1 /*
2 * Renesas R-Car Gen2 DMA Controller Driver
3 *
4 * Copyright (C) 2014 Renesas Electronics Inc.
5 *
6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7 *
8 * This is free software; you can redistribute it and/or modify
9 * it under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include "../dmaengine.h"
28
29 /*
30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31 * @node: entry in the parent's chunks list
32 * @src_addr: device source address
33 * @dst_addr: device destination address
34 * @size: transfer size in bytes
35 */
36 struct rcar_dmac_xfer_chunk {
37 struct list_head node;
38
39 dma_addr_t src_addr;
40 dma_addr_t dst_addr;
41 u32 size;
42 };
43
44 /*
45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46 * @sar: value of the SAR register (source address)
47 * @dar: value of the DAR register (destination address)
48 * @tcr: value of the TCR register (transfer count)
49 */
50 struct rcar_dmac_hw_desc {
51 u32 sar;
52 u32 dar;
53 u32 tcr;
54 u32 reserved;
55 } __attribute__((__packed__));
56
57 /*
58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59 * @async_tx: base DMA asynchronous transaction descriptor
60 * @direction: direction of the DMA transfer
61 * @xfer_shift: log2 of the transfer size
62 * @chcr: value of the channel configuration register for this transfer
63 * @node: entry in the channel's descriptors lists
64 * @chunks: list of transfer chunks for this transfer
65 * @running: the transfer chunk being currently processed
66 * @nchunks: number of transfer chunks for this transfer
67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68 * @hwdescs.mem: hardware descriptors memory for the transfer
69 * @hwdescs.dma: device address of the hardware descriptors memory
70 * @hwdescs.size: size of the hardware descriptors in bytes
71 * @size: transfer size in bytes
72 * @cyclic: when set indicates that the DMA transfer is cyclic
73 */
74 struct rcar_dmac_desc {
75 struct dma_async_tx_descriptor async_tx;
76 enum dma_transfer_direction direction;
77 unsigned int xfer_shift;
78 u32 chcr;
79
80 struct list_head node;
81 struct list_head chunks;
82 struct rcar_dmac_xfer_chunk *running;
83 unsigned int nchunks;
84
85 struct {
86 bool use;
87 struct rcar_dmac_hw_desc *mem;
88 dma_addr_t dma;
89 size_t size;
90 } hwdescs;
91
92 unsigned int size;
93 bool cyclic;
94 };
95
96 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
97
98 /*
99 * struct rcar_dmac_desc_page - One page worth of descriptors
100 * @node: entry in the channel's pages list
101 * @descs: array of DMA descriptors
102 * @chunks: array of transfer chunk descriptors
103 */
104 struct rcar_dmac_desc_page {
105 struct list_head node;
106
107 union {
108 struct rcar_dmac_desc descs[0];
109 struct rcar_dmac_xfer_chunk chunks[0];
110 };
111 };
112
113 #define RCAR_DMAC_DESCS_PER_PAGE \
114 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
115 sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
117 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
118 sizeof(struct rcar_dmac_xfer_chunk))
119
120 /*
121 * struct rcar_dmac_chan_slave - Slave configuration
122 * @slave_addr: slave memory address
123 * @xfer_size: size (in bytes) of hardware transfers
124 */
125 struct rcar_dmac_chan_slave {
126 phys_addr_t slave_addr;
127 unsigned int xfer_size;
128 };
129
130 /*
131 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
132 * @addr: slave dma address
133 * @dir: direction of mapping
134 * @slave: slave configuration that is mapped
135 */
136 struct rcar_dmac_chan_map {
137 dma_addr_t addr;
138 enum dma_data_direction dir;
139 struct rcar_dmac_chan_slave slave;
140 };
141
142 /*
143 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
144 * @chan: base DMA channel object
145 * @iomem: channel I/O memory base
146 * @index: index of this channel in the controller
147 * @irq: channel IRQ
148 * @src: slave memory address and size on the source side
149 * @dst: slave memory address and size on the destination side
150 * @mid_rid: hardware MID/RID for the DMA client using this channel
151 * @lock: protects the channel CHCR register and the desc members
152 * @desc.free: list of free descriptors
153 * @desc.pending: list of pending descriptors (submitted with tx_submit)
154 * @desc.active: list of active descriptors (activated with issue_pending)
155 * @desc.done: list of completed descriptors
156 * @desc.wait: list of descriptors waiting for an ack
157 * @desc.running: the descriptor being processed (a member of the active list)
158 * @desc.chunks_free: list of free transfer chunk descriptors
159 * @desc.pages: list of pages used by allocated descriptors
160 */
161 struct rcar_dmac_chan {
162 struct dma_chan chan;
163 void __iomem *iomem;
164 unsigned int index;
165 int irq;
166
167 struct rcar_dmac_chan_slave src;
168 struct rcar_dmac_chan_slave dst;
169 struct rcar_dmac_chan_map map;
170 int mid_rid;
171
172 spinlock_t lock;
173
174 struct {
175 struct list_head free;
176 struct list_head pending;
177 struct list_head active;
178 struct list_head done;
179 struct list_head wait;
180 struct rcar_dmac_desc *running;
181
182 struct list_head chunks_free;
183
184 struct list_head pages;
185 } desc;
186 };
187
188 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
189
190 /*
191 * struct rcar_dmac - R-Car Gen2 DMA Controller
192 * @engine: base DMA engine object
193 * @dev: the hardware device
194 * @iomem: remapped I/O memory base
195 * @n_channels: number of available channels
196 * @channels: array of DMAC channels
197 * @modules: bitmask of client modules in use
198 */
199 struct rcar_dmac {
200 struct dma_device engine;
201 struct device *dev;
202 void __iomem *iomem;
203 struct device_dma_parameters parms;
204
205 unsigned int n_channels;
206 struct rcar_dmac_chan *channels;
207
208 DECLARE_BITMAP(modules, 256);
209 };
210
211 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
212
213 /* -----------------------------------------------------------------------------
214 * Registers
215 */
216
217 #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
218
219 #define RCAR_DMAISTA 0x0020
220 #define RCAR_DMASEC 0x0030
221 #define RCAR_DMAOR 0x0060
222 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
223 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
224 #define RCAR_DMAOR_AE (1 << 2)
225 #define RCAR_DMAOR_DME (1 << 0)
226 #define RCAR_DMACHCLR 0x0080
227 #define RCAR_DMADPSEC 0x00a0
228
229 #define RCAR_DMASAR 0x0000
230 #define RCAR_DMADAR 0x0004
231 #define RCAR_DMATCR 0x0008
232 #define RCAR_DMATCR_MASK 0x00ffffff
233 #define RCAR_DMATSR 0x0028
234 #define RCAR_DMACHCR 0x000c
235 #define RCAR_DMACHCR_CAE (1 << 31)
236 #define RCAR_DMACHCR_CAIE (1 << 30)
237 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
238 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
239 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
240 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
241 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
242 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
243 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
244 #define RCAR_DMACHCR_DPB (1 << 22)
245 #define RCAR_DMACHCR_DSE (1 << 19)
246 #define RCAR_DMACHCR_DSIE (1 << 18)
247 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
248 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
249 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
250 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
251 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
252 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
253 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
254 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
255 #define RCAR_DMACHCR_DM_INC (1 << 14)
256 #define RCAR_DMACHCR_DM_DEC (2 << 14)
257 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
258 #define RCAR_DMACHCR_SM_INC (1 << 12)
259 #define RCAR_DMACHCR_SM_DEC (2 << 12)
260 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
261 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
262 #define RCAR_DMACHCR_IE (1 << 2)
263 #define RCAR_DMACHCR_TE (1 << 1)
264 #define RCAR_DMACHCR_DE (1 << 0)
265 #define RCAR_DMATCRB 0x0018
266 #define RCAR_DMATSRB 0x0038
267 #define RCAR_DMACHCRB 0x001c
268 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
269 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
270 #define RCAR_DMACHCRB_DPTR_SHIFT 16
271 #define RCAR_DMACHCRB_DRST (1 << 15)
272 #define RCAR_DMACHCRB_DTS (1 << 8)
273 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
274 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
275 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
276 #define RCAR_DMARS 0x0040
277 #define RCAR_DMABUFCR 0x0048
278 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
279 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
280 #define RCAR_DMADPBASE 0x0050
281 #define RCAR_DMADPBASE_MASK 0xfffffff0
282 #define RCAR_DMADPBASE_SEL (1 << 0)
283 #define RCAR_DMADPCR 0x0054
284 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
285 #define RCAR_DMAFIXSAR 0x0010
286 #define RCAR_DMAFIXDAR 0x0014
287 #define RCAR_DMAFIXDPBASE 0x0060
288
289 /* Hardcode the MEMCPY transfer size to 4 bytes. */
290 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
291
292 /* -----------------------------------------------------------------------------
293 * Device access
294 */
295
rcar_dmac_write(struct rcar_dmac * dmac,u32 reg,u32 data)296 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
297 {
298 if (reg == RCAR_DMAOR)
299 writew(data, dmac->iomem + reg);
300 else
301 writel(data, dmac->iomem + reg);
302 }
303
rcar_dmac_read(struct rcar_dmac * dmac,u32 reg)304 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
305 {
306 if (reg == RCAR_DMAOR)
307 return readw(dmac->iomem + reg);
308 else
309 return readl(dmac->iomem + reg);
310 }
311
rcar_dmac_chan_read(struct rcar_dmac_chan * chan,u32 reg)312 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
313 {
314 if (reg == RCAR_DMARS)
315 return readw(chan->iomem + reg);
316 else
317 return readl(chan->iomem + reg);
318 }
319
rcar_dmac_chan_write(struct rcar_dmac_chan * chan,u32 reg,u32 data)320 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
321 {
322 if (reg == RCAR_DMARS)
323 writew(data, chan->iomem + reg);
324 else
325 writel(data, chan->iomem + reg);
326 }
327
328 /* -----------------------------------------------------------------------------
329 * Initialization and configuration
330 */
331
rcar_dmac_chan_is_busy(struct rcar_dmac_chan * chan)332 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
333 {
334 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
335
336 return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
337 }
338
rcar_dmac_chan_start_xfer(struct rcar_dmac_chan * chan)339 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
340 {
341 struct rcar_dmac_desc *desc = chan->desc.running;
342 u32 chcr = desc->chcr;
343
344 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
345
346 if (chan->mid_rid >= 0)
347 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
348
349 if (desc->hwdescs.use) {
350 struct rcar_dmac_xfer_chunk *chunk =
351 list_first_entry(&desc->chunks,
352 struct rcar_dmac_xfer_chunk, node);
353
354 dev_dbg(chan->chan.device->dev,
355 "chan%u: queue desc %p: %u@%pad\n",
356 chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
357
358 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
359 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
360 chunk->src_addr >> 32);
361 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
362 chunk->dst_addr >> 32);
363 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
364 desc->hwdescs.dma >> 32);
365 #endif
366 rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
367 (desc->hwdescs.dma & 0xfffffff0) |
368 RCAR_DMADPBASE_SEL);
369 rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
370 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
371 RCAR_DMACHCRB_DRST);
372
373 /*
374 * Errata: When descriptor memory is accessed through an IOMMU
375 * the DMADAR register isn't initialized automatically from the
376 * first descriptor at beginning of transfer by the DMAC like it
377 * should. Initialize it manually with the destination address
378 * of the first chunk.
379 */
380 rcar_dmac_chan_write(chan, RCAR_DMADAR,
381 chunk->dst_addr & 0xffffffff);
382
383 /*
384 * Program the descriptor stage interrupt to occur after the end
385 * of the first stage.
386 */
387 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
388
389 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
390 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
391
392 /*
393 * If the descriptor isn't cyclic enable normal descriptor mode
394 * and the transfer completion interrupt.
395 */
396 if (!desc->cyclic)
397 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
398 /*
399 * If the descriptor is cyclic and has a callback enable the
400 * descriptor stage interrupt in infinite repeat mode.
401 */
402 else if (desc->async_tx.callback)
403 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
404 /*
405 * Otherwise just select infinite repeat mode without any
406 * interrupt.
407 */
408 else
409 chcr |= RCAR_DMACHCR_DPM_INFINITE;
410 } else {
411 struct rcar_dmac_xfer_chunk *chunk = desc->running;
412
413 dev_dbg(chan->chan.device->dev,
414 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
415 chan->index, chunk, chunk->size, &chunk->src_addr,
416 &chunk->dst_addr);
417
418 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
419 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
420 chunk->src_addr >> 32);
421 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
422 chunk->dst_addr >> 32);
423 #endif
424 rcar_dmac_chan_write(chan, RCAR_DMASAR,
425 chunk->src_addr & 0xffffffff);
426 rcar_dmac_chan_write(chan, RCAR_DMADAR,
427 chunk->dst_addr & 0xffffffff);
428 rcar_dmac_chan_write(chan, RCAR_DMATCR,
429 chunk->size >> desc->xfer_shift);
430
431 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
432 }
433
434 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
435 }
436
rcar_dmac_init(struct rcar_dmac * dmac)437 static int rcar_dmac_init(struct rcar_dmac *dmac)
438 {
439 u16 dmaor;
440
441 /* Clear all channels and enable the DMAC globally. */
442 rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
443 rcar_dmac_write(dmac, RCAR_DMAOR,
444 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
445
446 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
447 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
448 dev_warn(dmac->dev, "DMAOR initialization failed.\n");
449 return -EIO;
450 }
451
452 return 0;
453 }
454
455 /* -----------------------------------------------------------------------------
456 * Descriptors submission
457 */
458
rcar_dmac_tx_submit(struct dma_async_tx_descriptor * tx)459 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
460 {
461 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
462 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
463 unsigned long flags;
464 dma_cookie_t cookie;
465
466 spin_lock_irqsave(&chan->lock, flags);
467
468 cookie = dma_cookie_assign(tx);
469
470 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
471 chan->index, tx->cookie, desc);
472
473 list_add_tail(&desc->node, &chan->desc.pending);
474 desc->running = list_first_entry(&desc->chunks,
475 struct rcar_dmac_xfer_chunk, node);
476
477 spin_unlock_irqrestore(&chan->lock, flags);
478
479 return cookie;
480 }
481
482 /* -----------------------------------------------------------------------------
483 * Descriptors allocation and free
484 */
485
486 /*
487 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
488 * @chan: the DMA channel
489 * @gfp: allocation flags
490 */
rcar_dmac_desc_alloc(struct rcar_dmac_chan * chan,gfp_t gfp)491 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
492 {
493 struct rcar_dmac_desc_page *page;
494 unsigned long flags;
495 LIST_HEAD(list);
496 unsigned int i;
497
498 page = (void *)get_zeroed_page(gfp);
499 if (!page)
500 return -ENOMEM;
501
502 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
503 struct rcar_dmac_desc *desc = &page->descs[i];
504
505 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
506 desc->async_tx.tx_submit = rcar_dmac_tx_submit;
507 INIT_LIST_HEAD(&desc->chunks);
508
509 list_add_tail(&desc->node, &list);
510 }
511
512 spin_lock_irqsave(&chan->lock, flags);
513 list_splice_tail(&list, &chan->desc.free);
514 list_add_tail(&page->node, &chan->desc.pages);
515 spin_unlock_irqrestore(&chan->lock, flags);
516
517 return 0;
518 }
519
520 /*
521 * rcar_dmac_desc_put - Release a DMA transfer descriptor
522 * @chan: the DMA channel
523 * @desc: the descriptor
524 *
525 * Put the descriptor and its transfer chunk descriptors back in the channel's
526 * free descriptors lists. The descriptor's chunks list will be reinitialized to
527 * an empty list as a result.
528 *
529 * The descriptor must have been removed from the channel's lists before calling
530 * this function.
531 */
rcar_dmac_desc_put(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)532 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
533 struct rcar_dmac_desc *desc)
534 {
535 unsigned long flags;
536
537 spin_lock_irqsave(&chan->lock, flags);
538 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
539 list_add(&desc->node, &chan->desc.free);
540 spin_unlock_irqrestore(&chan->lock, flags);
541 }
542
rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan * chan)543 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
544 {
545 struct rcar_dmac_desc *desc, *_desc;
546 unsigned long flags;
547 LIST_HEAD(list);
548
549 /*
550 * We have to temporarily move all descriptors from the wait list to a
551 * local list as iterating over the wait list, even with
552 * list_for_each_entry_safe, isn't safe if we release the channel lock
553 * around the rcar_dmac_desc_put() call.
554 */
555 spin_lock_irqsave(&chan->lock, flags);
556 list_splice_init(&chan->desc.wait, &list);
557 spin_unlock_irqrestore(&chan->lock, flags);
558
559 list_for_each_entry_safe(desc, _desc, &list, node) {
560 if (async_tx_test_ack(&desc->async_tx)) {
561 list_del(&desc->node);
562 rcar_dmac_desc_put(chan, desc);
563 }
564 }
565
566 if (list_empty(&list))
567 return;
568
569 /* Put the remaining descriptors back in the wait list. */
570 spin_lock_irqsave(&chan->lock, flags);
571 list_splice(&list, &chan->desc.wait);
572 spin_unlock_irqrestore(&chan->lock, flags);
573 }
574
575 /*
576 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
577 * @chan: the DMA channel
578 *
579 * Locking: This function must be called in a non-atomic context.
580 *
581 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
582 * be allocated.
583 */
rcar_dmac_desc_get(struct rcar_dmac_chan * chan)584 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
585 {
586 struct rcar_dmac_desc *desc;
587 unsigned long flags;
588 int ret;
589
590 /* Recycle acked descriptors before attempting allocation. */
591 rcar_dmac_desc_recycle_acked(chan);
592
593 spin_lock_irqsave(&chan->lock, flags);
594
595 while (list_empty(&chan->desc.free)) {
596 /*
597 * No free descriptors, allocate a page worth of them and try
598 * again, as someone else could race us to get the newly
599 * allocated descriptors. If the allocation fails return an
600 * error.
601 */
602 spin_unlock_irqrestore(&chan->lock, flags);
603 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
604 if (ret < 0)
605 return NULL;
606 spin_lock_irqsave(&chan->lock, flags);
607 }
608
609 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
610 list_del(&desc->node);
611
612 spin_unlock_irqrestore(&chan->lock, flags);
613
614 return desc;
615 }
616
617 /*
618 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
619 * @chan: the DMA channel
620 * @gfp: allocation flags
621 */
rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan * chan,gfp_t gfp)622 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
623 {
624 struct rcar_dmac_desc_page *page;
625 unsigned long flags;
626 LIST_HEAD(list);
627 unsigned int i;
628
629 page = (void *)get_zeroed_page(gfp);
630 if (!page)
631 return -ENOMEM;
632
633 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
634 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
635
636 list_add_tail(&chunk->node, &list);
637 }
638
639 spin_lock_irqsave(&chan->lock, flags);
640 list_splice_tail(&list, &chan->desc.chunks_free);
641 list_add_tail(&page->node, &chan->desc.pages);
642 spin_unlock_irqrestore(&chan->lock, flags);
643
644 return 0;
645 }
646
647 /*
648 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
649 * @chan: the DMA channel
650 *
651 * Locking: This function must be called in a non-atomic context.
652 *
653 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
654 * descriptor can be allocated.
655 */
656 static struct rcar_dmac_xfer_chunk *
rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan * chan)657 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
658 {
659 struct rcar_dmac_xfer_chunk *chunk;
660 unsigned long flags;
661 int ret;
662
663 spin_lock_irqsave(&chan->lock, flags);
664
665 while (list_empty(&chan->desc.chunks_free)) {
666 /*
667 * No free descriptors, allocate a page worth of them and try
668 * again, as someone else could race us to get the newly
669 * allocated descriptors. If the allocation fails return an
670 * error.
671 */
672 spin_unlock_irqrestore(&chan->lock, flags);
673 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
674 if (ret < 0)
675 return NULL;
676 spin_lock_irqsave(&chan->lock, flags);
677 }
678
679 chunk = list_first_entry(&chan->desc.chunks_free,
680 struct rcar_dmac_xfer_chunk, node);
681 list_del(&chunk->node);
682
683 spin_unlock_irqrestore(&chan->lock, flags);
684
685 return chunk;
686 }
687
rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc,size_t size)688 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
689 struct rcar_dmac_desc *desc, size_t size)
690 {
691 /*
692 * dma_alloc_coherent() allocates memory in page size increments. To
693 * avoid reallocating the hardware descriptors when the allocated size
694 * wouldn't change align the requested size to a multiple of the page
695 * size.
696 */
697 size = PAGE_ALIGN(size);
698
699 if (desc->hwdescs.size == size)
700 return;
701
702 if (desc->hwdescs.mem) {
703 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
704 desc->hwdescs.mem, desc->hwdescs.dma);
705 desc->hwdescs.mem = NULL;
706 desc->hwdescs.size = 0;
707 }
708
709 if (!size)
710 return;
711
712 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
713 &desc->hwdescs.dma, GFP_NOWAIT);
714 if (!desc->hwdescs.mem)
715 return;
716
717 desc->hwdescs.size = size;
718 }
719
rcar_dmac_fill_hwdesc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)720 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
721 struct rcar_dmac_desc *desc)
722 {
723 struct rcar_dmac_xfer_chunk *chunk;
724 struct rcar_dmac_hw_desc *hwdesc;
725
726 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
727
728 hwdesc = desc->hwdescs.mem;
729 if (!hwdesc)
730 return -ENOMEM;
731
732 list_for_each_entry(chunk, &desc->chunks, node) {
733 hwdesc->sar = chunk->src_addr;
734 hwdesc->dar = chunk->dst_addr;
735 hwdesc->tcr = chunk->size >> desc->xfer_shift;
736 hwdesc++;
737 }
738
739 return 0;
740 }
741
742 /* -----------------------------------------------------------------------------
743 * Stop and reset
744 */
745
rcar_dmac_chan_halt(struct rcar_dmac_chan * chan)746 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
747 {
748 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
749
750 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
751 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
752 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
753 }
754
rcar_dmac_chan_reinit(struct rcar_dmac_chan * chan)755 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
756 {
757 struct rcar_dmac_desc *desc, *_desc;
758 unsigned long flags;
759 LIST_HEAD(descs);
760
761 spin_lock_irqsave(&chan->lock, flags);
762
763 /* Move all non-free descriptors to the local lists. */
764 list_splice_init(&chan->desc.pending, &descs);
765 list_splice_init(&chan->desc.active, &descs);
766 list_splice_init(&chan->desc.done, &descs);
767 list_splice_init(&chan->desc.wait, &descs);
768
769 chan->desc.running = NULL;
770
771 spin_unlock_irqrestore(&chan->lock, flags);
772
773 list_for_each_entry_safe(desc, _desc, &descs, node) {
774 list_del(&desc->node);
775 rcar_dmac_desc_put(chan, desc);
776 }
777 }
778
rcar_dmac_stop(struct rcar_dmac * dmac)779 static void rcar_dmac_stop(struct rcar_dmac *dmac)
780 {
781 rcar_dmac_write(dmac, RCAR_DMAOR, 0);
782 }
783
rcar_dmac_abort(struct rcar_dmac * dmac)784 static void rcar_dmac_abort(struct rcar_dmac *dmac)
785 {
786 unsigned int i;
787
788 /* Stop all channels. */
789 for (i = 0; i < dmac->n_channels; ++i) {
790 struct rcar_dmac_chan *chan = &dmac->channels[i];
791
792 /* Stop and reinitialize the channel. */
793 spin_lock(&chan->lock);
794 rcar_dmac_chan_halt(chan);
795 spin_unlock(&chan->lock);
796
797 rcar_dmac_chan_reinit(chan);
798 }
799 }
800
801 /* -----------------------------------------------------------------------------
802 * Descriptors preparation
803 */
804
rcar_dmac_chan_configure_desc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)805 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
806 struct rcar_dmac_desc *desc)
807 {
808 static const u32 chcr_ts[] = {
809 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
810 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
811 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
812 RCAR_DMACHCR_TS_64B,
813 };
814
815 unsigned int xfer_size;
816 u32 chcr;
817
818 switch (desc->direction) {
819 case DMA_DEV_TO_MEM:
820 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
821 | RCAR_DMACHCR_RS_DMARS;
822 xfer_size = chan->src.xfer_size;
823 break;
824
825 case DMA_MEM_TO_DEV:
826 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
827 | RCAR_DMACHCR_RS_DMARS;
828 xfer_size = chan->dst.xfer_size;
829 break;
830
831 case DMA_MEM_TO_MEM:
832 default:
833 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
834 | RCAR_DMACHCR_RS_AUTO;
835 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
836 break;
837 }
838
839 desc->xfer_shift = ilog2(xfer_size);
840 desc->chcr = chcr | chcr_ts[desc->xfer_shift];
841 }
842
843 /*
844 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
845 *
846 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
847 * converted to scatter-gather to guarantee consistent locking and a correct
848 * list manipulation. For slave DMA direction carries the usual meaning, and,
849 * logically, the SG list is RAM and the addr variable contains slave address,
850 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
851 * and the SG list contains only one element and points at the source buffer.
852 */
853 static struct dma_async_tx_descriptor *
rcar_dmac_chan_prep_sg(struct rcar_dmac_chan * chan,struct scatterlist * sgl,unsigned int sg_len,dma_addr_t dev_addr,enum dma_transfer_direction dir,unsigned long dma_flags,bool cyclic)854 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
855 unsigned int sg_len, dma_addr_t dev_addr,
856 enum dma_transfer_direction dir, unsigned long dma_flags,
857 bool cyclic)
858 {
859 struct rcar_dmac_xfer_chunk *chunk;
860 struct rcar_dmac_desc *desc;
861 struct scatterlist *sg;
862 unsigned int nchunks = 0;
863 unsigned int max_chunk_size;
864 unsigned int full_size = 0;
865 bool cross_boundary = false;
866 unsigned int i;
867 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
868 u32 high_dev_addr;
869 u32 high_mem_addr;
870 #endif
871
872 desc = rcar_dmac_desc_get(chan);
873 if (!desc)
874 return NULL;
875
876 desc->async_tx.flags = dma_flags;
877 desc->async_tx.cookie = -EBUSY;
878
879 desc->cyclic = cyclic;
880 desc->direction = dir;
881
882 rcar_dmac_chan_configure_desc(chan, desc);
883
884 max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
885
886 /*
887 * Allocate and fill the transfer chunk descriptors. We own the only
888 * reference to the DMA descriptor, there's no need for locking.
889 */
890 for_each_sg(sgl, sg, sg_len, i) {
891 dma_addr_t mem_addr = sg_dma_address(sg);
892 unsigned int len = sg_dma_len(sg);
893
894 full_size += len;
895
896 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
897 if (i == 0) {
898 high_dev_addr = dev_addr >> 32;
899 high_mem_addr = mem_addr >> 32;
900 }
901
902 if ((dev_addr >> 32 != high_dev_addr) ||
903 (mem_addr >> 32 != high_mem_addr))
904 cross_boundary = true;
905 #endif
906 while (len) {
907 unsigned int size = min(len, max_chunk_size);
908
909 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
910 /*
911 * Prevent individual transfers from crossing 4GB
912 * boundaries.
913 */
914 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
915 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
916 cross_boundary = true;
917 }
918 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
919 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
920 cross_boundary = true;
921 }
922 #endif
923
924 chunk = rcar_dmac_xfer_chunk_get(chan);
925 if (!chunk) {
926 rcar_dmac_desc_put(chan, desc);
927 return NULL;
928 }
929
930 if (dir == DMA_DEV_TO_MEM) {
931 chunk->src_addr = dev_addr;
932 chunk->dst_addr = mem_addr;
933 } else {
934 chunk->src_addr = mem_addr;
935 chunk->dst_addr = dev_addr;
936 }
937
938 chunk->size = size;
939
940 dev_dbg(chan->chan.device->dev,
941 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
942 chan->index, chunk, desc, i, sg, size, len,
943 &chunk->src_addr, &chunk->dst_addr);
944
945 mem_addr += size;
946 if (dir == DMA_MEM_TO_MEM)
947 dev_addr += size;
948
949 len -= size;
950
951 list_add_tail(&chunk->node, &desc->chunks);
952 nchunks++;
953 }
954 }
955
956 desc->nchunks = nchunks;
957 desc->size = full_size;
958
959 /*
960 * Use hardware descriptor lists if possible when more than one chunk
961 * needs to be transferred (otherwise they don't make much sense).
962 *
963 * Source/Destination address should be located in same 4GiB region
964 * in the 40bit address space when it uses Hardware descriptor,
965 * and cross_boundary is checking it.
966 */
967 desc->hwdescs.use = !cross_boundary && nchunks > 1;
968 if (desc->hwdescs.use) {
969 if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
970 desc->hwdescs.use = false;
971 }
972
973 return &desc->async_tx;
974 }
975
976 /* -----------------------------------------------------------------------------
977 * DMA engine operations
978 */
979
rcar_dmac_alloc_chan_resources(struct dma_chan * chan)980 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
981 {
982 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
983 int ret;
984
985 INIT_LIST_HEAD(&rchan->desc.chunks_free);
986 INIT_LIST_HEAD(&rchan->desc.pages);
987
988 /* Preallocate descriptors. */
989 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
990 if (ret < 0)
991 return -ENOMEM;
992
993 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
994 if (ret < 0)
995 return -ENOMEM;
996
997 return pm_runtime_get_sync(chan->device->dev);
998 }
999
rcar_dmac_free_chan_resources(struct dma_chan * chan)1000 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1001 {
1002 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1003 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1004 struct rcar_dmac_chan_map *map = &rchan->map;
1005 struct rcar_dmac_desc_page *page, *_page;
1006 struct rcar_dmac_desc *desc;
1007 LIST_HEAD(list);
1008
1009 /* Protect against ISR */
1010 spin_lock_irq(&rchan->lock);
1011 rcar_dmac_chan_halt(rchan);
1012 spin_unlock_irq(&rchan->lock);
1013
1014 /*
1015 * Now no new interrupts will occur, but one might already be
1016 * running. Wait for it to finish before freeing resources.
1017 */
1018 synchronize_irq(rchan->irq);
1019
1020 if (rchan->mid_rid >= 0) {
1021 /* The caller is holding dma_list_mutex */
1022 clear_bit(rchan->mid_rid, dmac->modules);
1023 rchan->mid_rid = -EINVAL;
1024 }
1025
1026 list_splice_init(&rchan->desc.free, &list);
1027 list_splice_init(&rchan->desc.pending, &list);
1028 list_splice_init(&rchan->desc.active, &list);
1029 list_splice_init(&rchan->desc.done, &list);
1030 list_splice_init(&rchan->desc.wait, &list);
1031
1032 rchan->desc.running = NULL;
1033
1034 list_for_each_entry(desc, &list, node)
1035 rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1036
1037 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1038 list_del(&page->node);
1039 free_page((unsigned long)page);
1040 }
1041
1042 /* Remove slave mapping if present. */
1043 if (map->slave.xfer_size) {
1044 dma_unmap_resource(chan->device->dev, map->addr,
1045 map->slave.xfer_size, map->dir, 0);
1046 map->slave.xfer_size = 0;
1047 }
1048
1049 pm_runtime_put(chan->device->dev);
1050 }
1051
1052 static struct dma_async_tx_descriptor *
rcar_dmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)1053 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1054 dma_addr_t dma_src, size_t len, unsigned long flags)
1055 {
1056 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1057 struct scatterlist sgl;
1058
1059 if (!len)
1060 return NULL;
1061
1062 sg_init_table(&sgl, 1);
1063 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1064 offset_in_page(dma_src));
1065 sg_dma_address(&sgl) = dma_src;
1066 sg_dma_len(&sgl) = len;
1067
1068 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1069 DMA_MEM_TO_MEM, flags, false);
1070 }
1071
rcar_dmac_map_slave_addr(struct dma_chan * chan,enum dma_transfer_direction dir)1072 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1073 enum dma_transfer_direction dir)
1074 {
1075 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1076 struct rcar_dmac_chan_map *map = &rchan->map;
1077 phys_addr_t dev_addr;
1078 size_t dev_size;
1079 enum dma_data_direction dev_dir;
1080
1081 if (dir == DMA_DEV_TO_MEM) {
1082 dev_addr = rchan->src.slave_addr;
1083 dev_size = rchan->src.xfer_size;
1084 dev_dir = DMA_TO_DEVICE;
1085 } else {
1086 dev_addr = rchan->dst.slave_addr;
1087 dev_size = rchan->dst.xfer_size;
1088 dev_dir = DMA_FROM_DEVICE;
1089 }
1090
1091 /* Reuse current map if possible. */
1092 if (dev_addr == map->slave.slave_addr &&
1093 dev_size == map->slave.xfer_size &&
1094 dev_dir == map->dir)
1095 return 0;
1096
1097 /* Remove old mapping if present. */
1098 if (map->slave.xfer_size)
1099 dma_unmap_resource(chan->device->dev, map->addr,
1100 map->slave.xfer_size, map->dir, 0);
1101 map->slave.xfer_size = 0;
1102
1103 /* Create new slave address map. */
1104 map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1105 dev_dir, 0);
1106
1107 if (dma_mapping_error(chan->device->dev, map->addr)) {
1108 dev_err(chan->device->dev,
1109 "chan%u: failed to map %zx@%pap", rchan->index,
1110 dev_size, &dev_addr);
1111 return -EIO;
1112 }
1113
1114 dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1115 rchan->index, dev_size, &dev_addr, &map->addr,
1116 dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1117
1118 map->slave.slave_addr = dev_addr;
1119 map->slave.xfer_size = dev_size;
1120 map->dir = dev_dir;
1121
1122 return 0;
1123 }
1124
1125 static struct dma_async_tx_descriptor *
rcar_dmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,void * context)1126 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1127 unsigned int sg_len, enum dma_transfer_direction dir,
1128 unsigned long flags, void *context)
1129 {
1130 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1131
1132 /* Someone calling slave DMA on a generic channel? */
1133 if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1134 dev_warn(chan->device->dev,
1135 "%s: bad parameter: len=%d, id=%d\n",
1136 __func__, sg_len, rchan->mid_rid);
1137 return NULL;
1138 }
1139
1140 if (rcar_dmac_map_slave_addr(chan, dir))
1141 return NULL;
1142
1143 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1144 dir, flags, false);
1145 }
1146
1147 #define RCAR_DMAC_MAX_SG_LEN 32
1148
1149 static struct dma_async_tx_descriptor *
rcar_dmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1150 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1151 size_t buf_len, size_t period_len,
1152 enum dma_transfer_direction dir, unsigned long flags)
1153 {
1154 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1155 struct dma_async_tx_descriptor *desc;
1156 struct scatterlist *sgl;
1157 unsigned int sg_len;
1158 unsigned int i;
1159
1160 /* Someone calling slave DMA on a generic channel? */
1161 if (rchan->mid_rid < 0 || buf_len < period_len) {
1162 dev_warn(chan->device->dev,
1163 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1164 __func__, buf_len, period_len, rchan->mid_rid);
1165 return NULL;
1166 }
1167
1168 if (rcar_dmac_map_slave_addr(chan, dir))
1169 return NULL;
1170
1171 sg_len = buf_len / period_len;
1172 if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1173 dev_err(chan->device->dev,
1174 "chan%u: sg length %d exceds limit %d",
1175 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1176 return NULL;
1177 }
1178
1179 /*
1180 * Allocate the sg list dynamically as it would consume too much stack
1181 * space.
1182 */
1183 sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1184 if (!sgl)
1185 return NULL;
1186
1187 sg_init_table(sgl, sg_len);
1188
1189 for (i = 0; i < sg_len; ++i) {
1190 dma_addr_t src = buf_addr + (period_len * i);
1191
1192 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1193 offset_in_page(src));
1194 sg_dma_address(&sgl[i]) = src;
1195 sg_dma_len(&sgl[i]) = period_len;
1196 }
1197
1198 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1199 dir, flags, true);
1200
1201 kfree(sgl);
1202 return desc;
1203 }
1204
rcar_dmac_device_config(struct dma_chan * chan,struct dma_slave_config * cfg)1205 static int rcar_dmac_device_config(struct dma_chan *chan,
1206 struct dma_slave_config *cfg)
1207 {
1208 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1209
1210 /*
1211 * We could lock this, but you shouldn't be configuring the
1212 * channel, while using it...
1213 */
1214 rchan->src.slave_addr = cfg->src_addr;
1215 rchan->dst.slave_addr = cfg->dst_addr;
1216 rchan->src.xfer_size = cfg->src_addr_width;
1217 rchan->dst.xfer_size = cfg->dst_addr_width;
1218
1219 return 0;
1220 }
1221
rcar_dmac_chan_terminate_all(struct dma_chan * chan)1222 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1223 {
1224 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1225 unsigned long flags;
1226
1227 spin_lock_irqsave(&rchan->lock, flags);
1228 rcar_dmac_chan_halt(rchan);
1229 spin_unlock_irqrestore(&rchan->lock, flags);
1230
1231 /*
1232 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1233 * be running.
1234 */
1235
1236 rcar_dmac_chan_reinit(rchan);
1237
1238 return 0;
1239 }
1240
rcar_dmac_chan_get_residue(struct rcar_dmac_chan * chan,dma_cookie_t cookie)1241 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1242 dma_cookie_t cookie)
1243 {
1244 struct rcar_dmac_desc *desc = chan->desc.running;
1245 struct rcar_dmac_xfer_chunk *running = NULL;
1246 struct rcar_dmac_xfer_chunk *chunk;
1247 enum dma_status status;
1248 unsigned int residue = 0;
1249 unsigned int dptr = 0;
1250
1251 if (!desc)
1252 return 0;
1253
1254 /*
1255 * If the cookie corresponds to a descriptor that has been completed
1256 * there is no residue. The same check has already been performed by the
1257 * caller but without holding the channel lock, so the descriptor could
1258 * now be complete.
1259 */
1260 status = dma_cookie_status(&chan->chan, cookie, NULL);
1261 if (status == DMA_COMPLETE)
1262 return 0;
1263
1264 /*
1265 * If the cookie doesn't correspond to the currently running transfer
1266 * then the descriptor hasn't been processed yet, and the residue is
1267 * equal to the full descriptor size.
1268 * Also, a client driver is possible to call this function before
1269 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1270 * will be the next descriptor, and the done list will appear. So, if
1271 * the argument cookie matches the done list's cookie, we can assume
1272 * the residue is zero.
1273 */
1274 if (cookie != desc->async_tx.cookie) {
1275 list_for_each_entry(desc, &chan->desc.done, node) {
1276 if (cookie == desc->async_tx.cookie)
1277 return 0;
1278 }
1279 list_for_each_entry(desc, &chan->desc.pending, node) {
1280 if (cookie == desc->async_tx.cookie)
1281 return desc->size;
1282 }
1283 list_for_each_entry(desc, &chan->desc.active, node) {
1284 if (cookie == desc->async_tx.cookie)
1285 return desc->size;
1286 }
1287
1288 /*
1289 * No descriptor found for the cookie, there's thus no residue.
1290 * This shouldn't happen if the calling driver passes a correct
1291 * cookie value.
1292 */
1293 WARN(1, "No descriptor for cookie!");
1294 return 0;
1295 }
1296
1297 /*
1298 * In descriptor mode the descriptor running pointer is not maintained
1299 * by the interrupt handler, find the running descriptor from the
1300 * descriptor pointer field in the CHCRB register. In non-descriptor
1301 * mode just use the running descriptor pointer.
1302 */
1303 if (desc->hwdescs.use) {
1304 dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1305 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1306 if (dptr == 0)
1307 dptr = desc->nchunks;
1308 dptr--;
1309 WARN_ON(dptr >= desc->nchunks);
1310 } else {
1311 running = desc->running;
1312 }
1313
1314 /* Compute the size of all chunks still to be transferred. */
1315 list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1316 if (chunk == running || ++dptr == desc->nchunks)
1317 break;
1318
1319 residue += chunk->size;
1320 }
1321
1322 /* Add the residue for the current chunk. */
1323 residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1324
1325 return residue;
1326 }
1327
rcar_dmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1328 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1329 dma_cookie_t cookie,
1330 struct dma_tx_state *txstate)
1331 {
1332 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1333 enum dma_status status;
1334 unsigned long flags;
1335 unsigned int residue;
1336 bool cyclic;
1337
1338 status = dma_cookie_status(chan, cookie, txstate);
1339 if (status == DMA_COMPLETE || !txstate)
1340 return status;
1341
1342 spin_lock_irqsave(&rchan->lock, flags);
1343 residue = rcar_dmac_chan_get_residue(rchan, cookie);
1344 cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1345 spin_unlock_irqrestore(&rchan->lock, flags);
1346
1347 /* if there's no residue, the cookie is complete */
1348 if (!residue && !cyclic)
1349 return DMA_COMPLETE;
1350
1351 dma_set_residue(txstate, residue);
1352
1353 return status;
1354 }
1355
rcar_dmac_issue_pending(struct dma_chan * chan)1356 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1357 {
1358 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1359 unsigned long flags;
1360
1361 spin_lock_irqsave(&rchan->lock, flags);
1362
1363 if (list_empty(&rchan->desc.pending))
1364 goto done;
1365
1366 /* Append the pending list to the active list. */
1367 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1368
1369 /*
1370 * If no transfer is running pick the first descriptor from the active
1371 * list and start the transfer.
1372 */
1373 if (!rchan->desc.running) {
1374 struct rcar_dmac_desc *desc;
1375
1376 desc = list_first_entry(&rchan->desc.active,
1377 struct rcar_dmac_desc, node);
1378 rchan->desc.running = desc;
1379
1380 rcar_dmac_chan_start_xfer(rchan);
1381 }
1382
1383 done:
1384 spin_unlock_irqrestore(&rchan->lock, flags);
1385 }
1386
rcar_dmac_device_synchronize(struct dma_chan * chan)1387 static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1388 {
1389 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1390
1391 synchronize_irq(rchan->irq);
1392 }
1393
1394 /* -----------------------------------------------------------------------------
1395 * IRQ handling
1396 */
1397
rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan * chan)1398 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1399 {
1400 struct rcar_dmac_desc *desc = chan->desc.running;
1401 unsigned int stage;
1402
1403 if (WARN_ON(!desc || !desc->cyclic)) {
1404 /*
1405 * This should never happen, there should always be a running
1406 * cyclic descriptor when a descriptor stage end interrupt is
1407 * triggered. Warn and return.
1408 */
1409 return IRQ_NONE;
1410 }
1411
1412 /* Program the interrupt pointer to the next stage. */
1413 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1414 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1415 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1416
1417 return IRQ_WAKE_THREAD;
1418 }
1419
rcar_dmac_isr_transfer_end(struct rcar_dmac_chan * chan)1420 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1421 {
1422 struct rcar_dmac_desc *desc = chan->desc.running;
1423 irqreturn_t ret = IRQ_WAKE_THREAD;
1424
1425 if (WARN_ON_ONCE(!desc)) {
1426 /*
1427 * This should never happen, there should always be a running
1428 * descriptor when a transfer end interrupt is triggered. Warn
1429 * and return.
1430 */
1431 return IRQ_NONE;
1432 }
1433
1434 /*
1435 * The transfer end interrupt isn't generated for each chunk when using
1436 * descriptor mode. Only update the running chunk pointer in
1437 * non-descriptor mode.
1438 */
1439 if (!desc->hwdescs.use) {
1440 /*
1441 * If we haven't completed the last transfer chunk simply move
1442 * to the next one. Only wake the IRQ thread if the transfer is
1443 * cyclic.
1444 */
1445 if (!list_is_last(&desc->running->node, &desc->chunks)) {
1446 desc->running = list_next_entry(desc->running, node);
1447 if (!desc->cyclic)
1448 ret = IRQ_HANDLED;
1449 goto done;
1450 }
1451
1452 /*
1453 * We've completed the last transfer chunk. If the transfer is
1454 * cyclic, move back to the first one.
1455 */
1456 if (desc->cyclic) {
1457 desc->running =
1458 list_first_entry(&desc->chunks,
1459 struct rcar_dmac_xfer_chunk,
1460 node);
1461 goto done;
1462 }
1463 }
1464
1465 /* The descriptor is complete, move it to the done list. */
1466 list_move_tail(&desc->node, &chan->desc.done);
1467
1468 /* Queue the next descriptor, if any. */
1469 if (!list_empty(&chan->desc.active))
1470 chan->desc.running = list_first_entry(&chan->desc.active,
1471 struct rcar_dmac_desc,
1472 node);
1473 else
1474 chan->desc.running = NULL;
1475
1476 done:
1477 if (chan->desc.running)
1478 rcar_dmac_chan_start_xfer(chan);
1479
1480 return ret;
1481 }
1482
rcar_dmac_isr_channel(int irq,void * dev)1483 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1484 {
1485 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1486 struct rcar_dmac_chan *chan = dev;
1487 irqreturn_t ret = IRQ_NONE;
1488 u32 chcr;
1489
1490 spin_lock(&chan->lock);
1491
1492 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1493 if (chcr & RCAR_DMACHCR_TE)
1494 mask |= RCAR_DMACHCR_DE;
1495 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1496
1497 if (chcr & RCAR_DMACHCR_DSE)
1498 ret |= rcar_dmac_isr_desc_stage_end(chan);
1499
1500 if (chcr & RCAR_DMACHCR_TE)
1501 ret |= rcar_dmac_isr_transfer_end(chan);
1502
1503 spin_unlock(&chan->lock);
1504
1505 return ret;
1506 }
1507
rcar_dmac_isr_channel_thread(int irq,void * dev)1508 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1509 {
1510 struct rcar_dmac_chan *chan = dev;
1511 struct rcar_dmac_desc *desc;
1512 struct dmaengine_desc_callback cb;
1513
1514 spin_lock_irq(&chan->lock);
1515
1516 /* For cyclic transfers notify the user after every chunk. */
1517 if (chan->desc.running && chan->desc.running->cyclic) {
1518 desc = chan->desc.running;
1519 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1520
1521 if (dmaengine_desc_callback_valid(&cb)) {
1522 spin_unlock_irq(&chan->lock);
1523 dmaengine_desc_callback_invoke(&cb, NULL);
1524 spin_lock_irq(&chan->lock);
1525 }
1526 }
1527
1528 /*
1529 * Call the callback function for all descriptors on the done list and
1530 * move them to the ack wait list.
1531 */
1532 while (!list_empty(&chan->desc.done)) {
1533 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1534 node);
1535 dma_cookie_complete(&desc->async_tx);
1536 list_del(&desc->node);
1537
1538 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1539 if (dmaengine_desc_callback_valid(&cb)) {
1540 spin_unlock_irq(&chan->lock);
1541 /*
1542 * We own the only reference to this descriptor, we can
1543 * safely dereference it without holding the channel
1544 * lock.
1545 */
1546 dmaengine_desc_callback_invoke(&cb, NULL);
1547 spin_lock_irq(&chan->lock);
1548 }
1549
1550 list_add_tail(&desc->node, &chan->desc.wait);
1551 }
1552
1553 spin_unlock_irq(&chan->lock);
1554
1555 /* Recycle all acked descriptors. */
1556 rcar_dmac_desc_recycle_acked(chan);
1557
1558 return IRQ_HANDLED;
1559 }
1560
rcar_dmac_isr_error(int irq,void * data)1561 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1562 {
1563 struct rcar_dmac *dmac = data;
1564
1565 if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1566 return IRQ_NONE;
1567
1568 /*
1569 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1570 * abort transfers on all channels, and reinitialize the DMAC.
1571 */
1572 rcar_dmac_stop(dmac);
1573 rcar_dmac_abort(dmac);
1574 rcar_dmac_init(dmac);
1575
1576 return IRQ_HANDLED;
1577 }
1578
1579 /* -----------------------------------------------------------------------------
1580 * OF xlate and channel filter
1581 */
1582
rcar_dmac_chan_filter(struct dma_chan * chan,void * arg)1583 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1584 {
1585 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1586 struct of_phandle_args *dma_spec = arg;
1587
1588 /*
1589 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1590 * function knows from which device it wants to allocate a channel from,
1591 * and would be perfectly capable of selecting the channel it wants.
1592 * Forcing it to call dma_request_channel() and iterate through all
1593 * channels from all controllers is just pointless.
1594 */
1595 if (chan->device->device_config != rcar_dmac_device_config ||
1596 dma_spec->np != chan->device->dev->of_node)
1597 return false;
1598
1599 return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1600 }
1601
rcar_dmac_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1602 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1603 struct of_dma *ofdma)
1604 {
1605 struct rcar_dmac_chan *rchan;
1606 struct dma_chan *chan;
1607 dma_cap_mask_t mask;
1608
1609 if (dma_spec->args_count != 1)
1610 return NULL;
1611
1612 /* Only slave DMA channels can be allocated via DT */
1613 dma_cap_zero(mask);
1614 dma_cap_set(DMA_SLAVE, mask);
1615
1616 chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1617 if (!chan)
1618 return NULL;
1619
1620 rchan = to_rcar_dmac_chan(chan);
1621 rchan->mid_rid = dma_spec->args[0];
1622
1623 return chan;
1624 }
1625
1626 /* -----------------------------------------------------------------------------
1627 * Power management
1628 */
1629
1630 #ifdef CONFIG_PM_SLEEP
rcar_dmac_sleep_suspend(struct device * dev)1631 static int rcar_dmac_sleep_suspend(struct device *dev)
1632 {
1633 /*
1634 * TODO: Wait for the current transfer to complete and stop the device.
1635 */
1636 return 0;
1637 }
1638
rcar_dmac_sleep_resume(struct device * dev)1639 static int rcar_dmac_sleep_resume(struct device *dev)
1640 {
1641 /* TODO: Resume transfers, if any. */
1642 return 0;
1643 }
1644 #endif
1645
1646 #ifdef CONFIG_PM
rcar_dmac_runtime_suspend(struct device * dev)1647 static int rcar_dmac_runtime_suspend(struct device *dev)
1648 {
1649 return 0;
1650 }
1651
rcar_dmac_runtime_resume(struct device * dev)1652 static int rcar_dmac_runtime_resume(struct device *dev)
1653 {
1654 struct rcar_dmac *dmac = dev_get_drvdata(dev);
1655
1656 return rcar_dmac_init(dmac);
1657 }
1658 #endif
1659
1660 static const struct dev_pm_ops rcar_dmac_pm = {
1661 SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1662 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1663 NULL)
1664 };
1665
1666 /* -----------------------------------------------------------------------------
1667 * Probe and remove
1668 */
1669
rcar_dmac_chan_probe(struct rcar_dmac * dmac,struct rcar_dmac_chan * rchan,unsigned int index)1670 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1671 struct rcar_dmac_chan *rchan,
1672 unsigned int index)
1673 {
1674 struct platform_device *pdev = to_platform_device(dmac->dev);
1675 struct dma_chan *chan = &rchan->chan;
1676 char pdev_irqname[5];
1677 char *irqname;
1678 int ret;
1679
1680 rchan->index = index;
1681 rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1682 rchan->mid_rid = -EINVAL;
1683
1684 spin_lock_init(&rchan->lock);
1685
1686 INIT_LIST_HEAD(&rchan->desc.free);
1687 INIT_LIST_HEAD(&rchan->desc.pending);
1688 INIT_LIST_HEAD(&rchan->desc.active);
1689 INIT_LIST_HEAD(&rchan->desc.done);
1690 INIT_LIST_HEAD(&rchan->desc.wait);
1691
1692 /* Request the channel interrupt. */
1693 sprintf(pdev_irqname, "ch%u", index);
1694 rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1695 if (rchan->irq < 0) {
1696 dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1697 return -ENODEV;
1698 }
1699
1700 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1701 dev_name(dmac->dev), index);
1702 if (!irqname)
1703 return -ENOMEM;
1704
1705 /*
1706 * Initialize the DMA engine channel and add it to the DMA engine
1707 * channels list.
1708 */
1709 chan->device = &dmac->engine;
1710 dma_cookie_init(chan);
1711
1712 list_add_tail(&chan->device_node, &dmac->engine.channels);
1713
1714 ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1715 rcar_dmac_isr_channel,
1716 rcar_dmac_isr_channel_thread, 0,
1717 irqname, rchan);
1718 if (ret) {
1719 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1720 rchan->irq, ret);
1721 return ret;
1722 }
1723
1724 return 0;
1725 }
1726
rcar_dmac_parse_of(struct device * dev,struct rcar_dmac * dmac)1727 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1728 {
1729 struct device_node *np = dev->of_node;
1730 int ret;
1731
1732 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1733 if (ret < 0) {
1734 dev_err(dev, "unable to read dma-channels property\n");
1735 return ret;
1736 }
1737
1738 if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1739 dev_err(dev, "invalid number of channels %u\n",
1740 dmac->n_channels);
1741 return -EINVAL;
1742 }
1743
1744 return 0;
1745 }
1746
rcar_dmac_probe(struct platform_device * pdev)1747 static int rcar_dmac_probe(struct platform_device *pdev)
1748 {
1749 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1750 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1751 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1752 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1753 unsigned int channels_offset = 0;
1754 struct dma_device *engine;
1755 struct rcar_dmac *dmac;
1756 struct resource *mem;
1757 unsigned int i;
1758 char *irqname;
1759 int irq;
1760 int ret;
1761
1762 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1763 if (!dmac)
1764 return -ENOMEM;
1765
1766 dmac->dev = &pdev->dev;
1767 platform_set_drvdata(pdev, dmac);
1768 dmac->dev->dma_parms = &dmac->parms;
1769 dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1770 dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1771
1772 ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1773 if (ret < 0)
1774 return ret;
1775
1776 /*
1777 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1778 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1779 * is connected to microTLB 0 on currently supported platforms, so we
1780 * can't use it with the IPMMU. As the IOMMU API operates at the device
1781 * level we can't disable it selectively, so ignore channel 0 for now if
1782 * the device is part of an IOMMU group.
1783 */
1784 if (pdev->dev.iommu_group) {
1785 dmac->n_channels--;
1786 channels_offset = 1;
1787 }
1788
1789 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1790 sizeof(*dmac->channels), GFP_KERNEL);
1791 if (!dmac->channels)
1792 return -ENOMEM;
1793
1794 /* Request resources. */
1795 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1796 dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1797 if (IS_ERR(dmac->iomem))
1798 return PTR_ERR(dmac->iomem);
1799
1800 irq = platform_get_irq_byname(pdev, "error");
1801 if (irq < 0) {
1802 dev_err(&pdev->dev, "no error IRQ specified\n");
1803 return -ENODEV;
1804 }
1805
1806 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1807 dev_name(dmac->dev));
1808 if (!irqname)
1809 return -ENOMEM;
1810
1811 /* Enable runtime PM and initialize the device. */
1812 pm_runtime_enable(&pdev->dev);
1813 ret = pm_runtime_get_sync(&pdev->dev);
1814 if (ret < 0) {
1815 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1816 return ret;
1817 }
1818
1819 ret = rcar_dmac_init(dmac);
1820 pm_runtime_put(&pdev->dev);
1821
1822 if (ret) {
1823 dev_err(&pdev->dev, "failed to reset device\n");
1824 goto error;
1825 }
1826
1827 /* Initialize engine */
1828 engine = &dmac->engine;
1829
1830 dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1831 dma_cap_set(DMA_SLAVE, engine->cap_mask);
1832
1833 engine->dev = &pdev->dev;
1834 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1835
1836 engine->src_addr_widths = widths;
1837 engine->dst_addr_widths = widths;
1838 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1839 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1840
1841 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1842 engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1843 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1844 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1845 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1846 engine->device_config = rcar_dmac_device_config;
1847 engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1848 engine->device_tx_status = rcar_dmac_tx_status;
1849 engine->device_issue_pending = rcar_dmac_issue_pending;
1850 engine->device_synchronize = rcar_dmac_device_synchronize;
1851
1852 INIT_LIST_HEAD(&engine->channels);
1853
1854 for (i = 0; i < dmac->n_channels; ++i) {
1855 ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1856 i + channels_offset);
1857 if (ret < 0)
1858 goto error;
1859 }
1860
1861 ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1862 irqname, dmac);
1863 if (ret) {
1864 dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1865 irq, ret);
1866 return ret;
1867 }
1868
1869 /* Register the DMAC as a DMA provider for DT. */
1870 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1871 NULL);
1872 if (ret < 0)
1873 goto error;
1874
1875 /*
1876 * Register the DMA engine device.
1877 *
1878 * Default transfer size of 32 bytes requires 32-byte alignment.
1879 */
1880 ret = dma_async_device_register(engine);
1881 if (ret < 0)
1882 goto error;
1883
1884 return 0;
1885
1886 error:
1887 of_dma_controller_free(pdev->dev.of_node);
1888 pm_runtime_disable(&pdev->dev);
1889 return ret;
1890 }
1891
rcar_dmac_remove(struct platform_device * pdev)1892 static int rcar_dmac_remove(struct platform_device *pdev)
1893 {
1894 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1895
1896 of_dma_controller_free(pdev->dev.of_node);
1897 dma_async_device_unregister(&dmac->engine);
1898
1899 pm_runtime_disable(&pdev->dev);
1900
1901 return 0;
1902 }
1903
rcar_dmac_shutdown(struct platform_device * pdev)1904 static void rcar_dmac_shutdown(struct platform_device *pdev)
1905 {
1906 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1907
1908 rcar_dmac_stop(dmac);
1909 }
1910
1911 static const struct of_device_id rcar_dmac_of_ids[] = {
1912 { .compatible = "renesas,rcar-dmac", },
1913 { /* Sentinel */ }
1914 };
1915 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1916
1917 static struct platform_driver rcar_dmac_driver = {
1918 .driver = {
1919 .pm = &rcar_dmac_pm,
1920 .name = "rcar-dmac",
1921 .of_match_table = rcar_dmac_of_ids,
1922 },
1923 .probe = rcar_dmac_probe,
1924 .remove = rcar_dmac_remove,
1925 .shutdown = rcar_dmac_shutdown,
1926 };
1927
1928 module_platform_driver(rcar_dmac_driver);
1929
1930 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1931 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1932 MODULE_LICENSE("GPL v2");
1933