• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22 
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/hmac.h>
27 #include <crypto/sha.h>
28 #include <crypto/algapi.h>
29 #include <crypto/internal/aead.h>
30 #include <crypto/authenc.h>
31 #include <crypto/scatterwalk.h>
32 
33 #include <mach/npe.h>
34 #include <mach/qmgr.h>
35 
36 #define MAX_KEYLEN 32
37 
38 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
39 #define NPE_CTX_LEN 80
40 #define AES_BLOCK128 16
41 
42 #define NPE_OP_HASH_VERIFY   0x01
43 #define NPE_OP_CCM_ENABLE    0x04
44 #define NPE_OP_CRYPT_ENABLE  0x08
45 #define NPE_OP_HASH_ENABLE   0x10
46 #define NPE_OP_NOT_IN_PLACE  0x20
47 #define NPE_OP_HMAC_DISABLE  0x40
48 #define NPE_OP_CRYPT_ENCRYPT 0x80
49 
50 #define NPE_OP_CCM_GEN_MIC   0xcc
51 #define NPE_OP_HASH_GEN_ICV  0x50
52 #define NPE_OP_ENC_GEN_KEY   0xc9
53 
54 #define MOD_ECB     0x0000
55 #define MOD_CTR     0x1000
56 #define MOD_CBC_ENC 0x2000
57 #define MOD_CBC_DEC 0x3000
58 #define MOD_CCM_ENC 0x4000
59 #define MOD_CCM_DEC 0x5000
60 
61 #define KEYLEN_128  4
62 #define KEYLEN_192  6
63 #define KEYLEN_256  8
64 
65 #define CIPH_DECR   0x0000
66 #define CIPH_ENCR   0x0400
67 
68 #define MOD_DES     0x0000
69 #define MOD_TDEA2   0x0100
70 #define MOD_3DES   0x0200
71 #define MOD_AES     0x0800
72 #define MOD_AES128  (0x0800 | KEYLEN_128)
73 #define MOD_AES192  (0x0900 | KEYLEN_192)
74 #define MOD_AES256  (0x0a00 | KEYLEN_256)
75 
76 #define MAX_IVLEN   16
77 #define NPE_ID      2  /* NPE C */
78 #define NPE_QLEN    16
79 /* Space for registering when the first
80  * NPE_QLEN crypt_ctl are busy */
81 #define NPE_QLEN_TOTAL 64
82 
83 #define SEND_QID    29
84 #define RECV_QID    30
85 
86 #define CTL_FLAG_UNUSED		0x0000
87 #define CTL_FLAG_USED		0x1000
88 #define CTL_FLAG_PERFORM_ABLK	0x0001
89 #define CTL_FLAG_GEN_ICV	0x0002
90 #define CTL_FLAG_GEN_REVAES	0x0004
91 #define CTL_FLAG_PERFORM_AEAD	0x0008
92 #define CTL_FLAG_MASK		0x000f
93 
94 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95 
96 #define MD5_DIGEST_SIZE   16
97 
98 struct buffer_desc {
99 	u32 phys_next;
100 #ifdef __ARMEB__
101 	u16 buf_len;
102 	u16 pkt_len;
103 #else
104 	u16 pkt_len;
105 	u16 buf_len;
106 #endif
107 	u32 phys_addr;
108 	u32 __reserved[4];
109 	struct buffer_desc *next;
110 	enum dma_data_direction dir;
111 };
112 
113 struct crypt_ctl {
114 #ifdef __ARMEB__
115 	u8 mode;		/* NPE_OP_*  operation mode */
116 	u8 init_len;
117 	u16 reserved;
118 #else
119 	u16 reserved;
120 	u8 init_len;
121 	u8 mode;		/* NPE_OP_*  operation mode */
122 #endif
123 	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
124 	u32 icv_rev_aes;	/* icv or rev aes */
125 	u32 src_buf;
126 	u32 dst_buf;
127 #ifdef __ARMEB__
128 	u16 auth_offs;		/* Authentication start offset */
129 	u16 auth_len;		/* Authentication data length */
130 	u16 crypt_offs;		/* Cryption start offset */
131 	u16 crypt_len;		/* Cryption data length */
132 #else
133 	u16 auth_len;		/* Authentication data length */
134 	u16 auth_offs;		/* Authentication start offset */
135 	u16 crypt_len;		/* Cryption data length */
136 	u16 crypt_offs;		/* Cryption start offset */
137 #endif
138 	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
139 	u32 crypto_ctx;		/* NPE Crypto Param structure address */
140 
141 	/* Used by Host: 4*4 bytes*/
142 	unsigned ctl_flags;
143 	union {
144 		struct ablkcipher_request *ablk_req;
145 		struct aead_request *aead_req;
146 		struct crypto_tfm *tfm;
147 	} data;
148 	struct buffer_desc *regist_buf;
149 	u8 *regist_ptr;
150 };
151 
152 struct ablk_ctx {
153 	struct buffer_desc *src;
154 	struct buffer_desc *dst;
155 };
156 
157 struct aead_ctx {
158 	struct buffer_desc *src;
159 	struct buffer_desc *dst;
160 	struct scatterlist ivlist;
161 	/* used when the hmac is not on one sg entry */
162 	u8 *hmac_virt;
163 	int encrypt;
164 };
165 
166 struct ix_hash_algo {
167 	u32 cfgword;
168 	unsigned char *icv;
169 };
170 
171 struct ix_sa_dir {
172 	unsigned char *npe_ctx;
173 	dma_addr_t npe_ctx_phys;
174 	int npe_ctx_idx;
175 	u8 npe_mode;
176 };
177 
178 struct ixp_ctx {
179 	struct ix_sa_dir encrypt;
180 	struct ix_sa_dir decrypt;
181 	int authkey_len;
182 	u8 authkey[MAX_KEYLEN];
183 	int enckey_len;
184 	u8 enckey[MAX_KEYLEN];
185 	u8 salt[MAX_IVLEN];
186 	u8 nonce[CTR_RFC3686_NONCE_SIZE];
187 	unsigned salted;
188 	atomic_t configuring;
189 	struct completion completion;
190 };
191 
192 struct ixp_alg {
193 	struct crypto_alg crypto;
194 	const struct ix_hash_algo *hash;
195 	u32 cfg_enc;
196 	u32 cfg_dec;
197 
198 	int registered;
199 };
200 
201 struct ixp_aead_alg {
202 	struct aead_alg crypto;
203 	const struct ix_hash_algo *hash;
204 	u32 cfg_enc;
205 	u32 cfg_dec;
206 
207 	int registered;
208 };
209 
210 static const struct ix_hash_algo hash_alg_md5 = {
211 	.cfgword	= 0xAA010004,
212 	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
213 			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
214 };
215 static const struct ix_hash_algo hash_alg_sha1 = {
216 	.cfgword	= 0x00000005,
217 	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
218 			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
219 };
220 
221 static struct npe *npe_c;
222 static struct dma_pool *buffer_pool = NULL;
223 static struct dma_pool *ctx_pool = NULL;
224 
225 static struct crypt_ctl *crypt_virt = NULL;
226 static dma_addr_t crypt_phys;
227 
228 static int support_aes = 1;
229 
230 #define DRIVER_NAME "ixp4xx_crypto"
231 
232 static struct platform_device *pdev;
233 
crypt_virt2phys(struct crypt_ctl * virt)234 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
235 {
236 	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
237 }
238 
crypt_phys2virt(dma_addr_t phys)239 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
240 {
241 	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
242 }
243 
cipher_cfg_enc(struct crypto_tfm * tfm)244 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
245 {
246 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
247 }
248 
cipher_cfg_dec(struct crypto_tfm * tfm)249 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
250 {
251 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
252 }
253 
ix_hash(struct crypto_tfm * tfm)254 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
255 {
256 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
257 }
258 
setup_crypt_desc(void)259 static int setup_crypt_desc(void)
260 {
261 	struct device *dev = &pdev->dev;
262 	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
263 	crypt_virt = dma_alloc_coherent(dev,
264 			NPE_QLEN * sizeof(struct crypt_ctl),
265 			&crypt_phys, GFP_ATOMIC);
266 	if (!crypt_virt)
267 		return -ENOMEM;
268 	memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
269 	return 0;
270 }
271 
272 static spinlock_t desc_lock;
get_crypt_desc(void)273 static struct crypt_ctl *get_crypt_desc(void)
274 {
275 	int i;
276 	static int idx = 0;
277 	unsigned long flags;
278 
279 	spin_lock_irqsave(&desc_lock, flags);
280 
281 	if (unlikely(!crypt_virt))
282 		setup_crypt_desc();
283 	if (unlikely(!crypt_virt)) {
284 		spin_unlock_irqrestore(&desc_lock, flags);
285 		return NULL;
286 	}
287 	i = idx;
288 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
289 		if (++idx >= NPE_QLEN)
290 			idx = 0;
291 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
292 		spin_unlock_irqrestore(&desc_lock, flags);
293 		return crypt_virt +i;
294 	} else {
295 		spin_unlock_irqrestore(&desc_lock, flags);
296 		return NULL;
297 	}
298 }
299 
300 static spinlock_t emerg_lock;
get_crypt_desc_emerg(void)301 static struct crypt_ctl *get_crypt_desc_emerg(void)
302 {
303 	int i;
304 	static int idx = NPE_QLEN;
305 	struct crypt_ctl *desc;
306 	unsigned long flags;
307 
308 	desc = get_crypt_desc();
309 	if (desc)
310 		return desc;
311 	if (unlikely(!crypt_virt))
312 		return NULL;
313 
314 	spin_lock_irqsave(&emerg_lock, flags);
315 	i = idx;
316 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
317 		if (++idx >= NPE_QLEN_TOTAL)
318 			idx = NPE_QLEN;
319 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
320 		spin_unlock_irqrestore(&emerg_lock, flags);
321 		return crypt_virt +i;
322 	} else {
323 		spin_unlock_irqrestore(&emerg_lock, flags);
324 		return NULL;
325 	}
326 }
327 
free_buf_chain(struct device * dev,struct buffer_desc * buf,u32 phys)328 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
329 {
330 	while (buf) {
331 		struct buffer_desc *buf1;
332 		u32 phys1;
333 
334 		buf1 = buf->next;
335 		phys1 = buf->phys_next;
336 		dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
337 		dma_pool_free(buffer_pool, buf, phys);
338 		buf = buf1;
339 		phys = phys1;
340 	}
341 }
342 
343 static struct tasklet_struct crypto_done_tasklet;
344 
finish_scattered_hmac(struct crypt_ctl * crypt)345 static void finish_scattered_hmac(struct crypt_ctl *crypt)
346 {
347 	struct aead_request *req = crypt->data.aead_req;
348 	struct aead_ctx *req_ctx = aead_request_ctx(req);
349 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
350 	int authsize = crypto_aead_authsize(tfm);
351 	int decryptlen = req->assoclen + req->cryptlen - authsize;
352 
353 	if (req_ctx->encrypt) {
354 		scatterwalk_map_and_copy(req_ctx->hmac_virt,
355 			req->dst, decryptlen, authsize, 1);
356 	}
357 	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
358 }
359 
one_packet(dma_addr_t phys)360 static void one_packet(dma_addr_t phys)
361 {
362 	struct device *dev = &pdev->dev;
363 	struct crypt_ctl *crypt;
364 	struct ixp_ctx *ctx;
365 	int failed;
366 
367 	failed = phys & 0x1 ? -EBADMSG : 0;
368 	phys &= ~0x3;
369 	crypt = crypt_phys2virt(phys);
370 
371 	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
372 	case CTL_FLAG_PERFORM_AEAD: {
373 		struct aead_request *req = crypt->data.aead_req;
374 		struct aead_ctx *req_ctx = aead_request_ctx(req);
375 
376 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
377 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
378 		if (req_ctx->hmac_virt) {
379 			finish_scattered_hmac(crypt);
380 		}
381 		req->base.complete(&req->base, failed);
382 		break;
383 	}
384 	case CTL_FLAG_PERFORM_ABLK: {
385 		struct ablkcipher_request *req = crypt->data.ablk_req;
386 		struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
387 
388 		if (req_ctx->dst) {
389 			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
390 		}
391 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
392 		req->base.complete(&req->base, failed);
393 		break;
394 	}
395 	case CTL_FLAG_GEN_ICV:
396 		ctx = crypto_tfm_ctx(crypt->data.tfm);
397 		dma_pool_free(ctx_pool, crypt->regist_ptr,
398 				crypt->regist_buf->phys_addr);
399 		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
400 		if (atomic_dec_and_test(&ctx->configuring))
401 			complete(&ctx->completion);
402 		break;
403 	case CTL_FLAG_GEN_REVAES:
404 		ctx = crypto_tfm_ctx(crypt->data.tfm);
405 		*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
406 		if (atomic_dec_and_test(&ctx->configuring))
407 			complete(&ctx->completion);
408 		break;
409 	default:
410 		BUG();
411 	}
412 	crypt->ctl_flags = CTL_FLAG_UNUSED;
413 }
414 
irqhandler(void * _unused)415 static void irqhandler(void *_unused)
416 {
417 	tasklet_schedule(&crypto_done_tasklet);
418 }
419 
crypto_done_action(unsigned long arg)420 static void crypto_done_action(unsigned long arg)
421 {
422 	int i;
423 
424 	for(i=0; i<4; i++) {
425 		dma_addr_t phys = qmgr_get_entry(RECV_QID);
426 		if (!phys)
427 			return;
428 		one_packet(phys);
429 	}
430 	tasklet_schedule(&crypto_done_tasklet);
431 }
432 
init_ixp_crypto(struct device * dev)433 static int init_ixp_crypto(struct device *dev)
434 {
435 	int ret = -ENODEV;
436 	u32 msg[2] = { 0, 0 };
437 
438 	if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
439 				IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
440 		printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
441 		return ret;
442 	}
443 	npe_c = npe_request(NPE_ID);
444 	if (!npe_c)
445 		return ret;
446 
447 	if (!npe_running(npe_c)) {
448 		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
449 		if (ret)
450 			goto npe_release;
451 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
452 			goto npe_error;
453 	} else {
454 		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
455 			goto npe_error;
456 
457 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
458 			goto npe_error;
459 	}
460 
461 	switch ((msg[1]>>16) & 0xff) {
462 	case 3:
463 		printk(KERN_WARNING "Firmware of %s lacks AES support\n",
464 				npe_name(npe_c));
465 		support_aes = 0;
466 		break;
467 	case 4:
468 	case 5:
469 		support_aes = 1;
470 		break;
471 	default:
472 		printk(KERN_ERR "Firmware of %s lacks crypto support\n",
473 			npe_name(npe_c));
474 		ret = -ENODEV;
475 		goto npe_release;
476 	}
477 	/* buffer_pool will also be used to sometimes store the hmac,
478 	 * so assure it is large enough
479 	 */
480 	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
481 	buffer_pool = dma_pool_create("buffer", dev,
482 			sizeof(struct buffer_desc), 32, 0);
483 	ret = -ENOMEM;
484 	if (!buffer_pool) {
485 		goto err;
486 	}
487 	ctx_pool = dma_pool_create("context", dev,
488 			NPE_CTX_LEN, 16, 0);
489 	if (!ctx_pool) {
490 		goto err;
491 	}
492 	ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
493 				 "ixp_crypto:out", NULL);
494 	if (ret)
495 		goto err;
496 	ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
497 				 "ixp_crypto:in", NULL);
498 	if (ret) {
499 		qmgr_release_queue(SEND_QID);
500 		goto err;
501 	}
502 	qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
503 	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
504 
505 	qmgr_enable_irq(RECV_QID);
506 	return 0;
507 
508 npe_error:
509 	printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
510 	ret = -EIO;
511 err:
512 	dma_pool_destroy(ctx_pool);
513 	dma_pool_destroy(buffer_pool);
514 npe_release:
515 	npe_release(npe_c);
516 	return ret;
517 }
518 
release_ixp_crypto(struct device * dev)519 static void release_ixp_crypto(struct device *dev)
520 {
521 	qmgr_disable_irq(RECV_QID);
522 	tasklet_kill(&crypto_done_tasklet);
523 
524 	qmgr_release_queue(SEND_QID);
525 	qmgr_release_queue(RECV_QID);
526 
527 	dma_pool_destroy(ctx_pool);
528 	dma_pool_destroy(buffer_pool);
529 
530 	npe_release(npe_c);
531 
532 	if (crypt_virt) {
533 		dma_free_coherent(dev,
534 			NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
535 			crypt_virt, crypt_phys);
536 	}
537 	return;
538 }
539 
reset_sa_dir(struct ix_sa_dir * dir)540 static void reset_sa_dir(struct ix_sa_dir *dir)
541 {
542 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
543 	dir->npe_ctx_idx = 0;
544 	dir->npe_mode = 0;
545 }
546 
init_sa_dir(struct ix_sa_dir * dir)547 static int init_sa_dir(struct ix_sa_dir *dir)
548 {
549 	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
550 	if (!dir->npe_ctx) {
551 		return -ENOMEM;
552 	}
553 	reset_sa_dir(dir);
554 	return 0;
555 }
556 
free_sa_dir(struct ix_sa_dir * dir)557 static void free_sa_dir(struct ix_sa_dir *dir)
558 {
559 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
560 	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
561 }
562 
init_tfm(struct crypto_tfm * tfm)563 static int init_tfm(struct crypto_tfm *tfm)
564 {
565 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
566 	int ret;
567 
568 	atomic_set(&ctx->configuring, 0);
569 	ret = init_sa_dir(&ctx->encrypt);
570 	if (ret)
571 		return ret;
572 	ret = init_sa_dir(&ctx->decrypt);
573 	if (ret) {
574 		free_sa_dir(&ctx->encrypt);
575 	}
576 	return ret;
577 }
578 
init_tfm_ablk(struct crypto_tfm * tfm)579 static int init_tfm_ablk(struct crypto_tfm *tfm)
580 {
581 	tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
582 	return init_tfm(tfm);
583 }
584 
init_tfm_aead(struct crypto_aead * tfm)585 static int init_tfm_aead(struct crypto_aead *tfm)
586 {
587 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
588 	return init_tfm(crypto_aead_tfm(tfm));
589 }
590 
exit_tfm(struct crypto_tfm * tfm)591 static void exit_tfm(struct crypto_tfm *tfm)
592 {
593 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
594 	free_sa_dir(&ctx->encrypt);
595 	free_sa_dir(&ctx->decrypt);
596 }
597 
exit_tfm_aead(struct crypto_aead * tfm)598 static void exit_tfm_aead(struct crypto_aead *tfm)
599 {
600 	exit_tfm(crypto_aead_tfm(tfm));
601 }
602 
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)603 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
604 		int init_len, u32 ctx_addr, const u8 *key, int key_len)
605 {
606 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
607 	struct crypt_ctl *crypt;
608 	struct buffer_desc *buf;
609 	int i;
610 	u8 *pad;
611 	u32 pad_phys, buf_phys;
612 
613 	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
614 	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
615 	if (!pad)
616 		return -ENOMEM;
617 	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
618 	if (!buf) {
619 		dma_pool_free(ctx_pool, pad, pad_phys);
620 		return -ENOMEM;
621 	}
622 	crypt = get_crypt_desc_emerg();
623 	if (!crypt) {
624 		dma_pool_free(ctx_pool, pad, pad_phys);
625 		dma_pool_free(buffer_pool, buf, buf_phys);
626 		return -EAGAIN;
627 	}
628 
629 	memcpy(pad, key, key_len);
630 	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
631 	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
632 		pad[i] ^= xpad;
633 	}
634 
635 	crypt->data.tfm = tfm;
636 	crypt->regist_ptr = pad;
637 	crypt->regist_buf = buf;
638 
639 	crypt->auth_offs = 0;
640 	crypt->auth_len = HMAC_PAD_BLOCKLEN;
641 	crypt->crypto_ctx = ctx_addr;
642 	crypt->src_buf = buf_phys;
643 	crypt->icv_rev_aes = target;
644 	crypt->mode = NPE_OP_HASH_GEN_ICV;
645 	crypt->init_len = init_len;
646 	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
647 
648 	buf->next = 0;
649 	buf->buf_len = HMAC_PAD_BLOCKLEN;
650 	buf->pkt_len = 0;
651 	buf->phys_addr = pad_phys;
652 
653 	atomic_inc(&ctx->configuring);
654 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
655 	BUG_ON(qmgr_stat_overflow(SEND_QID));
656 	return 0;
657 }
658 
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned authsize,const u8 * key,int key_len,unsigned digest_len)659 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
660 		const u8 *key, int key_len, unsigned digest_len)
661 {
662 	u32 itarget, otarget, npe_ctx_addr;
663 	unsigned char *cinfo;
664 	int init_len, ret = 0;
665 	u32 cfgword;
666 	struct ix_sa_dir *dir;
667 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
668 	const struct ix_hash_algo *algo;
669 
670 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
671 	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
672 	algo = ix_hash(tfm);
673 
674 	/* write cfg word to cryptinfo */
675 	cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
676 #ifndef __ARMEB__
677 	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
678 #endif
679 	*(u32*)cinfo = cpu_to_be32(cfgword);
680 	cinfo += sizeof(cfgword);
681 
682 	/* write ICV to cryptinfo */
683 	memcpy(cinfo, algo->icv, digest_len);
684 	cinfo += digest_len;
685 
686 	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
687 				+ sizeof(algo->cfgword);
688 	otarget = itarget + digest_len;
689 	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
690 	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
691 
692 	dir->npe_ctx_idx += init_len;
693 	dir->npe_mode |= NPE_OP_HASH_ENABLE;
694 
695 	if (!encrypt)
696 		dir->npe_mode |= NPE_OP_HASH_VERIFY;
697 
698 	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
699 			init_len, npe_ctx_addr, key, key_len);
700 	if (ret)
701 		return ret;
702 	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
703 			init_len, npe_ctx_addr, key, key_len);
704 }
705 
gen_rev_aes_key(struct crypto_tfm * tfm)706 static int gen_rev_aes_key(struct crypto_tfm *tfm)
707 {
708 	struct crypt_ctl *crypt;
709 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
710 	struct ix_sa_dir *dir = &ctx->decrypt;
711 
712 	crypt = get_crypt_desc_emerg();
713 	if (!crypt) {
714 		return -EAGAIN;
715 	}
716 	*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
717 
718 	crypt->data.tfm = tfm;
719 	crypt->crypt_offs = 0;
720 	crypt->crypt_len = AES_BLOCK128;
721 	crypt->src_buf = 0;
722 	crypt->crypto_ctx = dir->npe_ctx_phys;
723 	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
724 	crypt->mode = NPE_OP_ENC_GEN_KEY;
725 	crypt->init_len = dir->npe_ctx_idx;
726 	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
727 
728 	atomic_inc(&ctx->configuring);
729 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
730 	BUG_ON(qmgr_stat_overflow(SEND_QID));
731 	return 0;
732 }
733 
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)734 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
735 		const u8 *key, int key_len)
736 {
737 	u8 *cinfo;
738 	u32 cipher_cfg;
739 	u32 keylen_cfg = 0;
740 	struct ix_sa_dir *dir;
741 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
742 	u32 *flags = &tfm->crt_flags;
743 
744 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
745 	cinfo = dir->npe_ctx;
746 
747 	if (encrypt) {
748 		cipher_cfg = cipher_cfg_enc(tfm);
749 		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
750 	} else {
751 		cipher_cfg = cipher_cfg_dec(tfm);
752 	}
753 	if (cipher_cfg & MOD_AES) {
754 		switch (key_len) {
755 		case 16: keylen_cfg = MOD_AES128; break;
756 		case 24: keylen_cfg = MOD_AES192; break;
757 		case 32: keylen_cfg = MOD_AES256; break;
758 		default:
759 			*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
760 			return -EINVAL;
761 		}
762 		cipher_cfg |= keylen_cfg;
763 	} else if (cipher_cfg & MOD_3DES) {
764 		const u32 *K = (const u32 *)key;
765 		if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
766 			     !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
767 		{
768 			*flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
769 			return -EINVAL;
770 		}
771 	} else {
772 		u32 tmp[DES_EXPKEY_WORDS];
773 		if (des_ekey(tmp, key) == 0) {
774 			*flags |= CRYPTO_TFM_RES_WEAK_KEY;
775 		}
776 	}
777 	/* write cfg word to cryptinfo */
778 	*(u32*)cinfo = cpu_to_be32(cipher_cfg);
779 	cinfo += sizeof(cipher_cfg);
780 
781 	/* write cipher key to cryptinfo */
782 	memcpy(cinfo, key, key_len);
783 	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
784 	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
785 		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
786 		key_len = DES3_EDE_KEY_SIZE;
787 	}
788 	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
789 	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
790 	if ((cipher_cfg & MOD_AES) && !encrypt) {
791 		return gen_rev_aes_key(tfm);
792 	}
793 	return 0;
794 }
795 
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)796 static struct buffer_desc *chainup_buffers(struct device *dev,
797 		struct scatterlist *sg,	unsigned nbytes,
798 		struct buffer_desc *buf, gfp_t flags,
799 		enum dma_data_direction dir)
800 {
801 	for (; nbytes > 0; sg = sg_next(sg)) {
802 		unsigned len = min(nbytes, sg->length);
803 		struct buffer_desc *next_buf;
804 		u32 next_buf_phys;
805 		void *ptr;
806 
807 		nbytes -= len;
808 		ptr = sg_virt(sg);
809 		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
810 		if (!next_buf) {
811 			buf = NULL;
812 			break;
813 		}
814 		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
815 		buf->next = next_buf;
816 		buf->phys_next = next_buf_phys;
817 		buf = next_buf;
818 
819 		buf->phys_addr = sg_dma_address(sg);
820 		buf->buf_len = len;
821 		buf->dir = dir;
822 	}
823 	buf->next = NULL;
824 	buf->phys_next = 0;
825 	return buf;
826 }
827 
ablk_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)828 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
829 			unsigned int key_len)
830 {
831 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
832 	u32 *flags = &tfm->base.crt_flags;
833 	int ret;
834 
835 	init_completion(&ctx->completion);
836 	atomic_inc(&ctx->configuring);
837 
838 	reset_sa_dir(&ctx->encrypt);
839 	reset_sa_dir(&ctx->decrypt);
840 
841 	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
842 	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
843 
844 	ret = setup_cipher(&tfm->base, 0, key, key_len);
845 	if (ret)
846 		goto out;
847 	ret = setup_cipher(&tfm->base, 1, key, key_len);
848 	if (ret)
849 		goto out;
850 
851 	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
852 		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
853 			ret = -EINVAL;
854 		} else {
855 			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
856 		}
857 	}
858 out:
859 	if (!atomic_dec_and_test(&ctx->configuring))
860 		wait_for_completion(&ctx->completion);
861 	return ret;
862 }
863 
ablk_rfc3686_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)864 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
865 		unsigned int key_len)
866 {
867 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
868 
869 	/* the nonce is stored in bytes at end of key */
870 	if (key_len < CTR_RFC3686_NONCE_SIZE)
871 		return -EINVAL;
872 
873 	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
874 			CTR_RFC3686_NONCE_SIZE);
875 
876 	key_len -= CTR_RFC3686_NONCE_SIZE;
877 	return ablk_setkey(tfm, key, key_len);
878 }
879 
ablk_perform(struct ablkcipher_request * req,int encrypt)880 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
881 {
882 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
883 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
884 	unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
885 	struct ix_sa_dir *dir;
886 	struct crypt_ctl *crypt;
887 	unsigned int nbytes = req->nbytes;
888 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
889 	struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
890 	struct buffer_desc src_hook;
891 	struct device *dev = &pdev->dev;
892 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
893 				GFP_KERNEL : GFP_ATOMIC;
894 
895 	if (qmgr_stat_full(SEND_QID))
896 		return -EAGAIN;
897 	if (atomic_read(&ctx->configuring))
898 		return -EAGAIN;
899 
900 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
901 
902 	crypt = get_crypt_desc();
903 	if (!crypt)
904 		return -ENOMEM;
905 
906 	crypt->data.ablk_req = req;
907 	crypt->crypto_ctx = dir->npe_ctx_phys;
908 	crypt->mode = dir->npe_mode;
909 	crypt->init_len = dir->npe_ctx_idx;
910 
911 	crypt->crypt_offs = 0;
912 	crypt->crypt_len = nbytes;
913 
914 	BUG_ON(ivsize && !req->info);
915 	memcpy(crypt->iv, req->info, ivsize);
916 	if (req->src != req->dst) {
917 		struct buffer_desc dst_hook;
918 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
919 		/* This was never tested by Intel
920 		 * for more than one dst buffer, I think. */
921 		req_ctx->dst = NULL;
922 		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
923 					flags, DMA_FROM_DEVICE))
924 			goto free_buf_dest;
925 		src_direction = DMA_TO_DEVICE;
926 		req_ctx->dst = dst_hook.next;
927 		crypt->dst_buf = dst_hook.phys_next;
928 	} else {
929 		req_ctx->dst = NULL;
930 	}
931 	req_ctx->src = NULL;
932 	if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
933 				flags, src_direction))
934 		goto free_buf_src;
935 
936 	req_ctx->src = src_hook.next;
937 	crypt->src_buf = src_hook.phys_next;
938 	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
939 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
940 	BUG_ON(qmgr_stat_overflow(SEND_QID));
941 	return -EINPROGRESS;
942 
943 free_buf_src:
944 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
945 free_buf_dest:
946 	if (req->src != req->dst) {
947 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
948 	}
949 	crypt->ctl_flags = CTL_FLAG_UNUSED;
950 	return -ENOMEM;
951 }
952 
ablk_encrypt(struct ablkcipher_request * req)953 static int ablk_encrypt(struct ablkcipher_request *req)
954 {
955 	return ablk_perform(req, 1);
956 }
957 
ablk_decrypt(struct ablkcipher_request * req)958 static int ablk_decrypt(struct ablkcipher_request *req)
959 {
960 	return ablk_perform(req, 0);
961 }
962 
ablk_rfc3686_crypt(struct ablkcipher_request * req)963 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
964 {
965 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
966 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
967 	u8 iv[CTR_RFC3686_BLOCK_SIZE];
968 	u8 *info = req->info;
969 	int ret;
970 
971 	/* set up counter block */
972         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
973 	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
974 
975 	/* initialize counter portion of counter block */
976 	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
977 		cpu_to_be32(1);
978 
979 	req->info = iv;
980 	ret = ablk_perform(req, 1);
981 	req->info = info;
982 	return ret;
983 }
984 
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)985 static int aead_perform(struct aead_request *req, int encrypt,
986 		int cryptoffset, int eff_cryptlen, u8 *iv)
987 {
988 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
989 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
990 	unsigned ivsize = crypto_aead_ivsize(tfm);
991 	unsigned authsize = crypto_aead_authsize(tfm);
992 	struct ix_sa_dir *dir;
993 	struct crypt_ctl *crypt;
994 	unsigned int cryptlen;
995 	struct buffer_desc *buf, src_hook;
996 	struct aead_ctx *req_ctx = aead_request_ctx(req);
997 	struct device *dev = &pdev->dev;
998 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
999 				GFP_KERNEL : GFP_ATOMIC;
1000 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1001 	unsigned int lastlen;
1002 
1003 	if (qmgr_stat_full(SEND_QID))
1004 		return -EAGAIN;
1005 	if (atomic_read(&ctx->configuring))
1006 		return -EAGAIN;
1007 
1008 	if (encrypt) {
1009 		dir = &ctx->encrypt;
1010 		cryptlen = req->cryptlen;
1011 	} else {
1012 		dir = &ctx->decrypt;
1013 		/* req->cryptlen includes the authsize when decrypting */
1014 		cryptlen = req->cryptlen -authsize;
1015 		eff_cryptlen -= authsize;
1016 	}
1017 	crypt = get_crypt_desc();
1018 	if (!crypt)
1019 		return -ENOMEM;
1020 
1021 	crypt->data.aead_req = req;
1022 	crypt->crypto_ctx = dir->npe_ctx_phys;
1023 	crypt->mode = dir->npe_mode;
1024 	crypt->init_len = dir->npe_ctx_idx;
1025 
1026 	crypt->crypt_offs = cryptoffset;
1027 	crypt->crypt_len = eff_cryptlen;
1028 
1029 	crypt->auth_offs = 0;
1030 	crypt->auth_len = req->assoclen + cryptlen;
1031 	BUG_ON(ivsize && !req->iv);
1032 	memcpy(crypt->iv, req->iv, ivsize);
1033 
1034 	buf = chainup_buffers(dev, req->src, crypt->auth_len,
1035 			      &src_hook, flags, src_direction);
1036 	req_ctx->src = src_hook.next;
1037 	crypt->src_buf = src_hook.phys_next;
1038 	if (!buf)
1039 		goto free_buf_src;
1040 
1041 	lastlen = buf->buf_len;
1042 	if (lastlen >= authsize)
1043 		crypt->icv_rev_aes = buf->phys_addr +
1044 				     buf->buf_len - authsize;
1045 
1046 	req_ctx->dst = NULL;
1047 
1048 	if (req->src != req->dst) {
1049 		struct buffer_desc dst_hook;
1050 
1051 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1052 		src_direction = DMA_TO_DEVICE;
1053 
1054 		buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1055 				      &dst_hook, flags, DMA_FROM_DEVICE);
1056 		req_ctx->dst = dst_hook.next;
1057 		crypt->dst_buf = dst_hook.phys_next;
1058 
1059 		if (!buf)
1060 			goto free_buf_dst;
1061 
1062 		if (encrypt) {
1063 			lastlen = buf->buf_len;
1064 			if (lastlen >= authsize)
1065 				crypt->icv_rev_aes = buf->phys_addr +
1066 						     buf->buf_len - authsize;
1067 		}
1068 	}
1069 
1070 	if (unlikely(lastlen < authsize)) {
1071 		/* The 12 hmac bytes are scattered,
1072 		 * we need to copy them into a safe buffer */
1073 		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1074 				&crypt->icv_rev_aes);
1075 		if (unlikely(!req_ctx->hmac_virt))
1076 			goto free_buf_dst;
1077 		if (!encrypt) {
1078 			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1079 				req->src, cryptlen, authsize, 0);
1080 		}
1081 		req_ctx->encrypt = encrypt;
1082 	} else {
1083 		req_ctx->hmac_virt = NULL;
1084 	}
1085 
1086 	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1087 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1088 	BUG_ON(qmgr_stat_overflow(SEND_QID));
1089 	return -EINPROGRESS;
1090 
1091 free_buf_dst:
1092 	free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1093 free_buf_src:
1094 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1095 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1096 	return -ENOMEM;
1097 }
1098 
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1099 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1100 {
1101 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1102 	u32 *flags = &tfm->base.crt_flags;
1103 	unsigned digest_len = crypto_aead_maxauthsize(tfm);
1104 	int ret;
1105 
1106 	if (!ctx->enckey_len && !ctx->authkey_len)
1107 		return 0;
1108 	init_completion(&ctx->completion);
1109 	atomic_inc(&ctx->configuring);
1110 
1111 	reset_sa_dir(&ctx->encrypt);
1112 	reset_sa_dir(&ctx->decrypt);
1113 
1114 	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1115 	if (ret)
1116 		goto out;
1117 	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1118 	if (ret)
1119 		goto out;
1120 	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1121 			ctx->authkey_len, digest_len);
1122 	if (ret)
1123 		goto out;
1124 	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1125 			ctx->authkey_len, digest_len);
1126 	if (ret)
1127 		goto out;
1128 
1129 	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1130 		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1131 			ret = -EINVAL;
1132 			goto out;
1133 		} else {
1134 			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1135 		}
1136 	}
1137 out:
1138 	if (!atomic_dec_and_test(&ctx->configuring))
1139 		wait_for_completion(&ctx->completion);
1140 	return ret;
1141 }
1142 
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1143 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1144 {
1145 	int max = crypto_aead_maxauthsize(tfm) >> 2;
1146 
1147 	if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1148 		return -EINVAL;
1149 	return aead_setup(tfm, authsize);
1150 }
1151 
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1152 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1153 			unsigned int keylen)
1154 {
1155 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1156 	struct crypto_authenc_keys keys;
1157 
1158 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1159 		goto badkey;
1160 
1161 	if (keys.authkeylen > sizeof(ctx->authkey))
1162 		goto badkey;
1163 
1164 	if (keys.enckeylen > sizeof(ctx->enckey))
1165 		goto badkey;
1166 
1167 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1168 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1169 	ctx->authkey_len = keys.authkeylen;
1170 	ctx->enckey_len = keys.enckeylen;
1171 
1172 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1173 badkey:
1174 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1175 	return -EINVAL;
1176 }
1177 
aead_encrypt(struct aead_request * req)1178 static int aead_encrypt(struct aead_request *req)
1179 {
1180 	return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1181 }
1182 
aead_decrypt(struct aead_request * req)1183 static int aead_decrypt(struct aead_request *req)
1184 {
1185 	return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1186 }
1187 
1188 static struct ixp_alg ixp4xx_algos[] = {
1189 {
1190 	.crypto	= {
1191 		.cra_name	= "cbc(des)",
1192 		.cra_blocksize	= DES_BLOCK_SIZE,
1193 		.cra_u		= { .ablkcipher = {
1194 			.min_keysize	= DES_KEY_SIZE,
1195 			.max_keysize	= DES_KEY_SIZE,
1196 			.ivsize		= DES_BLOCK_SIZE,
1197 			.geniv		= "eseqiv",
1198 			}
1199 		}
1200 	},
1201 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1202 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1203 
1204 }, {
1205 	.crypto	= {
1206 		.cra_name	= "ecb(des)",
1207 		.cra_blocksize	= DES_BLOCK_SIZE,
1208 		.cra_u		= { .ablkcipher = {
1209 			.min_keysize	= DES_KEY_SIZE,
1210 			.max_keysize	= DES_KEY_SIZE,
1211 			}
1212 		}
1213 	},
1214 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1215 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1216 }, {
1217 	.crypto	= {
1218 		.cra_name	= "cbc(des3_ede)",
1219 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1220 		.cra_u		= { .ablkcipher = {
1221 			.min_keysize	= DES3_EDE_KEY_SIZE,
1222 			.max_keysize	= DES3_EDE_KEY_SIZE,
1223 			.ivsize		= DES3_EDE_BLOCK_SIZE,
1224 			.geniv		= "eseqiv",
1225 			}
1226 		}
1227 	},
1228 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1229 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1230 }, {
1231 	.crypto	= {
1232 		.cra_name	= "ecb(des3_ede)",
1233 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1234 		.cra_u		= { .ablkcipher = {
1235 			.min_keysize	= DES3_EDE_KEY_SIZE,
1236 			.max_keysize	= DES3_EDE_KEY_SIZE,
1237 			}
1238 		}
1239 	},
1240 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1241 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1242 }, {
1243 	.crypto	= {
1244 		.cra_name	= "cbc(aes)",
1245 		.cra_blocksize	= AES_BLOCK_SIZE,
1246 		.cra_u		= { .ablkcipher = {
1247 			.min_keysize	= AES_MIN_KEY_SIZE,
1248 			.max_keysize	= AES_MAX_KEY_SIZE,
1249 			.ivsize		= AES_BLOCK_SIZE,
1250 			.geniv		= "eseqiv",
1251 			}
1252 		}
1253 	},
1254 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1255 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1256 }, {
1257 	.crypto	= {
1258 		.cra_name	= "ecb(aes)",
1259 		.cra_blocksize	= AES_BLOCK_SIZE,
1260 		.cra_u		= { .ablkcipher = {
1261 			.min_keysize	= AES_MIN_KEY_SIZE,
1262 			.max_keysize	= AES_MAX_KEY_SIZE,
1263 			}
1264 		}
1265 	},
1266 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1267 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1268 }, {
1269 	.crypto	= {
1270 		.cra_name	= "ctr(aes)",
1271 		.cra_blocksize	= AES_BLOCK_SIZE,
1272 		.cra_u		= { .ablkcipher = {
1273 			.min_keysize	= AES_MIN_KEY_SIZE,
1274 			.max_keysize	= AES_MAX_KEY_SIZE,
1275 			.ivsize		= AES_BLOCK_SIZE,
1276 			.geniv		= "eseqiv",
1277 			}
1278 		}
1279 	},
1280 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1281 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1282 }, {
1283 	.crypto	= {
1284 		.cra_name	= "rfc3686(ctr(aes))",
1285 		.cra_blocksize	= AES_BLOCK_SIZE,
1286 		.cra_u		= { .ablkcipher = {
1287 			.min_keysize	= AES_MIN_KEY_SIZE,
1288 			.max_keysize	= AES_MAX_KEY_SIZE,
1289 			.ivsize		= AES_BLOCK_SIZE,
1290 			.geniv		= "eseqiv",
1291 			.setkey		= ablk_rfc3686_setkey,
1292 			.encrypt	= ablk_rfc3686_crypt,
1293 			.decrypt	= ablk_rfc3686_crypt }
1294 		}
1295 	},
1296 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1297 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1298 } };
1299 
1300 static struct ixp_aead_alg ixp4xx_aeads[] = {
1301 {
1302 	.crypto	= {
1303 		.base = {
1304 			.cra_name	= "authenc(hmac(md5),cbc(des))",
1305 			.cra_blocksize	= DES_BLOCK_SIZE,
1306 		},
1307 		.ivsize		= DES_BLOCK_SIZE,
1308 		.maxauthsize	= MD5_DIGEST_SIZE,
1309 	},
1310 	.hash = &hash_alg_md5,
1311 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1312 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1313 }, {
1314 	.crypto	= {
1315 		.base = {
1316 			.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1317 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1318 		},
1319 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1320 		.maxauthsize	= MD5_DIGEST_SIZE,
1321 	},
1322 	.hash = &hash_alg_md5,
1323 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1324 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1325 }, {
1326 	.crypto	= {
1327 		.base = {
1328 			.cra_name	= "authenc(hmac(sha1),cbc(des))",
1329 			.cra_blocksize	= DES_BLOCK_SIZE,
1330 		},
1331 			.ivsize		= DES_BLOCK_SIZE,
1332 			.maxauthsize	= SHA1_DIGEST_SIZE,
1333 	},
1334 	.hash = &hash_alg_sha1,
1335 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1336 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1337 }, {
1338 	.crypto	= {
1339 		.base = {
1340 			.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1341 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1342 		},
1343 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1344 		.maxauthsize	= SHA1_DIGEST_SIZE,
1345 	},
1346 	.hash = &hash_alg_sha1,
1347 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1348 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1349 }, {
1350 	.crypto	= {
1351 		.base = {
1352 			.cra_name	= "authenc(hmac(md5),cbc(aes))",
1353 			.cra_blocksize	= AES_BLOCK_SIZE,
1354 		},
1355 		.ivsize		= AES_BLOCK_SIZE,
1356 		.maxauthsize	= MD5_DIGEST_SIZE,
1357 	},
1358 	.hash = &hash_alg_md5,
1359 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1360 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1361 }, {
1362 	.crypto	= {
1363 		.base = {
1364 			.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1365 			.cra_blocksize	= AES_BLOCK_SIZE,
1366 		},
1367 		.ivsize		= AES_BLOCK_SIZE,
1368 		.maxauthsize	= SHA1_DIGEST_SIZE,
1369 	},
1370 	.hash = &hash_alg_sha1,
1371 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1372 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1373 } };
1374 
1375 #define IXP_POSTFIX "-ixp4xx"
1376 
1377 static const struct platform_device_info ixp_dev_info __initdata = {
1378 	.name		= DRIVER_NAME,
1379 	.id		= 0,
1380 	.dma_mask	= DMA_BIT_MASK(32),
1381 };
1382 
ixp_module_init(void)1383 static int __init ixp_module_init(void)
1384 {
1385 	int num = ARRAY_SIZE(ixp4xx_algos);
1386 	int i, err;
1387 
1388 	pdev = platform_device_register_full(&ixp_dev_info);
1389 	if (IS_ERR(pdev))
1390 		return PTR_ERR(pdev);
1391 
1392 	spin_lock_init(&desc_lock);
1393 	spin_lock_init(&emerg_lock);
1394 
1395 	err = init_ixp_crypto(&pdev->dev);
1396 	if (err) {
1397 		platform_device_unregister(pdev);
1398 		return err;
1399 	}
1400 	for (i=0; i< num; i++) {
1401 		struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1402 
1403 		if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1404 			"%s"IXP_POSTFIX, cra->cra_name) >=
1405 			CRYPTO_MAX_ALG_NAME)
1406 		{
1407 			continue;
1408 		}
1409 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1410 			continue;
1411 		}
1412 
1413 		/* block ciphers */
1414 		cra->cra_type = &crypto_ablkcipher_type;
1415 		cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1416 				 CRYPTO_ALG_KERN_DRIVER_ONLY |
1417 				 CRYPTO_ALG_ASYNC;
1418 		if (!cra->cra_ablkcipher.setkey)
1419 			cra->cra_ablkcipher.setkey = ablk_setkey;
1420 		if (!cra->cra_ablkcipher.encrypt)
1421 			cra->cra_ablkcipher.encrypt = ablk_encrypt;
1422 		if (!cra->cra_ablkcipher.decrypt)
1423 			cra->cra_ablkcipher.decrypt = ablk_decrypt;
1424 		cra->cra_init = init_tfm_ablk;
1425 
1426 		cra->cra_ctxsize = sizeof(struct ixp_ctx);
1427 		cra->cra_module = THIS_MODULE;
1428 		cra->cra_alignmask = 3;
1429 		cra->cra_priority = 300;
1430 		cra->cra_exit = exit_tfm;
1431 		if (crypto_register_alg(cra))
1432 			printk(KERN_ERR "Failed to register '%s'\n",
1433 				cra->cra_name);
1434 		else
1435 			ixp4xx_algos[i].registered = 1;
1436 	}
1437 
1438 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1439 		struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1440 
1441 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1442 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1443 		    CRYPTO_MAX_ALG_NAME)
1444 			continue;
1445 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1446 			continue;
1447 
1448 		/* authenc */
1449 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1450 				      CRYPTO_ALG_ASYNC;
1451 		cra->setkey = aead_setkey;
1452 		cra->setauthsize = aead_setauthsize;
1453 		cra->encrypt = aead_encrypt;
1454 		cra->decrypt = aead_decrypt;
1455 		cra->init = init_tfm_aead;
1456 		cra->exit = exit_tfm_aead;
1457 
1458 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1459 		cra->base.cra_module = THIS_MODULE;
1460 		cra->base.cra_alignmask = 3;
1461 		cra->base.cra_priority = 300;
1462 
1463 		if (crypto_register_aead(cra))
1464 			printk(KERN_ERR "Failed to register '%s'\n",
1465 				cra->base.cra_driver_name);
1466 		else
1467 			ixp4xx_aeads[i].registered = 1;
1468 	}
1469 	return 0;
1470 }
1471 
ixp_module_exit(void)1472 static void __exit ixp_module_exit(void)
1473 {
1474 	int num = ARRAY_SIZE(ixp4xx_algos);
1475 	int i;
1476 
1477 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1478 		if (ixp4xx_aeads[i].registered)
1479 			crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1480 	}
1481 
1482 	for (i=0; i< num; i++) {
1483 		if (ixp4xx_algos[i].registered)
1484 			crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1485 	}
1486 	release_ixp_crypto(&pdev->dev);
1487 	platform_device_unregister(pdev);
1488 }
1489 
1490 module_init(ixp_module_init);
1491 module_exit(ixp_module_exit);
1492 
1493 MODULE_LICENSE("GPL");
1494 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1495 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1496 
1497