• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Cryptographic API.
3  * Support for Nomadik hardware crypto engine.
4 
5  * Copyright (C) ST-Ericsson SA 2010
6  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11  * License terms: GNU General Public License (GPL) version 2
12  */
13 
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/crypto.h>
26 
27 #include <linux/regulator/consumer.h>
28 #include <linux/dmaengine.h>
29 #include <linux/bitops.h>
30 
31 #include <crypto/internal/hash.h>
32 #include <crypto/sha.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35 
36 #include <linux/platform_data/crypto-ux500.h>
37 
38 #include "hash_alg.h"
39 
40 static int hash_mode;
41 module_param(hash_mode, int, 0);
42 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
43 
44 /* HMAC-SHA1, no key */
45 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
46 	0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
47 	0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
48 	0x70, 0x69, 0x0e, 0x1d
49 };
50 
51 /* HMAC-SHA256, no key */
52 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
53 	0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
54 	0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
55 	0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
56 	0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
57 };
58 
59 /**
60  * struct hash_driver_data - data specific to the driver.
61  *
62  * @device_list:	A list of registered devices to choose from.
63  * @device_allocation:	A semaphore initialized with number of devices.
64  */
65 struct hash_driver_data {
66 	struct klist		device_list;
67 	struct semaphore	device_allocation;
68 };
69 
70 static struct hash_driver_data	driver_data;
71 
72 /* Declaration of functions */
73 /**
74  * hash_messagepad - Pads a message and write the nblw bits.
75  * @device_data:	Structure for the hash device.
76  * @message:		Last word of a message
77  * @index_bytes:	The number of bytes in the last message
78  *
79  * This function manages the final part of the digest calculation, when less
80  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
81  *
82  */
83 static void hash_messagepad(struct hash_device_data *device_data,
84 			    const u32 *message, u8 index_bytes);
85 
86 /**
87  * release_hash_device - Releases a previously allocated hash device.
88  * @device_data:	Structure for the hash device.
89  *
90  */
release_hash_device(struct hash_device_data * device_data)91 static void release_hash_device(struct hash_device_data *device_data)
92 {
93 	spin_lock(&device_data->ctx_lock);
94 	device_data->current_ctx->device = NULL;
95 	device_data->current_ctx = NULL;
96 	spin_unlock(&device_data->ctx_lock);
97 
98 	/*
99 	 * The down_interruptible part for this semaphore is called in
100 	 * cryp_get_device_data.
101 	 */
102 	up(&driver_data.device_allocation);
103 }
104 
hash_dma_setup_channel(struct hash_device_data * device_data,struct device * dev)105 static void hash_dma_setup_channel(struct hash_device_data *device_data,
106 				   struct device *dev)
107 {
108 	struct hash_platform_data *platform_data = dev->platform_data;
109 	struct dma_slave_config conf = {
110 		.direction = DMA_MEM_TO_DEV,
111 		.dst_addr = device_data->phybase + HASH_DMA_FIFO,
112 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
113 		.dst_maxburst = 16,
114 	};
115 
116 	dma_cap_zero(device_data->dma.mask);
117 	dma_cap_set(DMA_SLAVE, device_data->dma.mask);
118 
119 	device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
120 	device_data->dma.chan_mem2hash =
121 		dma_request_channel(device_data->dma.mask,
122 				    platform_data->dma_filter,
123 				    device_data->dma.cfg_mem2hash);
124 
125 	dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
126 
127 	init_completion(&device_data->dma.complete);
128 }
129 
hash_dma_callback(void * data)130 static void hash_dma_callback(void *data)
131 {
132 	struct hash_ctx *ctx = data;
133 
134 	complete(&ctx->device->dma.complete);
135 }
136 
hash_set_dma_transfer(struct hash_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)137 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
138 				 int len, enum dma_data_direction direction)
139 {
140 	struct dma_async_tx_descriptor *desc = NULL;
141 	struct dma_chan *channel = NULL;
142 	dma_cookie_t cookie;
143 
144 	if (direction != DMA_TO_DEVICE) {
145 		dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
146 			__func__);
147 		return -EFAULT;
148 	}
149 
150 	sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
151 
152 	channel = ctx->device->dma.chan_mem2hash;
153 	ctx->device->dma.sg = sg;
154 	ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
155 			ctx->device->dma.sg, ctx->device->dma.nents,
156 			direction);
157 
158 	if (!ctx->device->dma.sg_len) {
159 		dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
160 			__func__);
161 		return -EFAULT;
162 	}
163 
164 	dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
165 		__func__);
166 	desc = dmaengine_prep_slave_sg(channel,
167 			ctx->device->dma.sg, ctx->device->dma.sg_len,
168 			DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
169 	if (!desc) {
170 		dev_err(ctx->device->dev,
171 			"%s: dmaengine_prep_slave_sg() failed!\n", __func__);
172 		return -EFAULT;
173 	}
174 
175 	desc->callback = hash_dma_callback;
176 	desc->callback_param = ctx;
177 
178 	cookie = dmaengine_submit(desc);
179 	dma_async_issue_pending(channel);
180 
181 	return 0;
182 }
183 
hash_dma_done(struct hash_ctx * ctx)184 static void hash_dma_done(struct hash_ctx *ctx)
185 {
186 	struct dma_chan *chan;
187 
188 	chan = ctx->device->dma.chan_mem2hash;
189 	dmaengine_terminate_all(chan);
190 	dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
191 		     ctx->device->dma.sg_len, DMA_TO_DEVICE);
192 }
193 
hash_dma_write(struct hash_ctx * ctx,struct scatterlist * sg,int len)194 static int hash_dma_write(struct hash_ctx *ctx,
195 			  struct scatterlist *sg, int len)
196 {
197 	int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
198 	if (error) {
199 		dev_dbg(ctx->device->dev,
200 			"%s: hash_set_dma_transfer() failed\n", __func__);
201 		return error;
202 	}
203 
204 	return len;
205 }
206 
207 /**
208  * get_empty_message_digest - Returns a pre-calculated digest for
209  * the empty message.
210  * @device_data:	Structure for the hash device.
211  * @zero_hash:		Buffer to return the empty message digest.
212  * @zero_hash_size:	Hash size of the empty message digest.
213  * @zero_digest:	True if zero_digest returned.
214  */
get_empty_message_digest(struct hash_device_data * device_data,u8 * zero_hash,u32 * zero_hash_size,bool * zero_digest)215 static int get_empty_message_digest(
216 		struct hash_device_data *device_data,
217 		u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
218 {
219 	int ret = 0;
220 	struct hash_ctx *ctx = device_data->current_ctx;
221 	*zero_digest = false;
222 
223 	/**
224 	 * Caller responsible for ctx != NULL.
225 	 */
226 
227 	if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
228 		if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
229 			memcpy(zero_hash, &sha1_zero_message_hash[0],
230 			       SHA1_DIGEST_SIZE);
231 			*zero_hash_size = SHA1_DIGEST_SIZE;
232 			*zero_digest = true;
233 		} else if (HASH_ALGO_SHA256 ==
234 				ctx->config.algorithm) {
235 			memcpy(zero_hash, &sha256_zero_message_hash[0],
236 			       SHA256_DIGEST_SIZE);
237 			*zero_hash_size = SHA256_DIGEST_SIZE;
238 			*zero_digest = true;
239 		} else {
240 			dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
241 				__func__);
242 			ret = -EINVAL;
243 			goto out;
244 		}
245 	} else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
246 		if (!ctx->keylen) {
247 			if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
248 				memcpy(zero_hash, &zero_message_hmac_sha1[0],
249 				       SHA1_DIGEST_SIZE);
250 				*zero_hash_size = SHA1_DIGEST_SIZE;
251 				*zero_digest = true;
252 			} else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
253 				memcpy(zero_hash, &zero_message_hmac_sha256[0],
254 				       SHA256_DIGEST_SIZE);
255 				*zero_hash_size = SHA256_DIGEST_SIZE;
256 				*zero_digest = true;
257 			} else {
258 				dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
259 					__func__);
260 				ret = -EINVAL;
261 				goto out;
262 			}
263 		} else {
264 			dev_dbg(device_data->dev,
265 				"%s: Continue hash calculation, since hmac key available\n",
266 				__func__);
267 		}
268 	}
269 out:
270 
271 	return ret;
272 }
273 
274 /**
275  * hash_disable_power - Request to disable power and clock.
276  * @device_data:	Structure for the hash device.
277  * @save_device_state:	If true, saves the current hw state.
278  *
279  * This function request for disabling power (regulator) and clock,
280  * and could also save current hw state.
281  */
hash_disable_power(struct hash_device_data * device_data,bool save_device_state)282 static int hash_disable_power(struct hash_device_data *device_data,
283 			      bool save_device_state)
284 {
285 	int ret = 0;
286 	struct device *dev = device_data->dev;
287 
288 	spin_lock(&device_data->power_state_lock);
289 	if (!device_data->power_state)
290 		goto out;
291 
292 	if (save_device_state) {
293 		hash_save_state(device_data,
294 				&device_data->state);
295 		device_data->restore_dev_state = true;
296 	}
297 
298 	clk_disable(device_data->clk);
299 	ret = regulator_disable(device_data->regulator);
300 	if (ret)
301 		dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
302 
303 	device_data->power_state = false;
304 
305 out:
306 	spin_unlock(&device_data->power_state_lock);
307 
308 	return ret;
309 }
310 
311 /**
312  * hash_enable_power - Request to enable power and clock.
313  * @device_data:		Structure for the hash device.
314  * @restore_device_state:	If true, restores a previous saved hw state.
315  *
316  * This function request for enabling power (regulator) and clock,
317  * and could also restore a previously saved hw state.
318  */
hash_enable_power(struct hash_device_data * device_data,bool restore_device_state)319 static int hash_enable_power(struct hash_device_data *device_data,
320 			     bool restore_device_state)
321 {
322 	int ret = 0;
323 	struct device *dev = device_data->dev;
324 
325 	spin_lock(&device_data->power_state_lock);
326 	if (!device_data->power_state) {
327 		ret = regulator_enable(device_data->regulator);
328 		if (ret) {
329 			dev_err(dev, "%s: regulator_enable() failed!\n",
330 				__func__);
331 			goto out;
332 		}
333 		ret = clk_enable(device_data->clk);
334 		if (ret) {
335 			dev_err(dev, "%s: clk_enable() failed!\n", __func__);
336 			ret = regulator_disable(
337 					device_data->regulator);
338 			goto out;
339 		}
340 		device_data->power_state = true;
341 	}
342 
343 	if (device_data->restore_dev_state) {
344 		if (restore_device_state) {
345 			device_data->restore_dev_state = false;
346 			hash_resume_state(device_data, &device_data->state);
347 		}
348 	}
349 out:
350 	spin_unlock(&device_data->power_state_lock);
351 
352 	return ret;
353 }
354 
355 /**
356  * hash_get_device_data - Checks for an available hash device and return it.
357  * @hash_ctx:		Structure for the hash context.
358  * @device_data:	Structure for the hash device.
359  *
360  * This function check for an available hash device and return it to
361  * the caller.
362  * Note! Caller need to release the device, calling up().
363  */
hash_get_device_data(struct hash_ctx * ctx,struct hash_device_data ** device_data)364 static int hash_get_device_data(struct hash_ctx *ctx,
365 				struct hash_device_data **device_data)
366 {
367 	int			ret;
368 	struct klist_iter	device_iterator;
369 	struct klist_node	*device_node;
370 	struct hash_device_data *local_device_data = NULL;
371 
372 	/* Wait until a device is available */
373 	ret = down_interruptible(&driver_data.device_allocation);
374 	if (ret)
375 		return ret;  /* Interrupted */
376 
377 	/* Select a device */
378 	klist_iter_init(&driver_data.device_list, &device_iterator);
379 	device_node = klist_next(&device_iterator);
380 	while (device_node) {
381 		local_device_data = container_of(device_node,
382 					   struct hash_device_data, list_node);
383 		spin_lock(&local_device_data->ctx_lock);
384 		/* current_ctx allocates a device, NULL = unallocated */
385 		if (local_device_data->current_ctx) {
386 			device_node = klist_next(&device_iterator);
387 		} else {
388 			local_device_data->current_ctx = ctx;
389 			ctx->device = local_device_data;
390 			spin_unlock(&local_device_data->ctx_lock);
391 			break;
392 		}
393 		spin_unlock(&local_device_data->ctx_lock);
394 	}
395 	klist_iter_exit(&device_iterator);
396 
397 	if (!device_node) {
398 		/**
399 		 * No free device found.
400 		 * Since we allocated a device with down_interruptible, this
401 		 * should not be able to happen.
402 		 * Number of available devices, which are contained in
403 		 * device_allocation, is therefore decremented by not doing
404 		 * an up(device_allocation).
405 		 */
406 		return -EBUSY;
407 	}
408 
409 	*device_data = local_device_data;
410 
411 	return 0;
412 }
413 
414 /**
415  * hash_hw_write_key - Writes the key to the hardware registries.
416  *
417  * @device_data:	Structure for the hash device.
418  * @key:		Key to be written.
419  * @keylen:		The lengt of the key.
420  *
421  * Note! This function DOES NOT write to the NBLW registry, even though
422  * specified in the the hw design spec. Either due to incorrect info in the
423  * spec or due to a bug in the hw.
424  */
hash_hw_write_key(struct hash_device_data * device_data,const u8 * key,unsigned int keylen)425 static void hash_hw_write_key(struct hash_device_data *device_data,
426 			      const u8 *key, unsigned int keylen)
427 {
428 	u32 word = 0;
429 	int nwords = 1;
430 
431 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
432 
433 	while (keylen >= 4) {
434 		u32 *key_word = (u32 *)key;
435 
436 		HASH_SET_DIN(key_word, nwords);
437 		keylen -= 4;
438 		key += 4;
439 	}
440 
441 	/* Take care of the remaining bytes in the last word */
442 	if (keylen) {
443 		word = 0;
444 		while (keylen) {
445 			word |= (key[keylen - 1] << (8 * (keylen - 1)));
446 			keylen--;
447 		}
448 
449 		HASH_SET_DIN(&word, nwords);
450 	}
451 
452 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
453 		cpu_relax();
454 
455 	HASH_SET_DCAL;
456 
457 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
458 		cpu_relax();
459 }
460 
461 /**
462  * init_hash_hw - Initialise the hash hardware for a new calculation.
463  * @device_data:	Structure for the hash device.
464  * @ctx:		The hash context.
465  *
466  * This function will enable the bits needed to clear and start a new
467  * calculation.
468  */
init_hash_hw(struct hash_device_data * device_data,struct hash_ctx * ctx)469 static int init_hash_hw(struct hash_device_data *device_data,
470 			struct hash_ctx *ctx)
471 {
472 	int ret = 0;
473 
474 	ret = hash_setconfiguration(device_data, &ctx->config);
475 	if (ret) {
476 		dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
477 			__func__);
478 		return ret;
479 	}
480 
481 	hash_begin(device_data, ctx);
482 
483 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
484 		hash_hw_write_key(device_data, ctx->key, ctx->keylen);
485 
486 	return ret;
487 }
488 
489 /**
490  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
491  *
492  * @sg:		Scatterlist.
493  * @size:	Size in bytes.
494  * @aligned:	True if sg data aligned to work in DMA mode.
495  *
496  */
hash_get_nents(struct scatterlist * sg,int size,bool * aligned)497 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
498 {
499 	int nents = 0;
500 	bool aligned_data = true;
501 
502 	while (size > 0 && sg) {
503 		nents++;
504 		size -= sg->length;
505 
506 		/* hash_set_dma_transfer will align last nent */
507 		if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
508 		    (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
509 			aligned_data = false;
510 
511 		sg = sg_next(sg);
512 	}
513 
514 	if (aligned)
515 		*aligned = aligned_data;
516 
517 	if (size != 0)
518 		return -EFAULT;
519 
520 	return nents;
521 }
522 
523 /**
524  * hash_dma_valid_data - checks for dma valid sg data.
525  * @sg:		Scatterlist.
526  * @datasize:	Datasize in bytes.
527  *
528  * NOTE! This function checks for dma valid sg data, since dma
529  * only accept datasizes of even wordsize.
530  */
hash_dma_valid_data(struct scatterlist * sg,int datasize)531 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
532 {
533 	bool aligned;
534 
535 	/* Need to include at least one nent, else error */
536 	if (hash_get_nents(sg, datasize, &aligned) < 1)
537 		return false;
538 
539 	return aligned;
540 }
541 
542 /**
543  * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
544  * @req: The hash request for the job.
545  *
546  * Initialize structures.
547  */
hash_init(struct ahash_request * req)548 static int hash_init(struct ahash_request *req)
549 {
550 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
551 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
552 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
553 
554 	if (!ctx->key)
555 		ctx->keylen = 0;
556 
557 	memset(&req_ctx->state, 0, sizeof(struct hash_state));
558 	req_ctx->updated = 0;
559 	if (hash_mode == HASH_MODE_DMA) {
560 		if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
561 			req_ctx->dma_mode = false; /* Don't use DMA */
562 
563 			pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
564 				 __func__, HASH_DMA_ALIGN_SIZE);
565 		} else {
566 			if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
567 			    hash_dma_valid_data(req->src, req->nbytes)) {
568 				req_ctx->dma_mode = true;
569 			} else {
570 				req_ctx->dma_mode = false;
571 				pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
572 					 __func__,
573 					 HASH_DMA_PERFORMANCE_MIN_SIZE);
574 			}
575 		}
576 	}
577 	return 0;
578 }
579 
580 /**
581  * hash_processblock - This function processes a single block of 512 bits (64
582  *                     bytes), word aligned, starting at message.
583  * @device_data:	Structure for the hash device.
584  * @message:		Block (512 bits) of message to be written to
585  *			the HASH hardware.
586  *
587  */
hash_processblock(struct hash_device_data * device_data,const u32 * message,int length)588 static void hash_processblock(struct hash_device_data *device_data,
589 			      const u32 *message, int length)
590 {
591 	int len = length / HASH_BYTES_PER_WORD;
592 	/*
593 	 * NBLW bits. Reset the number of bits in last word (NBLW).
594 	 */
595 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
596 
597 	/*
598 	 * Write message data to the HASH_DIN register.
599 	 */
600 	HASH_SET_DIN(message, len);
601 }
602 
603 /**
604  * hash_messagepad - Pads a message and write the nblw bits.
605  * @device_data:	Structure for the hash device.
606  * @message:		Last word of a message.
607  * @index_bytes:	The number of bytes in the last message.
608  *
609  * This function manages the final part of the digest calculation, when less
610  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
611  *
612  */
hash_messagepad(struct hash_device_data * device_data,const u32 * message,u8 index_bytes)613 static void hash_messagepad(struct hash_device_data *device_data,
614 			    const u32 *message, u8 index_bytes)
615 {
616 	int nwords = 1;
617 
618 	/*
619 	 * Clear hash str register, only clear NBLW
620 	 * since DCAL will be reset by hardware.
621 	 */
622 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
623 
624 	/* Main loop */
625 	while (index_bytes >= 4) {
626 		HASH_SET_DIN(message, nwords);
627 		index_bytes -= 4;
628 		message++;
629 	}
630 
631 	if (index_bytes)
632 		HASH_SET_DIN(message, nwords);
633 
634 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
635 		cpu_relax();
636 
637 	/* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
638 	HASH_SET_NBLW(index_bytes * 8);
639 	dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
640 		__func__, readl_relaxed(&device_data->base->din),
641 		readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
642 	HASH_SET_DCAL;
643 	dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
644 		__func__, readl_relaxed(&device_data->base->din),
645 		readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
646 
647 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
648 		cpu_relax();
649 }
650 
651 /**
652  * hash_incrementlength - Increments the length of the current message.
653  * @ctx: Hash context
654  * @incr: Length of message processed already
655  *
656  * Overflow cannot occur, because conditions for overflow are checked in
657  * hash_hw_update.
658  */
hash_incrementlength(struct hash_req_ctx * ctx,u32 incr)659 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
660 {
661 	ctx->state.length.low_word += incr;
662 
663 	/* Check for wrap-around */
664 	if (ctx->state.length.low_word < incr)
665 		ctx->state.length.high_word++;
666 }
667 
668 /**
669  * hash_setconfiguration - Sets the required configuration for the hash
670  *                         hardware.
671  * @device_data:	Structure for the hash device.
672  * @config:		Pointer to a configuration structure.
673  */
hash_setconfiguration(struct hash_device_data * device_data,struct hash_config * config)674 int hash_setconfiguration(struct hash_device_data *device_data,
675 			  struct hash_config *config)
676 {
677 	int ret = 0;
678 
679 	if (config->algorithm != HASH_ALGO_SHA1 &&
680 	    config->algorithm != HASH_ALGO_SHA256)
681 		return -EPERM;
682 
683 	/*
684 	 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
685 	 * to be written to HASH_DIN is considered as 32 bits.
686 	 */
687 	HASH_SET_DATA_FORMAT(config->data_format);
688 
689 	/*
690 	 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
691 	 */
692 	switch (config->algorithm) {
693 	case HASH_ALGO_SHA1:
694 		HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
695 		break;
696 
697 	case HASH_ALGO_SHA256:
698 		HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
699 		break;
700 
701 	default:
702 		dev_err(device_data->dev, "%s: Incorrect algorithm\n",
703 			__func__);
704 		return -EPERM;
705 	}
706 
707 	/*
708 	 * MODE bit. This bit selects between HASH or HMAC mode for the
709 	 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
710 	 */
711 	if (HASH_OPER_MODE_HASH == config->oper_mode)
712 		HASH_CLEAR_BITS(&device_data->base->cr,
713 				HASH_CR_MODE_MASK);
714 	else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
715 		HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
716 		if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
717 			/* Truncate key to blocksize */
718 			dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
719 			HASH_SET_BITS(&device_data->base->cr,
720 				      HASH_CR_LKEY_MASK);
721 		} else {
722 			dev_dbg(device_data->dev, "%s: LKEY cleared\n",
723 				__func__);
724 			HASH_CLEAR_BITS(&device_data->base->cr,
725 					HASH_CR_LKEY_MASK);
726 		}
727 	} else {	/* Wrong hash mode */
728 		ret = -EPERM;
729 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
730 			__func__);
731 	}
732 	return ret;
733 }
734 
735 /**
736  * hash_begin - This routine resets some globals and initializes the hash
737  *              hardware.
738  * @device_data:	Structure for the hash device.
739  * @ctx:		Hash context.
740  */
hash_begin(struct hash_device_data * device_data,struct hash_ctx * ctx)741 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
742 {
743 	/* HW and SW initializations */
744 	/* Note: there is no need to initialize buffer and digest members */
745 
746 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
747 		cpu_relax();
748 
749 	/*
750 	 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
751 	 * prepare the initialize the HASH accelerator to compute the message
752 	 * digest of a new message.
753 	 */
754 	HASH_INITIALIZE;
755 
756 	/*
757 	 * NBLW bits. Reset the number of bits in last word (NBLW).
758 	 */
759 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
760 }
761 
hash_process_data(struct hash_device_data * device_data,struct hash_ctx * ctx,struct hash_req_ctx * req_ctx,int msg_length,u8 * data_buffer,u8 * buffer,u8 * index)762 static int hash_process_data(struct hash_device_data *device_data,
763 			     struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
764 			     int msg_length, u8 *data_buffer, u8 *buffer,
765 			     u8 *index)
766 {
767 	int ret = 0;
768 	u32 count;
769 
770 	do {
771 		if ((*index + msg_length) < HASH_BLOCK_SIZE) {
772 			for (count = 0; count < msg_length; count++) {
773 				buffer[*index + count] =
774 					*(data_buffer + count);
775 			}
776 			*index += msg_length;
777 			msg_length = 0;
778 		} else {
779 			if (req_ctx->updated) {
780 				ret = hash_resume_state(device_data,
781 						&device_data->state);
782 				memmove(req_ctx->state.buffer,
783 					device_data->state.buffer,
784 					HASH_BLOCK_SIZE);
785 				if (ret) {
786 					dev_err(device_data->dev,
787 						"%s: hash_resume_state() failed!\n",
788 						__func__);
789 					goto out;
790 				}
791 			} else {
792 				ret = init_hash_hw(device_data, ctx);
793 				if (ret) {
794 					dev_err(device_data->dev,
795 						"%s: init_hash_hw() failed!\n",
796 						__func__);
797 					goto out;
798 				}
799 				req_ctx->updated = 1;
800 			}
801 			/*
802 			 * If 'data_buffer' is four byte aligned and
803 			 * local buffer does not have any data, we can
804 			 * write data directly from 'data_buffer' to
805 			 * HW peripheral, otherwise we first copy data
806 			 * to a local buffer
807 			 */
808 			if ((0 == (((u32)data_buffer) % 4)) &&
809 			    (0 == *index))
810 				hash_processblock(device_data,
811 						  (const u32 *)data_buffer,
812 						  HASH_BLOCK_SIZE);
813 			else {
814 				for (count = 0;
815 				     count < (u32)(HASH_BLOCK_SIZE - *index);
816 				     count++) {
817 					buffer[*index + count] =
818 						*(data_buffer + count);
819 				}
820 				hash_processblock(device_data,
821 						  (const u32 *)buffer,
822 						  HASH_BLOCK_SIZE);
823 			}
824 			hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
825 			data_buffer += (HASH_BLOCK_SIZE - *index);
826 
827 			msg_length -= (HASH_BLOCK_SIZE - *index);
828 			*index = 0;
829 
830 			ret = hash_save_state(device_data,
831 					&device_data->state);
832 
833 			memmove(device_data->state.buffer,
834 				req_ctx->state.buffer,
835 				HASH_BLOCK_SIZE);
836 			if (ret) {
837 				dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
838 					__func__);
839 				goto out;
840 			}
841 		}
842 	} while (msg_length != 0);
843 out:
844 
845 	return ret;
846 }
847 
848 /**
849  * hash_dma_final - The hash dma final function for SHA1/SHA256.
850  * @req:	The hash request for the job.
851  */
hash_dma_final(struct ahash_request * req)852 static int hash_dma_final(struct ahash_request *req)
853 {
854 	int ret = 0;
855 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
856 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
857 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
858 	struct hash_device_data *device_data;
859 	u8 digest[SHA256_DIGEST_SIZE];
860 	int bytes_written = 0;
861 
862 	ret = hash_get_device_data(ctx, &device_data);
863 	if (ret)
864 		return ret;
865 
866 	dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
867 
868 	if (req_ctx->updated) {
869 		ret = hash_resume_state(device_data, &device_data->state);
870 
871 		if (ret) {
872 			dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
873 				__func__);
874 			goto out;
875 		}
876 	}
877 
878 	if (!req_ctx->updated) {
879 		ret = hash_setconfiguration(device_data, &ctx->config);
880 		if (ret) {
881 			dev_err(device_data->dev,
882 				"%s: hash_setconfiguration() failed!\n",
883 				__func__);
884 			goto out;
885 		}
886 
887 		/* Enable DMA input */
888 		if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
889 			HASH_CLEAR_BITS(&device_data->base->cr,
890 					HASH_CR_DMAE_MASK);
891 		} else {
892 			HASH_SET_BITS(&device_data->base->cr,
893 				      HASH_CR_DMAE_MASK);
894 			HASH_SET_BITS(&device_data->base->cr,
895 				      HASH_CR_PRIVN_MASK);
896 		}
897 
898 		HASH_INITIALIZE;
899 
900 		if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
901 			hash_hw_write_key(device_data, ctx->key, ctx->keylen);
902 
903 		/* Number of bits in last word = (nbytes * 8) % 32 */
904 		HASH_SET_NBLW((req->nbytes * 8) % 32);
905 		req_ctx->updated = 1;
906 	}
907 
908 	/* Store the nents in the dma struct. */
909 	ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
910 	if (!ctx->device->dma.nents) {
911 		dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
912 			__func__);
913 		ret = ctx->device->dma.nents;
914 		goto out;
915 	}
916 
917 	bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
918 	if (bytes_written != req->nbytes) {
919 		dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
920 			__func__);
921 		ret = bytes_written;
922 		goto out;
923 	}
924 
925 	wait_for_completion(&ctx->device->dma.complete);
926 	hash_dma_done(ctx);
927 
928 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
929 		cpu_relax();
930 
931 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
932 		unsigned int keylen = ctx->keylen;
933 		u8 *key = ctx->key;
934 
935 		dev_dbg(device_data->dev, "%s: keylen: %d\n",
936 			__func__, ctx->keylen);
937 		hash_hw_write_key(device_data, key, keylen);
938 	}
939 
940 	hash_get_digest(device_data, digest, ctx->config.algorithm);
941 	memcpy(req->result, digest, ctx->digestsize);
942 
943 out:
944 	release_hash_device(device_data);
945 
946 	/**
947 	 * Allocated in setkey, and only used in HMAC.
948 	 */
949 	kfree(ctx->key);
950 
951 	return ret;
952 }
953 
954 /**
955  * hash_hw_final - The final hash calculation function
956  * @req:	The hash request for the job.
957  */
hash_hw_final(struct ahash_request * req)958 static int hash_hw_final(struct ahash_request *req)
959 {
960 	int ret = 0;
961 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
962 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
963 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
964 	struct hash_device_data *device_data;
965 	u8 digest[SHA256_DIGEST_SIZE];
966 
967 	ret = hash_get_device_data(ctx, &device_data);
968 	if (ret)
969 		return ret;
970 
971 	dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
972 
973 	if (req_ctx->updated) {
974 		ret = hash_resume_state(device_data, &device_data->state);
975 
976 		if (ret) {
977 			dev_err(device_data->dev,
978 				"%s: hash_resume_state() failed!\n", __func__);
979 			goto out;
980 		}
981 	} else if (req->nbytes == 0 && ctx->keylen == 0) {
982 		u8 zero_hash[SHA256_DIGEST_SIZE];
983 		u32 zero_hash_size = 0;
984 		bool zero_digest = false;
985 		/**
986 		 * Use a pre-calculated empty message digest
987 		 * (workaround since hw return zeroes, hw bug!?)
988 		 */
989 		ret = get_empty_message_digest(device_data, &zero_hash[0],
990 				&zero_hash_size, &zero_digest);
991 		if (!ret && likely(zero_hash_size == ctx->digestsize) &&
992 		    zero_digest) {
993 			memcpy(req->result, &zero_hash[0], ctx->digestsize);
994 			goto out;
995 		} else if (!ret && !zero_digest) {
996 			dev_dbg(device_data->dev,
997 				"%s: HMAC zero msg with key, continue...\n",
998 				__func__);
999 		} else {
1000 			dev_err(device_data->dev,
1001 				"%s: ret=%d, or wrong digest size? %s\n",
1002 				__func__, ret,
1003 				zero_hash_size == ctx->digestsize ?
1004 				"true" : "false");
1005 			/* Return error */
1006 			goto out;
1007 		}
1008 	} else if (req->nbytes == 0 && ctx->keylen > 0) {
1009 		dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1010 			__func__);
1011 		goto out;
1012 	}
1013 
1014 	if (!req_ctx->updated) {
1015 		ret = init_hash_hw(device_data, ctx);
1016 		if (ret) {
1017 			dev_err(device_data->dev,
1018 				"%s: init_hash_hw() failed!\n", __func__);
1019 			goto out;
1020 		}
1021 	}
1022 
1023 	if (req_ctx->state.index) {
1024 		hash_messagepad(device_data, req_ctx->state.buffer,
1025 				req_ctx->state.index);
1026 	} else {
1027 		HASH_SET_DCAL;
1028 		while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1029 			cpu_relax();
1030 	}
1031 
1032 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1033 		unsigned int keylen = ctx->keylen;
1034 		u8 *key = ctx->key;
1035 
1036 		dev_dbg(device_data->dev, "%s: keylen: %d\n",
1037 			__func__, ctx->keylen);
1038 		hash_hw_write_key(device_data, key, keylen);
1039 	}
1040 
1041 	hash_get_digest(device_data, digest, ctx->config.algorithm);
1042 	memcpy(req->result, digest, ctx->digestsize);
1043 
1044 out:
1045 	release_hash_device(device_data);
1046 
1047 	/**
1048 	 * Allocated in setkey, and only used in HMAC.
1049 	 */
1050 	kfree(ctx->key);
1051 
1052 	return ret;
1053 }
1054 
1055 /**
1056  * hash_hw_update - Updates current HASH computation hashing another part of
1057  *                  the message.
1058  * @req:	Byte array containing the message to be hashed (caller
1059  *		allocated).
1060  */
hash_hw_update(struct ahash_request * req)1061 int hash_hw_update(struct ahash_request *req)
1062 {
1063 	int ret = 0;
1064 	u8 index = 0;
1065 	u8 *buffer;
1066 	struct hash_device_data *device_data;
1067 	u8 *data_buffer;
1068 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1069 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1070 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1071 	struct crypto_hash_walk walk;
1072 	int msg_length = crypto_hash_walk_first(req, &walk);
1073 
1074 	/* Empty message ("") is correct indata */
1075 	if (msg_length == 0)
1076 		return ret;
1077 
1078 	index = req_ctx->state.index;
1079 	buffer = (u8 *)req_ctx->state.buffer;
1080 
1081 	/* Check if ctx->state.length + msg_length
1082 	   overflows */
1083 	if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1084 	    HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1085 		pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1086 		return -EPERM;
1087 	}
1088 
1089 	ret = hash_get_device_data(ctx, &device_data);
1090 	if (ret)
1091 		return ret;
1092 
1093 	/* Main loop */
1094 	while (0 != msg_length) {
1095 		data_buffer = walk.data;
1096 		ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1097 				data_buffer, buffer, &index);
1098 
1099 		if (ret) {
1100 			dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1101 				__func__);
1102 			goto out;
1103 		}
1104 
1105 		msg_length = crypto_hash_walk_done(&walk, 0);
1106 	}
1107 
1108 	req_ctx->state.index = index;
1109 	dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1110 		__func__, req_ctx->state.index, req_ctx->state.bit_index);
1111 
1112 out:
1113 	release_hash_device(device_data);
1114 
1115 	return ret;
1116 }
1117 
1118 /**
1119  * hash_resume_state - Function that resumes the state of an calculation.
1120  * @device_data:	Pointer to the device structure.
1121  * @device_state:	The state to be restored in the hash hardware
1122  */
hash_resume_state(struct hash_device_data * device_data,const struct hash_state * device_state)1123 int hash_resume_state(struct hash_device_data *device_data,
1124 		      const struct hash_state *device_state)
1125 {
1126 	u32 temp_cr;
1127 	s32 count;
1128 	int hash_mode = HASH_OPER_MODE_HASH;
1129 
1130 	if (NULL == device_state) {
1131 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1132 			__func__);
1133 		return -EPERM;
1134 	}
1135 
1136 	/* Check correctness of index and length members */
1137 	if (device_state->index > HASH_BLOCK_SIZE ||
1138 	    (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1139 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1140 			__func__);
1141 		return -EPERM;
1142 	}
1143 
1144 	/*
1145 	 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1146 	 * prepare the initialize the HASH accelerator to compute the message
1147 	 * digest of a new message.
1148 	 */
1149 	HASH_INITIALIZE;
1150 
1151 	temp_cr = device_state->temp_cr;
1152 	writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1153 
1154 	if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1155 		hash_mode = HASH_OPER_MODE_HMAC;
1156 	else
1157 		hash_mode = HASH_OPER_MODE_HASH;
1158 
1159 	for (count = 0; count < HASH_CSR_COUNT; count++) {
1160 		if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1161 			break;
1162 
1163 		writel_relaxed(device_state->csr[count],
1164 			       &device_data->base->csrx[count]);
1165 	}
1166 
1167 	writel_relaxed(device_state->csfull, &device_data->base->csfull);
1168 	writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1169 
1170 	writel_relaxed(device_state->str_reg, &device_data->base->str);
1171 	writel_relaxed(temp_cr, &device_data->base->cr);
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  * hash_save_state - Function that saves the state of hardware.
1178  * @device_data:	Pointer to the device structure.
1179  * @device_state:	The strucure where the hardware state should be saved.
1180  */
hash_save_state(struct hash_device_data * device_data,struct hash_state * device_state)1181 int hash_save_state(struct hash_device_data *device_data,
1182 		    struct hash_state *device_state)
1183 {
1184 	u32 temp_cr;
1185 	u32 count;
1186 	int hash_mode = HASH_OPER_MODE_HASH;
1187 
1188 	if (NULL == device_state) {
1189 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1190 			__func__);
1191 		return -ENOTSUPP;
1192 	}
1193 
1194 	/* Write dummy value to force digest intermediate calculation. This
1195 	 * actually makes sure that there isn't any ongoing calculation in the
1196 	 * hardware.
1197 	 */
1198 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1199 		cpu_relax();
1200 
1201 	temp_cr = readl_relaxed(&device_data->base->cr);
1202 
1203 	device_state->str_reg = readl_relaxed(&device_data->base->str);
1204 
1205 	device_state->din_reg = readl_relaxed(&device_data->base->din);
1206 
1207 	if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1208 		hash_mode = HASH_OPER_MODE_HMAC;
1209 	else
1210 		hash_mode = HASH_OPER_MODE_HASH;
1211 
1212 	for (count = 0; count < HASH_CSR_COUNT; count++) {
1213 		if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1214 			break;
1215 
1216 		device_state->csr[count] =
1217 			readl_relaxed(&device_data->base->csrx[count]);
1218 	}
1219 
1220 	device_state->csfull = readl_relaxed(&device_data->base->csfull);
1221 	device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1222 
1223 	device_state->temp_cr = temp_cr;
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1230  * @device_data:
1231  *
1232  */
hash_check_hw(struct hash_device_data * device_data)1233 int hash_check_hw(struct hash_device_data *device_data)
1234 {
1235 	/* Checking Peripheral Ids  */
1236 	if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1237 	    HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1238 	    HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1239 	    HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1240 	    HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1241 	    HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1242 	    HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1243 	    HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1244 		return 0;
1245 	}
1246 
1247 	dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1248 	return -ENOTSUPP;
1249 }
1250 
1251 /**
1252  * hash_get_digest - Gets the digest.
1253  * @device_data:	Pointer to the device structure.
1254  * @digest:		User allocated byte array for the calculated digest.
1255  * @algorithm:		The algorithm in use.
1256  */
hash_get_digest(struct hash_device_data * device_data,u8 * digest,int algorithm)1257 void hash_get_digest(struct hash_device_data *device_data,
1258 		     u8 *digest, int algorithm)
1259 {
1260 	u32 temp_hx_val, count;
1261 	int loop_ctr;
1262 
1263 	if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1264 		dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1265 			__func__, algorithm);
1266 		return;
1267 	}
1268 
1269 	if (algorithm == HASH_ALGO_SHA1)
1270 		loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1271 	else
1272 		loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1273 
1274 	dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n",
1275 		__func__, (u32) digest);
1276 
1277 	/* Copy result into digest array */
1278 	for (count = 0; count < loop_ctr; count++) {
1279 		temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1280 		digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1281 		digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1282 		digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1283 		digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1284 	}
1285 }
1286 
1287 /**
1288  * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1289  * @req: The hash request for the job.
1290  */
ahash_update(struct ahash_request * req)1291 static int ahash_update(struct ahash_request *req)
1292 {
1293 	int ret = 0;
1294 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1295 
1296 	if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1297 		ret = hash_hw_update(req);
1298 	/* Skip update for DMA, all data will be passed to DMA in final */
1299 
1300 	if (ret) {
1301 		pr_err("%s: hash_hw_update() failed!\n", __func__);
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 /**
1308  * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1309  * @req:	The hash request for the job.
1310  */
ahash_final(struct ahash_request * req)1311 static int ahash_final(struct ahash_request *req)
1312 {
1313 	int ret = 0;
1314 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1315 
1316 	pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1317 
1318 	if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1319 		ret = hash_dma_final(req);
1320 	else
1321 		ret = hash_hw_final(req);
1322 
1323 	if (ret) {
1324 		pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1325 	}
1326 
1327 	return ret;
1328 }
1329 
hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen,int alg)1330 static int hash_setkey(struct crypto_ahash *tfm,
1331 		       const u8 *key, unsigned int keylen, int alg)
1332 {
1333 	int ret = 0;
1334 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1335 
1336 	/**
1337 	 * Freed in final.
1338 	 */
1339 	ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1340 	if (!ctx->key) {
1341 		pr_err("%s: Failed to allocate ctx->key for %d\n",
1342 		       __func__, alg);
1343 		return -ENOMEM;
1344 	}
1345 	ctx->keylen = keylen;
1346 
1347 	return ret;
1348 }
1349 
ahash_sha1_init(struct ahash_request * req)1350 static int ahash_sha1_init(struct ahash_request *req)
1351 {
1352 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1353 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1354 
1355 	ctx->config.data_format = HASH_DATA_8_BITS;
1356 	ctx->config.algorithm = HASH_ALGO_SHA1;
1357 	ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1358 	ctx->digestsize = SHA1_DIGEST_SIZE;
1359 
1360 	return hash_init(req);
1361 }
1362 
ahash_sha256_init(struct ahash_request * req)1363 static int ahash_sha256_init(struct ahash_request *req)
1364 {
1365 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1366 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1367 
1368 	ctx->config.data_format = HASH_DATA_8_BITS;
1369 	ctx->config.algorithm = HASH_ALGO_SHA256;
1370 	ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1371 	ctx->digestsize = SHA256_DIGEST_SIZE;
1372 
1373 	return hash_init(req);
1374 }
1375 
ahash_sha1_digest(struct ahash_request * req)1376 static int ahash_sha1_digest(struct ahash_request *req)
1377 {
1378 	int ret2, ret1;
1379 
1380 	ret1 = ahash_sha1_init(req);
1381 	if (ret1)
1382 		goto out;
1383 
1384 	ret1 = ahash_update(req);
1385 	ret2 = ahash_final(req);
1386 
1387 out:
1388 	return ret1 ? ret1 : ret2;
1389 }
1390 
ahash_sha256_digest(struct ahash_request * req)1391 static int ahash_sha256_digest(struct ahash_request *req)
1392 {
1393 	int ret2, ret1;
1394 
1395 	ret1 = ahash_sha256_init(req);
1396 	if (ret1)
1397 		goto out;
1398 
1399 	ret1 = ahash_update(req);
1400 	ret2 = ahash_final(req);
1401 
1402 out:
1403 	return ret1 ? ret1 : ret2;
1404 }
1405 
hmac_sha1_init(struct ahash_request * req)1406 static int hmac_sha1_init(struct ahash_request *req)
1407 {
1408 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1409 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1410 
1411 	ctx->config.data_format	= HASH_DATA_8_BITS;
1412 	ctx->config.algorithm	= HASH_ALGO_SHA1;
1413 	ctx->config.oper_mode	= HASH_OPER_MODE_HMAC;
1414 	ctx->digestsize		= SHA1_DIGEST_SIZE;
1415 
1416 	return hash_init(req);
1417 }
1418 
hmac_sha256_init(struct ahash_request * req)1419 static int hmac_sha256_init(struct ahash_request *req)
1420 {
1421 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1422 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1423 
1424 	ctx->config.data_format	= HASH_DATA_8_BITS;
1425 	ctx->config.algorithm	= HASH_ALGO_SHA256;
1426 	ctx->config.oper_mode	= HASH_OPER_MODE_HMAC;
1427 	ctx->digestsize		= SHA256_DIGEST_SIZE;
1428 
1429 	return hash_init(req);
1430 }
1431 
hmac_sha1_digest(struct ahash_request * req)1432 static int hmac_sha1_digest(struct ahash_request *req)
1433 {
1434 	int ret2, ret1;
1435 
1436 	ret1 = hmac_sha1_init(req);
1437 	if (ret1)
1438 		goto out;
1439 
1440 	ret1 = ahash_update(req);
1441 	ret2 = ahash_final(req);
1442 
1443 out:
1444 	return ret1 ? ret1 : ret2;
1445 }
1446 
hmac_sha256_digest(struct ahash_request * req)1447 static int hmac_sha256_digest(struct ahash_request *req)
1448 {
1449 	int ret2, ret1;
1450 
1451 	ret1 = hmac_sha256_init(req);
1452 	if (ret1)
1453 		goto out;
1454 
1455 	ret1 = ahash_update(req);
1456 	ret2 = ahash_final(req);
1457 
1458 out:
1459 	return ret1 ? ret1 : ret2;
1460 }
1461 
hmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1462 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1463 			    const u8 *key, unsigned int keylen)
1464 {
1465 	return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1466 }
1467 
hmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1468 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1469 			      const u8 *key, unsigned int keylen)
1470 {
1471 	return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1472 }
1473 
1474 struct hash_algo_template {
1475 	struct hash_config conf;
1476 	struct ahash_alg hash;
1477 };
1478 
hash_cra_init(struct crypto_tfm * tfm)1479 static int hash_cra_init(struct crypto_tfm *tfm)
1480 {
1481 	struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1482 	struct crypto_alg *alg = tfm->__crt_alg;
1483 	struct hash_algo_template *hash_alg;
1484 
1485 	hash_alg = container_of(__crypto_ahash_alg(alg),
1486 			struct hash_algo_template,
1487 			hash);
1488 
1489 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1490 				 sizeof(struct hash_req_ctx));
1491 
1492 	ctx->config.data_format = HASH_DATA_8_BITS;
1493 	ctx->config.algorithm = hash_alg->conf.algorithm;
1494 	ctx->config.oper_mode = hash_alg->conf.oper_mode;
1495 
1496 	ctx->digestsize = hash_alg->hash.halg.digestsize;
1497 
1498 	return 0;
1499 }
1500 
1501 static struct hash_algo_template hash_algs[] = {
1502 	{
1503 		.conf.algorithm = HASH_ALGO_SHA1,
1504 		.conf.oper_mode = HASH_OPER_MODE_HASH,
1505 		.hash = {
1506 			.init = hash_init,
1507 			.update = ahash_update,
1508 			.final = ahash_final,
1509 			.digest = ahash_sha1_digest,
1510 			.halg.digestsize = SHA1_DIGEST_SIZE,
1511 			.halg.statesize = sizeof(struct hash_ctx),
1512 			.halg.base = {
1513 				.cra_name = "sha1",
1514 				.cra_driver_name = "sha1-ux500",
1515 				.cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1516 					      CRYPTO_ALG_ASYNC),
1517 				.cra_blocksize = SHA1_BLOCK_SIZE,
1518 				.cra_ctxsize = sizeof(struct hash_ctx),
1519 				.cra_init = hash_cra_init,
1520 				.cra_module = THIS_MODULE,
1521 			}
1522 		}
1523 	},
1524 	{
1525 		.conf.algorithm	= HASH_ALGO_SHA256,
1526 		.conf.oper_mode	= HASH_OPER_MODE_HASH,
1527 		.hash = {
1528 			.init = hash_init,
1529 			.update	= ahash_update,
1530 			.final = ahash_final,
1531 			.digest = ahash_sha256_digest,
1532 			.halg.digestsize = SHA256_DIGEST_SIZE,
1533 			.halg.statesize = sizeof(struct hash_ctx),
1534 			.halg.base = {
1535 				.cra_name = "sha256",
1536 				.cra_driver_name = "sha256-ux500",
1537 				.cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1538 					      CRYPTO_ALG_ASYNC),
1539 				.cra_blocksize = SHA256_BLOCK_SIZE,
1540 				.cra_ctxsize = sizeof(struct hash_ctx),
1541 				.cra_type = &crypto_ahash_type,
1542 				.cra_init = hash_cra_init,
1543 				.cra_module = THIS_MODULE,
1544 			}
1545 		}
1546 	},
1547 	{
1548 		.conf.algorithm = HASH_ALGO_SHA1,
1549 		.conf.oper_mode = HASH_OPER_MODE_HMAC,
1550 			.hash = {
1551 			.init = hash_init,
1552 			.update = ahash_update,
1553 			.final = ahash_final,
1554 			.digest = hmac_sha1_digest,
1555 			.setkey = hmac_sha1_setkey,
1556 			.halg.digestsize = SHA1_DIGEST_SIZE,
1557 			.halg.statesize = sizeof(struct hash_ctx),
1558 			.halg.base = {
1559 				.cra_name = "hmac(sha1)",
1560 				.cra_driver_name = "hmac-sha1-ux500",
1561 				.cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1562 					      CRYPTO_ALG_ASYNC),
1563 				.cra_blocksize = SHA1_BLOCK_SIZE,
1564 				.cra_ctxsize = sizeof(struct hash_ctx),
1565 				.cra_type = &crypto_ahash_type,
1566 				.cra_init = hash_cra_init,
1567 				.cra_module = THIS_MODULE,
1568 			}
1569 		}
1570 	},
1571 	{
1572 		.conf.algorithm = HASH_ALGO_SHA256,
1573 		.conf.oper_mode = HASH_OPER_MODE_HMAC,
1574 		.hash = {
1575 			.init = hash_init,
1576 			.update = ahash_update,
1577 			.final = ahash_final,
1578 			.digest = hmac_sha256_digest,
1579 			.setkey = hmac_sha256_setkey,
1580 			.halg.digestsize = SHA256_DIGEST_SIZE,
1581 			.halg.statesize = sizeof(struct hash_ctx),
1582 			.halg.base = {
1583 				.cra_name = "hmac(sha256)",
1584 				.cra_driver_name = "hmac-sha256-ux500",
1585 				.cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1586 					      CRYPTO_ALG_ASYNC),
1587 				.cra_blocksize = SHA256_BLOCK_SIZE,
1588 				.cra_ctxsize = sizeof(struct hash_ctx),
1589 				.cra_type = &crypto_ahash_type,
1590 				.cra_init = hash_cra_init,
1591 				.cra_module = THIS_MODULE,
1592 			}
1593 		}
1594 	}
1595 };
1596 
1597 /**
1598  * hash_algs_register_all -
1599  */
ahash_algs_register_all(struct hash_device_data * device_data)1600 static int ahash_algs_register_all(struct hash_device_data *device_data)
1601 {
1602 	int ret;
1603 	int i;
1604 	int count;
1605 
1606 	for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1607 		ret = crypto_register_ahash(&hash_algs[i].hash);
1608 		if (ret) {
1609 			count = i;
1610 			dev_err(device_data->dev, "%s: alg registration failed\n",
1611 				hash_algs[i].hash.halg.base.cra_driver_name);
1612 			goto unreg;
1613 		}
1614 	}
1615 	return 0;
1616 unreg:
1617 	for (i = 0; i < count; i++)
1618 		crypto_unregister_ahash(&hash_algs[i].hash);
1619 	return ret;
1620 }
1621 
1622 /**
1623  * hash_algs_unregister_all -
1624  */
ahash_algs_unregister_all(struct hash_device_data * device_data)1625 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1626 {
1627 	int i;
1628 
1629 	for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1630 		crypto_unregister_ahash(&hash_algs[i].hash);
1631 }
1632 
1633 /**
1634  * ux500_hash_probe - Function that probes the hash hardware.
1635  * @pdev: The platform device.
1636  */
ux500_hash_probe(struct platform_device * pdev)1637 static int ux500_hash_probe(struct platform_device *pdev)
1638 {
1639 	int			ret = 0;
1640 	struct resource		*res = NULL;
1641 	struct hash_device_data *device_data;
1642 	struct device		*dev = &pdev->dev;
1643 
1644 	device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1645 	if (!device_data) {
1646 		ret = -ENOMEM;
1647 		goto out;
1648 	}
1649 
1650 	device_data->dev = dev;
1651 	device_data->current_ctx = NULL;
1652 
1653 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1654 	if (!res) {
1655 		dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1656 		ret = -ENODEV;
1657 		goto out;
1658 	}
1659 
1660 	device_data->phybase = res->start;
1661 	device_data->base = devm_ioremap_resource(dev, res);
1662 	if (IS_ERR(device_data->base)) {
1663 		dev_err(dev, "%s: ioremap() failed!\n", __func__);
1664 		ret = PTR_ERR(device_data->base);
1665 		goto out;
1666 	}
1667 	spin_lock_init(&device_data->ctx_lock);
1668 	spin_lock_init(&device_data->power_state_lock);
1669 
1670 	/* Enable power for HASH1 hardware block */
1671 	device_data->regulator = regulator_get(dev, "v-ape");
1672 	if (IS_ERR(device_data->regulator)) {
1673 		dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1674 		ret = PTR_ERR(device_data->regulator);
1675 		device_data->regulator = NULL;
1676 		goto out;
1677 	}
1678 
1679 	/* Enable the clock for HASH1 hardware block */
1680 	device_data->clk = devm_clk_get(dev, NULL);
1681 	if (IS_ERR(device_data->clk)) {
1682 		dev_err(dev, "%s: clk_get() failed!\n", __func__);
1683 		ret = PTR_ERR(device_data->clk);
1684 		goto out_regulator;
1685 	}
1686 
1687 	ret = clk_prepare(device_data->clk);
1688 	if (ret) {
1689 		dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1690 		goto out_regulator;
1691 	}
1692 
1693 	/* Enable device power (and clock) */
1694 	ret = hash_enable_power(device_data, false);
1695 	if (ret) {
1696 		dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1697 		goto out_clk_unprepare;
1698 	}
1699 
1700 	ret = hash_check_hw(device_data);
1701 	if (ret) {
1702 		dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1703 		goto out_power;
1704 	}
1705 
1706 	if (hash_mode == HASH_MODE_DMA)
1707 		hash_dma_setup_channel(device_data, dev);
1708 
1709 	platform_set_drvdata(pdev, device_data);
1710 
1711 	/* Put the new device into the device list... */
1712 	klist_add_tail(&device_data->list_node, &driver_data.device_list);
1713 	/* ... and signal that a new device is available. */
1714 	up(&driver_data.device_allocation);
1715 
1716 	ret = ahash_algs_register_all(device_data);
1717 	if (ret) {
1718 		dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1719 			__func__);
1720 		goto out_power;
1721 	}
1722 
1723 	dev_info(dev, "successfully registered\n");
1724 	return 0;
1725 
1726 out_power:
1727 	hash_disable_power(device_data, false);
1728 
1729 out_clk_unprepare:
1730 	clk_unprepare(device_data->clk);
1731 
1732 out_regulator:
1733 	regulator_put(device_data->regulator);
1734 
1735 out:
1736 	return ret;
1737 }
1738 
1739 /**
1740  * ux500_hash_remove - Function that removes the hash device from the platform.
1741  * @pdev: The platform device.
1742  */
ux500_hash_remove(struct platform_device * pdev)1743 static int ux500_hash_remove(struct platform_device *pdev)
1744 {
1745 	struct hash_device_data *device_data;
1746 	struct device		*dev = &pdev->dev;
1747 
1748 	device_data = platform_get_drvdata(pdev);
1749 	if (!device_data) {
1750 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1751 		return -ENOMEM;
1752 	}
1753 
1754 	/* Try to decrease the number of available devices. */
1755 	if (down_trylock(&driver_data.device_allocation))
1756 		return -EBUSY;
1757 
1758 	/* Check that the device is free */
1759 	spin_lock(&device_data->ctx_lock);
1760 	/* current_ctx allocates a device, NULL = unallocated */
1761 	if (device_data->current_ctx) {
1762 		/* The device is busy */
1763 		spin_unlock(&device_data->ctx_lock);
1764 		/* Return the device to the pool. */
1765 		up(&driver_data.device_allocation);
1766 		return -EBUSY;
1767 	}
1768 
1769 	spin_unlock(&device_data->ctx_lock);
1770 
1771 	/* Remove the device from the list */
1772 	if (klist_node_attached(&device_data->list_node))
1773 		klist_remove(&device_data->list_node);
1774 
1775 	/* If this was the last device, remove the services */
1776 	if (list_empty(&driver_data.device_list.k_list))
1777 		ahash_algs_unregister_all(device_data);
1778 
1779 	if (hash_disable_power(device_data, false))
1780 		dev_err(dev, "%s: hash_disable_power() failed\n",
1781 			__func__);
1782 
1783 	clk_unprepare(device_data->clk);
1784 	regulator_put(device_data->regulator);
1785 
1786 	return 0;
1787 }
1788 
1789 /**
1790  * ux500_hash_shutdown - Function that shutdown the hash device.
1791  * @pdev: The platform device
1792  */
ux500_hash_shutdown(struct platform_device * pdev)1793 static void ux500_hash_shutdown(struct platform_device *pdev)
1794 {
1795 	struct hash_device_data *device_data;
1796 
1797 	device_data = platform_get_drvdata(pdev);
1798 	if (!device_data) {
1799 		dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1800 			__func__);
1801 		return;
1802 	}
1803 
1804 	/* Check that the device is free */
1805 	spin_lock(&device_data->ctx_lock);
1806 	/* current_ctx allocates a device, NULL = unallocated */
1807 	if (!device_data->current_ctx) {
1808 		if (down_trylock(&driver_data.device_allocation))
1809 			dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1810 				__func__);
1811 		/**
1812 		 * (Allocate the device)
1813 		 * Need to set this to non-null (dummy) value,
1814 		 * to avoid usage if context switching.
1815 		 */
1816 		device_data->current_ctx++;
1817 	}
1818 	spin_unlock(&device_data->ctx_lock);
1819 
1820 	/* Remove the device from the list */
1821 	if (klist_node_attached(&device_data->list_node))
1822 		klist_remove(&device_data->list_node);
1823 
1824 	/* If this was the last device, remove the services */
1825 	if (list_empty(&driver_data.device_list.k_list))
1826 		ahash_algs_unregister_all(device_data);
1827 
1828 	if (hash_disable_power(device_data, false))
1829 		dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1830 			__func__);
1831 }
1832 
1833 #ifdef CONFIG_PM_SLEEP
1834 /**
1835  * ux500_hash_suspend - Function that suspends the hash device.
1836  * @dev:	Device to suspend.
1837  */
ux500_hash_suspend(struct device * dev)1838 static int ux500_hash_suspend(struct device *dev)
1839 {
1840 	int ret;
1841 	struct hash_device_data *device_data;
1842 	struct hash_ctx *temp_ctx = NULL;
1843 
1844 	device_data = dev_get_drvdata(dev);
1845 	if (!device_data) {
1846 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1847 		return -ENOMEM;
1848 	}
1849 
1850 	spin_lock(&device_data->ctx_lock);
1851 	if (!device_data->current_ctx)
1852 		device_data->current_ctx++;
1853 	spin_unlock(&device_data->ctx_lock);
1854 
1855 	if (device_data->current_ctx == ++temp_ctx) {
1856 		if (down_interruptible(&driver_data.device_allocation))
1857 			dev_dbg(dev, "%s: down_interruptible() failed\n",
1858 				__func__);
1859 		ret = hash_disable_power(device_data, false);
1860 
1861 	} else {
1862 		ret = hash_disable_power(device_data, true);
1863 	}
1864 
1865 	if (ret)
1866 		dev_err(dev, "%s: hash_disable_power()\n", __func__);
1867 
1868 	return ret;
1869 }
1870 
1871 /**
1872  * ux500_hash_resume - Function that resume the hash device.
1873  * @dev:	Device to resume.
1874  */
ux500_hash_resume(struct device * dev)1875 static int ux500_hash_resume(struct device *dev)
1876 {
1877 	int ret = 0;
1878 	struct hash_device_data *device_data;
1879 	struct hash_ctx *temp_ctx = NULL;
1880 
1881 	device_data = dev_get_drvdata(dev);
1882 	if (!device_data) {
1883 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1884 		return -ENOMEM;
1885 	}
1886 
1887 	spin_lock(&device_data->ctx_lock);
1888 	if (device_data->current_ctx == ++temp_ctx)
1889 		device_data->current_ctx = NULL;
1890 	spin_unlock(&device_data->ctx_lock);
1891 
1892 	if (!device_data->current_ctx)
1893 		up(&driver_data.device_allocation);
1894 	else
1895 		ret = hash_enable_power(device_data, true);
1896 
1897 	if (ret)
1898 		dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1899 
1900 	return ret;
1901 }
1902 #endif
1903 
1904 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1905 
1906 static const struct of_device_id ux500_hash_match[] = {
1907 	{ .compatible = "stericsson,ux500-hash" },
1908 	{ },
1909 };
1910 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1911 
1912 static struct platform_driver hash_driver = {
1913 	.probe  = ux500_hash_probe,
1914 	.remove = ux500_hash_remove,
1915 	.shutdown = ux500_hash_shutdown,
1916 	.driver = {
1917 		.name  = "hash1",
1918 		.of_match_table = ux500_hash_match,
1919 		.pm    = &ux500_hash_pm,
1920 	}
1921 };
1922 
1923 /**
1924  * ux500_hash_mod_init - The kernel module init function.
1925  */
ux500_hash_mod_init(void)1926 static int __init ux500_hash_mod_init(void)
1927 {
1928 	klist_init(&driver_data.device_list, NULL, NULL);
1929 	/* Initialize the semaphore to 0 devices (locked state) */
1930 	sema_init(&driver_data.device_allocation, 0);
1931 
1932 	return platform_driver_register(&hash_driver);
1933 }
1934 
1935 /**
1936  * ux500_hash_mod_fini - The kernel module exit function.
1937  */
ux500_hash_mod_fini(void)1938 static void __exit ux500_hash_mod_fini(void)
1939 {
1940 	platform_driver_unregister(&hash_driver);
1941 }
1942 
1943 module_init(ux500_hash_mod_init);
1944 module_exit(ux500_hash_mod_fini);
1945 
1946 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1947 MODULE_LICENSE("GPL");
1948 
1949 MODULE_ALIAS_CRYPTO("sha1-all");
1950 MODULE_ALIAS_CRYPTO("sha256-all");
1951 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1952 MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1953