382 	slave = &pdata->dma_slave->rxdata;
2383 	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2384 							slave, dd->dev, "tx");
2385 	if (!dd->src.chan)
2386 		goto err_dma_in;
2387 
2388 	slave = &pdata->dma_slave->txdata;
2389 	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2390 							slave, dd->dev, "rx");
2391 	if (!dd->dst.chan)
2392 		goto err_dma_out;
2393 
2394 	return 0;
2395 
2396 err_dma_out:
2397 	dma_release_channel(dd->src.chan);
2398 err_dma_in:
2399 	dev_warn(dd->dev, "no DMA channel available\n");
2400 	return err;
2401 }
2402 
atmel_aes_dma_cleanup(struct atmel_aes_dev * dd)2403 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2404 {
2405 	dma_release_channel(dd->dst.chan);
2406 	dma_release_channel(dd->src.chan);
2407 }
2408 
atmel_aes_queue_task(unsigned long data)2409 static void atmel_aes_queue_task(unsigned long data)
2410 {
2411 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2412 
2413 	atmel_aes_handle_queue(dd, NULL);
2414 }
2415 
atmel_aes_done_task(unsigned long data)2416 static void atmel_aes_done_task(unsigned long data)
2417 {
2418 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2419 
2420 	dd->is_async = true;
2421 	(void)dd->resume(dd);
2422 }
2423 
atmel_aes_irq(int irq,void * dev_id)2424 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2425 {
2426 	struct atmel_aes_dev *aes_dd = dev_id;
2427 	u32 reg;
2428 
2429 	reg = atmel_aes_read(aes_dd, AES_ISR);
2430 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2431 		atmel_aes_write(aes_dd, AES_IDR, reg);
2432 		if (AES_FLAGS_BUSY & aes_dd->flags)
2433 			tasklet_schedule(&aes_dd->done_task);
2434 		else
2435 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2436 		return IRQ_HANDLED;
2437 	}
2438 
2439 	return IRQ_NONE;
2440 }
2441 
atmel_aes_unregister_algs(struct atmel_aes_dev * dd)2442 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2443 {
2444 	int i;
2445 
2446 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2447 	if (dd->caps.has_authenc)
2448 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2449 			crypto_unregister_aead(&aes_authenc_algs[i]);
2450 #endif
2451 
2452 	if (dd->caps.has_xts)
2453 		crypto_unregister_alg(&aes_xts_alg);
2454 
2455 	if (dd->caps.has_gcm)
2456 		crypto_unregister_aead(&aes_gcm_alg);
2457 
2458 	if (dd->caps.has_cfb64)
2459 		crypto_unregister_alg(&aes_cfb64_alg);
2460 
2461 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2462 		crypto_unregister_alg(&aes_algs[i]);
2463 }
2464 
atmel_aes_register_algs(struct atmel_aes_dev * dd)2465 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2466 {
2467 	int err, i, j;
2468 
2469 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2470 		err = crypto_register_alg(&aes_algs[i]);
2471 		if (err)
2472 			goto err_aes_algs;
2473 	}
2474 
2475 	if (dd->caps.has_cfb64) {
2476 		err = crypto_register_alg(&aes_cfb64_alg);
2477 		if (err)
2478 			goto err_aes_cfb64_alg;
2479 	}
2480 
2481 	if (dd->caps.has_gcm) {
2482 		err = crypto_register_aead(&aes_gcm_alg);
2483 		if (err)
2484 			goto err_aes_gcm_alg;
2485 	}
2486 
2487 	if (dd->caps.has_xts) {
2488 		err = crypto_register_alg(&aes_xts_alg);
2489 		if (err)
2490 			goto err_aes_xts_alg;
2491 	}
2492 
2493 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2494 	if (dd->caps.has_authenc) {
2495 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2496 			err = crypto_register_aead(&aes_authenc_algs[i]);
2497 			if (err)
2498 				goto err_aes_authenc_alg;
2499 		}
2500 	}
2501 #endif
2502 
2503 	return 0;
2504 
2505 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2506 	/* i = ARRAY_SIZE(aes_authenc_algs); */
2507 err_aes_authenc_alg:
2508 	for (j = 0; j < i; j++)
2509 		crypto_unregister_aead(&aes_authenc_algs[j]);
2510 	crypto_unregister_alg(&aes_xts_alg);
2511 #endif
2512 err_aes_xts_alg:
2513 	crypto_unregister_aead(&aes_gcm_alg);
2514 err_aes_gcm_alg:
2515 	crypto_unregister_alg(&aes_cfb64_alg);
2516 err_aes_cfb64_alg:
2517 	i = ARRAY_SIZE(aes_algs);
2518 err_aes_algs:
2519 	for (j = 0; j < i; j++)
2520 		crypto_unregister_alg(&aes_algs[j]);
2521 
2522 	return err;
2523 }
2524 
atmel_aes_get_cap(struct atmel_aes_dev * dd)2525 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2526 {
2527 	dd->caps.has_dualbuff = 0;
2528 	dd->caps.has_cfb64 = 0;
2529 	dd->caps.has_gcm = 0;
2530 	dd->caps.has_xts = 0;
2531 	dd->caps.has_authenc = 0;
2532 	dd->caps.max_burst_size = 1;
2533 
2534 	/* keep only major version number */
2535 	switch (dd->hw_version & 0xff0) {
2536 	case 0x500:
2537 		dd->caps.has_dualbuff = 1;
2538 		dd->caps.has_cfb64 = 1;
2539 		dd->caps.has_gcm = 1;
2540 		dd->caps.has_xts = 1;
2541 		dd->caps.has_authenc = 1;
2542 		dd->caps.max_burst_size = 4;
2543 		break;
2544 	case 0x200:
2545 		dd->caps.has_dualbuff = 1;
2546 		dd->caps.has_cfb64 = 1;
2547 		dd->caps.has_gcm = 1;
2548 		dd->caps.max_burst_size = 4;
2549 		break;
2550 	case 0x130:
2551 		dd->caps.has_dualbuff = 1;
2552 		dd->caps.has_cfb64 = 1;
2553 		dd->caps.max_burst_size = 4;
2554 		break;
2555 	case 0x120:
2556 		break;
2557 	default:
2558 		dev_warn(dd->dev,
2559 				"Unmanaged aes version, set minimum capabilities\n");
2560 		break;
2561 	}
2562 }
2563 
2564 #if defined(CONFIG_OF)
2565 static const struct of_device_id atmel_aes_dt_ids[] = {
2566 	{ .compatible = "atmel,at91sam9g46-aes" },
2567 	{ /* sentinel */ }
2568 };
2569 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2570 
atmel_aes_of_init(struct platform_device * pdev)2571 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2572 {
2573 	struct device_node *np = pdev->dev.of_node;
2574 	struct crypto_platform_data *pdata;
2575 
2576 	if (!np) {
2577 		dev_err(&pdev->dev, "device node not found\n");
2578 		return ERR_PTR(-EINVAL);
2579 	}
2580 
2581 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2582 	if (!pdata) {
2583 		dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2584 		return ERR_PTR(-ENOMEM);
2585 	}
2586 
2587 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2588 					sizeof(*(pdata->dma_slave)),
2589 					GFP_KERNEL);
2590 	if (!pdata->dma_slave) {
2591 		dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2592 		devm_kfree(&pdev->dev, pdata);
2593 		return ERR_PTR(-ENOMEM);
2594 	}
2595 
2596 	return pdata;
2597 }
2598 #else
atmel_aes_of_init(struct platform_device * pdev)2599 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2600 {
2601 	return ERR_PTR(-EINVAL);
2602 }
2603 #endif
2604 
atmel_aes_probe(struct platform_device * pdev)2605 static int atmel_aes_probe(struct platform_device *pdev)
2606 {
2607 	struct atmel_aes_dev *aes_dd;
2608 	struct crypto_platform_data *pdata;
2609 	struct device *dev = &pdev->dev;
2610 	struct resource *aes_res;
2611 	int err;
2612 
2613 	pdata = pdev->dev.platform_data;
2614 	if (!pdata) {
2615 		pdata = atmel_aes_of_init(pdev);
2616 		if (IS_ERR(pdata)) {
2617 			err = PTR_ERR(pdata);
2618 			goto aes_dd_err;
2619 		}
2620 	}
2621 
2622 	if (!pdata->dma_slave) {
2623 		err = -ENXIO;
2624 		goto aes_dd_err;
2625 	}
2626 
2627 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2628 	if (aes_dd == NULL) {
2629 		dev_err(dev, "unable to alloc data struct.\n");
2630 		err = -ENOMEM;
2631 		goto aes_dd_err;
2632 	}
2633 
2634 	aes_dd->dev = dev;
2635 
2636 	platform_set_drvdata(pdev, aes_dd);
2637 
2638 	INIT_LIST_HEAD(&aes_dd->list);
2639 	spin_lock_init(&aes_dd->lock);
2640 
2641 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2642 					(unsigned long)aes_dd);
2643 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2644 					(unsigned long)aes_dd);
2645 
2646 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2647 
2648 	aes_dd->irq = -1;
2649 
2650 	/* Get the base address */
2651 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2652 	if (!aes_res) {
2653 		dev_err(dev, "no MEM resource info\n");
2654 		err = -ENODEV;
2655 		goto res_err;
2656 	}
2657 	aes_dd->phys_base = aes_res->start;
2658 
2659 	/* Get the IRQ */
2660 	aes_dd->irq = platform_get_irq(pdev,  0);
2661 	if (aes_dd->irq < 0) {
2662 		dev_err(dev, "no IRQ resource info\n");
2663 		err = aes_dd->irq;
2664 		goto res_err;
2665 	}
2666 
2667 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2668 			       IRQF_SHARED, "atmel-aes", aes_dd);
2669 	if (err) {
2670 		dev_err(dev, "unable to request aes irq.\n");
2671 		goto res_err;
2672 	}
2673 
2674 	/* Initializing the clock */
2675 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2676 	if (IS_ERR(aes_dd->iclk)) {
2677 		dev_err(dev, "clock initialization failed.\n");
2678 		err = PTR_ERR(aes_dd->iclk);
2679 		goto res_err;
2680 	}
2681 
2682 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2683 	if (IS_ERR(aes_dd->io_base)) {
2684 		dev_err(dev, "can't ioremap\n");
2685 		err = PTR_ERR(aes_dd->io_base);
2686 		goto res_err;
2687 	}
2688 
2689 	err = clk_prepare(aes_dd->iclk);
2690 	if (err)
2691 		goto res_err;
2692 
2693 	err = atmel_aes_hw_version_init(aes_dd);
2694 	if (err)
2695 		goto iclk_unprepare;
2696 
2697 	atmel_aes_get_cap(aes_dd);
2698 
2699 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2700 	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2701 		err = -EPROBE_DEFER;
2702 		goto iclk_unprepare;
2703 	}
2704 #endif
2705 
2706 	err = atmel_aes_buff_init(aes_dd);
2707 	if (err)
2708 		goto err_aes_buff;
2709 
2710 	err = atmel_aes_dma_init(aes_dd, pdata);
2711 	if (err)
2712 		goto err_aes_dma;
2713 
2714 	spin_lock(&atmel_aes.lock);
2715 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2716 	spin_unlock(&atmel_aes.lock);
2717 
2718 	err = atmel_aes_register_algs(aes_dd);
2719 	if (err)
2720 		goto err_algs;
2721 
2722 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2723 			dma_chan_name(aes_dd->src.chan),
2724 			dma_chan_name(aes_dd->dst.chan));
2725 
2726 	return 0;
2727 
2728 err_algs:
2729 	spin_lock(&atmel_aes.lock);
2730 	list_del(&aes_dd->list);
2731 	spin_unlock(&atmel_aes.lock);
2732 	atmel_aes_dma_cleanup(aes_dd);
2733 err_aes_dma:
2734 	atmel_aes_buff_cleanup(aes_dd);
2735 err_aes_buff:
2736 iclk_unprepare:
2737 	clk_unprepare(aes_dd->iclk);
2738 res_err:
2739 	tasklet_kill(&aes_dd->done_task);
2740 	tasklet_kill(&aes_dd->queue_task);
2741 aes_dd_err:
2742 	if (err != -EPROBE_DEFER)
2743 		dev_err(dev, "initialization failed.\n");
2744 
2745 	return err;
2746 }
2747 
atmel_aes_remove(struct platform_device * pdev)2748 static int atmel_aes_remove(struct platform_device *pdev)
2749 {
2750 	struct atmel_aes_dev *aes_dd;
2751 
2752 	aes_dd = platform_get_drvdata(pdev);
2753 	if (!aes_dd)
2754 		return -ENODEV;
2755 	spin_lock(&atmel_aes.lock);
2756 	list_del(&aes_dd->list);
2757 	spin_unlock(&atmel_aes.lock);
2758 
2759 	atmel_aes_unregister_algs(aes_dd);
2760 
2761 	tasklet_kill(&aes_dd->done_task);
2762 	tasklet_kill(&aes_dd->queue_task);
2763 
2764 	atmel_aes_dma_cleanup(aes_dd);
2765 	atmel_aes_buff_cleanup(aes_dd);
2766 
2767 	clk_unprepare(aes_dd->iclk);
2768 
2769 	return 0;
2770 }
2771 
2772 static struct platform_driver atmel_aes_driver = {
2773 	.probe		= atmel_aes_probe,
2774 	.remove		= atmel_aes_remove,
2775 	.driver		= {
2776 		.name	= "atmel_aes",
2777 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2778 	},
2779 };
2780 
2781 module_platform_driver(atmel_aes_driver);
2782 
2783 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2784 MODULE_LICENSE("GPL v2");
2785 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2786