• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
3  *
4  * Copyright (C) 2014 Atmel Corporation
5  *
6  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <asm/barrier.h>
22 #include <dt-bindings/dma/at91.h>
23 #include <linux/clk.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dmapool.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 
36 #include "dmaengine.h"
37 
38 /* Global registers */
39 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
40 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
41 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
42 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
43 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
44 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
45 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
46 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
47 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
48 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
49 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
50 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
51 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
52 #define AT_XDMAC_GRS		0x28	/* Global Channel Read Suspend Register */
53 #define AT_XDMAC_GWS		0x2C	/* Global Write Suspend Register */
54 #define AT_XDMAC_GRWS		0x30	/* Global Channel Read Write Suspend Register */
55 #define AT_XDMAC_GRWR		0x34	/* Global Channel Read Write Resume Register */
56 #define AT_XDMAC_GSWR		0x38	/* Global Channel Software Request Register */
57 #define AT_XDMAC_GSWS		0x3C	/* Global channel Software Request Status Register */
58 #define AT_XDMAC_GSWF		0x40	/* Global Channel Software Flush Request Register */
59 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
60 
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
63 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
64 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
65 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
66 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
67 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
68 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
69 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
71 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
72 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
73 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
74 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
75 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
76 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
77 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
79 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
80 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
81 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
82 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
83 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
84 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
85 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
87 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
88 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
89 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
90 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
91 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
92 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
93 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
95 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
97 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
98 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
100 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
101 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
102 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
103 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
104 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
105 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
106 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
107 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
108 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
109 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
110 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
111 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
112 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
113 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
114 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
115 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
116 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
117 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
118 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
119 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
120 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
121 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
122 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
123 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
124 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
125 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
126 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
127 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
128 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
129 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
130 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
131 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
132 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
133 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
134 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
135 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
136 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
137 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
138 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
139 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
140 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
141 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
142 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
143 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
144 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
145 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
146 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
147 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
148 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
149 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
150 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
151 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
152 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
153 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
154 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
155 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
156 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
157 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
158 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
159 #define		AT_XDMAC_CC_PERID(i)	(0x7f & (i) << 24)	/* Channel Peripheral Identifier */
160 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
161 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
162 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
163 
164 #define AT_XDMAC_CHAN_REG_BASE	0x50	/* Channel registers base address */
165 
166 /* Microblock control members */
167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
168 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
169 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
170 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
171 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
172 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
173 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
174 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
175 
176 #define AT_XDMAC_MAX_CHAN	0x20
177 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
178 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
179 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
180 
181 #define AT_XDMAC_DMA_BUSWIDTHS\
182 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
183 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
184 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
185 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
186 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
187 
188 enum atc_status {
189 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
190 	AT_XDMAC_CHAN_IS_PAUSED,
191 };
192 
193 /* ----- Channels ----- */
194 struct at_xdmac_chan {
195 	struct dma_chan			chan;
196 	void __iomem			*ch_regs;
197 	u32				mask;		/* Channel Mask */
198 	u32				cfg;		/* Channel Configuration Register */
199 	u8				perid;		/* Peripheral ID */
200 	u8				perif;		/* Peripheral Interface */
201 	u8				memif;		/* Memory Interface */
202 	u32				save_cc;
203 	u32				save_cim;
204 	u32				save_cnda;
205 	u32				save_cndc;
206 	u32				irq_status;
207 	unsigned long			status;
208 	struct tasklet_struct		tasklet;
209 	struct dma_slave_config		sconfig;
210 
211 	spinlock_t			lock;
212 
213 	struct list_head		xfers_list;
214 	struct list_head		free_descs_list;
215 };
216 
217 
218 /* ----- Controller ----- */
219 struct at_xdmac {
220 	struct dma_device	dma;
221 	void __iomem		*regs;
222 	int			irq;
223 	struct clk		*clk;
224 	u32			save_gim;
225 	struct dma_pool		*at_xdmac_desc_pool;
226 	struct at_xdmac_chan	chan[0];
227 };
228 
229 
230 /* ----- Descriptors ----- */
231 
232 /* Linked List Descriptor */
233 struct at_xdmac_lld {
234 	dma_addr_t	mbr_nda;	/* Next Descriptor Member */
235 	u32		mbr_ubc;	/* Microblock Control Member */
236 	dma_addr_t	mbr_sa;		/* Source Address Member */
237 	dma_addr_t	mbr_da;		/* Destination Address Member */
238 	u32		mbr_cfg;	/* Configuration Register */
239 	u32		mbr_bc;		/* Block Control Register */
240 	u32		mbr_ds;		/* Data Stride Register */
241 	u32		mbr_sus;	/* Source Microblock Stride Register */
242 	u32		mbr_dus;	/* Destination Microblock Stride Register */
243 };
244 
245 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
246 struct at_xdmac_desc {
247 	struct at_xdmac_lld		lld;
248 	enum dma_transfer_direction	direction;
249 	struct dma_async_tx_descriptor	tx_dma_desc;
250 	struct list_head		desc_node;
251 	/* Following members are only used by the first descriptor */
252 	bool				active_xfer;
253 	unsigned int			xfer_size;
254 	struct list_head		descs_list;
255 	struct list_head		xfer_node;
256 } __aligned(sizeof(u64));
257 
at_xdmac_chan_reg_base(struct at_xdmac * atxdmac,unsigned int chan_nb)258 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
259 {
260 	return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
261 }
262 
263 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
264 #define at_xdmac_write(atxdmac, reg, value) \
265 	writel_relaxed((value), (atxdmac)->regs + (reg))
266 
267 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
268 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
269 
to_at_xdmac_chan(struct dma_chan * dchan)270 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
271 {
272 	return container_of(dchan, struct at_xdmac_chan, chan);
273 }
274 
chan2dev(struct dma_chan * chan)275 static struct device *chan2dev(struct dma_chan *chan)
276 {
277 	return &chan->dev->device;
278 }
279 
to_at_xdmac(struct dma_device * ddev)280 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
281 {
282 	return container_of(ddev, struct at_xdmac, dma);
283 }
284 
txd_to_at_desc(struct dma_async_tx_descriptor * txd)285 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
286 {
287 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
288 }
289 
at_xdmac_chan_is_cyclic(struct at_xdmac_chan * atchan)290 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
291 {
292 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
293 }
294 
at_xdmac_chan_is_paused(struct at_xdmac_chan * atchan)295 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
296 {
297 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
298 }
299 
at_xdmac_csize(u32 maxburst)300 static inline int at_xdmac_csize(u32 maxburst)
301 {
302 	int csize;
303 
304 	csize = ffs(maxburst) - 1;
305 	if (csize > 4)
306 		csize = -EINVAL;
307 
308 	return csize;
309 };
310 
at_xdmac_get_dwidth(u32 cfg)311 static inline u8 at_xdmac_get_dwidth(u32 cfg)
312 {
313 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
314 };
315 
316 static unsigned int init_nr_desc_per_channel = 64;
317 module_param(init_nr_desc_per_channel, uint, 0644);
318 MODULE_PARM_DESC(init_nr_desc_per_channel,
319 		 "initial descriptors per channel (default: 64)");
320 
321 
at_xdmac_chan_is_enabled(struct at_xdmac_chan * atchan)322 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
323 {
324 	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
325 }
326 
at_xdmac_off(struct at_xdmac * atxdmac)327 static void at_xdmac_off(struct at_xdmac *atxdmac)
328 {
329 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
330 
331 	/* Wait that all chans are disabled. */
332 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
333 		cpu_relax();
334 
335 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
336 }
337 
338 /* Call with lock hold. */
at_xdmac_start_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * first)339 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
340 				struct at_xdmac_desc *first)
341 {
342 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
343 	u32		reg;
344 
345 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
346 
347 	if (at_xdmac_chan_is_enabled(atchan))
348 		return;
349 
350 	/* Set transfer as active to not try to start it again. */
351 	first->active_xfer = true;
352 
353 	/* Tell xdmac where to get the first descriptor. */
354 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
355 	      | AT_XDMAC_CNDA_NDAIF(atchan->memif);
356 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
357 
358 	/*
359 	 * When doing non cyclic transfer we need to use the next
360 	 * descriptor view 2 since some fields of the configuration register
361 	 * depend on transfer size and src/dest addresses.
362 	 */
363 	if (at_xdmac_chan_is_cyclic(atchan))
364 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
365 	else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
366 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
367 	else
368 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
369 	/*
370 	 * Even if the register will be updated from the configuration in the
371 	 * descriptor when using view 2 or higher, the PROT bit won't be set
372 	 * properly. This bit can be modified only by using the channel
373 	 * configuration register.
374 	 */
375 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
376 
377 	reg |= AT_XDMAC_CNDC_NDDUP
378 	       | AT_XDMAC_CNDC_NDSUP
379 	       | AT_XDMAC_CNDC_NDE;
380 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
381 
382 	dev_vdbg(chan2dev(&atchan->chan),
383 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
384 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
385 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
386 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
387 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
388 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
389 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
390 
391 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
392 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
393 	/*
394 	 * There is no end of list when doing cyclic dma, we need to get
395 	 * an interrupt after each periods.
396 	 */
397 	if (at_xdmac_chan_is_cyclic(atchan))
398 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
399 				    reg | AT_XDMAC_CIE_BIE);
400 	else
401 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
402 				    reg | AT_XDMAC_CIE_LIE);
403 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
404 	dev_vdbg(chan2dev(&atchan->chan),
405 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
406 	wmb();
407 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
408 
409 	dev_vdbg(chan2dev(&atchan->chan),
410 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
411 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
412 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
413 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
414 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
415 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
416 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
417 
418 }
419 
at_xdmac_tx_submit(struct dma_async_tx_descriptor * tx)420 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
421 {
422 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
423 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
424 	dma_cookie_t		cookie;
425 	unsigned long		irqflags;
426 
427 	spin_lock_irqsave(&atchan->lock, irqflags);
428 	cookie = dma_cookie_assign(tx);
429 
430 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
431 		 __func__, atchan, desc);
432 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
433 	if (list_is_singular(&atchan->xfers_list))
434 		at_xdmac_start_xfer(atchan, desc);
435 
436 	spin_unlock_irqrestore(&atchan->lock, irqflags);
437 	return cookie;
438 }
439 
at_xdmac_alloc_desc(struct dma_chan * chan,gfp_t gfp_flags)440 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
441 						 gfp_t gfp_flags)
442 {
443 	struct at_xdmac_desc	*desc;
444 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
445 	dma_addr_t		phys;
446 
447 	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
448 	if (desc) {
449 		INIT_LIST_HEAD(&desc->descs_list);
450 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
451 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
452 		desc->tx_dma_desc.phys = phys;
453 	}
454 
455 	return desc;
456 }
457 
at_xdmac_init_used_desc(struct at_xdmac_desc * desc)458 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
459 {
460 	memset(&desc->lld, 0, sizeof(desc->lld));
461 	INIT_LIST_HEAD(&desc->descs_list);
462 	desc->direction = DMA_TRANS_NONE;
463 	desc->xfer_size = 0;
464 	desc->active_xfer = false;
465 }
466 
467 /* Call must be protected by lock. */
at_xdmac_get_desc(struct at_xdmac_chan * atchan)468 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
469 {
470 	struct at_xdmac_desc *desc;
471 
472 	if (list_empty(&atchan->free_descs_list)) {
473 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
474 	} else {
475 		desc = list_first_entry(&atchan->free_descs_list,
476 					struct at_xdmac_desc, desc_node);
477 		list_del(&desc->desc_node);
478 		at_xdmac_init_used_desc(desc);
479 	}
480 
481 	return desc;
482 }
483 
at_xdmac_queue_desc(struct dma_chan * chan,struct at_xdmac_desc * prev,struct at_xdmac_desc * desc)484 static void at_xdmac_queue_desc(struct dma_chan *chan,
485 				struct at_xdmac_desc *prev,
486 				struct at_xdmac_desc *desc)
487 {
488 	if (!prev || !desc)
489 		return;
490 
491 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
492 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
493 
494 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
495 		__func__, prev, &prev->lld.mbr_nda);
496 }
497 
at_xdmac_increment_block_count(struct dma_chan * chan,struct at_xdmac_desc * desc)498 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
499 						  struct at_xdmac_desc *desc)
500 {
501 	if (!desc)
502 		return;
503 
504 	desc->lld.mbr_bc++;
505 
506 	dev_dbg(chan2dev(chan),
507 		"%s: incrementing the block count of the desc 0x%p\n",
508 		__func__, desc);
509 }
510 
at_xdmac_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)511 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
512 				       struct of_dma *of_dma)
513 {
514 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
515 	struct at_xdmac_chan	*atchan;
516 	struct dma_chan		*chan;
517 	struct device		*dev = atxdmac->dma.dev;
518 
519 	if (dma_spec->args_count != 1) {
520 		dev_err(dev, "dma phandler args: bad number of args\n");
521 		return NULL;
522 	}
523 
524 	chan = dma_get_any_slave_channel(&atxdmac->dma);
525 	if (!chan) {
526 		dev_err(dev, "can't get a dma channel\n");
527 		return NULL;
528 	}
529 
530 	atchan = to_at_xdmac_chan(chan);
531 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
532 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
533 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
534 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
535 		 atchan->memif, atchan->perif, atchan->perid);
536 
537 	return chan;
538 }
539 
at_xdmac_compute_chan_conf(struct dma_chan * chan,enum dma_transfer_direction direction)540 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
541 				      enum dma_transfer_direction direction)
542 {
543 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
544 	int			csize, dwidth;
545 
546 	if (direction == DMA_DEV_TO_MEM) {
547 		atchan->cfg =
548 			AT91_XDMAC_DT_PERID(atchan->perid)
549 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
550 			| AT_XDMAC_CC_SAM_FIXED_AM
551 			| AT_XDMAC_CC_DIF(atchan->memif)
552 			| AT_XDMAC_CC_SIF(atchan->perif)
553 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
554 			| AT_XDMAC_CC_DSYNC_PER2MEM
555 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
556 			| AT_XDMAC_CC_TYPE_PER_TRAN;
557 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
558 		if (csize < 0) {
559 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
560 			return -EINVAL;
561 		}
562 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
563 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
564 		if (dwidth < 0) {
565 			dev_err(chan2dev(chan), "invalid src addr width value\n");
566 			return -EINVAL;
567 		}
568 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
569 	} else if (direction == DMA_MEM_TO_DEV) {
570 		atchan->cfg =
571 			AT91_XDMAC_DT_PERID(atchan->perid)
572 			| AT_XDMAC_CC_DAM_FIXED_AM
573 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
574 			| AT_XDMAC_CC_DIF(atchan->perif)
575 			| AT_XDMAC_CC_SIF(atchan->memif)
576 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
577 			| AT_XDMAC_CC_DSYNC_MEM2PER
578 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
579 			| AT_XDMAC_CC_TYPE_PER_TRAN;
580 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
581 		if (csize < 0) {
582 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
583 			return -EINVAL;
584 		}
585 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
586 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
587 		if (dwidth < 0) {
588 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
589 			return -EINVAL;
590 		}
591 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
592 	}
593 
594 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
595 
596 	return 0;
597 }
598 
599 /*
600  * Only check that maxburst and addr width values are supported by the
601  * the controller but not that the configuration is good to perform the
602  * transfer since we don't know the direction at this stage.
603  */
at_xdmac_check_slave_config(struct dma_slave_config * sconfig)604 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
605 {
606 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
607 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
608 		return -EINVAL;
609 
610 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
611 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
612 		return -EINVAL;
613 
614 	return 0;
615 }
616 
at_xdmac_set_slave_config(struct dma_chan * chan,struct dma_slave_config * sconfig)617 static int at_xdmac_set_slave_config(struct dma_chan *chan,
618 				      struct dma_slave_config *sconfig)
619 {
620 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
621 
622 	if (at_xdmac_check_slave_config(sconfig)) {
623 		dev_err(chan2dev(chan), "invalid slave configuration\n");
624 		return -EINVAL;
625 	}
626 
627 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
628 
629 	return 0;
630 }
631 
632 static struct dma_async_tx_descriptor *
at_xdmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)633 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
634 		       unsigned int sg_len, enum dma_transfer_direction direction,
635 		       unsigned long flags, void *context)
636 {
637 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
638 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
639 	struct scatterlist		*sg;
640 	int				i;
641 	unsigned int			xfer_size = 0;
642 	unsigned long			irqflags;
643 	struct dma_async_tx_descriptor	*ret = NULL;
644 
645 	if (!sgl)
646 		return NULL;
647 
648 	if (!is_slave_direction(direction)) {
649 		dev_err(chan2dev(chan), "invalid DMA direction\n");
650 		return NULL;
651 	}
652 
653 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
654 		 __func__, sg_len,
655 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
656 		 flags);
657 
658 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
659 	spin_lock_irqsave(&atchan->lock, irqflags);
660 
661 	if (at_xdmac_compute_chan_conf(chan, direction))
662 		goto spin_unlock;
663 
664 	/* Prepare descriptors. */
665 	for_each_sg(sgl, sg, sg_len, i) {
666 		struct at_xdmac_desc	*desc = NULL;
667 		u32			len, mem, dwidth, fixed_dwidth;
668 
669 		len = sg_dma_len(sg);
670 		mem = sg_dma_address(sg);
671 		if (unlikely(!len)) {
672 			dev_err(chan2dev(chan), "sg data length is zero\n");
673 			goto spin_unlock;
674 		}
675 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
676 			 __func__, i, len, mem);
677 
678 		desc = at_xdmac_get_desc(atchan);
679 		if (!desc) {
680 			dev_err(chan2dev(chan), "can't get descriptor\n");
681 			if (first)
682 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
683 			goto spin_unlock;
684 		}
685 
686 		/* Linked list descriptor setup. */
687 		if (direction == DMA_DEV_TO_MEM) {
688 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
689 			desc->lld.mbr_da = mem;
690 		} else {
691 			desc->lld.mbr_sa = mem;
692 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
693 		}
694 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
695 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
696 			       ? dwidth
697 			       : AT_XDMAC_CC_DWIDTH_BYTE;
698 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
699 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
700 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
701 			| (len >> fixed_dwidth);				/* microblock length */
702 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
703 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
704 		dev_dbg(chan2dev(chan),
705 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
706 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
707 
708 		/* Chain lld. */
709 		if (prev)
710 			at_xdmac_queue_desc(chan, prev, desc);
711 
712 		prev = desc;
713 		if (!first)
714 			first = desc;
715 
716 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
717 			 __func__, desc, first);
718 		list_add_tail(&desc->desc_node, &first->descs_list);
719 		xfer_size += len;
720 	}
721 
722 
723 	first->tx_dma_desc.flags = flags;
724 	first->xfer_size = xfer_size;
725 	first->direction = direction;
726 	ret = &first->tx_dma_desc;
727 
728 spin_unlock:
729 	spin_unlock_irqrestore(&atchan->lock, irqflags);
730 	return ret;
731 }
732 
733 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)734 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
735 			 size_t buf_len, size_t period_len,
736 			 enum dma_transfer_direction direction,
737 			 unsigned long flags)
738 {
739 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
740 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
741 	unsigned int		periods = buf_len / period_len;
742 	int			i;
743 	unsigned long		irqflags;
744 
745 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
746 		__func__, &buf_addr, buf_len, period_len,
747 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
748 
749 	if (!is_slave_direction(direction)) {
750 		dev_err(chan2dev(chan), "invalid DMA direction\n");
751 		return NULL;
752 	}
753 
754 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
755 		dev_err(chan2dev(chan), "channel currently used\n");
756 		return NULL;
757 	}
758 
759 	if (at_xdmac_compute_chan_conf(chan, direction))
760 		return NULL;
761 
762 	for (i = 0; i < periods; i++) {
763 		struct at_xdmac_desc	*desc = NULL;
764 
765 		spin_lock_irqsave(&atchan->lock, irqflags);
766 		desc = at_xdmac_get_desc(atchan);
767 		if (!desc) {
768 			dev_err(chan2dev(chan), "can't get descriptor\n");
769 			if (first)
770 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
771 			spin_unlock_irqrestore(&atchan->lock, irqflags);
772 			return NULL;
773 		}
774 		spin_unlock_irqrestore(&atchan->lock, irqflags);
775 		dev_dbg(chan2dev(chan),
776 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
777 			__func__, desc, &desc->tx_dma_desc.phys);
778 
779 		if (direction == DMA_DEV_TO_MEM) {
780 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
781 			desc->lld.mbr_da = buf_addr + i * period_len;
782 		} else {
783 			desc->lld.mbr_sa = buf_addr + i * period_len;
784 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
785 		}
786 		desc->lld.mbr_cfg = atchan->cfg;
787 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
788 			| AT_XDMAC_MBR_UBC_NDEN
789 			| AT_XDMAC_MBR_UBC_NSEN
790 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
791 
792 		dev_dbg(chan2dev(chan),
793 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
794 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
795 
796 		/* Chain lld. */
797 		if (prev)
798 			at_xdmac_queue_desc(chan, prev, desc);
799 
800 		prev = desc;
801 		if (!first)
802 			first = desc;
803 
804 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
805 			 __func__, desc, first);
806 		list_add_tail(&desc->desc_node, &first->descs_list);
807 	}
808 
809 	at_xdmac_queue_desc(chan, prev, first);
810 	first->tx_dma_desc.flags = flags;
811 	first->xfer_size = buf_len;
812 	first->direction = direction;
813 
814 	return &first->tx_dma_desc;
815 }
816 
at_xdmac_align_width(struct dma_chan * chan,dma_addr_t addr)817 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
818 {
819 	u32 width;
820 
821 	/*
822 	 * Check address alignment to select the greater data width we
823 	 * can use.
824 	 *
825 	 * Some XDMAC implementations don't provide dword transfer, in
826 	 * this case selecting dword has the same behavior as
827 	 * selecting word transfers.
828 	 */
829 	if (!(addr & 7)) {
830 		width = AT_XDMAC_CC_DWIDTH_DWORD;
831 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
832 	} else if (!(addr & 3)) {
833 		width = AT_XDMAC_CC_DWIDTH_WORD;
834 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
835 	} else if (!(addr & 1)) {
836 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
837 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
838 	} else {
839 		width = AT_XDMAC_CC_DWIDTH_BYTE;
840 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
841 	}
842 
843 	return width;
844 }
845 
846 static struct at_xdmac_desc *
at_xdmac_interleaved_queue_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,struct at_xdmac_desc * prev,dma_addr_t src,dma_addr_t dst,struct dma_interleaved_template * xt,struct data_chunk * chunk)847 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
848 				struct at_xdmac_chan *atchan,
849 				struct at_xdmac_desc *prev,
850 				dma_addr_t src, dma_addr_t dst,
851 				struct dma_interleaved_template *xt,
852 				struct data_chunk *chunk)
853 {
854 	struct at_xdmac_desc	*desc;
855 	u32			dwidth;
856 	unsigned long		flags;
857 	size_t			ublen;
858 	/*
859 	 * WARNING: The channel configuration is set here since there is no
860 	 * dmaengine_slave_config call in this case. Moreover we don't know the
861 	 * direction, it involves we can't dynamically set the source and dest
862 	 * interface so we have to use the same one. Only interface 0 allows EBI
863 	 * access. Hopefully we can access DDR through both ports (at least on
864 	 * SAMA5D4x), so we can use the same interface for source and dest,
865 	 * that solves the fact we don't know the direction.
866 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
867 	 * match the one of another channel. If not, it could lead to spurious
868 	 * flag status.
869 	 */
870 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
871 					| AT_XDMAC_CC_DIF(0)
872 					| AT_XDMAC_CC_SIF(0)
873 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
874 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
875 
876 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
877 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
878 		dev_dbg(chan2dev(chan),
879 			"%s: chunk too big (%zu, max size %lu)...\n",
880 			__func__, chunk->size,
881 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
882 		return NULL;
883 	}
884 
885 	if (prev)
886 		dev_dbg(chan2dev(chan),
887 			"Adding items at the end of desc 0x%p\n", prev);
888 
889 	if (xt->src_inc) {
890 		if (xt->src_sgl)
891 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
892 		else
893 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
894 	}
895 
896 	if (xt->dst_inc) {
897 		if (xt->dst_sgl)
898 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
899 		else
900 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
901 	}
902 
903 	spin_lock_irqsave(&atchan->lock, flags);
904 	desc = at_xdmac_get_desc(atchan);
905 	spin_unlock_irqrestore(&atchan->lock, flags);
906 	if (!desc) {
907 		dev_err(chan2dev(chan), "can't get descriptor\n");
908 		return NULL;
909 	}
910 
911 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
912 
913 	ublen = chunk->size >> dwidth;
914 
915 	desc->lld.mbr_sa = src;
916 	desc->lld.mbr_da = dst;
917 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
918 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
919 
920 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
921 		| AT_XDMAC_MBR_UBC_NDEN
922 		| AT_XDMAC_MBR_UBC_NSEN
923 		| ublen;
924 	desc->lld.mbr_cfg = chan_cc;
925 
926 	dev_dbg(chan2dev(chan),
927 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
928 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
929 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
930 
931 	/* Chain lld. */
932 	if (prev)
933 		at_xdmac_queue_desc(chan, prev, desc);
934 
935 	return desc;
936 }
937 
938 static struct dma_async_tx_descriptor *
at_xdmac_prep_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)939 at_xdmac_prep_interleaved(struct dma_chan *chan,
940 			  struct dma_interleaved_template *xt,
941 			  unsigned long flags)
942 {
943 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
944 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
945 	dma_addr_t		dst_addr, src_addr;
946 	size_t			src_skip = 0, dst_skip = 0, len = 0;
947 	struct data_chunk	*chunk;
948 	int			i;
949 
950 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
951 		return NULL;
952 
953 	/*
954 	 * TODO: Handle the case where we have to repeat a chain of
955 	 * descriptors...
956 	 */
957 	if ((xt->numf > 1) && (xt->frame_size > 1))
958 		return NULL;
959 
960 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
961 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
962 		xt->frame_size, flags);
963 
964 	src_addr = xt->src_start;
965 	dst_addr = xt->dst_start;
966 
967 	if (xt->numf > 1) {
968 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
969 							NULL,
970 							src_addr, dst_addr,
971 							xt, xt->sgl);
972 
973 		/* Length of the block is (BLEN+1) microblocks. */
974 		for (i = 0; i < xt->numf - 1; i++)
975 			at_xdmac_increment_block_count(chan, first);
976 
977 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
978 			__func__, first, first);
979 		list_add_tail(&first->desc_node, &first->descs_list);
980 	} else {
981 		for (i = 0; i < xt->frame_size; i++) {
982 			size_t src_icg = 0, dst_icg = 0;
983 			struct at_xdmac_desc *desc;
984 
985 			chunk = xt->sgl + i;
986 
987 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
988 			src_icg = dmaengine_get_src_icg(xt, chunk);
989 
990 			src_skip = chunk->size + src_icg;
991 			dst_skip = chunk->size + dst_icg;
992 
993 			dev_dbg(chan2dev(chan),
994 				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
995 				__func__, chunk->size, src_icg, dst_icg);
996 
997 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
998 							       prev,
999 							       src_addr, dst_addr,
1000 							       xt, chunk);
1001 			if (!desc) {
1002 				list_splice_init(&first->descs_list,
1003 						 &atchan->free_descs_list);
1004 				return NULL;
1005 			}
1006 
1007 			if (!first)
1008 				first = desc;
1009 
1010 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1011 				__func__, desc, first);
1012 			list_add_tail(&desc->desc_node, &first->descs_list);
1013 
1014 			if (xt->src_sgl)
1015 				src_addr += src_skip;
1016 
1017 			if (xt->dst_sgl)
1018 				dst_addr += dst_skip;
1019 
1020 			len += chunk->size;
1021 			prev = desc;
1022 		}
1023 	}
1024 
1025 	first->tx_dma_desc.cookie = -EBUSY;
1026 	first->tx_dma_desc.flags = flags;
1027 	first->xfer_size = len;
1028 
1029 	return &first->tx_dma_desc;
1030 }
1031 
1032 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1033 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1034 			 size_t len, unsigned long flags)
1035 {
1036 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1037 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1038 	size_t			remaining_size = len, xfer_size = 0, ublen;
1039 	dma_addr_t		src_addr = src, dst_addr = dest;
1040 	u32			dwidth;
1041 	/*
1042 	 * WARNING: We don't know the direction, it involves we can't
1043 	 * dynamically set the source and dest interface so we have to use the
1044 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1045 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1046 	 * the same interface for source and dest, that solves the fact we
1047 	 * don't know the direction.
1048 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1049 	 * match the one of another channel. If not, it could lead to spurious
1050 	 * flag status.
1051 	 */
1052 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1053 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1054 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1055 					| AT_XDMAC_CC_DIF(0)
1056 					| AT_XDMAC_CC_SIF(0)
1057 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1058 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1059 	unsigned long		irqflags;
1060 
1061 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1062 		__func__, &src, &dest, len, flags);
1063 
1064 	if (unlikely(!len))
1065 		return NULL;
1066 
1067 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1068 
1069 	/* Prepare descriptors. */
1070 	while (remaining_size) {
1071 		struct at_xdmac_desc	*desc = NULL;
1072 
1073 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1074 
1075 		spin_lock_irqsave(&atchan->lock, irqflags);
1076 		desc = at_xdmac_get_desc(atchan);
1077 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1078 		if (!desc) {
1079 			dev_err(chan2dev(chan), "can't get descriptor\n");
1080 			if (first)
1081 				list_splice_init(&first->descs_list, &atchan->free_descs_list);
1082 			return NULL;
1083 		}
1084 
1085 		/* Update src and dest addresses. */
1086 		src_addr += xfer_size;
1087 		dst_addr += xfer_size;
1088 
1089 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1090 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1091 		else
1092 			xfer_size = remaining_size;
1093 
1094 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1095 
1096 		/* Check remaining length and change data width if needed. */
1097 		dwidth = at_xdmac_align_width(chan,
1098 					      src_addr | dst_addr | xfer_size);
1099 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1100 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1101 
1102 		ublen = xfer_size >> dwidth;
1103 		remaining_size -= xfer_size;
1104 
1105 		desc->lld.mbr_sa = src_addr;
1106 		desc->lld.mbr_da = dst_addr;
1107 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1108 			| AT_XDMAC_MBR_UBC_NDEN
1109 			| AT_XDMAC_MBR_UBC_NSEN
1110 			| ublen;
1111 		desc->lld.mbr_cfg = chan_cc;
1112 
1113 		dev_dbg(chan2dev(chan),
1114 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1115 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1116 
1117 		/* Chain lld. */
1118 		if (prev)
1119 			at_xdmac_queue_desc(chan, prev, desc);
1120 
1121 		prev = desc;
1122 		if (!first)
1123 			first = desc;
1124 
1125 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1126 			 __func__, desc, first);
1127 		list_add_tail(&desc->desc_node, &first->descs_list);
1128 	}
1129 
1130 	first->tx_dma_desc.flags = flags;
1131 	first->xfer_size = len;
1132 
1133 	return &first->tx_dma_desc;
1134 }
1135 
at_xdmac_memset_create_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,dma_addr_t dst_addr,size_t len,int value)1136 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1137 							 struct at_xdmac_chan *atchan,
1138 							 dma_addr_t dst_addr,
1139 							 size_t len,
1140 							 int value)
1141 {
1142 	struct at_xdmac_desc	*desc;
1143 	unsigned long		flags;
1144 	size_t			ublen;
1145 	u32			dwidth;
1146 	/*
1147 	 * WARNING: The channel configuration is set here since there is no
1148 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1149 	 * direction, it involves we can't dynamically set the source and dest
1150 	 * interface so we have to use the same one. Only interface 0 allows EBI
1151 	 * access. Hopefully we can access DDR through both ports (at least on
1152 	 * SAMA5D4x), so we can use the same interface for source and dest,
1153 	 * that solves the fact we don't know the direction.
1154 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1155 	 * match the one of another channel. If not, it could lead to spurious
1156 	 * flag status.
1157 	 */
1158 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1159 					| AT_XDMAC_CC_DAM_UBS_AM
1160 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1161 					| AT_XDMAC_CC_DIF(0)
1162 					| AT_XDMAC_CC_SIF(0)
1163 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1164 					| AT_XDMAC_CC_MEMSET_HW_MODE
1165 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1166 
1167 	dwidth = at_xdmac_align_width(chan, dst_addr);
1168 
1169 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1170 		dev_err(chan2dev(chan),
1171 			"%s: Transfer too large, aborting...\n",
1172 			__func__);
1173 		return NULL;
1174 	}
1175 
1176 	spin_lock_irqsave(&atchan->lock, flags);
1177 	desc = at_xdmac_get_desc(atchan);
1178 	spin_unlock_irqrestore(&atchan->lock, flags);
1179 	if (!desc) {
1180 		dev_err(chan2dev(chan), "can't get descriptor\n");
1181 		return NULL;
1182 	}
1183 
1184 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1185 
1186 	ublen = len >> dwidth;
1187 
1188 	desc->lld.mbr_da = dst_addr;
1189 	desc->lld.mbr_ds = value;
1190 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1191 		| AT_XDMAC_MBR_UBC_NDEN
1192 		| AT_XDMAC_MBR_UBC_NSEN
1193 		| ublen;
1194 	desc->lld.mbr_cfg = chan_cc;
1195 
1196 	dev_dbg(chan2dev(chan),
1197 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1198 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1199 		desc->lld.mbr_cfg);
1200 
1201 	return desc;
1202 }
1203 
1204 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1205 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1206 			 size_t len, unsigned long flags)
1207 {
1208 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1209 	struct at_xdmac_desc	*desc;
1210 
1211 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1212 		__func__, &dest, len, value, flags);
1213 
1214 	if (unlikely(!len))
1215 		return NULL;
1216 
1217 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1218 	list_add_tail(&desc->desc_node, &desc->descs_list);
1219 
1220 	desc->tx_dma_desc.cookie = -EBUSY;
1221 	desc->tx_dma_desc.flags = flags;
1222 	desc->xfer_size = len;
1223 
1224 	return &desc->tx_dma_desc;
1225 }
1226 
1227 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)1228 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1229 			    unsigned int sg_len, int value,
1230 			    unsigned long flags)
1231 {
1232 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1233 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1234 				*ppdesc = NULL, *first = NULL;
1235 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1236 	size_t			stride = 0, pstride = 0, len = 0;
1237 	int			i;
1238 
1239 	if (!sgl)
1240 		return NULL;
1241 
1242 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1243 		__func__, sg_len, value, flags);
1244 
1245 	/* Prepare descriptors. */
1246 	for_each_sg(sgl, sg, sg_len, i) {
1247 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1248 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1249 			value, flags);
1250 		desc = at_xdmac_memset_create_desc(chan, atchan,
1251 						   sg_dma_address(sg),
1252 						   sg_dma_len(sg),
1253 						   value);
1254 		if (!desc && first)
1255 			list_splice_init(&first->descs_list,
1256 					 &atchan->free_descs_list);
1257 
1258 		if (!first)
1259 			first = desc;
1260 
1261 		/* Update our strides */
1262 		pstride = stride;
1263 		if (psg)
1264 			stride = sg_dma_address(sg) -
1265 				(sg_dma_address(psg) + sg_dma_len(psg));
1266 
1267 		/*
1268 		 * The scatterlist API gives us only the address and
1269 		 * length of each elements.
1270 		 *
1271 		 * Unfortunately, we don't have the stride, which we
1272 		 * will need to compute.
1273 		 *
1274 		 * That make us end up in a situation like this one:
1275 		 *    len    stride    len    stride    len
1276 		 * +-------+        +-------+        +-------+
1277 		 * |  N-2  |        |  N-1  |        |   N   |
1278 		 * +-------+        +-------+        +-------+
1279 		 *
1280 		 * We need all these three elements (N-2, N-1 and N)
1281 		 * to actually take the decision on whether we need to
1282 		 * queue N-1 or reuse N-2.
1283 		 *
1284 		 * We will only consider N if it is the last element.
1285 		 */
1286 		if (ppdesc && pdesc) {
1287 			if ((stride == pstride) &&
1288 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1289 				dev_dbg(chan2dev(chan),
1290 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1291 					__func__, pdesc, ppdesc);
1292 
1293 				/*
1294 				 * Increment the block count of the
1295 				 * N-2 descriptor
1296 				 */
1297 				at_xdmac_increment_block_count(chan, ppdesc);
1298 				ppdesc->lld.mbr_dus = stride;
1299 
1300 				/*
1301 				 * Put back the N-1 descriptor in the
1302 				 * free descriptor list
1303 				 */
1304 				list_add_tail(&pdesc->desc_node,
1305 					      &atchan->free_descs_list);
1306 
1307 				/*
1308 				 * Make our N-1 descriptor pointer
1309 				 * point to the N-2 since they were
1310 				 * actually merged.
1311 				 */
1312 				pdesc = ppdesc;
1313 
1314 			/*
1315 			 * Rule out the case where we don't have
1316 			 * pstride computed yet (our second sg
1317 			 * element)
1318 			 *
1319 			 * We also want to catch the case where there
1320 			 * would be a negative stride,
1321 			 */
1322 			} else if (pstride ||
1323 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1324 				/*
1325 				 * Queue the N-1 descriptor after the
1326 				 * N-2
1327 				 */
1328 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1329 
1330 				/*
1331 				 * Add the N-1 descriptor to the list
1332 				 * of the descriptors used for this
1333 				 * transfer
1334 				 */
1335 				list_add_tail(&desc->desc_node,
1336 					      &first->descs_list);
1337 				dev_dbg(chan2dev(chan),
1338 					"%s: add desc 0x%p to descs_list 0x%p\n",
1339 					__func__, desc, first);
1340 			}
1341 		}
1342 
1343 		/*
1344 		 * If we are the last element, just see if we have the
1345 		 * same size than the previous element.
1346 		 *
1347 		 * If so, we can merge it with the previous descriptor
1348 		 * since we don't care about the stride anymore.
1349 		 */
1350 		if ((i == (sg_len - 1)) &&
1351 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1352 			dev_dbg(chan2dev(chan),
1353 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1354 				__func__, desc, pdesc);
1355 
1356 			/*
1357 			 * Increment the block count of the N-1
1358 			 * descriptor
1359 			 */
1360 			at_xdmac_increment_block_count(chan, pdesc);
1361 			pdesc->lld.mbr_dus = stride;
1362 
1363 			/*
1364 			 * Put back the N descriptor in the free
1365 			 * descriptor list
1366 			 */
1367 			list_add_tail(&desc->desc_node,
1368 				      &atchan->free_descs_list);
1369 		}
1370 
1371 		/* Update our descriptors */
1372 		ppdesc = pdesc;
1373 		pdesc = desc;
1374 
1375 		/* Update our scatter pointers */
1376 		ppsg = psg;
1377 		psg = sg;
1378 
1379 		len += sg_dma_len(sg);
1380 	}
1381 
1382 	first->tx_dma_desc.cookie = -EBUSY;
1383 	first->tx_dma_desc.flags = flags;
1384 	first->xfer_size = len;
1385 
1386 	return &first->tx_dma_desc;
1387 }
1388 
1389 static enum dma_status
at_xdmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1390 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1391 		struct dma_tx_state *txstate)
1392 {
1393 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1394 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1395 	struct at_xdmac_desc	*desc, *_desc;
1396 	struct list_head	*descs_list;
1397 	enum dma_status		ret;
1398 	int			residue, retry;
1399 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1400 	u8			dwidth = 0;
1401 	unsigned long		flags;
1402 	bool			initd;
1403 
1404 	ret = dma_cookie_status(chan, cookie, txstate);
1405 	if (ret == DMA_COMPLETE)
1406 		return ret;
1407 
1408 	if (!txstate)
1409 		return ret;
1410 
1411 	spin_lock_irqsave(&atchan->lock, flags);
1412 
1413 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1414 
1415 	/*
1416 	 * If the transfer has not been started yet, don't need to compute the
1417 	 * residue, it's the transfer length.
1418 	 */
1419 	if (!desc->active_xfer) {
1420 		dma_set_residue(txstate, desc->xfer_size);
1421 		goto spin_unlock;
1422 	}
1423 
1424 	residue = desc->xfer_size;
1425 	/*
1426 	 * Flush FIFO: only relevant when the transfer is source peripheral
1427 	 * synchronized. Flush is needed before reading CUBC because data in
1428 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1429 	 * transfer length while we have data in FIFO can cause issue.
1430 	 * Usecase: atmel USART has a timeout which means I have received
1431 	 * characters but there is no more character received for a while. On
1432 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1433 	 * we will return a residue of the transfer length. It means no data
1434 	 * received. If an application is waiting for these data, it will hang
1435 	 * since we won't have another USART timeout without receiving new
1436 	 * data.
1437 	 */
1438 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1439 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1440 	if ((desc->lld.mbr_cfg & mask) == value) {
1441 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1442 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1443 			cpu_relax();
1444 	}
1445 
1446 	/*
1447 	 * The easiest way to compute the residue should be to pause the DMA
1448 	 * but doing this can lead to miss some data as some devices don't
1449 	 * have FIFO.
1450 	 * We need to read several registers because:
1451 	 * - DMA is running therefore a descriptor change is possible while
1452 	 * reading these registers
1453 	 * - When the block transfer is done, the value of the CUBC register
1454 	 * is set to its initial value until the fetch of the next descriptor.
1455 	 * This value will corrupt the residue calculation so we have to skip
1456 	 * it.
1457 	 *
1458 	 * INITD --------                    ------------
1459 	 *              |____________________|
1460 	 *       _______________________  _______________
1461 	 * NDA       @desc2             \/   @desc3
1462 	 *       _______________________/\_______________
1463 	 *       __________  ___________  _______________
1464 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1465 	 *       __________/\___________/\_______________
1466 	 *
1467 	 * Since descriptors are aligned on 64 bits, we can assume that
1468 	 * the update of NDA and CUBC is atomic.
1469 	 * Memory barriers are used to ensure the read order of the registers.
1470 	 * A max number of retries is set because unlikely it could never ends.
1471 	 */
1472 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1473 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1474 		rmb();
1475 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1476 		rmb();
1477 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1478 		rmb();
1479 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1480 		rmb();
1481 
1482 		if ((check_nda == cur_nda) && initd)
1483 			break;
1484 	}
1485 
1486 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1487 		ret = DMA_ERROR;
1488 		goto spin_unlock;
1489 	}
1490 
1491 	/*
1492 	 * Flush FIFO: only relevant when the transfer is source peripheral
1493 	 * synchronized. Another flush is needed here because CUBC is updated
1494 	 * when the controller sends the data write command. It can lead to
1495 	 * report data that are not written in the memory or the device. The
1496 	 * FIFO flush ensures that data are really written.
1497 	 */
1498 	if ((desc->lld.mbr_cfg & mask) == value) {
1499 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1500 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1501 			cpu_relax();
1502 	}
1503 
1504 	/*
1505 	 * Remove size of all microblocks already transferred and the current
1506 	 * one. Then add the remaining size to transfer of the current
1507 	 * microblock.
1508 	 */
1509 	descs_list = &desc->descs_list;
1510 	list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1511 		dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1512 		residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1513 		if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1514 			break;
1515 	}
1516 	residue += cur_ubc << dwidth;
1517 
1518 	dma_set_residue(txstate, residue);
1519 
1520 	dev_dbg(chan2dev(chan),
1521 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1522 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1523 
1524 spin_unlock:
1525 	spin_unlock_irqrestore(&atchan->lock, flags);
1526 	return ret;
1527 }
1528 
1529 /* Call must be protected by lock. */
at_xdmac_remove_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * desc)1530 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1531 				    struct at_xdmac_desc *desc)
1532 {
1533 	dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1534 
1535 	/*
1536 	 * Remove the transfer from the transfer list then move the transfer
1537 	 * descriptors into the free descriptors list.
1538 	 */
1539 	list_del(&desc->xfer_node);
1540 	list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1541 }
1542 
at_xdmac_advance_work(struct at_xdmac_chan * atchan)1543 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1544 {
1545 	struct at_xdmac_desc	*desc;
1546 	unsigned long		flags;
1547 
1548 	spin_lock_irqsave(&atchan->lock, flags);
1549 
1550 	/*
1551 	 * If channel is enabled, do nothing, advance_work will be triggered
1552 	 * after the interruption.
1553 	 */
1554 	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1555 		desc = list_first_entry(&atchan->xfers_list,
1556 					struct at_xdmac_desc,
1557 					xfer_node);
1558 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1559 		if (!desc->active_xfer)
1560 			at_xdmac_start_xfer(atchan, desc);
1561 	}
1562 
1563 	spin_unlock_irqrestore(&atchan->lock, flags);
1564 }
1565 
at_xdmac_handle_cyclic(struct at_xdmac_chan * atchan)1566 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1567 {
1568 	struct at_xdmac_desc		*desc;
1569 	struct dma_async_tx_descriptor	*txd;
1570 
1571 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1572 	txd = &desc->tx_dma_desc;
1573 
1574 	if (txd->flags & DMA_PREP_INTERRUPT)
1575 		dmaengine_desc_get_callback_invoke(txd, NULL);
1576 }
1577 
at_xdmac_tasklet(unsigned long data)1578 static void at_xdmac_tasklet(unsigned long data)
1579 {
1580 	struct at_xdmac_chan	*atchan = (struct at_xdmac_chan *)data;
1581 	struct at_xdmac_desc	*desc;
1582 	u32			error_mask;
1583 
1584 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1585 		__func__, atchan->irq_status);
1586 
1587 	error_mask = AT_XDMAC_CIS_RBEIS
1588 		     | AT_XDMAC_CIS_WBEIS
1589 		     | AT_XDMAC_CIS_ROIS;
1590 
1591 	if (at_xdmac_chan_is_cyclic(atchan)) {
1592 		at_xdmac_handle_cyclic(atchan);
1593 	} else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
1594 		   || (atchan->irq_status & error_mask)) {
1595 		struct dma_async_tx_descriptor  *txd;
1596 
1597 		if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1598 			dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1599 		if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1600 			dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1601 		if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1602 			dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1603 
1604 		spin_lock_bh(&atchan->lock);
1605 		desc = list_first_entry(&atchan->xfers_list,
1606 					struct at_xdmac_desc,
1607 					xfer_node);
1608 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1609 		if (!desc->active_xfer) {
1610 			dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1611 			spin_unlock_bh(&atchan->lock);
1612 			return;
1613 		}
1614 
1615 		txd = &desc->tx_dma_desc;
1616 
1617 		at_xdmac_remove_xfer(atchan, desc);
1618 		spin_unlock_bh(&atchan->lock);
1619 
1620 		if (!at_xdmac_chan_is_cyclic(atchan)) {
1621 			dma_cookie_complete(txd);
1622 			if (txd->flags & DMA_PREP_INTERRUPT)
1623 				dmaengine_desc_get_callback_invoke(txd, NULL);
1624 		}
1625 
1626 		dma_run_dependencies(txd);
1627 
1628 		at_xdmac_advance_work(atchan);
1629 	}
1630 }
1631 
at_xdmac_interrupt(int irq,void * dev_id)1632 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1633 {
1634 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1635 	struct at_xdmac_chan	*atchan;
1636 	u32			imr, status, pending;
1637 	u32			chan_imr, chan_status;
1638 	int			i, ret = IRQ_NONE;
1639 
1640 	do {
1641 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1642 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1643 		pending = status & imr;
1644 
1645 		dev_vdbg(atxdmac->dma.dev,
1646 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1647 			 __func__, status, imr, pending);
1648 
1649 		if (!pending)
1650 			break;
1651 
1652 		/* We have to find which channel has generated the interrupt. */
1653 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1654 			if (!((1 << i) & pending))
1655 				continue;
1656 
1657 			atchan = &atxdmac->chan[i];
1658 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1659 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1660 			atchan->irq_status = chan_status & chan_imr;
1661 			dev_vdbg(atxdmac->dma.dev,
1662 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1663 				 __func__, i, chan_imr, chan_status);
1664 			dev_vdbg(chan2dev(&atchan->chan),
1665 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1666 				 __func__,
1667 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1668 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1669 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1670 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1671 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1672 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1673 
1674 			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1675 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1676 
1677 			tasklet_schedule(&atchan->tasklet);
1678 			ret = IRQ_HANDLED;
1679 		}
1680 
1681 	} while (pending);
1682 
1683 	return ret;
1684 }
1685 
at_xdmac_issue_pending(struct dma_chan * chan)1686 static void at_xdmac_issue_pending(struct dma_chan *chan)
1687 {
1688 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1689 
1690 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1691 
1692 	if (!at_xdmac_chan_is_cyclic(atchan))
1693 		at_xdmac_advance_work(atchan);
1694 
1695 	return;
1696 }
1697 
at_xdmac_device_config(struct dma_chan * chan,struct dma_slave_config * config)1698 static int at_xdmac_device_config(struct dma_chan *chan,
1699 				  struct dma_slave_config *config)
1700 {
1701 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1702 	int ret;
1703 	unsigned long		flags;
1704 
1705 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1706 
1707 	spin_lock_irqsave(&atchan->lock, flags);
1708 	ret = at_xdmac_set_slave_config(chan, config);
1709 	spin_unlock_irqrestore(&atchan->lock, flags);
1710 
1711 	return ret;
1712 }
1713 
at_xdmac_device_pause(struct dma_chan * chan)1714 static int at_xdmac_device_pause(struct dma_chan *chan)
1715 {
1716 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1717 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1718 	unsigned long		flags;
1719 
1720 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1721 
1722 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1723 		return 0;
1724 
1725 	spin_lock_irqsave(&atchan->lock, flags);
1726 	at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1727 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1728 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1729 		cpu_relax();
1730 	spin_unlock_irqrestore(&atchan->lock, flags);
1731 
1732 	return 0;
1733 }
1734 
at_xdmac_device_resume(struct dma_chan * chan)1735 static int at_xdmac_device_resume(struct dma_chan *chan)
1736 {
1737 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1738 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1739 	unsigned long		flags;
1740 
1741 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1742 
1743 	spin_lock_irqsave(&atchan->lock, flags);
1744 	if (!at_xdmac_chan_is_paused(atchan)) {
1745 		spin_unlock_irqrestore(&atchan->lock, flags);
1746 		return 0;
1747 	}
1748 
1749 	at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1750 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1751 	spin_unlock_irqrestore(&atchan->lock, flags);
1752 
1753 	return 0;
1754 }
1755 
at_xdmac_device_terminate_all(struct dma_chan * chan)1756 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1757 {
1758 	struct at_xdmac_desc	*desc, *_desc;
1759 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1760 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1761 	unsigned long		flags;
1762 
1763 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1764 
1765 	spin_lock_irqsave(&atchan->lock, flags);
1766 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1767 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1768 		cpu_relax();
1769 
1770 	/* Cancel all pending transfers. */
1771 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1772 		at_xdmac_remove_xfer(atchan, desc);
1773 
1774 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1775 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1776 	spin_unlock_irqrestore(&atchan->lock, flags);
1777 
1778 	return 0;
1779 }
1780 
at_xdmac_alloc_chan_resources(struct dma_chan * chan)1781 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1782 {
1783 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1784 	struct at_xdmac_desc	*desc;
1785 	int			i;
1786 	unsigned long		flags;
1787 
1788 	spin_lock_irqsave(&atchan->lock, flags);
1789 
1790 	if (at_xdmac_chan_is_enabled(atchan)) {
1791 		dev_err(chan2dev(chan),
1792 			"can't allocate channel resources (channel enabled)\n");
1793 		i = -EIO;
1794 		goto spin_unlock;
1795 	}
1796 
1797 	if (!list_empty(&atchan->free_descs_list)) {
1798 		dev_err(chan2dev(chan),
1799 			"can't allocate channel resources (channel not free from a previous use)\n");
1800 		i = -EIO;
1801 		goto spin_unlock;
1802 	}
1803 
1804 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1805 		desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1806 		if (!desc) {
1807 			dev_warn(chan2dev(chan),
1808 				"only %d descriptors have been allocated\n", i);
1809 			break;
1810 		}
1811 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1812 	}
1813 
1814 	dma_cookie_init(chan);
1815 
1816 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1817 
1818 spin_unlock:
1819 	spin_unlock_irqrestore(&atchan->lock, flags);
1820 	return i;
1821 }
1822 
at_xdmac_free_chan_resources(struct dma_chan * chan)1823 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1824 {
1825 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1826 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1827 	struct at_xdmac_desc	*desc, *_desc;
1828 
1829 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1830 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1831 		list_del(&desc->desc_node);
1832 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1833 	}
1834 
1835 	return;
1836 }
1837 
1838 #ifdef CONFIG_PM
atmel_xdmac_prepare(struct device * dev)1839 static int atmel_xdmac_prepare(struct device *dev)
1840 {
1841 	struct platform_device	*pdev = to_platform_device(dev);
1842 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1843 	struct dma_chan		*chan, *_chan;
1844 
1845 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1846 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1847 
1848 		/* Wait for transfer completion, except in cyclic case. */
1849 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1850 			return -EAGAIN;
1851 	}
1852 	return 0;
1853 }
1854 #else
1855 #	define atmel_xdmac_prepare NULL
1856 #endif
1857 
1858 #ifdef CONFIG_PM_SLEEP
atmel_xdmac_suspend(struct device * dev)1859 static int atmel_xdmac_suspend(struct device *dev)
1860 {
1861 	struct platform_device	*pdev = to_platform_device(dev);
1862 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1863 	struct dma_chan		*chan, *_chan;
1864 
1865 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1866 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1867 
1868 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1869 		if (at_xdmac_chan_is_cyclic(atchan)) {
1870 			if (!at_xdmac_chan_is_paused(atchan))
1871 				at_xdmac_device_pause(chan);
1872 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1873 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1874 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1875 		}
1876 	}
1877 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1878 
1879 	at_xdmac_off(atxdmac);
1880 	clk_disable_unprepare(atxdmac->clk);
1881 	return 0;
1882 }
1883 
atmel_xdmac_resume(struct device * dev)1884 static int atmel_xdmac_resume(struct device *dev)
1885 {
1886 	struct platform_device	*pdev = to_platform_device(dev);
1887 	struct at_xdmac		*atxdmac = platform_get_drvdata(pdev);
1888 	struct at_xdmac_chan	*atchan;
1889 	struct dma_chan		*chan, *_chan;
1890 	int			i;
1891 	int ret;
1892 
1893 	ret = clk_prepare_enable(atxdmac->clk);
1894 	if (ret)
1895 		return ret;
1896 
1897 	/* Clear pending interrupts. */
1898 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1899 		atchan = &atxdmac->chan[i];
1900 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1901 			cpu_relax();
1902 	}
1903 
1904 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1905 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1906 		atchan = to_at_xdmac_chan(chan);
1907 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1908 		if (at_xdmac_chan_is_cyclic(atchan)) {
1909 			if (at_xdmac_chan_is_paused(atchan))
1910 				at_xdmac_device_resume(chan);
1911 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1912 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1913 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1914 			wmb();
1915 			at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1916 		}
1917 	}
1918 	return 0;
1919 }
1920 #endif /* CONFIG_PM_SLEEP */
1921 
at_xdmac_probe(struct platform_device * pdev)1922 static int at_xdmac_probe(struct platform_device *pdev)
1923 {
1924 	struct resource	*res;
1925 	struct at_xdmac	*atxdmac;
1926 	int		irq, size, nr_channels, i, ret;
1927 	void __iomem	*base;
1928 	u32		reg;
1929 
1930 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1931 	if (!res)
1932 		return -EINVAL;
1933 
1934 	irq = platform_get_irq(pdev, 0);
1935 	if (irq < 0)
1936 		return irq;
1937 
1938 	base = devm_ioremap_resource(&pdev->dev, res);
1939 	if (IS_ERR(base))
1940 		return PTR_ERR(base);
1941 
1942 	/*
1943 	 * Read number of xdmac channels, read helper function can't be used
1944 	 * since atxdmac is not yet allocated and we need to know the number
1945 	 * of channels to do the allocation.
1946 	 */
1947 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1948 	nr_channels = AT_XDMAC_NB_CH(reg);
1949 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
1950 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1951 			nr_channels);
1952 		return -EINVAL;
1953 	}
1954 
1955 	size = sizeof(*atxdmac);
1956 	size += nr_channels * sizeof(struct at_xdmac_chan);
1957 	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1958 	if (!atxdmac) {
1959 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1960 		return -ENOMEM;
1961 	}
1962 
1963 	atxdmac->regs = base;
1964 	atxdmac->irq = irq;
1965 
1966 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1967 	if (IS_ERR(atxdmac->clk)) {
1968 		dev_err(&pdev->dev, "can't get dma_clk\n");
1969 		return PTR_ERR(atxdmac->clk);
1970 	}
1971 
1972 	/* Do not use dev res to prevent races with tasklet */
1973 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
1974 	if (ret) {
1975 		dev_err(&pdev->dev, "can't request irq\n");
1976 		return ret;
1977 	}
1978 
1979 	ret = clk_prepare_enable(atxdmac->clk);
1980 	if (ret) {
1981 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
1982 		goto err_free_irq;
1983 	}
1984 
1985 	atxdmac->at_xdmac_desc_pool =
1986 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1987 				sizeof(struct at_xdmac_desc), 4, 0);
1988 	if (!atxdmac->at_xdmac_desc_pool) {
1989 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
1990 		ret = -ENOMEM;
1991 		goto err_clk_disable;
1992 	}
1993 
1994 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
1995 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
1996 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
1997 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
1998 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
1999 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2000 	/*
2001 	 * Without DMA_PRIVATE the driver is not able to allocate more than
2002 	 * one channel, second allocation fails in private_candidate.
2003 	 */
2004 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2005 	atxdmac->dma.dev				= &pdev->dev;
2006 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2007 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2008 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2009 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2010 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2011 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2012 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2013 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2014 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2015 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2016 	atxdmac->dma.device_config			= at_xdmac_device_config;
2017 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2018 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2019 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2020 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2021 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2022 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2023 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2024 
2025 	/* Disable all chans and interrupts. */
2026 	at_xdmac_off(atxdmac);
2027 
2028 	/* Init channels. */
2029 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2030 	for (i = 0; i < nr_channels; i++) {
2031 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2032 
2033 		atchan->chan.device = &atxdmac->dma;
2034 		list_add_tail(&atchan->chan.device_node,
2035 			      &atxdmac->dma.channels);
2036 
2037 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2038 		atchan->mask = 1 << i;
2039 
2040 		spin_lock_init(&atchan->lock);
2041 		INIT_LIST_HEAD(&atchan->xfers_list);
2042 		INIT_LIST_HEAD(&atchan->free_descs_list);
2043 		tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
2044 			     (unsigned long)atchan);
2045 
2046 		/* Clear pending interrupts. */
2047 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2048 			cpu_relax();
2049 	}
2050 	platform_set_drvdata(pdev, atxdmac);
2051 
2052 	ret = dma_async_device_register(&atxdmac->dma);
2053 	if (ret) {
2054 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2055 		goto err_clk_disable;
2056 	}
2057 
2058 	ret = of_dma_controller_register(pdev->dev.of_node,
2059 					 at_xdmac_xlate, atxdmac);
2060 	if (ret) {
2061 		dev_err(&pdev->dev, "could not register of dma controller\n");
2062 		goto err_dma_unregister;
2063 	}
2064 
2065 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2066 		 nr_channels, atxdmac->regs);
2067 
2068 	return 0;
2069 
2070 err_dma_unregister:
2071 	dma_async_device_unregister(&atxdmac->dma);
2072 err_clk_disable:
2073 	clk_disable_unprepare(atxdmac->clk);
2074 err_free_irq:
2075 	free_irq(atxdmac->irq, atxdmac);
2076 	return ret;
2077 }
2078 
at_xdmac_remove(struct platform_device * pdev)2079 static int at_xdmac_remove(struct platform_device *pdev)
2080 {
2081 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2082 	int		i;
2083 
2084 	at_xdmac_off(atxdmac);
2085 	of_dma_controller_free(pdev->dev.of_node);
2086 	dma_async_device_unregister(&atxdmac->dma);
2087 	clk_disable_unprepare(atxdmac->clk);
2088 
2089 	free_irq(atxdmac->irq, atxdmac);
2090 
2091 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2092 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2093 
2094 		tasklet_kill(&atchan->tasklet);
2095 		at_xdmac_free_chan_resources(&atchan->chan);
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2102 	.prepare	= atmel_xdmac_prepare,
2103 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2104 };
2105 
2106 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2107 	{
2108 		.compatible = "atmel,sama5d4-dma",
2109 	}, {
2110 		/* sentinel */
2111 	}
2112 };
2113 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2114 
2115 static struct platform_driver at_xdmac_driver = {
2116 	.probe		= at_xdmac_probe,
2117 	.remove		= at_xdmac_remove,
2118 	.driver = {
2119 		.name		= "at_xdmac",
2120 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2121 		.pm		= &atmel_xdmac_dev_pm_ops,
2122 	}
2123 };
2124 
at_xdmac_init(void)2125 static int __init at_xdmac_init(void)
2126 {
2127 	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2128 }
2129 subsys_initcall(at_xdmac_init);
2130 
2131 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2132 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2133 MODULE_LICENSE("GPL");
2134