• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Cryptographic API.
3  *
4  * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
5  *
6  * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * Some ideas are from atmel-sha.c and omap-sham.c drivers.
13  */
14 
15 #include <crypto/hmac.h>
16 #include <crypto/sha.h>
17 #include "mtk-platform.h"
18 
19 #define SHA_ALIGN_MSK		(sizeof(u32) - 1)
20 #define SHA_QUEUE_SIZE		512
21 #define SHA_BUF_SIZE		((u32)PAGE_SIZE)
22 
23 #define SHA_OP_UPDATE		1
24 #define SHA_OP_FINAL		2
25 
26 #define SHA_DATA_LEN_MSK	cpu_to_le32(GENMASK(16, 0))
27 #define SHA_MAX_DIGEST_BUF_SIZE	32
28 
29 /* SHA command token */
30 #define SHA_CT_SIZE		5
31 #define SHA_CT_CTRL_HDR		cpu_to_le32(0x02220000)
32 #define SHA_CMD0		cpu_to_le32(0x03020000)
33 #define SHA_CMD1		cpu_to_le32(0x21060000)
34 #define SHA_CMD2		cpu_to_le32(0xe0e63802)
35 
36 /* SHA transform information */
37 #define SHA_TFM_HASH		cpu_to_le32(0x2 << 0)
38 #define SHA_TFM_SIZE(x)		cpu_to_le32((x) << 8)
39 #define SHA_TFM_START		cpu_to_le32(0x1 << 4)
40 #define SHA_TFM_CONTINUE	cpu_to_le32(0x1 << 5)
41 #define SHA_TFM_HASH_STORE	cpu_to_le32(0x1 << 19)
42 #define SHA_TFM_SHA1		cpu_to_le32(0x2 << 23)
43 #define SHA_TFM_SHA256		cpu_to_le32(0x3 << 23)
44 #define SHA_TFM_SHA224		cpu_to_le32(0x4 << 23)
45 #define SHA_TFM_SHA512		cpu_to_le32(0x5 << 23)
46 #define SHA_TFM_SHA384		cpu_to_le32(0x6 << 23)
47 #define SHA_TFM_DIGEST(x)	cpu_to_le32(((x) & GENMASK(3, 0)) << 24)
48 
49 /* SHA flags */
50 #define SHA_FLAGS_BUSY		BIT(0)
51 #define	SHA_FLAGS_FINAL		BIT(1)
52 #define SHA_FLAGS_FINUP		BIT(2)
53 #define SHA_FLAGS_SG		BIT(3)
54 #define SHA_FLAGS_ALGO_MSK	GENMASK(8, 4)
55 #define SHA_FLAGS_SHA1		BIT(4)
56 #define SHA_FLAGS_SHA224	BIT(5)
57 #define SHA_FLAGS_SHA256	BIT(6)
58 #define SHA_FLAGS_SHA384	BIT(7)
59 #define SHA_FLAGS_SHA512	BIT(8)
60 #define SHA_FLAGS_HMAC		BIT(9)
61 #define SHA_FLAGS_PAD		BIT(10)
62 
63 /**
64  * mtk_sha_info - hardware information of AES
65  * @cmd:	command token, hardware instruction
66  * @tfm:	transform state of cipher algorithm.
67  * @state:	contains keys and initial vectors.
68  *
69  */
70 struct mtk_sha_info {
71 	__le32 ctrl[2];
72 	__le32 cmd[3];
73 	__le32 tfm[2];
74 	__le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
75 };
76 
77 struct mtk_sha_reqctx {
78 	struct mtk_sha_info info;
79 	unsigned long flags;
80 	unsigned long op;
81 
82 	u64 digcnt;
83 	size_t bufcnt;
84 	dma_addr_t dma_addr;
85 
86 	__le32 ct_hdr;
87 	u32 ct_size;
88 	dma_addr_t ct_dma;
89 	dma_addr_t tfm_dma;
90 
91 	/* Walk state */
92 	struct scatterlist *sg;
93 	u32 offset;	/* Offset in current sg */
94 	u32 total;	/* Total request */
95 	size_t ds;
96 	size_t bs;
97 
98 	u8 *buffer;
99 };
100 
101 struct mtk_sha_hmac_ctx {
102 	struct crypto_shash	*shash;
103 	u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
104 	u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
105 };
106 
107 struct mtk_sha_ctx {
108 	struct mtk_cryp *cryp;
109 	unsigned long flags;
110 	u8 id;
111 	u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));
112 
113 	struct mtk_sha_hmac_ctx	base[0];
114 };
115 
116 struct mtk_sha_drv {
117 	struct list_head dev_list;
118 	/* Device list lock */
119 	spinlock_t lock;
120 };
121 
122 static struct mtk_sha_drv mtk_sha = {
123 	.dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
124 	.lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
125 };
126 
127 static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
128 				struct ahash_request *req);
129 
mtk_sha_read(struct mtk_cryp * cryp,u32 offset)130 static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
131 {
132 	return readl_relaxed(cryp->base + offset);
133 }
134 
mtk_sha_write(struct mtk_cryp * cryp,u32 offset,u32 value)135 static inline void mtk_sha_write(struct mtk_cryp *cryp,
136 				 u32 offset, u32 value)
137 {
138 	writel_relaxed(value, cryp->base + offset);
139 }
140 
mtk_sha_ring_shift(struct mtk_ring * ring,struct mtk_desc ** cmd_curr,struct mtk_desc ** res_curr,int * count)141 static inline void mtk_sha_ring_shift(struct mtk_ring *ring,
142 				      struct mtk_desc **cmd_curr,
143 				      struct mtk_desc **res_curr,
144 				      int *count)
145 {
146 	*cmd_curr = ring->cmd_next++;
147 	*res_curr = ring->res_next++;
148 	(*count)++;
149 
150 	if (ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) {
151 		ring->cmd_next = ring->cmd_base;
152 		ring->res_next = ring->res_base;
153 	}
154 }
155 
mtk_sha_find_dev(struct mtk_sha_ctx * tctx)156 static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
157 {
158 	struct mtk_cryp *cryp = NULL;
159 	struct mtk_cryp *tmp;
160 
161 	spin_lock_bh(&mtk_sha.lock);
162 	if (!tctx->cryp) {
163 		list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
164 			cryp = tmp;
165 			break;
166 		}
167 		tctx->cryp = cryp;
168 	} else {
169 		cryp = tctx->cryp;
170 	}
171 
172 	/*
173 	 * Assign record id to tfm in round-robin fashion, and this
174 	 * will help tfm to bind  to corresponding descriptor rings.
175 	 */
176 	tctx->id = cryp->rec;
177 	cryp->rec = !cryp->rec;
178 
179 	spin_unlock_bh(&mtk_sha.lock);
180 
181 	return cryp;
182 }
183 
mtk_sha_append_sg(struct mtk_sha_reqctx * ctx)184 static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
185 {
186 	size_t count;
187 
188 	while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
189 		count = min(ctx->sg->length - ctx->offset, ctx->total);
190 		count = min(count, SHA_BUF_SIZE - ctx->bufcnt);
191 
192 		if (count <= 0) {
193 			/*
194 			 * Check if count <= 0 because the buffer is full or
195 			 * because the sg length is 0. In the latest case,
196 			 * check if there is another sg in the list, a 0 length
197 			 * sg doesn't necessarily mean the end of the sg list.
198 			 */
199 			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
200 				ctx->sg = sg_next(ctx->sg);
201 				continue;
202 			} else {
203 				break;
204 			}
205 		}
206 
207 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
208 					 ctx->offset, count, 0);
209 
210 		ctx->bufcnt += count;
211 		ctx->offset += count;
212 		ctx->total -= count;
213 
214 		if (ctx->offset == ctx->sg->length) {
215 			ctx->sg = sg_next(ctx->sg);
216 			if (ctx->sg)
217 				ctx->offset = 0;
218 			else
219 				ctx->total = 0;
220 		}
221 	}
222 
223 	return 0;
224 }
225 
226 /*
227  * The purpose of this padding is to ensure that the padded message is a
228  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
229  * The bit "1" is appended at the end of the message followed by
230  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
231  * 128 bits block (SHA384/SHA512) equals to the message length in bits
232  * is appended.
233  *
234  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
235  *  - if message length < 56 bytes then padlen = 56 - message length
236  *  - else padlen = 64 + 56 - message length
237  *
238  * For SHA384/SHA512, padlen is calculated as followed:
239  *  - if message length < 112 bytes then padlen = 112 - message length
240  *  - else padlen = 128 + 112 - message length
241  */
mtk_sha_fill_padding(struct mtk_sha_reqctx * ctx,u32 len)242 static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
243 {
244 	u32 index, padlen;
245 	u64 bits[2];
246 	u64 size = ctx->digcnt;
247 
248 	size += ctx->bufcnt;
249 	size += len;
250 
251 	bits[1] = cpu_to_be64(size << 3);
252 	bits[0] = cpu_to_be64(size >> 61);
253 
254 	switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
255 	case SHA_FLAGS_SHA384:
256 	case SHA_FLAGS_SHA512:
257 		index = ctx->bufcnt & 0x7f;
258 		padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
259 		*(ctx->buffer + ctx->bufcnt) = 0x80;
260 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
261 		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
262 		ctx->bufcnt += padlen + 16;
263 		ctx->flags |= SHA_FLAGS_PAD;
264 		break;
265 
266 	default:
267 		index = ctx->bufcnt & 0x3f;
268 		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
269 		*(ctx->buffer + ctx->bufcnt) = 0x80;
270 		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
271 		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
272 		ctx->bufcnt += padlen + 8;
273 		ctx->flags |= SHA_FLAGS_PAD;
274 		break;
275 	}
276 }
277 
278 /* Initialize basic transform information of SHA */
mtk_sha_info_init(struct mtk_sha_reqctx * ctx)279 static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
280 {
281 	struct mtk_sha_info *info = &ctx->info;
282 
283 	ctx->ct_hdr = SHA_CT_CTRL_HDR;
284 	ctx->ct_size = SHA_CT_SIZE;
285 
286 	info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
287 
288 	switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
289 	case SHA_FLAGS_SHA1:
290 		info->tfm[0] |= SHA_TFM_SHA1;
291 		break;
292 	case SHA_FLAGS_SHA224:
293 		info->tfm[0] |= SHA_TFM_SHA224;
294 		break;
295 	case SHA_FLAGS_SHA256:
296 		info->tfm[0] |= SHA_TFM_SHA256;
297 		break;
298 	case SHA_FLAGS_SHA384:
299 		info->tfm[0] |= SHA_TFM_SHA384;
300 		break;
301 	case SHA_FLAGS_SHA512:
302 		info->tfm[0] |= SHA_TFM_SHA512;
303 		break;
304 
305 	default:
306 		/* Should not happen... */
307 		return;
308 	}
309 
310 	info->tfm[1] = SHA_TFM_HASH_STORE;
311 	info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
312 	info->ctrl[1] = info->tfm[1];
313 
314 	info->cmd[0] = SHA_CMD0;
315 	info->cmd[1] = SHA_CMD1;
316 	info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
317 }
318 
319 /*
320  * Update input data length field of transform information and
321  * map it to DMA region.
322  */
mtk_sha_info_update(struct mtk_cryp * cryp,struct mtk_sha_rec * sha,size_t len1,size_t len2)323 static int mtk_sha_info_update(struct mtk_cryp *cryp,
324 			       struct mtk_sha_rec *sha,
325 			       size_t len1, size_t len2)
326 {
327 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
328 	struct mtk_sha_info *info = &ctx->info;
329 
330 	ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
331 	ctx->ct_hdr |= cpu_to_le32(len1 + len2);
332 	info->cmd[0] &= ~SHA_DATA_LEN_MSK;
333 	info->cmd[0] |= cpu_to_le32(len1 + len2);
334 
335 	/* Setting SHA_TFM_START only for the first iteration */
336 	if (ctx->digcnt)
337 		info->ctrl[0] &= ~SHA_TFM_START;
338 
339 	ctx->digcnt += len1;
340 
341 	ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
342 				     DMA_BIDIRECTIONAL);
343 	if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
344 		dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
345 		return -EINVAL;
346 	}
347 
348 	ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);
349 
350 	return 0;
351 }
352 
353 /*
354  * Because of hardware limitation, we must pre-calculate the inner
355  * and outer digest that need to be processed firstly by engine, then
356  * apply the result digest to the input message. These complex hashing
357  * procedures limits HMAC performance, so we use fallback SW encoding.
358  */
mtk_sha_finish_hmac(struct ahash_request * req)359 static int mtk_sha_finish_hmac(struct ahash_request *req)
360 {
361 	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
362 	struct mtk_sha_hmac_ctx *bctx = tctx->base;
363 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
364 
365 	SHASH_DESC_ON_STACK(shash, bctx->shash);
366 
367 	shash->tfm = bctx->shash;
368 	shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
369 
370 	return crypto_shash_init(shash) ?:
371 	       crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
372 	       crypto_shash_finup(shash, req->result, ctx->ds, req->result);
373 }
374 
375 /* Initialize request context */
mtk_sha_init(struct ahash_request * req)376 static int mtk_sha_init(struct ahash_request *req)
377 {
378 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
379 	struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
380 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
381 
382 	ctx->flags = 0;
383 	ctx->ds = crypto_ahash_digestsize(tfm);
384 
385 	switch (ctx->ds) {
386 	case SHA1_DIGEST_SIZE:
387 		ctx->flags |= SHA_FLAGS_SHA1;
388 		ctx->bs = SHA1_BLOCK_SIZE;
389 		break;
390 	case SHA224_DIGEST_SIZE:
391 		ctx->flags |= SHA_FLAGS_SHA224;
392 		ctx->bs = SHA224_BLOCK_SIZE;
393 		break;
394 	case SHA256_DIGEST_SIZE:
395 		ctx->flags |= SHA_FLAGS_SHA256;
396 		ctx->bs = SHA256_BLOCK_SIZE;
397 		break;
398 	case SHA384_DIGEST_SIZE:
399 		ctx->flags |= SHA_FLAGS_SHA384;
400 		ctx->bs = SHA384_BLOCK_SIZE;
401 		break;
402 	case SHA512_DIGEST_SIZE:
403 		ctx->flags |= SHA_FLAGS_SHA512;
404 		ctx->bs = SHA512_BLOCK_SIZE;
405 		break;
406 	default:
407 		return -EINVAL;
408 	}
409 
410 	ctx->bufcnt = 0;
411 	ctx->digcnt = 0;
412 	ctx->buffer = tctx->buf;
413 
414 	if (tctx->flags & SHA_FLAGS_HMAC) {
415 		struct mtk_sha_hmac_ctx *bctx = tctx->base;
416 
417 		memcpy(ctx->buffer, bctx->ipad, ctx->bs);
418 		ctx->bufcnt = ctx->bs;
419 		ctx->flags |= SHA_FLAGS_HMAC;
420 	}
421 
422 	return 0;
423 }
424 
mtk_sha_xmit(struct mtk_cryp * cryp,struct mtk_sha_rec * sha,dma_addr_t addr1,size_t len1,dma_addr_t addr2,size_t len2)425 static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
426 			dma_addr_t addr1, size_t len1,
427 			dma_addr_t addr2, size_t len2)
428 {
429 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
430 	struct mtk_ring *ring = cryp->ring[sha->id];
431 	struct mtk_desc *cmd, *res;
432 	int err, count = 0;
433 
434 	err = mtk_sha_info_update(cryp, sha, len1, len2);
435 	if (err)
436 		return err;
437 
438 	/* Fill in the command/result descriptors */
439 	mtk_sha_ring_shift(ring, &cmd, &res, &count);
440 
441 	res->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1);
442 	cmd->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1) |
443 		   MTK_DESC_CT_LEN(ctx->ct_size);
444 	cmd->buf = cpu_to_le32(addr1);
445 	cmd->ct = cpu_to_le32(ctx->ct_dma);
446 	cmd->ct_hdr = ctx->ct_hdr;
447 	cmd->tfm = cpu_to_le32(ctx->tfm_dma);
448 
449 	if (len2) {
450 		mtk_sha_ring_shift(ring, &cmd, &res, &count);
451 
452 		res->hdr = MTK_DESC_BUF_LEN(len2);
453 		cmd->hdr = MTK_DESC_BUF_LEN(len2);
454 		cmd->buf = cpu_to_le32(addr2);
455 	}
456 
457 	cmd->hdr |= MTK_DESC_LAST;
458 	res->hdr |= MTK_DESC_LAST;
459 
460 	/*
461 	 * Make sure that all changes to the DMA ring are done before we
462 	 * start engine.
463 	 */
464 	wmb();
465 	/* Start DMA transfer */
466 	mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
467 	mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
468 
469 	return -EINPROGRESS;
470 }
471 
mtk_sha_dma_map(struct mtk_cryp * cryp,struct mtk_sha_rec * sha,struct mtk_sha_reqctx * ctx,size_t count)472 static int mtk_sha_dma_map(struct mtk_cryp *cryp,
473 			   struct mtk_sha_rec *sha,
474 			   struct mtk_sha_reqctx *ctx,
475 			   size_t count)
476 {
477 	ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
478 				       SHA_BUF_SIZE, DMA_TO_DEVICE);
479 	if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
480 		dev_err(cryp->dev, "dma map error\n");
481 		return -EINVAL;
482 	}
483 
484 	ctx->flags &= ~SHA_FLAGS_SG;
485 
486 	return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count, 0, 0);
487 }
488 
mtk_sha_update_slow(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)489 static int mtk_sha_update_slow(struct mtk_cryp *cryp,
490 			       struct mtk_sha_rec *sha)
491 {
492 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
493 	size_t count;
494 	u32 final;
495 
496 	mtk_sha_append_sg(ctx);
497 
498 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
499 
500 	dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);
501 
502 	if (final) {
503 		sha->flags |= SHA_FLAGS_FINAL;
504 		mtk_sha_fill_padding(ctx, 0);
505 	}
506 
507 	if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
508 		count = ctx->bufcnt;
509 		ctx->bufcnt = 0;
510 
511 		return mtk_sha_dma_map(cryp, sha, ctx, count);
512 	}
513 	return 0;
514 }
515 
mtk_sha_update_start(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)516 static int mtk_sha_update_start(struct mtk_cryp *cryp,
517 				struct mtk_sha_rec *sha)
518 {
519 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
520 	u32 len, final, tail;
521 	struct scatterlist *sg;
522 
523 	if (!ctx->total)
524 		return 0;
525 
526 	if (ctx->bufcnt || ctx->offset)
527 		return mtk_sha_update_slow(cryp, sha);
528 
529 	sg = ctx->sg;
530 
531 	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
532 		return mtk_sha_update_slow(cryp, sha);
533 
534 	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
535 		/* size is not ctx->bs aligned */
536 		return mtk_sha_update_slow(cryp, sha);
537 
538 	len = min(ctx->total, sg->length);
539 
540 	if (sg_is_last(sg)) {
541 		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
542 			/* not last sg must be ctx->bs aligned */
543 			tail = len & (ctx->bs - 1);
544 			len -= tail;
545 		}
546 	}
547 
548 	ctx->total -= len;
549 	ctx->offset = len; /* offset where to start slow */
550 
551 	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
552 
553 	/* Add padding */
554 	if (final) {
555 		size_t count;
556 
557 		tail = len & (ctx->bs - 1);
558 		len -= tail;
559 		ctx->total += tail;
560 		ctx->offset = len; /* offset where to start slow */
561 
562 		sg = ctx->sg;
563 		mtk_sha_append_sg(ctx);
564 		mtk_sha_fill_padding(ctx, len);
565 
566 		ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
567 					       SHA_BUF_SIZE, DMA_TO_DEVICE);
568 		if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
569 			dev_err(cryp->dev, "dma map bytes error\n");
570 			return -EINVAL;
571 		}
572 
573 		sha->flags |= SHA_FLAGS_FINAL;
574 		count = ctx->bufcnt;
575 		ctx->bufcnt = 0;
576 
577 		if (len == 0) {
578 			ctx->flags &= ~SHA_FLAGS_SG;
579 			return mtk_sha_xmit(cryp, sha, ctx->dma_addr,
580 					    count, 0, 0);
581 
582 		} else {
583 			ctx->sg = sg;
584 			if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
585 				dev_err(cryp->dev, "dma_map_sg error\n");
586 				return -EINVAL;
587 			}
588 
589 			ctx->flags |= SHA_FLAGS_SG;
590 			return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
591 					    len, ctx->dma_addr, count);
592 		}
593 	}
594 
595 	if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
596 		dev_err(cryp->dev, "dma_map_sg  error\n");
597 		return -EINVAL;
598 	}
599 
600 	ctx->flags |= SHA_FLAGS_SG;
601 
602 	return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
603 			    len, 0, 0);
604 }
605 
mtk_sha_final_req(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)606 static int mtk_sha_final_req(struct mtk_cryp *cryp,
607 			     struct mtk_sha_rec *sha)
608 {
609 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
610 	size_t count;
611 
612 	mtk_sha_fill_padding(ctx, 0);
613 
614 	sha->flags |= SHA_FLAGS_FINAL;
615 	count = ctx->bufcnt;
616 	ctx->bufcnt = 0;
617 
618 	return mtk_sha_dma_map(cryp, sha, ctx, count);
619 }
620 
621 /* Copy ready hash (+ finalize hmac) */
mtk_sha_finish(struct ahash_request * req)622 static int mtk_sha_finish(struct ahash_request *req)
623 {
624 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
625 	__le32 *digest = ctx->info.digest;
626 	u32 *result = (u32 *)req->result;
627 	int i;
628 
629 	/* Get the hash from the digest buffer */
630 	for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
631 		result[i] = le32_to_cpu(digest[i]);
632 
633 	if (ctx->flags & SHA_FLAGS_HMAC)
634 		return mtk_sha_finish_hmac(req);
635 
636 	return 0;
637 }
638 
mtk_sha_finish_req(struct mtk_cryp * cryp,struct mtk_sha_rec * sha,int err)639 static void mtk_sha_finish_req(struct mtk_cryp *cryp,
640 			       struct mtk_sha_rec *sha,
641 			       int err)
642 {
643 	if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
644 		err = mtk_sha_finish(sha->req);
645 
646 	sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);
647 
648 	sha->req->base.complete(&sha->req->base, err);
649 
650 	/* Handle new request */
651 	tasklet_schedule(&sha->queue_task);
652 }
653 
mtk_sha_handle_queue(struct mtk_cryp * cryp,u8 id,struct ahash_request * req)654 static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
655 				struct ahash_request *req)
656 {
657 	struct mtk_sha_rec *sha = cryp->sha[id];
658 	struct crypto_async_request *async_req, *backlog;
659 	struct mtk_sha_reqctx *ctx;
660 	unsigned long flags;
661 	int err = 0, ret = 0;
662 
663 	spin_lock_irqsave(&sha->lock, flags);
664 	if (req)
665 		ret = ahash_enqueue_request(&sha->queue, req);
666 
667 	if (SHA_FLAGS_BUSY & sha->flags) {
668 		spin_unlock_irqrestore(&sha->lock, flags);
669 		return ret;
670 	}
671 
672 	backlog = crypto_get_backlog(&sha->queue);
673 	async_req = crypto_dequeue_request(&sha->queue);
674 	if (async_req)
675 		sha->flags |= SHA_FLAGS_BUSY;
676 	spin_unlock_irqrestore(&sha->lock, flags);
677 
678 	if (!async_req)
679 		return ret;
680 
681 	if (backlog)
682 		backlog->complete(backlog, -EINPROGRESS);
683 
684 	req = ahash_request_cast(async_req);
685 	ctx = ahash_request_ctx(req);
686 
687 	sha->req = req;
688 
689 	mtk_sha_info_init(ctx);
690 
691 	if (ctx->op == SHA_OP_UPDATE) {
692 		err = mtk_sha_update_start(cryp, sha);
693 		if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
694 			/* No final() after finup() */
695 			err = mtk_sha_final_req(cryp, sha);
696 	} else if (ctx->op == SHA_OP_FINAL) {
697 		err = mtk_sha_final_req(cryp, sha);
698 	}
699 
700 	if (unlikely(err != -EINPROGRESS))
701 		/* Task will not finish it, so do it here */
702 		mtk_sha_finish_req(cryp, sha, err);
703 
704 	return ret;
705 }
706 
mtk_sha_enqueue(struct ahash_request * req,u32 op)707 static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
708 {
709 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
710 	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
711 
712 	ctx->op = op;
713 
714 	return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
715 }
716 
mtk_sha_unmap(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)717 static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
718 {
719 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
720 
721 	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
722 			 DMA_BIDIRECTIONAL);
723 
724 	if (ctx->flags & SHA_FLAGS_SG) {
725 		dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
726 		if (ctx->sg->length == ctx->offset) {
727 			ctx->sg = sg_next(ctx->sg);
728 			if (ctx->sg)
729 				ctx->offset = 0;
730 		}
731 		if (ctx->flags & SHA_FLAGS_PAD) {
732 			dma_unmap_single(cryp->dev, ctx->dma_addr,
733 					 SHA_BUF_SIZE, DMA_TO_DEVICE);
734 		}
735 	} else
736 		dma_unmap_single(cryp->dev, ctx->dma_addr,
737 				 SHA_BUF_SIZE, DMA_TO_DEVICE);
738 }
739 
mtk_sha_complete(struct mtk_cryp * cryp,struct mtk_sha_rec * sha)740 static void mtk_sha_complete(struct mtk_cryp *cryp,
741 			     struct mtk_sha_rec *sha)
742 {
743 	int err = 0;
744 
745 	err = mtk_sha_update_start(cryp, sha);
746 	if (err != -EINPROGRESS)
747 		mtk_sha_finish_req(cryp, sha, err);
748 }
749 
mtk_sha_update(struct ahash_request * req)750 static int mtk_sha_update(struct ahash_request *req)
751 {
752 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
753 
754 	ctx->total = req->nbytes;
755 	ctx->sg = req->src;
756 	ctx->offset = 0;
757 
758 	if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
759 	    !(ctx->flags & SHA_FLAGS_FINUP))
760 		return mtk_sha_append_sg(ctx);
761 
762 	return mtk_sha_enqueue(req, SHA_OP_UPDATE);
763 }
764 
mtk_sha_final(struct ahash_request * req)765 static int mtk_sha_final(struct ahash_request *req)
766 {
767 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
768 
769 	ctx->flags |= SHA_FLAGS_FINUP;
770 
771 	if (ctx->flags & SHA_FLAGS_PAD)
772 		return mtk_sha_finish(req);
773 
774 	return mtk_sha_enqueue(req, SHA_OP_FINAL);
775 }
776 
mtk_sha_finup(struct ahash_request * req)777 static int mtk_sha_finup(struct ahash_request *req)
778 {
779 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
780 	int err1, err2;
781 
782 	ctx->flags |= SHA_FLAGS_FINUP;
783 
784 	err1 = mtk_sha_update(req);
785 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
786 		return err1;
787 	/*
788 	 * final() has to be always called to cleanup resources
789 	 * even if update() failed
790 	 */
791 	err2 = mtk_sha_final(req);
792 
793 	return err1 ?: err2;
794 }
795 
mtk_sha_digest(struct ahash_request * req)796 static int mtk_sha_digest(struct ahash_request *req)
797 {
798 	return mtk_sha_init(req) ?: mtk_sha_finup(req);
799 }
800 
mtk_sha_setkey(struct crypto_ahash * tfm,const u8 * key,u32 keylen)801 static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
802 			  u32 keylen)
803 {
804 	struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
805 	struct mtk_sha_hmac_ctx *bctx = tctx->base;
806 	size_t bs = crypto_shash_blocksize(bctx->shash);
807 	size_t ds = crypto_shash_digestsize(bctx->shash);
808 	int err, i;
809 
810 	SHASH_DESC_ON_STACK(shash, bctx->shash);
811 
812 	shash->tfm = bctx->shash;
813 	shash->flags = crypto_shash_get_flags(bctx->shash) &
814 		       CRYPTO_TFM_REQ_MAY_SLEEP;
815 
816 	if (keylen > bs) {
817 		err = crypto_shash_digest(shash, key, keylen, bctx->ipad);
818 		if (err)
819 			return err;
820 		keylen = ds;
821 	} else {
822 		memcpy(bctx->ipad, key, keylen);
823 	}
824 
825 	memset(bctx->ipad + keylen, 0, bs - keylen);
826 	memcpy(bctx->opad, bctx->ipad, bs);
827 
828 	for (i = 0; i < bs; i++) {
829 		bctx->ipad[i] ^= HMAC_IPAD_VALUE;
830 		bctx->opad[i] ^= HMAC_OPAD_VALUE;
831 	}
832 
833 	return 0;
834 }
835 
mtk_sha_export(struct ahash_request * req,void * out)836 static int mtk_sha_export(struct ahash_request *req, void *out)
837 {
838 	const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
839 
840 	memcpy(out, ctx, sizeof(*ctx));
841 	return 0;
842 }
843 
mtk_sha_import(struct ahash_request * req,const void * in)844 static int mtk_sha_import(struct ahash_request *req, const void *in)
845 {
846 	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
847 
848 	memcpy(ctx, in, sizeof(*ctx));
849 	return 0;
850 }
851 
mtk_sha_cra_init_alg(struct crypto_tfm * tfm,const char * alg_base)852 static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
853 				const char *alg_base)
854 {
855 	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
856 	struct mtk_cryp *cryp = NULL;
857 
858 	cryp = mtk_sha_find_dev(tctx);
859 	if (!cryp)
860 		return -ENODEV;
861 
862 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
863 				 sizeof(struct mtk_sha_reqctx));
864 
865 	if (alg_base) {
866 		struct mtk_sha_hmac_ctx *bctx = tctx->base;
867 
868 		tctx->flags |= SHA_FLAGS_HMAC;
869 		bctx->shash = crypto_alloc_shash(alg_base, 0,
870 					CRYPTO_ALG_NEED_FALLBACK);
871 		if (IS_ERR(bctx->shash)) {
872 			pr_err("base driver %s could not be loaded.\n",
873 			       alg_base);
874 
875 			return PTR_ERR(bctx->shash);
876 		}
877 	}
878 	return 0;
879 }
880 
mtk_sha_cra_init(struct crypto_tfm * tfm)881 static int mtk_sha_cra_init(struct crypto_tfm *tfm)
882 {
883 	return mtk_sha_cra_init_alg(tfm, NULL);
884 }
885 
mtk_sha_cra_sha1_init(struct crypto_tfm * tfm)886 static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
887 {
888 	return mtk_sha_cra_init_alg(tfm, "sha1");
889 }
890 
mtk_sha_cra_sha224_init(struct crypto_tfm * tfm)891 static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
892 {
893 	return mtk_sha_cra_init_alg(tfm, "sha224");
894 }
895 
mtk_sha_cra_sha256_init(struct crypto_tfm * tfm)896 static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
897 {
898 	return mtk_sha_cra_init_alg(tfm, "sha256");
899 }
900 
mtk_sha_cra_sha384_init(struct crypto_tfm * tfm)901 static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
902 {
903 	return mtk_sha_cra_init_alg(tfm, "sha384");
904 }
905 
mtk_sha_cra_sha512_init(struct crypto_tfm * tfm)906 static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
907 {
908 	return mtk_sha_cra_init_alg(tfm, "sha512");
909 }
910 
mtk_sha_cra_exit(struct crypto_tfm * tfm)911 static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
912 {
913 	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
914 
915 	if (tctx->flags & SHA_FLAGS_HMAC) {
916 		struct mtk_sha_hmac_ctx *bctx = tctx->base;
917 
918 		crypto_free_shash(bctx->shash);
919 	}
920 }
921 
922 static struct ahash_alg algs_sha1_sha224_sha256[] = {
923 {
924 	.init		= mtk_sha_init,
925 	.update		= mtk_sha_update,
926 	.final		= mtk_sha_final,
927 	.finup		= mtk_sha_finup,
928 	.digest		= mtk_sha_digest,
929 	.export		= mtk_sha_export,
930 	.import		= mtk_sha_import,
931 	.halg.digestsize	= SHA1_DIGEST_SIZE,
932 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
933 	.halg.base	= {
934 		.cra_name		= "sha1",
935 		.cra_driver_name	= "mtk-sha1",
936 		.cra_priority		= 400,
937 		.cra_flags		= CRYPTO_ALG_ASYNC,
938 		.cra_blocksize		= SHA1_BLOCK_SIZE,
939 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
940 		.cra_alignmask		= SHA_ALIGN_MSK,
941 		.cra_module		= THIS_MODULE,
942 		.cra_init		= mtk_sha_cra_init,
943 		.cra_exit		= mtk_sha_cra_exit,
944 	}
945 },
946 {
947 	.init		= mtk_sha_init,
948 	.update		= mtk_sha_update,
949 	.final		= mtk_sha_final,
950 	.finup		= mtk_sha_finup,
951 	.digest		= mtk_sha_digest,
952 	.export		= mtk_sha_export,
953 	.import		= mtk_sha_import,
954 	.halg.digestsize	= SHA224_DIGEST_SIZE,
955 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
956 	.halg.base	= {
957 		.cra_name		= "sha224",
958 		.cra_driver_name	= "mtk-sha224",
959 		.cra_priority		= 400,
960 		.cra_flags		= CRYPTO_ALG_ASYNC,
961 		.cra_blocksize		= SHA224_BLOCK_SIZE,
962 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
963 		.cra_alignmask		= SHA_ALIGN_MSK,
964 		.cra_module		= THIS_MODULE,
965 		.cra_init		= mtk_sha_cra_init,
966 		.cra_exit		= mtk_sha_cra_exit,
967 	}
968 },
969 {
970 	.init		= mtk_sha_init,
971 	.update		= mtk_sha_update,
972 	.final		= mtk_sha_final,
973 	.finup		= mtk_sha_finup,
974 	.digest		= mtk_sha_digest,
975 	.export		= mtk_sha_export,
976 	.import		= mtk_sha_import,
977 	.halg.digestsize	= SHA256_DIGEST_SIZE,
978 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
979 	.halg.base	= {
980 		.cra_name		= "sha256",
981 		.cra_driver_name	= "mtk-sha256",
982 		.cra_priority		= 400,
983 		.cra_flags		= CRYPTO_ALG_ASYNC,
984 		.cra_blocksize		= SHA256_BLOCK_SIZE,
985 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
986 		.cra_alignmask		= SHA_ALIGN_MSK,
987 		.cra_module		= THIS_MODULE,
988 		.cra_init		= mtk_sha_cra_init,
989 		.cra_exit		= mtk_sha_cra_exit,
990 	}
991 },
992 {
993 	.init		= mtk_sha_init,
994 	.update		= mtk_sha_update,
995 	.final		= mtk_sha_final,
996 	.finup		= mtk_sha_finup,
997 	.digest		= mtk_sha_digest,
998 	.export		= mtk_sha_export,
999 	.import		= mtk_sha_import,
1000 	.setkey		= mtk_sha_setkey,
1001 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1002 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1003 	.halg.base	= {
1004 		.cra_name		= "hmac(sha1)",
1005 		.cra_driver_name	= "mtk-hmac-sha1",
1006 		.cra_priority		= 400,
1007 		.cra_flags		= CRYPTO_ALG_ASYNC |
1008 					  CRYPTO_ALG_NEED_FALLBACK,
1009 		.cra_blocksize		= SHA1_BLOCK_SIZE,
1010 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1011 					sizeof(struct mtk_sha_hmac_ctx),
1012 		.cra_alignmask		= SHA_ALIGN_MSK,
1013 		.cra_module		= THIS_MODULE,
1014 		.cra_init		= mtk_sha_cra_sha1_init,
1015 		.cra_exit		= mtk_sha_cra_exit,
1016 	}
1017 },
1018 {
1019 	.init		= mtk_sha_init,
1020 	.update		= mtk_sha_update,
1021 	.final		= mtk_sha_final,
1022 	.finup		= mtk_sha_finup,
1023 	.digest		= mtk_sha_digest,
1024 	.export		= mtk_sha_export,
1025 	.import		= mtk_sha_import,
1026 	.setkey		= mtk_sha_setkey,
1027 	.halg.digestsize	= SHA224_DIGEST_SIZE,
1028 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1029 	.halg.base	= {
1030 		.cra_name		= "hmac(sha224)",
1031 		.cra_driver_name	= "mtk-hmac-sha224",
1032 		.cra_priority		= 400,
1033 		.cra_flags		= CRYPTO_ALG_ASYNC |
1034 					  CRYPTO_ALG_NEED_FALLBACK,
1035 		.cra_blocksize		= SHA224_BLOCK_SIZE,
1036 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1037 					sizeof(struct mtk_sha_hmac_ctx),
1038 		.cra_alignmask		= SHA_ALIGN_MSK,
1039 		.cra_module		= THIS_MODULE,
1040 		.cra_init		= mtk_sha_cra_sha224_init,
1041 		.cra_exit		= mtk_sha_cra_exit,
1042 	}
1043 },
1044 {
1045 	.init		= mtk_sha_init,
1046 	.update		= mtk_sha_update,
1047 	.final		= mtk_sha_final,
1048 	.finup		= mtk_sha_finup,
1049 	.digest		= mtk_sha_digest,
1050 	.export		= mtk_sha_export,
1051 	.import		= mtk_sha_import,
1052 	.setkey		= mtk_sha_setkey,
1053 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1054 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1055 	.halg.base	= {
1056 		.cra_name		= "hmac(sha256)",
1057 		.cra_driver_name	= "mtk-hmac-sha256",
1058 		.cra_priority		= 400,
1059 		.cra_flags		= CRYPTO_ALG_ASYNC |
1060 					  CRYPTO_ALG_NEED_FALLBACK,
1061 		.cra_blocksize		= SHA256_BLOCK_SIZE,
1062 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1063 					sizeof(struct mtk_sha_hmac_ctx),
1064 		.cra_alignmask		= SHA_ALIGN_MSK,
1065 		.cra_module		= THIS_MODULE,
1066 		.cra_init		= mtk_sha_cra_sha256_init,
1067 		.cra_exit		= mtk_sha_cra_exit,
1068 	}
1069 },
1070 };
1071 
1072 static struct ahash_alg algs_sha384_sha512[] = {
1073 {
1074 	.init		= mtk_sha_init,
1075 	.update		= mtk_sha_update,
1076 	.final		= mtk_sha_final,
1077 	.finup		= mtk_sha_finup,
1078 	.digest		= mtk_sha_digest,
1079 	.export		= mtk_sha_export,
1080 	.import		= mtk_sha_import,
1081 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1082 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1083 	.halg.base	= {
1084 		.cra_name		= "sha384",
1085 		.cra_driver_name	= "mtk-sha384",
1086 		.cra_priority		= 400,
1087 		.cra_flags		= CRYPTO_ALG_ASYNC,
1088 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1089 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
1090 		.cra_alignmask		= SHA_ALIGN_MSK,
1091 		.cra_module		= THIS_MODULE,
1092 		.cra_init		= mtk_sha_cra_init,
1093 		.cra_exit		= mtk_sha_cra_exit,
1094 	}
1095 },
1096 {
1097 	.init		= mtk_sha_init,
1098 	.update		= mtk_sha_update,
1099 	.final		= mtk_sha_final,
1100 	.finup		= mtk_sha_finup,
1101 	.digest		= mtk_sha_digest,
1102 	.export		= mtk_sha_export,
1103 	.import		= mtk_sha_import,
1104 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1105 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1106 	.halg.base	= {
1107 		.cra_name		= "sha512",
1108 		.cra_driver_name	= "mtk-sha512",
1109 		.cra_priority		= 400,
1110 		.cra_flags		= CRYPTO_ALG_ASYNC,
1111 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1112 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
1113 		.cra_alignmask		= SHA_ALIGN_MSK,
1114 		.cra_module		= THIS_MODULE,
1115 		.cra_init		= mtk_sha_cra_init,
1116 		.cra_exit		= mtk_sha_cra_exit,
1117 	}
1118 },
1119 {
1120 	.init		= mtk_sha_init,
1121 	.update		= mtk_sha_update,
1122 	.final		= mtk_sha_final,
1123 	.finup		= mtk_sha_finup,
1124 	.digest		= mtk_sha_digest,
1125 	.export		= mtk_sha_export,
1126 	.import		= mtk_sha_import,
1127 	.setkey		= mtk_sha_setkey,
1128 	.halg.digestsize	= SHA384_DIGEST_SIZE,
1129 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1130 	.halg.base	= {
1131 		.cra_name		= "hmac(sha384)",
1132 		.cra_driver_name	= "mtk-hmac-sha384",
1133 		.cra_priority		= 400,
1134 		.cra_flags		= CRYPTO_ALG_ASYNC |
1135 					  CRYPTO_ALG_NEED_FALLBACK,
1136 		.cra_blocksize		= SHA384_BLOCK_SIZE,
1137 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1138 					sizeof(struct mtk_sha_hmac_ctx),
1139 		.cra_alignmask		= SHA_ALIGN_MSK,
1140 		.cra_module		= THIS_MODULE,
1141 		.cra_init		= mtk_sha_cra_sha384_init,
1142 		.cra_exit		= mtk_sha_cra_exit,
1143 	}
1144 },
1145 {
1146 	.init		= mtk_sha_init,
1147 	.update		= mtk_sha_update,
1148 	.final		= mtk_sha_final,
1149 	.finup		= mtk_sha_finup,
1150 	.digest		= mtk_sha_digest,
1151 	.export		= mtk_sha_export,
1152 	.import		= mtk_sha_import,
1153 	.setkey		= mtk_sha_setkey,
1154 	.halg.digestsize	= SHA512_DIGEST_SIZE,
1155 	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1156 	.halg.base	= {
1157 		.cra_name		= "hmac(sha512)",
1158 		.cra_driver_name	= "mtk-hmac-sha512",
1159 		.cra_priority		= 400,
1160 		.cra_flags		= CRYPTO_ALG_ASYNC |
1161 					  CRYPTO_ALG_NEED_FALLBACK,
1162 		.cra_blocksize		= SHA512_BLOCK_SIZE,
1163 		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1164 					sizeof(struct mtk_sha_hmac_ctx),
1165 		.cra_alignmask		= SHA_ALIGN_MSK,
1166 		.cra_module		= THIS_MODULE,
1167 		.cra_init		= mtk_sha_cra_sha512_init,
1168 		.cra_exit		= mtk_sha_cra_exit,
1169 	}
1170 },
1171 };
1172 
mtk_sha_queue_task(unsigned long data)1173 static void mtk_sha_queue_task(unsigned long data)
1174 {
1175 	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1176 
1177 	mtk_sha_handle_queue(sha->cryp, sha->id - MTK_RING2, NULL);
1178 }
1179 
mtk_sha_done_task(unsigned long data)1180 static void mtk_sha_done_task(unsigned long data)
1181 {
1182 	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1183 	struct mtk_cryp *cryp = sha->cryp;
1184 
1185 	mtk_sha_unmap(cryp, sha);
1186 	mtk_sha_complete(cryp, sha);
1187 }
1188 
mtk_sha_irq(int irq,void * dev_id)1189 static irqreturn_t mtk_sha_irq(int irq, void *dev_id)
1190 {
1191 	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)dev_id;
1192 	struct mtk_cryp *cryp = sha->cryp;
1193 	u32 val = mtk_sha_read(cryp, RDR_STAT(sha->id));
1194 
1195 	mtk_sha_write(cryp, RDR_STAT(sha->id), val);
1196 
1197 	if (likely((SHA_FLAGS_BUSY & sha->flags))) {
1198 		mtk_sha_write(cryp, RDR_PROC_COUNT(sha->id), MTK_CNT_RST);
1199 		mtk_sha_write(cryp, RDR_THRESH(sha->id),
1200 			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1201 
1202 		tasklet_schedule(&sha->done_task);
1203 	} else {
1204 		dev_warn(cryp->dev, "SHA interrupt when no active requests.\n");
1205 	}
1206 	return IRQ_HANDLED;
1207 }
1208 
1209 /*
1210  * The purpose of two SHA records is used to get extra performance.
1211  * It is similar to mtk_aes_record_init().
1212  */
mtk_sha_record_init(struct mtk_cryp * cryp)1213 static int mtk_sha_record_init(struct mtk_cryp *cryp)
1214 {
1215 	struct mtk_sha_rec **sha = cryp->sha;
1216 	int i, err = -ENOMEM;
1217 
1218 	for (i = 0; i < MTK_REC_NUM; i++) {
1219 		sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
1220 		if (!sha[i])
1221 			goto err_cleanup;
1222 
1223 		sha[i]->cryp = cryp;
1224 
1225 		spin_lock_init(&sha[i]->lock);
1226 		crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
1227 
1228 		tasklet_init(&sha[i]->queue_task, mtk_sha_queue_task,
1229 			     (unsigned long)sha[i]);
1230 		tasklet_init(&sha[i]->done_task, mtk_sha_done_task,
1231 			     (unsigned long)sha[i]);
1232 	}
1233 
1234 	/* Link to ring2 and ring3 respectively */
1235 	sha[0]->id = MTK_RING2;
1236 	sha[1]->id = MTK_RING3;
1237 
1238 	cryp->rec = 1;
1239 
1240 	return 0;
1241 
1242 err_cleanup:
1243 	for (; i--; )
1244 		kfree(sha[i]);
1245 	return err;
1246 }
1247 
mtk_sha_record_free(struct mtk_cryp * cryp)1248 static void mtk_sha_record_free(struct mtk_cryp *cryp)
1249 {
1250 	int i;
1251 
1252 	for (i = 0; i < MTK_REC_NUM; i++) {
1253 		tasklet_kill(&cryp->sha[i]->done_task);
1254 		tasklet_kill(&cryp->sha[i]->queue_task);
1255 
1256 		kfree(cryp->sha[i]);
1257 	}
1258 }
1259 
mtk_sha_unregister_algs(void)1260 static void mtk_sha_unregister_algs(void)
1261 {
1262 	int i;
1263 
1264 	for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
1265 		crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1266 
1267 	for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
1268 		crypto_unregister_ahash(&algs_sha384_sha512[i]);
1269 }
1270 
mtk_sha_register_algs(void)1271 static int mtk_sha_register_algs(void)
1272 {
1273 	int err, i;
1274 
1275 	for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
1276 		err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
1277 		if (err)
1278 			goto err_sha_224_256_algs;
1279 	}
1280 
1281 	for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
1282 		err = crypto_register_ahash(&algs_sha384_sha512[i]);
1283 		if (err)
1284 			goto err_sha_384_512_algs;
1285 	}
1286 
1287 	return 0;
1288 
1289 err_sha_384_512_algs:
1290 	for (; i--; )
1291 		crypto_unregister_ahash(&algs_sha384_sha512[i]);
1292 	i = ARRAY_SIZE(algs_sha1_sha224_sha256);
1293 err_sha_224_256_algs:
1294 	for (; i--; )
1295 		crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1296 
1297 	return err;
1298 }
1299 
mtk_hash_alg_register(struct mtk_cryp * cryp)1300 int mtk_hash_alg_register(struct mtk_cryp *cryp)
1301 {
1302 	int err;
1303 
1304 	INIT_LIST_HEAD(&cryp->sha_list);
1305 
1306 	/* Initialize two hash records */
1307 	err = mtk_sha_record_init(cryp);
1308 	if (err)
1309 		goto err_record;
1310 
1311 	err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING2], mtk_sha_irq,
1312 			       0, "mtk-sha", cryp->sha[0]);
1313 	if (err) {
1314 		dev_err(cryp->dev, "unable to request sha irq0.\n");
1315 		goto err_res;
1316 	}
1317 
1318 	err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING3], mtk_sha_irq,
1319 			       0, "mtk-sha", cryp->sha[1]);
1320 	if (err) {
1321 		dev_err(cryp->dev, "unable to request sha irq1.\n");
1322 		goto err_res;
1323 	}
1324 
1325 	/* Enable ring2 and ring3 interrupt for hash */
1326 	mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING2), MTK_IRQ_RDR2);
1327 	mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING3), MTK_IRQ_RDR3);
1328 
1329 	spin_lock(&mtk_sha.lock);
1330 	list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
1331 	spin_unlock(&mtk_sha.lock);
1332 
1333 	err = mtk_sha_register_algs();
1334 	if (err)
1335 		goto err_algs;
1336 
1337 	return 0;
1338 
1339 err_algs:
1340 	spin_lock(&mtk_sha.lock);
1341 	list_del(&cryp->sha_list);
1342 	spin_unlock(&mtk_sha.lock);
1343 err_res:
1344 	mtk_sha_record_free(cryp);
1345 err_record:
1346 
1347 	dev_err(cryp->dev, "mtk-sha initialization failed.\n");
1348 	return err;
1349 }
1350 
mtk_hash_alg_release(struct mtk_cryp * cryp)1351 void mtk_hash_alg_release(struct mtk_cryp *cryp)
1352 {
1353 	spin_lock(&mtk_sha.lock);
1354 	list_del(&cryp->sha_list);
1355 	spin_unlock(&mtk_sha.lock);
1356 
1357 	mtk_sha_unregister_algs();
1358 	mtk_sha_record_free(cryp);
1359 }
1360