• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Renesas R-Car Gen2 DMA Controller Driver
3  *
4  * Copyright (C) 2014 Renesas Electronics Inc.
5  *
6  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7  *
8  * This is free software; you can redistribute it and/or modify
9  * it under the terms of version 2 of the GNU General Public License as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include "../dmaengine.h"
28 
29 /*
30  * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31  * @node: entry in the parent's chunks list
32  * @src_addr: device source address
33  * @dst_addr: device destination address
34  * @size: transfer size in bytes
35  */
36 struct rcar_dmac_xfer_chunk {
37 	struct list_head node;
38 
39 	dma_addr_t src_addr;
40 	dma_addr_t dst_addr;
41 	u32 size;
42 };
43 
44 /*
45  * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46  * @sar: value of the SAR register (source address)
47  * @dar: value of the DAR register (destination address)
48  * @tcr: value of the TCR register (transfer count)
49  */
50 struct rcar_dmac_hw_desc {
51 	u32 sar;
52 	u32 dar;
53 	u32 tcr;
54 	u32 reserved;
55 } __attribute__((__packed__));
56 
57 /*
58  * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59  * @async_tx: base DMA asynchronous transaction descriptor
60  * @direction: direction of the DMA transfer
61  * @xfer_shift: log2 of the transfer size
62  * @chcr: value of the channel configuration register for this transfer
63  * @node: entry in the channel's descriptors lists
64  * @chunks: list of transfer chunks for this transfer
65  * @running: the transfer chunk being currently processed
66  * @nchunks: number of transfer chunks for this transfer
67  * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68  * @hwdescs.mem: hardware descriptors memory for the transfer
69  * @hwdescs.dma: device address of the hardware descriptors memory
70  * @hwdescs.size: size of the hardware descriptors in bytes
71  * @size: transfer size in bytes
72  * @cyclic: when set indicates that the DMA transfer is cyclic
73  */
74 struct rcar_dmac_desc {
75 	struct dma_async_tx_descriptor async_tx;
76 	enum dma_transfer_direction direction;
77 	unsigned int xfer_shift;
78 	u32 chcr;
79 
80 	struct list_head node;
81 	struct list_head chunks;
82 	struct rcar_dmac_xfer_chunk *running;
83 	unsigned int nchunks;
84 
85 	struct {
86 		bool use;
87 		struct rcar_dmac_hw_desc *mem;
88 		dma_addr_t dma;
89 		size_t size;
90 	} hwdescs;
91 
92 	unsigned int size;
93 	bool cyclic;
94 };
95 
96 #define to_rcar_dmac_desc(d)	container_of(d, struct rcar_dmac_desc, async_tx)
97 
98 /*
99  * struct rcar_dmac_desc_page - One page worth of descriptors
100  * @node: entry in the channel's pages list
101  * @descs: array of DMA descriptors
102  * @chunks: array of transfer chunk descriptors
103  */
104 struct rcar_dmac_desc_page {
105 	struct list_head node;
106 
107 	union {
108 		struct rcar_dmac_desc descs[0];
109 		struct rcar_dmac_xfer_chunk chunks[0];
110 	};
111 };
112 
113 #define RCAR_DMAC_DESCS_PER_PAGE					\
114 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /	\
115 	sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE					\
117 	((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /	\
118 	sizeof(struct rcar_dmac_xfer_chunk))
119 
120 /*
121  * struct rcar_dmac_chan_slave - Slave configuration
122  * @slave_addr: slave memory address
123  * @xfer_size: size (in bytes) of hardware transfers
124  */
125 struct rcar_dmac_chan_slave {
126 	phys_addr_t slave_addr;
127 	unsigned int xfer_size;
128 };
129 
130 /*
131  * struct rcar_dmac_chan_map - Map of slave device phys to dma address
132  * @addr: slave dma address
133  * @dir: direction of mapping
134  * @slave: slave configuration that is mapped
135  */
136 struct rcar_dmac_chan_map {
137 	dma_addr_t addr;
138 	enum dma_data_direction dir;
139 	struct rcar_dmac_chan_slave slave;
140 };
141 
142 /*
143  * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
144  * @chan: base DMA channel object
145  * @iomem: channel I/O memory base
146  * @index: index of this channel in the controller
147  * @irq: channel IRQ
148  * @src: slave memory address and size on the source side
149  * @dst: slave memory address and size on the destination side
150  * @mid_rid: hardware MID/RID for the DMA client using this channel
151  * @lock: protects the channel CHCR register and the desc members
152  * @desc.free: list of free descriptors
153  * @desc.pending: list of pending descriptors (submitted with tx_submit)
154  * @desc.active: list of active descriptors (activated with issue_pending)
155  * @desc.done: list of completed descriptors
156  * @desc.wait: list of descriptors waiting for an ack
157  * @desc.running: the descriptor being processed (a member of the active list)
158  * @desc.chunks_free: list of free transfer chunk descriptors
159  * @desc.pages: list of pages used by allocated descriptors
160  */
161 struct rcar_dmac_chan {
162 	struct dma_chan chan;
163 	void __iomem *iomem;
164 	unsigned int index;
165 	int irq;
166 
167 	struct rcar_dmac_chan_slave src;
168 	struct rcar_dmac_chan_slave dst;
169 	struct rcar_dmac_chan_map map;
170 	int mid_rid;
171 
172 	spinlock_t lock;
173 
174 	struct {
175 		struct list_head free;
176 		struct list_head pending;
177 		struct list_head active;
178 		struct list_head done;
179 		struct list_head wait;
180 		struct rcar_dmac_desc *running;
181 
182 		struct list_head chunks_free;
183 
184 		struct list_head pages;
185 	} desc;
186 };
187 
188 #define to_rcar_dmac_chan(c)	container_of(c, struct rcar_dmac_chan, chan)
189 
190 /*
191  * struct rcar_dmac - R-Car Gen2 DMA Controller
192  * @engine: base DMA engine object
193  * @dev: the hardware device
194  * @iomem: remapped I/O memory base
195  * @n_channels: number of available channels
196  * @channels: array of DMAC channels
197  * @modules: bitmask of client modules in use
198  */
199 struct rcar_dmac {
200 	struct dma_device engine;
201 	struct device *dev;
202 	void __iomem *iomem;
203 	struct device_dma_parameters parms;
204 
205 	unsigned int n_channels;
206 	struct rcar_dmac_chan *channels;
207 
208 	DECLARE_BITMAP(modules, 256);
209 };
210 
211 #define to_rcar_dmac(d)		container_of(d, struct rcar_dmac, engine)
212 
213 /* -----------------------------------------------------------------------------
214  * Registers
215  */
216 
217 #define RCAR_DMAC_CHAN_OFFSET(i)	(0x8000 + 0x80 * (i))
218 
219 #define RCAR_DMAISTA			0x0020
220 #define RCAR_DMASEC			0x0030
221 #define RCAR_DMAOR			0x0060
222 #define RCAR_DMAOR_PRI_FIXED		(0 << 8)
223 #define RCAR_DMAOR_PRI_ROUND_ROBIN	(3 << 8)
224 #define RCAR_DMAOR_AE			(1 << 2)
225 #define RCAR_DMAOR_DME			(1 << 0)
226 #define RCAR_DMACHCLR			0x0080
227 #define RCAR_DMADPSEC			0x00a0
228 
229 #define RCAR_DMASAR			0x0000
230 #define RCAR_DMADAR			0x0004
231 #define RCAR_DMATCR			0x0008
232 #define RCAR_DMATCR_MASK		0x00ffffff
233 #define RCAR_DMATSR			0x0028
234 #define RCAR_DMACHCR			0x000c
235 #define RCAR_DMACHCR_CAE		(1 << 31)
236 #define RCAR_DMACHCR_CAIE		(1 << 30)
237 #define RCAR_DMACHCR_DPM_DISABLED	(0 << 28)
238 #define RCAR_DMACHCR_DPM_ENABLED	(1 << 28)
239 #define RCAR_DMACHCR_DPM_REPEAT		(2 << 28)
240 #define RCAR_DMACHCR_DPM_INFINITE	(3 << 28)
241 #define RCAR_DMACHCR_RPT_SAR		(1 << 27)
242 #define RCAR_DMACHCR_RPT_DAR		(1 << 26)
243 #define RCAR_DMACHCR_RPT_TCR		(1 << 25)
244 #define RCAR_DMACHCR_DPB		(1 << 22)
245 #define RCAR_DMACHCR_DSE		(1 << 19)
246 #define RCAR_DMACHCR_DSIE		(1 << 18)
247 #define RCAR_DMACHCR_TS_1B		((0 << 20) | (0 << 3))
248 #define RCAR_DMACHCR_TS_2B		((0 << 20) | (1 << 3))
249 #define RCAR_DMACHCR_TS_4B		((0 << 20) | (2 << 3))
250 #define RCAR_DMACHCR_TS_16B		((0 << 20) | (3 << 3))
251 #define RCAR_DMACHCR_TS_32B		((1 << 20) | (0 << 3))
252 #define RCAR_DMACHCR_TS_64B		((1 << 20) | (1 << 3))
253 #define RCAR_DMACHCR_TS_8B		((1 << 20) | (3 << 3))
254 #define RCAR_DMACHCR_DM_FIXED		(0 << 14)
255 #define RCAR_DMACHCR_DM_INC		(1 << 14)
256 #define RCAR_DMACHCR_DM_DEC		(2 << 14)
257 #define RCAR_DMACHCR_SM_FIXED		(0 << 12)
258 #define RCAR_DMACHCR_SM_INC		(1 << 12)
259 #define RCAR_DMACHCR_SM_DEC		(2 << 12)
260 #define RCAR_DMACHCR_RS_AUTO		(4 << 8)
261 #define RCAR_DMACHCR_RS_DMARS		(8 << 8)
262 #define RCAR_DMACHCR_IE			(1 << 2)
263 #define RCAR_DMACHCR_TE			(1 << 1)
264 #define RCAR_DMACHCR_DE			(1 << 0)
265 #define RCAR_DMATCRB			0x0018
266 #define RCAR_DMATSRB			0x0038
267 #define RCAR_DMACHCRB			0x001c
268 #define RCAR_DMACHCRB_DCNT(n)		((n) << 24)
269 #define RCAR_DMACHCRB_DPTR_MASK		(0xff << 16)
270 #define RCAR_DMACHCRB_DPTR_SHIFT	16
271 #define RCAR_DMACHCRB_DRST		(1 << 15)
272 #define RCAR_DMACHCRB_DTS		(1 << 8)
273 #define RCAR_DMACHCRB_SLM_NORMAL	(0 << 4)
274 #define RCAR_DMACHCRB_SLM_CLK(n)	((8 | (n)) << 4)
275 #define RCAR_DMACHCRB_PRI(n)		((n) << 0)
276 #define RCAR_DMARS			0x0040
277 #define RCAR_DMABUFCR			0x0048
278 #define RCAR_DMABUFCR_MBU(n)		((n) << 16)
279 #define RCAR_DMABUFCR_ULB(n)		((n) << 0)
280 #define RCAR_DMADPBASE			0x0050
281 #define RCAR_DMADPBASE_MASK		0xfffffff0
282 #define RCAR_DMADPBASE_SEL		(1 << 0)
283 #define RCAR_DMADPCR			0x0054
284 #define RCAR_DMADPCR_DIPT(n)		((n) << 24)
285 #define RCAR_DMAFIXSAR			0x0010
286 #define RCAR_DMAFIXDAR			0x0014
287 #define RCAR_DMAFIXDPBASE		0x0060
288 
289 /* Hardcode the MEMCPY transfer size to 4 bytes. */
290 #define RCAR_DMAC_MEMCPY_XFER_SIZE	4
291 
292 /* -----------------------------------------------------------------------------
293  * Device access
294  */
295 
rcar_dmac_write(struct rcar_dmac * dmac,u32 reg,u32 data)296 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
297 {
298 	if (reg == RCAR_DMAOR)
299 		writew(data, dmac->iomem + reg);
300 	else
301 		writel(data, dmac->iomem + reg);
302 }
303 
rcar_dmac_read(struct rcar_dmac * dmac,u32 reg)304 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
305 {
306 	if (reg == RCAR_DMAOR)
307 		return readw(dmac->iomem + reg);
308 	else
309 		return readl(dmac->iomem + reg);
310 }
311 
rcar_dmac_chan_read(struct rcar_dmac_chan * chan,u32 reg)312 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
313 {
314 	if (reg == RCAR_DMARS)
315 		return readw(chan->iomem + reg);
316 	else
317 		return readl(chan->iomem + reg);
318 }
319 
rcar_dmac_chan_write(struct rcar_dmac_chan * chan,u32 reg,u32 data)320 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
321 {
322 	if (reg == RCAR_DMARS)
323 		writew(data, chan->iomem + reg);
324 	else
325 		writel(data, chan->iomem + reg);
326 }
327 
328 /* -----------------------------------------------------------------------------
329  * Initialization and configuration
330  */
331 
rcar_dmac_chan_is_busy(struct rcar_dmac_chan * chan)332 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
333 {
334 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
335 
336 	return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
337 }
338 
rcar_dmac_chan_start_xfer(struct rcar_dmac_chan * chan)339 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
340 {
341 	struct rcar_dmac_desc *desc = chan->desc.running;
342 	u32 chcr = desc->chcr;
343 
344 	WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
345 
346 	if (chan->mid_rid >= 0)
347 		rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
348 
349 	if (desc->hwdescs.use) {
350 		struct rcar_dmac_xfer_chunk *chunk =
351 			list_first_entry(&desc->chunks,
352 					 struct rcar_dmac_xfer_chunk, node);
353 
354 		dev_dbg(chan->chan.device->dev,
355 			"chan%u: queue desc %p: %u@%pad\n",
356 			chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
357 
358 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
359 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
360 				     chunk->src_addr >> 32);
361 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
362 				     chunk->dst_addr >> 32);
363 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
364 				     desc->hwdescs.dma >> 32);
365 #endif
366 		rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
367 				     (desc->hwdescs.dma & 0xfffffff0) |
368 				     RCAR_DMADPBASE_SEL);
369 		rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
370 				     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
371 				     RCAR_DMACHCRB_DRST);
372 
373 		/*
374 		 * Errata: When descriptor memory is accessed through an IOMMU
375 		 * the DMADAR register isn't initialized automatically from the
376 		 * first descriptor at beginning of transfer by the DMAC like it
377 		 * should. Initialize it manually with the destination address
378 		 * of the first chunk.
379 		 */
380 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
381 				     chunk->dst_addr & 0xffffffff);
382 
383 		/*
384 		 * Program the descriptor stage interrupt to occur after the end
385 		 * of the first stage.
386 		 */
387 		rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
388 
389 		chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
390 		     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
391 
392 		/*
393 		 * If the descriptor isn't cyclic enable normal descriptor mode
394 		 * and the transfer completion interrupt.
395 		 */
396 		if (!desc->cyclic)
397 			chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
398 		/*
399 		 * If the descriptor is cyclic and has a callback enable the
400 		 * descriptor stage interrupt in infinite repeat mode.
401 		 */
402 		else if (desc->async_tx.callback)
403 			chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
404 		/*
405 		 * Otherwise just select infinite repeat mode without any
406 		 * interrupt.
407 		 */
408 		else
409 			chcr |= RCAR_DMACHCR_DPM_INFINITE;
410 	} else {
411 		struct rcar_dmac_xfer_chunk *chunk = desc->running;
412 
413 		dev_dbg(chan->chan.device->dev,
414 			"chan%u: queue chunk %p: %u@%pad -> %pad\n",
415 			chan->index, chunk, chunk->size, &chunk->src_addr,
416 			&chunk->dst_addr);
417 
418 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
419 		rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
420 				     chunk->src_addr >> 32);
421 		rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
422 				     chunk->dst_addr >> 32);
423 #endif
424 		rcar_dmac_chan_write(chan, RCAR_DMASAR,
425 				     chunk->src_addr & 0xffffffff);
426 		rcar_dmac_chan_write(chan, RCAR_DMADAR,
427 				     chunk->dst_addr & 0xffffffff);
428 		rcar_dmac_chan_write(chan, RCAR_DMATCR,
429 				     chunk->size >> desc->xfer_shift);
430 
431 		chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
432 	}
433 
434 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
435 }
436 
rcar_dmac_init(struct rcar_dmac * dmac)437 static int rcar_dmac_init(struct rcar_dmac *dmac)
438 {
439 	u16 dmaor;
440 
441 	/* Clear all channels and enable the DMAC globally. */
442 	rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
443 	rcar_dmac_write(dmac, RCAR_DMAOR,
444 			RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
445 
446 	dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
447 	if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
448 		dev_warn(dmac->dev, "DMAOR initialization failed.\n");
449 		return -EIO;
450 	}
451 
452 	return 0;
453 }
454 
455 /* -----------------------------------------------------------------------------
456  * Descriptors submission
457  */
458 
rcar_dmac_tx_submit(struct dma_async_tx_descriptor * tx)459 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
460 {
461 	struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
462 	struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
463 	unsigned long flags;
464 	dma_cookie_t cookie;
465 
466 	spin_lock_irqsave(&chan->lock, flags);
467 
468 	cookie = dma_cookie_assign(tx);
469 
470 	dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
471 		chan->index, tx->cookie, desc);
472 
473 	list_add_tail(&desc->node, &chan->desc.pending);
474 	desc->running = list_first_entry(&desc->chunks,
475 					 struct rcar_dmac_xfer_chunk, node);
476 
477 	spin_unlock_irqrestore(&chan->lock, flags);
478 
479 	return cookie;
480 }
481 
482 /* -----------------------------------------------------------------------------
483  * Descriptors allocation and free
484  */
485 
486 /*
487  * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
488  * @chan: the DMA channel
489  * @gfp: allocation flags
490  */
rcar_dmac_desc_alloc(struct rcar_dmac_chan * chan,gfp_t gfp)491 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
492 {
493 	struct rcar_dmac_desc_page *page;
494 	unsigned long flags;
495 	LIST_HEAD(list);
496 	unsigned int i;
497 
498 	page = (void *)get_zeroed_page(gfp);
499 	if (!page)
500 		return -ENOMEM;
501 
502 	for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
503 		struct rcar_dmac_desc *desc = &page->descs[i];
504 
505 		dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
506 		desc->async_tx.tx_submit = rcar_dmac_tx_submit;
507 		INIT_LIST_HEAD(&desc->chunks);
508 
509 		list_add_tail(&desc->node, &list);
510 	}
511 
512 	spin_lock_irqsave(&chan->lock, flags);
513 	list_splice_tail(&list, &chan->desc.free);
514 	list_add_tail(&page->node, &chan->desc.pages);
515 	spin_unlock_irqrestore(&chan->lock, flags);
516 
517 	return 0;
518 }
519 
520 /*
521  * rcar_dmac_desc_put - Release a DMA transfer descriptor
522  * @chan: the DMA channel
523  * @desc: the descriptor
524  *
525  * Put the descriptor and its transfer chunk descriptors back in the channel's
526  * free descriptors lists. The descriptor's chunks list will be reinitialized to
527  * an empty list as a result.
528  *
529  * The descriptor must have been removed from the channel's lists before calling
530  * this function.
531  */
rcar_dmac_desc_put(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)532 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
533 			       struct rcar_dmac_desc *desc)
534 {
535 	unsigned long flags;
536 
537 	spin_lock_irqsave(&chan->lock, flags);
538 	list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
539 	list_add(&desc->node, &chan->desc.free);
540 	spin_unlock_irqrestore(&chan->lock, flags);
541 }
542 
rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan * chan)543 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
544 {
545 	struct rcar_dmac_desc *desc, *_desc;
546 	unsigned long flags;
547 	LIST_HEAD(list);
548 
549 	/*
550 	 * We have to temporarily move all descriptors from the wait list to a
551 	 * local list as iterating over the wait list, even with
552 	 * list_for_each_entry_safe, isn't safe if we release the channel lock
553 	 * around the rcar_dmac_desc_put() call.
554 	 */
555 	spin_lock_irqsave(&chan->lock, flags);
556 	list_splice_init(&chan->desc.wait, &list);
557 	spin_unlock_irqrestore(&chan->lock, flags);
558 
559 	list_for_each_entry_safe(desc, _desc, &list, node) {
560 		if (async_tx_test_ack(&desc->async_tx)) {
561 			list_del(&desc->node);
562 			rcar_dmac_desc_put(chan, desc);
563 		}
564 	}
565 
566 	if (list_empty(&list))
567 		return;
568 
569 	/* Put the remaining descriptors back in the wait list. */
570 	spin_lock_irqsave(&chan->lock, flags);
571 	list_splice(&list, &chan->desc.wait);
572 	spin_unlock_irqrestore(&chan->lock, flags);
573 }
574 
575 /*
576  * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
577  * @chan: the DMA channel
578  *
579  * Locking: This function must be called in a non-atomic context.
580  *
581  * Return: A pointer to the allocated descriptor or NULL if no descriptor can
582  * be allocated.
583  */
rcar_dmac_desc_get(struct rcar_dmac_chan * chan)584 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
585 {
586 	struct rcar_dmac_desc *desc;
587 	unsigned long flags;
588 	int ret;
589 
590 	/* Recycle acked descriptors before attempting allocation. */
591 	rcar_dmac_desc_recycle_acked(chan);
592 
593 	spin_lock_irqsave(&chan->lock, flags);
594 
595 	while (list_empty(&chan->desc.free)) {
596 		/*
597 		 * No free descriptors, allocate a page worth of them and try
598 		 * again, as someone else could race us to get the newly
599 		 * allocated descriptors. If the allocation fails return an
600 		 * error.
601 		 */
602 		spin_unlock_irqrestore(&chan->lock, flags);
603 		ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
604 		if (ret < 0)
605 			return NULL;
606 		spin_lock_irqsave(&chan->lock, flags);
607 	}
608 
609 	desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
610 	list_del(&desc->node);
611 
612 	spin_unlock_irqrestore(&chan->lock, flags);
613 
614 	return desc;
615 }
616 
617 /*
618  * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
619  * @chan: the DMA channel
620  * @gfp: allocation flags
621  */
rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan * chan,gfp_t gfp)622 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
623 {
624 	struct rcar_dmac_desc_page *page;
625 	unsigned long flags;
626 	LIST_HEAD(list);
627 	unsigned int i;
628 
629 	page = (void *)get_zeroed_page(gfp);
630 	if (!page)
631 		return -ENOMEM;
632 
633 	for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
634 		struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
635 
636 		list_add_tail(&chunk->node, &list);
637 	}
638 
639 	spin_lock_irqsave(&chan->lock, flags);
640 	list_splice_tail(&list, &chan->desc.chunks_free);
641 	list_add_tail(&page->node, &chan->desc.pages);
642 	spin_unlock_irqrestore(&chan->lock, flags);
643 
644 	return 0;
645 }
646 
647 /*
648  * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
649  * @chan: the DMA channel
650  *
651  * Locking: This function must be called in a non-atomic context.
652  *
653  * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
654  * descriptor can be allocated.
655  */
656 static struct rcar_dmac_xfer_chunk *
rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan * chan)657 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
658 {
659 	struct rcar_dmac_xfer_chunk *chunk;
660 	unsigned long flags;
661 	int ret;
662 
663 	spin_lock_irqsave(&chan->lock, flags);
664 
665 	while (list_empty(&chan->desc.chunks_free)) {
666 		/*
667 		 * No free descriptors, allocate a page worth of them and try
668 		 * again, as someone else could race us to get the newly
669 		 * allocated descriptors. If the allocation fails return an
670 		 * error.
671 		 */
672 		spin_unlock_irqrestore(&chan->lock, flags);
673 		ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
674 		if (ret < 0)
675 			return NULL;
676 		spin_lock_irqsave(&chan->lock, flags);
677 	}
678 
679 	chunk = list_first_entry(&chan->desc.chunks_free,
680 				 struct rcar_dmac_xfer_chunk, node);
681 	list_del(&chunk->node);
682 
683 	spin_unlock_irqrestore(&chan->lock, flags);
684 
685 	return chunk;
686 }
687 
rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc,size_t size)688 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
689 				     struct rcar_dmac_desc *desc, size_t size)
690 {
691 	/*
692 	 * dma_alloc_coherent() allocates memory in page size increments. To
693 	 * avoid reallocating the hardware descriptors when the allocated size
694 	 * wouldn't change align the requested size to a multiple of the page
695 	 * size.
696 	 */
697 	size = PAGE_ALIGN(size);
698 
699 	if (desc->hwdescs.size == size)
700 		return;
701 
702 	if (desc->hwdescs.mem) {
703 		dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
704 				  desc->hwdescs.mem, desc->hwdescs.dma);
705 		desc->hwdescs.mem = NULL;
706 		desc->hwdescs.size = 0;
707 	}
708 
709 	if (!size)
710 		return;
711 
712 	desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
713 					       &desc->hwdescs.dma, GFP_NOWAIT);
714 	if (!desc->hwdescs.mem)
715 		return;
716 
717 	desc->hwdescs.size = size;
718 }
719 
rcar_dmac_fill_hwdesc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)720 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
721 				 struct rcar_dmac_desc *desc)
722 {
723 	struct rcar_dmac_xfer_chunk *chunk;
724 	struct rcar_dmac_hw_desc *hwdesc;
725 
726 	rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
727 
728 	hwdesc = desc->hwdescs.mem;
729 	if (!hwdesc)
730 		return -ENOMEM;
731 
732 	list_for_each_entry(chunk, &desc->chunks, node) {
733 		hwdesc->sar = chunk->src_addr;
734 		hwdesc->dar = chunk->dst_addr;
735 		hwdesc->tcr = chunk->size >> desc->xfer_shift;
736 		hwdesc++;
737 	}
738 
739 	return 0;
740 }
741 
742 /* -----------------------------------------------------------------------------
743  * Stop and reset
744  */
745 
rcar_dmac_chan_halt(struct rcar_dmac_chan * chan)746 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
747 {
748 	u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
749 
750 	chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
751 		  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
752 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
753 }
754 
rcar_dmac_chan_reinit(struct rcar_dmac_chan * chan)755 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
756 {
757 	struct rcar_dmac_desc *desc, *_desc;
758 	unsigned long flags;
759 	LIST_HEAD(descs);
760 
761 	spin_lock_irqsave(&chan->lock, flags);
762 
763 	/* Move all non-free descriptors to the local lists. */
764 	list_splice_init(&chan->desc.pending, &descs);
765 	list_splice_init(&chan->desc.active, &descs);
766 	list_splice_init(&chan->desc.done, &descs);
767 	list_splice_init(&chan->desc.wait, &descs);
768 
769 	chan->desc.running = NULL;
770 
771 	spin_unlock_irqrestore(&chan->lock, flags);
772 
773 	list_for_each_entry_safe(desc, _desc, &descs, node) {
774 		list_del(&desc->node);
775 		rcar_dmac_desc_put(chan, desc);
776 	}
777 }
778 
rcar_dmac_stop(struct rcar_dmac * dmac)779 static void rcar_dmac_stop(struct rcar_dmac *dmac)
780 {
781 	rcar_dmac_write(dmac, RCAR_DMAOR, 0);
782 }
783 
rcar_dmac_abort(struct rcar_dmac * dmac)784 static void rcar_dmac_abort(struct rcar_dmac *dmac)
785 {
786 	unsigned int i;
787 
788 	/* Stop all channels. */
789 	for (i = 0; i < dmac->n_channels; ++i) {
790 		struct rcar_dmac_chan *chan = &dmac->channels[i];
791 
792 		/* Stop and reinitialize the channel. */
793 		spin_lock(&chan->lock);
794 		rcar_dmac_chan_halt(chan);
795 		spin_unlock(&chan->lock);
796 
797 		rcar_dmac_chan_reinit(chan);
798 	}
799 }
800 
801 /* -----------------------------------------------------------------------------
802  * Descriptors preparation
803  */
804 
rcar_dmac_chan_configure_desc(struct rcar_dmac_chan * chan,struct rcar_dmac_desc * desc)805 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
806 					  struct rcar_dmac_desc *desc)
807 {
808 	static const u32 chcr_ts[] = {
809 		RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
810 		RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
811 		RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
812 		RCAR_DMACHCR_TS_64B,
813 	};
814 
815 	unsigned int xfer_size;
816 	u32 chcr;
817 
818 	switch (desc->direction) {
819 	case DMA_DEV_TO_MEM:
820 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
821 		     | RCAR_DMACHCR_RS_DMARS;
822 		xfer_size = chan->src.xfer_size;
823 		break;
824 
825 	case DMA_MEM_TO_DEV:
826 		chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
827 		     | RCAR_DMACHCR_RS_DMARS;
828 		xfer_size = chan->dst.xfer_size;
829 		break;
830 
831 	case DMA_MEM_TO_MEM:
832 	default:
833 		chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
834 		     | RCAR_DMACHCR_RS_AUTO;
835 		xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
836 		break;
837 	}
838 
839 	desc->xfer_shift = ilog2(xfer_size);
840 	desc->chcr = chcr | chcr_ts[desc->xfer_shift];
841 }
842 
843 /*
844  * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
845  *
846  * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
847  * converted to scatter-gather to guarantee consistent locking and a correct
848  * list manipulation. For slave DMA direction carries the usual meaning, and,
849  * logically, the SG list is RAM and the addr variable contains slave address,
850  * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
851  * and the SG list contains only one element and points at the source buffer.
852  */
853 static struct dma_async_tx_descriptor *
rcar_dmac_chan_prep_sg(struct rcar_dmac_chan * chan,struct scatterlist * sgl,unsigned int sg_len,dma_addr_t dev_addr,enum dma_transfer_direction dir,unsigned long dma_flags,bool cyclic)854 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
855 		       unsigned int sg_len, dma_addr_t dev_addr,
856 		       enum dma_transfer_direction dir, unsigned long dma_flags,
857 		       bool cyclic)
858 {
859 	struct rcar_dmac_xfer_chunk *chunk;
860 	struct rcar_dmac_desc *desc;
861 	struct scatterlist *sg;
862 	unsigned int nchunks = 0;
863 	unsigned int max_chunk_size;
864 	unsigned int full_size = 0;
865 	bool cross_boundary = false;
866 	unsigned int i;
867 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
868 	u32 high_dev_addr;
869 	u32 high_mem_addr;
870 #endif
871 
872 	desc = rcar_dmac_desc_get(chan);
873 	if (!desc)
874 		return NULL;
875 
876 	desc->async_tx.flags = dma_flags;
877 	desc->async_tx.cookie = -EBUSY;
878 
879 	desc->cyclic = cyclic;
880 	desc->direction = dir;
881 
882 	rcar_dmac_chan_configure_desc(chan, desc);
883 
884 	max_chunk_size = RCAR_DMATCR_MASK << desc->xfer_shift;
885 
886 	/*
887 	 * Allocate and fill the transfer chunk descriptors. We own the only
888 	 * reference to the DMA descriptor, there's no need for locking.
889 	 */
890 	for_each_sg(sgl, sg, sg_len, i) {
891 		dma_addr_t mem_addr = sg_dma_address(sg);
892 		unsigned int len = sg_dma_len(sg);
893 
894 		full_size += len;
895 
896 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
897 		if (i == 0) {
898 			high_dev_addr = dev_addr >> 32;
899 			high_mem_addr = mem_addr >> 32;
900 		}
901 
902 		if ((dev_addr >> 32 != high_dev_addr) ||
903 		    (mem_addr >> 32 != high_mem_addr))
904 			cross_boundary = true;
905 #endif
906 		while (len) {
907 			unsigned int size = min(len, max_chunk_size);
908 
909 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
910 			/*
911 			 * Prevent individual transfers from crossing 4GB
912 			 * boundaries.
913 			 */
914 			if (dev_addr >> 32 != (dev_addr + size - 1) >> 32) {
915 				size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
916 				cross_boundary = true;
917 			}
918 			if (mem_addr >> 32 != (mem_addr + size - 1) >> 32) {
919 				size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
920 				cross_boundary = true;
921 			}
922 #endif
923 
924 			chunk = rcar_dmac_xfer_chunk_get(chan);
925 			if (!chunk) {
926 				rcar_dmac_desc_put(chan, desc);
927 				return NULL;
928 			}
929 
930 			if (dir == DMA_DEV_TO_MEM) {
931 				chunk->src_addr = dev_addr;
932 				chunk->dst_addr = mem_addr;
933 			} else {
934 				chunk->src_addr = mem_addr;
935 				chunk->dst_addr = dev_addr;
936 			}
937 
938 			chunk->size = size;
939 
940 			dev_dbg(chan->chan.device->dev,
941 				"chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
942 				chan->index, chunk, desc, i, sg, size, len,
943 				&chunk->src_addr, &chunk->dst_addr);
944 
945 			mem_addr += size;
946 			if (dir == DMA_MEM_TO_MEM)
947 				dev_addr += size;
948 
949 			len -= size;
950 
951 			list_add_tail(&chunk->node, &desc->chunks);
952 			nchunks++;
953 		}
954 	}
955 
956 	desc->nchunks = nchunks;
957 	desc->size = full_size;
958 
959 	/*
960 	 * Use hardware descriptor lists if possible when more than one chunk
961 	 * needs to be transferred (otherwise they don't make much sense).
962 	 *
963 	 * Source/Destination address should be located in same 4GiB region
964 	 * in the 40bit address space when it uses Hardware descriptor,
965 	 * and cross_boundary is checking it.
966 	 */
967 	desc->hwdescs.use = !cross_boundary && nchunks > 1;
968 	if (desc->hwdescs.use) {
969 		if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
970 			desc->hwdescs.use = false;
971 	}
972 
973 	return &desc->async_tx;
974 }
975 
976 /* -----------------------------------------------------------------------------
977  * DMA engine operations
978  */
979 
rcar_dmac_alloc_chan_resources(struct dma_chan * chan)980 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
981 {
982 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
983 	int ret;
984 
985 	INIT_LIST_HEAD(&rchan->desc.chunks_free);
986 	INIT_LIST_HEAD(&rchan->desc.pages);
987 
988 	/* Preallocate descriptors. */
989 	ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
990 	if (ret < 0)
991 		return -ENOMEM;
992 
993 	ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
994 	if (ret < 0)
995 		return -ENOMEM;
996 
997 	return pm_runtime_get_sync(chan->device->dev);
998 }
999 
rcar_dmac_free_chan_resources(struct dma_chan * chan)1000 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
1001 {
1002 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1003 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1004 	struct rcar_dmac_chan_map *map = &rchan->map;
1005 	struct rcar_dmac_desc_page *page, *_page;
1006 	struct rcar_dmac_desc *desc;
1007 	LIST_HEAD(list);
1008 
1009 	/* Protect against ISR */
1010 	spin_lock_irq(&rchan->lock);
1011 	rcar_dmac_chan_halt(rchan);
1012 	spin_unlock_irq(&rchan->lock);
1013 
1014 	/*
1015 	 * Now no new interrupts will occur, but one might already be
1016 	 * running. Wait for it to finish before freeing resources.
1017 	 */
1018 	synchronize_irq(rchan->irq);
1019 
1020 	if (rchan->mid_rid >= 0) {
1021 		/* The caller is holding dma_list_mutex */
1022 		clear_bit(rchan->mid_rid, dmac->modules);
1023 		rchan->mid_rid = -EINVAL;
1024 	}
1025 
1026 	list_splice_init(&rchan->desc.free, &list);
1027 	list_splice_init(&rchan->desc.pending, &list);
1028 	list_splice_init(&rchan->desc.active, &list);
1029 	list_splice_init(&rchan->desc.done, &list);
1030 	list_splice_init(&rchan->desc.wait, &list);
1031 
1032 	rchan->desc.running = NULL;
1033 
1034 	list_for_each_entry(desc, &list, node)
1035 		rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1036 
1037 	list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1038 		list_del(&page->node);
1039 		free_page((unsigned long)page);
1040 	}
1041 
1042 	/* Remove slave mapping if present. */
1043 	if (map->slave.xfer_size) {
1044 		dma_unmap_resource(chan->device->dev, map->addr,
1045 				   map->slave.xfer_size, map->dir, 0);
1046 		map->slave.xfer_size = 0;
1047 	}
1048 
1049 	pm_runtime_put(chan->device->dev);
1050 }
1051 
1052 static struct dma_async_tx_descriptor *
rcar_dmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dma_dest,dma_addr_t dma_src,size_t len,unsigned long flags)1053 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1054 			  dma_addr_t dma_src, size_t len, unsigned long flags)
1055 {
1056 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1057 	struct scatterlist sgl;
1058 
1059 	if (!len)
1060 		return NULL;
1061 
1062 	sg_init_table(&sgl, 1);
1063 	sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1064 		    offset_in_page(dma_src));
1065 	sg_dma_address(&sgl) = dma_src;
1066 	sg_dma_len(&sgl) = len;
1067 
1068 	return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1069 				      DMA_MEM_TO_MEM, flags, false);
1070 }
1071 
rcar_dmac_map_slave_addr(struct dma_chan * chan,enum dma_transfer_direction dir)1072 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1073 				    enum dma_transfer_direction dir)
1074 {
1075 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1076 	struct rcar_dmac_chan_map *map = &rchan->map;
1077 	phys_addr_t dev_addr;
1078 	size_t dev_size;
1079 	enum dma_data_direction dev_dir;
1080 
1081 	if (dir == DMA_DEV_TO_MEM) {
1082 		dev_addr = rchan->src.slave_addr;
1083 		dev_size = rchan->src.xfer_size;
1084 		dev_dir = DMA_TO_DEVICE;
1085 	} else {
1086 		dev_addr = rchan->dst.slave_addr;
1087 		dev_size = rchan->dst.xfer_size;
1088 		dev_dir = DMA_FROM_DEVICE;
1089 	}
1090 
1091 	/* Reuse current map if possible. */
1092 	if (dev_addr == map->slave.slave_addr &&
1093 	    dev_size == map->slave.xfer_size &&
1094 	    dev_dir == map->dir)
1095 		return 0;
1096 
1097 	/* Remove old mapping if present. */
1098 	if (map->slave.xfer_size)
1099 		dma_unmap_resource(chan->device->dev, map->addr,
1100 				   map->slave.xfer_size, map->dir, 0);
1101 	map->slave.xfer_size = 0;
1102 
1103 	/* Create new slave address map. */
1104 	map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1105 				     dev_dir, 0);
1106 
1107 	if (dma_mapping_error(chan->device->dev, map->addr)) {
1108 		dev_err(chan->device->dev,
1109 			"chan%u: failed to map %zx@%pap", rchan->index,
1110 			dev_size, &dev_addr);
1111 		return -EIO;
1112 	}
1113 
1114 	dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1115 		rchan->index, dev_size, &dev_addr, &map->addr,
1116 		dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1117 
1118 	map->slave.slave_addr = dev_addr;
1119 	map->slave.xfer_size = dev_size;
1120 	map->dir = dev_dir;
1121 
1122 	return 0;
1123 }
1124 
1125 static struct dma_async_tx_descriptor *
rcar_dmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,void * context)1126 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1127 			unsigned int sg_len, enum dma_transfer_direction dir,
1128 			unsigned long flags, void *context)
1129 {
1130 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1131 
1132 	/* Someone calling slave DMA on a generic channel? */
1133 	if (rchan->mid_rid < 0 || !sg_len || !sg_dma_len(sgl)) {
1134 		dev_warn(chan->device->dev,
1135 			 "%s: bad parameter: len=%d, id=%d\n",
1136 			 __func__, sg_len, rchan->mid_rid);
1137 		return NULL;
1138 	}
1139 
1140 	if (rcar_dmac_map_slave_addr(chan, dir))
1141 		return NULL;
1142 
1143 	return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1144 				      dir, flags, false);
1145 }
1146 
1147 #define RCAR_DMAC_MAX_SG_LEN	32
1148 
1149 static struct dma_async_tx_descriptor *
rcar_dmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1150 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1151 			  size_t buf_len, size_t period_len,
1152 			  enum dma_transfer_direction dir, unsigned long flags)
1153 {
1154 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1155 	struct dma_async_tx_descriptor *desc;
1156 	struct scatterlist *sgl;
1157 	unsigned int sg_len;
1158 	unsigned int i;
1159 
1160 	/* Someone calling slave DMA on a generic channel? */
1161 	if (rchan->mid_rid < 0 || buf_len < period_len) {
1162 		dev_warn(chan->device->dev,
1163 			"%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1164 			__func__, buf_len, period_len, rchan->mid_rid);
1165 		return NULL;
1166 	}
1167 
1168 	if (rcar_dmac_map_slave_addr(chan, dir))
1169 		return NULL;
1170 
1171 	sg_len = buf_len / period_len;
1172 	if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1173 		dev_err(chan->device->dev,
1174 			"chan%u: sg length %d exceds limit %d",
1175 			rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1176 		return NULL;
1177 	}
1178 
1179 	/*
1180 	 * Allocate the sg list dynamically as it would consume too much stack
1181 	 * space.
1182 	 */
1183 	sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1184 	if (!sgl)
1185 		return NULL;
1186 
1187 	sg_init_table(sgl, sg_len);
1188 
1189 	for (i = 0; i < sg_len; ++i) {
1190 		dma_addr_t src = buf_addr + (period_len * i);
1191 
1192 		sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1193 			    offset_in_page(src));
1194 		sg_dma_address(&sgl[i]) = src;
1195 		sg_dma_len(&sgl[i]) = period_len;
1196 	}
1197 
1198 	desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1199 				      dir, flags, true);
1200 
1201 	kfree(sgl);
1202 	return desc;
1203 }
1204 
rcar_dmac_device_config(struct dma_chan * chan,struct dma_slave_config * cfg)1205 static int rcar_dmac_device_config(struct dma_chan *chan,
1206 				   struct dma_slave_config *cfg)
1207 {
1208 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1209 
1210 	/*
1211 	 * We could lock this, but you shouldn't be configuring the
1212 	 * channel, while using it...
1213 	 */
1214 	rchan->src.slave_addr = cfg->src_addr;
1215 	rchan->dst.slave_addr = cfg->dst_addr;
1216 	rchan->src.xfer_size = cfg->src_addr_width;
1217 	rchan->dst.xfer_size = cfg->dst_addr_width;
1218 
1219 	return 0;
1220 }
1221 
rcar_dmac_chan_terminate_all(struct dma_chan * chan)1222 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1223 {
1224 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1225 	unsigned long flags;
1226 
1227 	spin_lock_irqsave(&rchan->lock, flags);
1228 	rcar_dmac_chan_halt(rchan);
1229 	spin_unlock_irqrestore(&rchan->lock, flags);
1230 
1231 	/*
1232 	 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1233 	 * be running.
1234 	 */
1235 
1236 	rcar_dmac_chan_reinit(rchan);
1237 
1238 	return 0;
1239 }
1240 
rcar_dmac_chan_get_residue(struct rcar_dmac_chan * chan,dma_cookie_t cookie)1241 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1242 					       dma_cookie_t cookie)
1243 {
1244 	struct rcar_dmac_desc *desc = chan->desc.running;
1245 	struct rcar_dmac_xfer_chunk *running = NULL;
1246 	struct rcar_dmac_xfer_chunk *chunk;
1247 	enum dma_status status;
1248 	unsigned int residue = 0;
1249 	unsigned int dptr = 0;
1250 
1251 	if (!desc)
1252 		return 0;
1253 
1254 	/*
1255 	 * If the cookie corresponds to a descriptor that has been completed
1256 	 * there is no residue. The same check has already been performed by the
1257 	 * caller but without holding the channel lock, so the descriptor could
1258 	 * now be complete.
1259 	 */
1260 	status = dma_cookie_status(&chan->chan, cookie, NULL);
1261 	if (status == DMA_COMPLETE)
1262 		return 0;
1263 
1264 	/*
1265 	 * If the cookie doesn't correspond to the currently running transfer
1266 	 * then the descriptor hasn't been processed yet, and the residue is
1267 	 * equal to the full descriptor size.
1268 	 * Also, a client driver is possible to call this function before
1269 	 * rcar_dmac_isr_channel_thread() runs. In this case, the "desc.running"
1270 	 * will be the next descriptor, and the done list will appear. So, if
1271 	 * the argument cookie matches the done list's cookie, we can assume
1272 	 * the residue is zero.
1273 	 */
1274 	if (cookie != desc->async_tx.cookie) {
1275 		list_for_each_entry(desc, &chan->desc.done, node) {
1276 			if (cookie == desc->async_tx.cookie)
1277 				return 0;
1278 		}
1279 		list_for_each_entry(desc, &chan->desc.pending, node) {
1280 			if (cookie == desc->async_tx.cookie)
1281 				return desc->size;
1282 		}
1283 		list_for_each_entry(desc, &chan->desc.active, node) {
1284 			if (cookie == desc->async_tx.cookie)
1285 				return desc->size;
1286 		}
1287 
1288 		/*
1289 		 * No descriptor found for the cookie, there's thus no residue.
1290 		 * This shouldn't happen if the calling driver passes a correct
1291 		 * cookie value.
1292 		 */
1293 		WARN(1, "No descriptor for cookie!");
1294 		return 0;
1295 	}
1296 
1297 	/*
1298 	 * In descriptor mode the descriptor running pointer is not maintained
1299 	 * by the interrupt handler, find the running descriptor from the
1300 	 * descriptor pointer field in the CHCRB register. In non-descriptor
1301 	 * mode just use the running descriptor pointer.
1302 	 */
1303 	if (desc->hwdescs.use) {
1304 		dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1305 			RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1306 		if (dptr == 0)
1307 			dptr = desc->nchunks;
1308 		dptr--;
1309 		WARN_ON(dptr >= desc->nchunks);
1310 	} else {
1311 		running = desc->running;
1312 	}
1313 
1314 	/* Compute the size of all chunks still to be transferred. */
1315 	list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1316 		if (chunk == running || ++dptr == desc->nchunks)
1317 			break;
1318 
1319 		residue += chunk->size;
1320 	}
1321 
1322 	/* Add the residue for the current chunk. */
1323 	residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1324 
1325 	return residue;
1326 }
1327 
rcar_dmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1328 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1329 					   dma_cookie_t cookie,
1330 					   struct dma_tx_state *txstate)
1331 {
1332 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1333 	enum dma_status status;
1334 	unsigned long flags;
1335 	unsigned int residue;
1336 	bool cyclic;
1337 
1338 	status = dma_cookie_status(chan, cookie, txstate);
1339 	if (status == DMA_COMPLETE || !txstate)
1340 		return status;
1341 
1342 	spin_lock_irqsave(&rchan->lock, flags);
1343 	residue = rcar_dmac_chan_get_residue(rchan, cookie);
1344 	cyclic = rchan->desc.running ? rchan->desc.running->cyclic : false;
1345 	spin_unlock_irqrestore(&rchan->lock, flags);
1346 
1347 	/* if there's no residue, the cookie is complete */
1348 	if (!residue && !cyclic)
1349 		return DMA_COMPLETE;
1350 
1351 	dma_set_residue(txstate, residue);
1352 
1353 	return status;
1354 }
1355 
rcar_dmac_issue_pending(struct dma_chan * chan)1356 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1357 {
1358 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1359 	unsigned long flags;
1360 
1361 	spin_lock_irqsave(&rchan->lock, flags);
1362 
1363 	if (list_empty(&rchan->desc.pending))
1364 		goto done;
1365 
1366 	/* Append the pending list to the active list. */
1367 	list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1368 
1369 	/*
1370 	 * If no transfer is running pick the first descriptor from the active
1371 	 * list and start the transfer.
1372 	 */
1373 	if (!rchan->desc.running) {
1374 		struct rcar_dmac_desc *desc;
1375 
1376 		desc = list_first_entry(&rchan->desc.active,
1377 					struct rcar_dmac_desc, node);
1378 		rchan->desc.running = desc;
1379 
1380 		rcar_dmac_chan_start_xfer(rchan);
1381 	}
1382 
1383 done:
1384 	spin_unlock_irqrestore(&rchan->lock, flags);
1385 }
1386 
rcar_dmac_device_synchronize(struct dma_chan * chan)1387 static void rcar_dmac_device_synchronize(struct dma_chan *chan)
1388 {
1389 	struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1390 
1391 	synchronize_irq(rchan->irq);
1392 }
1393 
1394 /* -----------------------------------------------------------------------------
1395  * IRQ handling
1396  */
1397 
rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan * chan)1398 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1399 {
1400 	struct rcar_dmac_desc *desc = chan->desc.running;
1401 	unsigned int stage;
1402 
1403 	if (WARN_ON(!desc || !desc->cyclic)) {
1404 		/*
1405 		 * This should never happen, there should always be a running
1406 		 * cyclic descriptor when a descriptor stage end interrupt is
1407 		 * triggered. Warn and return.
1408 		 */
1409 		return IRQ_NONE;
1410 	}
1411 
1412 	/* Program the interrupt pointer to the next stage. */
1413 	stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1414 		 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1415 	rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1416 
1417 	return IRQ_WAKE_THREAD;
1418 }
1419 
rcar_dmac_isr_transfer_end(struct rcar_dmac_chan * chan)1420 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1421 {
1422 	struct rcar_dmac_desc *desc = chan->desc.running;
1423 	irqreturn_t ret = IRQ_WAKE_THREAD;
1424 
1425 	if (WARN_ON_ONCE(!desc)) {
1426 		/*
1427 		 * This should never happen, there should always be a running
1428 		 * descriptor when a transfer end interrupt is triggered. Warn
1429 		 * and return.
1430 		 */
1431 		return IRQ_NONE;
1432 	}
1433 
1434 	/*
1435 	 * The transfer end interrupt isn't generated for each chunk when using
1436 	 * descriptor mode. Only update the running chunk pointer in
1437 	 * non-descriptor mode.
1438 	 */
1439 	if (!desc->hwdescs.use) {
1440 		/*
1441 		 * If we haven't completed the last transfer chunk simply move
1442 		 * to the next one. Only wake the IRQ thread if the transfer is
1443 		 * cyclic.
1444 		 */
1445 		if (!list_is_last(&desc->running->node, &desc->chunks)) {
1446 			desc->running = list_next_entry(desc->running, node);
1447 			if (!desc->cyclic)
1448 				ret = IRQ_HANDLED;
1449 			goto done;
1450 		}
1451 
1452 		/*
1453 		 * We've completed the last transfer chunk. If the transfer is
1454 		 * cyclic, move back to the first one.
1455 		 */
1456 		if (desc->cyclic) {
1457 			desc->running =
1458 				list_first_entry(&desc->chunks,
1459 						 struct rcar_dmac_xfer_chunk,
1460 						 node);
1461 			goto done;
1462 		}
1463 	}
1464 
1465 	/* The descriptor is complete, move it to the done list. */
1466 	list_move_tail(&desc->node, &chan->desc.done);
1467 
1468 	/* Queue the next descriptor, if any. */
1469 	if (!list_empty(&chan->desc.active))
1470 		chan->desc.running = list_first_entry(&chan->desc.active,
1471 						      struct rcar_dmac_desc,
1472 						      node);
1473 	else
1474 		chan->desc.running = NULL;
1475 
1476 done:
1477 	if (chan->desc.running)
1478 		rcar_dmac_chan_start_xfer(chan);
1479 
1480 	return ret;
1481 }
1482 
rcar_dmac_isr_channel(int irq,void * dev)1483 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1484 {
1485 	u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1486 	struct rcar_dmac_chan *chan = dev;
1487 	irqreturn_t ret = IRQ_NONE;
1488 	u32 chcr;
1489 
1490 	spin_lock(&chan->lock);
1491 
1492 	chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1493 	if (chcr & RCAR_DMACHCR_TE)
1494 		mask |= RCAR_DMACHCR_DE;
1495 	rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1496 
1497 	if (chcr & RCAR_DMACHCR_DSE)
1498 		ret |= rcar_dmac_isr_desc_stage_end(chan);
1499 
1500 	if (chcr & RCAR_DMACHCR_TE)
1501 		ret |= rcar_dmac_isr_transfer_end(chan);
1502 
1503 	spin_unlock(&chan->lock);
1504 
1505 	return ret;
1506 }
1507 
rcar_dmac_isr_channel_thread(int irq,void * dev)1508 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1509 {
1510 	struct rcar_dmac_chan *chan = dev;
1511 	struct rcar_dmac_desc *desc;
1512 	struct dmaengine_desc_callback cb;
1513 
1514 	spin_lock_irq(&chan->lock);
1515 
1516 	/* For cyclic transfers notify the user after every chunk. */
1517 	if (chan->desc.running && chan->desc.running->cyclic) {
1518 		desc = chan->desc.running;
1519 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1520 
1521 		if (dmaengine_desc_callback_valid(&cb)) {
1522 			spin_unlock_irq(&chan->lock);
1523 			dmaengine_desc_callback_invoke(&cb, NULL);
1524 			spin_lock_irq(&chan->lock);
1525 		}
1526 	}
1527 
1528 	/*
1529 	 * Call the callback function for all descriptors on the done list and
1530 	 * move them to the ack wait list.
1531 	 */
1532 	while (!list_empty(&chan->desc.done)) {
1533 		desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1534 					node);
1535 		dma_cookie_complete(&desc->async_tx);
1536 		list_del(&desc->node);
1537 
1538 		dmaengine_desc_get_callback(&desc->async_tx, &cb);
1539 		if (dmaengine_desc_callback_valid(&cb)) {
1540 			spin_unlock_irq(&chan->lock);
1541 			/*
1542 			 * We own the only reference to this descriptor, we can
1543 			 * safely dereference it without holding the channel
1544 			 * lock.
1545 			 */
1546 			dmaengine_desc_callback_invoke(&cb, NULL);
1547 			spin_lock_irq(&chan->lock);
1548 		}
1549 
1550 		list_add_tail(&desc->node, &chan->desc.wait);
1551 	}
1552 
1553 	spin_unlock_irq(&chan->lock);
1554 
1555 	/* Recycle all acked descriptors. */
1556 	rcar_dmac_desc_recycle_acked(chan);
1557 
1558 	return IRQ_HANDLED;
1559 }
1560 
rcar_dmac_isr_error(int irq,void * data)1561 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1562 {
1563 	struct rcar_dmac *dmac = data;
1564 
1565 	if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1566 		return IRQ_NONE;
1567 
1568 	/*
1569 	 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1570 	 * abort transfers on all channels, and reinitialize the DMAC.
1571 	 */
1572 	rcar_dmac_stop(dmac);
1573 	rcar_dmac_abort(dmac);
1574 	rcar_dmac_init(dmac);
1575 
1576 	return IRQ_HANDLED;
1577 }
1578 
1579 /* -----------------------------------------------------------------------------
1580  * OF xlate and channel filter
1581  */
1582 
rcar_dmac_chan_filter(struct dma_chan * chan,void * arg)1583 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1584 {
1585 	struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1586 	struct of_phandle_args *dma_spec = arg;
1587 
1588 	/*
1589 	 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1590 	 * function knows from which device it wants to allocate a channel from,
1591 	 * and would be perfectly capable of selecting the channel it wants.
1592 	 * Forcing it to call dma_request_channel() and iterate through all
1593 	 * channels from all controllers is just pointless.
1594 	 */
1595 	if (chan->device->device_config != rcar_dmac_device_config ||
1596 	    dma_spec->np != chan->device->dev->of_node)
1597 		return false;
1598 
1599 	return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1600 }
1601 
rcar_dmac_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1602 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1603 					   struct of_dma *ofdma)
1604 {
1605 	struct rcar_dmac_chan *rchan;
1606 	struct dma_chan *chan;
1607 	dma_cap_mask_t mask;
1608 
1609 	if (dma_spec->args_count != 1)
1610 		return NULL;
1611 
1612 	/* Only slave DMA channels can be allocated via DT */
1613 	dma_cap_zero(mask);
1614 	dma_cap_set(DMA_SLAVE, mask);
1615 
1616 	chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1617 	if (!chan)
1618 		return NULL;
1619 
1620 	rchan = to_rcar_dmac_chan(chan);
1621 	rchan->mid_rid = dma_spec->args[0];
1622 
1623 	return chan;
1624 }
1625 
1626 /* -----------------------------------------------------------------------------
1627  * Power management
1628  */
1629 
1630 #ifdef CONFIG_PM_SLEEP
rcar_dmac_sleep_suspend(struct device * dev)1631 static int rcar_dmac_sleep_suspend(struct device *dev)
1632 {
1633 	/*
1634 	 * TODO: Wait for the current transfer to complete and stop the device.
1635 	 */
1636 	return 0;
1637 }
1638 
rcar_dmac_sleep_resume(struct device * dev)1639 static int rcar_dmac_sleep_resume(struct device *dev)
1640 {
1641 	/* TODO: Resume transfers, if any. */
1642 	return 0;
1643 }
1644 #endif
1645 
1646 #ifdef CONFIG_PM
rcar_dmac_runtime_suspend(struct device * dev)1647 static int rcar_dmac_runtime_suspend(struct device *dev)
1648 {
1649 	return 0;
1650 }
1651 
rcar_dmac_runtime_resume(struct device * dev)1652 static int rcar_dmac_runtime_resume(struct device *dev)
1653 {
1654 	struct rcar_dmac *dmac = dev_get_drvdata(dev);
1655 
1656 	return rcar_dmac_init(dmac);
1657 }
1658 #endif
1659 
1660 static const struct dev_pm_ops rcar_dmac_pm = {
1661 	SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1662 	SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1663 			   NULL)
1664 };
1665 
1666 /* -----------------------------------------------------------------------------
1667  * Probe and remove
1668  */
1669 
rcar_dmac_chan_probe(struct rcar_dmac * dmac,struct rcar_dmac_chan * rchan,unsigned int index)1670 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1671 				struct rcar_dmac_chan *rchan,
1672 				unsigned int index)
1673 {
1674 	struct platform_device *pdev = to_platform_device(dmac->dev);
1675 	struct dma_chan *chan = &rchan->chan;
1676 	char pdev_irqname[5];
1677 	char *irqname;
1678 	int ret;
1679 
1680 	rchan->index = index;
1681 	rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1682 	rchan->mid_rid = -EINVAL;
1683 
1684 	spin_lock_init(&rchan->lock);
1685 
1686 	INIT_LIST_HEAD(&rchan->desc.free);
1687 	INIT_LIST_HEAD(&rchan->desc.pending);
1688 	INIT_LIST_HEAD(&rchan->desc.active);
1689 	INIT_LIST_HEAD(&rchan->desc.done);
1690 	INIT_LIST_HEAD(&rchan->desc.wait);
1691 
1692 	/* Request the channel interrupt. */
1693 	sprintf(pdev_irqname, "ch%u", index);
1694 	rchan->irq = platform_get_irq_byname(pdev, pdev_irqname);
1695 	if (rchan->irq < 0) {
1696 		dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1697 		return -ENODEV;
1698 	}
1699 
1700 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1701 				 dev_name(dmac->dev), index);
1702 	if (!irqname)
1703 		return -ENOMEM;
1704 
1705 	/*
1706 	 * Initialize the DMA engine channel and add it to the DMA engine
1707 	 * channels list.
1708 	 */
1709 	chan->device = &dmac->engine;
1710 	dma_cookie_init(chan);
1711 
1712 	list_add_tail(&chan->device_node, &dmac->engine.channels);
1713 
1714 	ret = devm_request_threaded_irq(dmac->dev, rchan->irq,
1715 					rcar_dmac_isr_channel,
1716 					rcar_dmac_isr_channel_thread, 0,
1717 					irqname, rchan);
1718 	if (ret) {
1719 		dev_err(dmac->dev, "failed to request IRQ %u (%d)\n",
1720 			rchan->irq, ret);
1721 		return ret;
1722 	}
1723 
1724 	return 0;
1725 }
1726 
rcar_dmac_parse_of(struct device * dev,struct rcar_dmac * dmac)1727 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1728 {
1729 	struct device_node *np = dev->of_node;
1730 	int ret;
1731 
1732 	ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1733 	if (ret < 0) {
1734 		dev_err(dev, "unable to read dma-channels property\n");
1735 		return ret;
1736 	}
1737 
1738 	if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1739 		dev_err(dev, "invalid number of channels %u\n",
1740 			dmac->n_channels);
1741 		return -EINVAL;
1742 	}
1743 
1744 	return 0;
1745 }
1746 
rcar_dmac_probe(struct platform_device * pdev)1747 static int rcar_dmac_probe(struct platform_device *pdev)
1748 {
1749 	const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1750 		DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1751 		DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1752 		DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1753 	unsigned int channels_offset = 0;
1754 	struct dma_device *engine;
1755 	struct rcar_dmac *dmac;
1756 	struct resource *mem;
1757 	unsigned int i;
1758 	char *irqname;
1759 	int irq;
1760 	int ret;
1761 
1762 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1763 	if (!dmac)
1764 		return -ENOMEM;
1765 
1766 	dmac->dev = &pdev->dev;
1767 	platform_set_drvdata(pdev, dmac);
1768 	dmac->dev->dma_parms = &dmac->parms;
1769 	dma_set_max_seg_size(dmac->dev, RCAR_DMATCR_MASK);
1770 	dma_set_mask_and_coherent(dmac->dev, DMA_BIT_MASK(40));
1771 
1772 	ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1773 	if (ret < 0)
1774 		return ret;
1775 
1776 	/*
1777 	 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1778 	 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1779 	 * is connected to microTLB 0 on currently supported platforms, so we
1780 	 * can't use it with the IPMMU. As the IOMMU API operates at the device
1781 	 * level we can't disable it selectively, so ignore channel 0 for now if
1782 	 * the device is part of an IOMMU group.
1783 	 */
1784 	if (pdev->dev.iommu_group) {
1785 		dmac->n_channels--;
1786 		channels_offset = 1;
1787 	}
1788 
1789 	dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1790 				      sizeof(*dmac->channels), GFP_KERNEL);
1791 	if (!dmac->channels)
1792 		return -ENOMEM;
1793 
1794 	/* Request resources. */
1795 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1796 	dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1797 	if (IS_ERR(dmac->iomem))
1798 		return PTR_ERR(dmac->iomem);
1799 
1800 	irq = platform_get_irq_byname(pdev, "error");
1801 	if (irq < 0) {
1802 		dev_err(&pdev->dev, "no error IRQ specified\n");
1803 		return -ENODEV;
1804 	}
1805 
1806 	irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1807 				 dev_name(dmac->dev));
1808 	if (!irqname)
1809 		return -ENOMEM;
1810 
1811 	/* Enable runtime PM and initialize the device. */
1812 	pm_runtime_enable(&pdev->dev);
1813 	ret = pm_runtime_get_sync(&pdev->dev);
1814 	if (ret < 0) {
1815 		dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1816 		return ret;
1817 	}
1818 
1819 	ret = rcar_dmac_init(dmac);
1820 	pm_runtime_put(&pdev->dev);
1821 
1822 	if (ret) {
1823 		dev_err(&pdev->dev, "failed to reset device\n");
1824 		goto error;
1825 	}
1826 
1827 	/* Initialize engine */
1828 	engine = &dmac->engine;
1829 
1830 	dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1831 	dma_cap_set(DMA_SLAVE, engine->cap_mask);
1832 
1833 	engine->dev		= &pdev->dev;
1834 	engine->copy_align	= ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1835 
1836 	engine->src_addr_widths	= widths;
1837 	engine->dst_addr_widths	= widths;
1838 	engine->directions	= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1839 	engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1840 
1841 	engine->device_alloc_chan_resources	= rcar_dmac_alloc_chan_resources;
1842 	engine->device_free_chan_resources	= rcar_dmac_free_chan_resources;
1843 	engine->device_prep_dma_memcpy		= rcar_dmac_prep_dma_memcpy;
1844 	engine->device_prep_slave_sg		= rcar_dmac_prep_slave_sg;
1845 	engine->device_prep_dma_cyclic		= rcar_dmac_prep_dma_cyclic;
1846 	engine->device_config			= rcar_dmac_device_config;
1847 	engine->device_terminate_all		= rcar_dmac_chan_terminate_all;
1848 	engine->device_tx_status		= rcar_dmac_tx_status;
1849 	engine->device_issue_pending		= rcar_dmac_issue_pending;
1850 	engine->device_synchronize		= rcar_dmac_device_synchronize;
1851 
1852 	INIT_LIST_HEAD(&engine->channels);
1853 
1854 	for (i = 0; i < dmac->n_channels; ++i) {
1855 		ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1856 					   i + channels_offset);
1857 		if (ret < 0)
1858 			goto error;
1859 	}
1860 
1861 	ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1862 			       irqname, dmac);
1863 	if (ret) {
1864 		dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1865 			irq, ret);
1866 		return ret;
1867 	}
1868 
1869 	/* Register the DMAC as a DMA provider for DT. */
1870 	ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1871 					 NULL);
1872 	if (ret < 0)
1873 		goto error;
1874 
1875 	/*
1876 	 * Register the DMA engine device.
1877 	 *
1878 	 * Default transfer size of 32 bytes requires 32-byte alignment.
1879 	 */
1880 	ret = dma_async_device_register(engine);
1881 	if (ret < 0)
1882 		goto error;
1883 
1884 	return 0;
1885 
1886 error:
1887 	of_dma_controller_free(pdev->dev.of_node);
1888 	pm_runtime_disable(&pdev->dev);
1889 	return ret;
1890 }
1891 
rcar_dmac_remove(struct platform_device * pdev)1892 static int rcar_dmac_remove(struct platform_device *pdev)
1893 {
1894 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1895 
1896 	of_dma_controller_free(pdev->dev.of_node);
1897 	dma_async_device_unregister(&dmac->engine);
1898 
1899 	pm_runtime_disable(&pdev->dev);
1900 
1901 	return 0;
1902 }
1903 
rcar_dmac_shutdown(struct platform_device * pdev)1904 static void rcar_dmac_shutdown(struct platform_device *pdev)
1905 {
1906 	struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1907 
1908 	rcar_dmac_stop(dmac);
1909 }
1910 
1911 static const struct of_device_id rcar_dmac_of_ids[] = {
1912 	{ .compatible = "renesas,rcar-dmac", },
1913 	{ /* Sentinel */ }
1914 };
1915 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1916 
1917 static struct platform_driver rcar_dmac_driver = {
1918 	.driver		= {
1919 		.pm	= &rcar_dmac_pm,
1920 		.name	= "rcar-dmac",
1921 		.of_match_table = rcar_dmac_of_ids,
1922 	},
1923 	.probe		= rcar_dmac_probe,
1924 	.remove		= rcar_dmac_remove,
1925 	.shutdown	= rcar_dmac_shutdown,
1926 };
1927 
1928 module_platform_driver(rcar_dmac_driver);
1929 
1930 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1931 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1932 MODULE_LICENSE("GPL v2");
1933