• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
15 
16 /*
17  * DMI stands for "Desktop Management Interface".  It is part
18  * of and an antecedent to, SMBIOS, which stands for System
19  * Management BIOS.  See further: http://www.dmtf.org/standards
20  */
21 static const char dmi_empty_string[] = "";
22 
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
28 
29 /*
30  * Catch too early calls to dmi_check_system():
31  */
32 static int dmi_initialized;
33 
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
36 
37 static struct dmi_memdev_info {
38 	const char *device;
39 	const char *bank;
40 	u16 handle;
41 } *dmi_memdev;
42 static int dmi_memdev_nr;
43 
dmi_string_nosave(const struct dmi_header * dm,u8 s)44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
45 {
46 	const u8 *bp = ((u8 *) dm) + dm->length;
47 	const u8 *nsp;
48 
49 	if (s) {
50 		while (--s > 0 && *bp)
51 			bp += strlen(bp) + 1;
52 
53 		/* Strings containing only spaces are considered empty */
54 		nsp = bp;
55 		while (*nsp == ' ')
56 			nsp++;
57 		if (*nsp != '\0')
58 			return bp;
59 	}
60 
61 	return dmi_empty_string;
62 }
63 
dmi_string(const struct dmi_header * dm,u8 s)64 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
65 {
66 	const char *bp = dmi_string_nosave(dm, s);
67 	char *str;
68 	size_t len;
69 
70 	if (bp == dmi_empty_string)
71 		return dmi_empty_string;
72 
73 	len = strlen(bp) + 1;
74 	str = dmi_alloc(len);
75 	if (str != NULL)
76 		strcpy(str, bp);
77 
78 	return str;
79 }
80 
81 /*
82  *	We have to be cautious here. We have seen BIOSes with DMI pointers
83  *	pointing to completely the wrong place for example
84  */
dmi_decode_table(u8 * buf,void (* decode)(const struct dmi_header *,void *),void * private_data)85 static void dmi_decode_table(u8 *buf,
86 			     void (*decode)(const struct dmi_header *, void *),
87 			     void *private_data)
88 {
89 	u8 *data = buf;
90 	int i = 0;
91 
92 	/*
93 	 * Stop when we have seen all the items the table claimed to have
94 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
95 	 * >= 3.0 only) OR we run off the end of the table (should never
96 	 * happen but sometimes does on bogus implementations.)
97 	 */
98 	while ((!dmi_num || i < dmi_num) &&
99 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
100 		const struct dmi_header *dm = (const struct dmi_header *)data;
101 
102 		/*
103 		 *  We want to know the total length (formatted area and
104 		 *  strings) before decoding to make sure we won't run off the
105 		 *  table in dmi_decode or dmi_string
106 		 */
107 		data += dm->length;
108 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
109 			data++;
110 		if (data - buf < dmi_len - 1)
111 			decode(dm, private_data);
112 
113 		data += 2;
114 		i++;
115 
116 		/*
117 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
118 		 * For tables behind a 64-bit entry point, we have no item
119 		 * count and no exact table length, so stop on end-of-table
120 		 * marker. For tables behind a 32-bit entry point, we have
121 		 * seen OEM structures behind the end-of-table marker on
122 		 * some systems, so don't trust it.
123 		 */
124 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
125 			break;
126 	}
127 
128 	/* Trim DMI table length if needed */
129 	if (dmi_len > data - buf)
130 		dmi_len = data - buf;
131 }
132 
133 static phys_addr_t dmi_base;
134 
dmi_walk_early(void (* decode)(const struct dmi_header *,void *))135 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
136 		void *))
137 {
138 	u8 *buf;
139 	u32 orig_dmi_len = dmi_len;
140 
141 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
142 	if (buf == NULL)
143 		return -ENOMEM;
144 
145 	dmi_decode_table(buf, decode, NULL);
146 
147 	add_device_randomness(buf, dmi_len);
148 
149 	dmi_early_unmap(buf, orig_dmi_len);
150 	return 0;
151 }
152 
dmi_checksum(const u8 * buf,u8 len)153 static int __init dmi_checksum(const u8 *buf, u8 len)
154 {
155 	u8 sum = 0;
156 	int a;
157 
158 	for (a = 0; a < len; a++)
159 		sum += buf[a];
160 
161 	return sum == 0;
162 }
163 
164 static const char *dmi_ident[DMI_STRING_MAX];
165 static LIST_HEAD(dmi_devices);
166 int dmi_available;
167 
168 /*
169  *	Save a DMI string
170  */
dmi_save_ident(const struct dmi_header * dm,int slot,int string)171 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
172 		int string)
173 {
174 	const char *d = (const char *) dm;
175 	const char *p;
176 
177 	if (dmi_ident[slot] || dm->length <= string)
178 		return;
179 
180 	p = dmi_string(dm, d[string]);
181 	if (p == NULL)
182 		return;
183 
184 	dmi_ident[slot] = p;
185 }
186 
dmi_save_uuid(const struct dmi_header * dm,int slot,int index)187 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
188 		int index)
189 {
190 	const u8 *d;
191 	char *s;
192 	int is_ff = 1, is_00 = 1, i;
193 
194 	if (dmi_ident[slot] || dm->length < index + 16)
195 		return;
196 
197 	d = (u8 *) dm + index;
198 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
199 		if (d[i] != 0x00)
200 			is_00 = 0;
201 		if (d[i] != 0xFF)
202 			is_ff = 0;
203 	}
204 
205 	if (is_ff || is_00)
206 		return;
207 
208 	s = dmi_alloc(16*2+4+1);
209 	if (!s)
210 		return;
211 
212 	/*
213 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
214 	 * the UUID are supposed to be little-endian encoded.  The specification
215 	 * says that this is the defacto standard.
216 	 */
217 	if (dmi_ver >= 0x020600)
218 		sprintf(s, "%pUL", d);
219 	else
220 		sprintf(s, "%pUB", d);
221 
222 	dmi_ident[slot] = s;
223 }
224 
dmi_save_type(const struct dmi_header * dm,int slot,int index)225 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
226 		int index)
227 {
228 	const u8 *d;
229 	char *s;
230 
231 	if (dmi_ident[slot] || dm->length <= index)
232 		return;
233 
234 	s = dmi_alloc(4);
235 	if (!s)
236 		return;
237 
238 	d = (u8 *) dm + index;
239 	sprintf(s, "%u", *d & 0x7F);
240 	dmi_ident[slot] = s;
241 }
242 
dmi_save_one_device(int type,const char * name)243 static void __init dmi_save_one_device(int type, const char *name)
244 {
245 	struct dmi_device *dev;
246 
247 	/* No duplicate device */
248 	if (dmi_find_device(type, name, NULL))
249 		return;
250 
251 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
252 	if (!dev)
253 		return;
254 
255 	dev->type = type;
256 	strcpy((char *)(dev + 1), name);
257 	dev->name = (char *)(dev + 1);
258 	dev->device_data = NULL;
259 	list_add(&dev->list, &dmi_devices);
260 }
261 
dmi_save_devices(const struct dmi_header * dm)262 static void __init dmi_save_devices(const struct dmi_header *dm)
263 {
264 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
265 
266 	for (i = 0; i < count; i++) {
267 		const char *d = (char *)(dm + 1) + (i * 2);
268 
269 		/* Skip disabled device */
270 		if ((*d & 0x80) == 0)
271 			continue;
272 
273 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
274 	}
275 }
276 
dmi_save_oem_strings_devices(const struct dmi_header * dm)277 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
278 {
279 	int i, count;
280 	struct dmi_device *dev;
281 
282 	if (dm->length < 0x05)
283 		return;
284 
285 	count = *(u8 *)(dm + 1);
286 	for (i = 1; i <= count; i++) {
287 		const char *devname = dmi_string(dm, i);
288 
289 		if (devname == dmi_empty_string)
290 			continue;
291 
292 		dev = dmi_alloc(sizeof(*dev));
293 		if (!dev)
294 			break;
295 
296 		dev->type = DMI_DEV_TYPE_OEM_STRING;
297 		dev->name = devname;
298 		dev->device_data = NULL;
299 
300 		list_add(&dev->list, &dmi_devices);
301 	}
302 }
303 
dmi_save_ipmi_device(const struct dmi_header * dm)304 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
305 {
306 	struct dmi_device *dev;
307 	void *data;
308 
309 	data = dmi_alloc(dm->length);
310 	if (data == NULL)
311 		return;
312 
313 	memcpy(data, dm, dm->length);
314 
315 	dev = dmi_alloc(sizeof(*dev));
316 	if (!dev)
317 		return;
318 
319 	dev->type = DMI_DEV_TYPE_IPMI;
320 	dev->name = "IPMI controller";
321 	dev->device_data = data;
322 
323 	list_add_tail(&dev->list, &dmi_devices);
324 }
325 
dmi_save_dev_pciaddr(int instance,int segment,int bus,int devfn,const char * name,int type)326 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
327 					int devfn, const char *name, int type)
328 {
329 	struct dmi_dev_onboard *dev;
330 
331 	/* Ignore invalid values */
332 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
333 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
334 		return;
335 
336 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
337 	if (!dev)
338 		return;
339 
340 	dev->instance = instance;
341 	dev->segment = segment;
342 	dev->bus = bus;
343 	dev->devfn = devfn;
344 
345 	strcpy((char *)&dev[1], name);
346 	dev->dev.type = type;
347 	dev->dev.name = (char *)&dev[1];
348 	dev->dev.device_data = dev;
349 
350 	list_add(&dev->dev.list, &dmi_devices);
351 }
352 
dmi_save_extended_devices(const struct dmi_header * dm)353 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
354 {
355 	const char *name;
356 	const u8 *d = (u8 *)dm;
357 
358 	if (dm->length < 0x0B)
359 		return;
360 
361 	/* Skip disabled device */
362 	if ((d[0x5] & 0x80) == 0)
363 		return;
364 
365 	name = dmi_string_nosave(dm, d[0x4]);
366 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
367 			     DMI_DEV_TYPE_DEV_ONBOARD);
368 	dmi_save_one_device(d[0x5] & 0x7f, name);
369 }
370 
dmi_save_system_slot(const struct dmi_header * dm)371 static void __init dmi_save_system_slot(const struct dmi_header *dm)
372 {
373 	const u8 *d = (u8 *)dm;
374 
375 	/* Need SMBIOS 2.6+ structure */
376 	if (dm->length < 0x11)
377 		return;
378 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
379 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
380 			     DMI_DEV_TYPE_DEV_SLOT);
381 }
382 
count_mem_devices(const struct dmi_header * dm,void * v)383 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
384 {
385 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
386 		return;
387 	dmi_memdev_nr++;
388 }
389 
save_mem_devices(const struct dmi_header * dm,void * v)390 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
391 {
392 	const char *d = (const char *)dm;
393 	static int nr;
394 
395 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
396 		return;
397 	if (nr >= dmi_memdev_nr) {
398 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
399 		return;
400 	}
401 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
402 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
403 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
404 	nr++;
405 }
406 
dmi_memdev_walk(void)407 void __init dmi_memdev_walk(void)
408 {
409 	if (!dmi_available)
410 		return;
411 
412 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
413 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
414 		if (dmi_memdev)
415 			dmi_walk_early(save_mem_devices);
416 	}
417 }
418 
419 /*
420  *	Process a DMI table entry. Right now all we care about are the BIOS
421  *	and machine entries. For 2.5 we should pull the smbus controller info
422  *	out of here.
423  */
dmi_decode(const struct dmi_header * dm,void * dummy)424 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
425 {
426 	switch (dm->type) {
427 	case 0:		/* BIOS Information */
428 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
429 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
430 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
431 		break;
432 	case 1:		/* System Information */
433 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
434 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
435 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
436 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
437 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
438 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
439 		break;
440 	case 2:		/* Base Board Information */
441 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
442 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
443 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
444 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
445 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
446 		break;
447 	case 3:		/* Chassis Information */
448 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
449 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
450 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
451 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
452 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
453 		break;
454 	case 9:		/* System Slots */
455 		dmi_save_system_slot(dm);
456 		break;
457 	case 10:	/* Onboard Devices Information */
458 		dmi_save_devices(dm);
459 		break;
460 	case 11:	/* OEM Strings */
461 		dmi_save_oem_strings_devices(dm);
462 		break;
463 	case 38:	/* IPMI Device Information */
464 		dmi_save_ipmi_device(dm);
465 		break;
466 	case 41:	/* Onboard Devices Extended Information */
467 		dmi_save_extended_devices(dm);
468 	}
469 }
470 
print_filtered(char * buf,size_t len,const char * info)471 static int __init print_filtered(char *buf, size_t len, const char *info)
472 {
473 	int c = 0;
474 	const char *p;
475 
476 	if (!info)
477 		return c;
478 
479 	for (p = info; *p; p++)
480 		if (isprint(*p))
481 			c += scnprintf(buf + c, len - c, "%c", *p);
482 		else
483 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
484 	return c;
485 }
486 
dmi_format_ids(char * buf,size_t len)487 static void __init dmi_format_ids(char *buf, size_t len)
488 {
489 	int c = 0;
490 	const char *board;	/* Board Name is optional */
491 
492 	c += print_filtered(buf + c, len - c,
493 			    dmi_get_system_info(DMI_SYS_VENDOR));
494 	c += scnprintf(buf + c, len - c, " ");
495 	c += print_filtered(buf + c, len - c,
496 			    dmi_get_system_info(DMI_PRODUCT_NAME));
497 
498 	board = dmi_get_system_info(DMI_BOARD_NAME);
499 	if (board) {
500 		c += scnprintf(buf + c, len - c, "/");
501 		c += print_filtered(buf + c, len - c, board);
502 	}
503 	c += scnprintf(buf + c, len - c, ", BIOS ");
504 	c += print_filtered(buf + c, len - c,
505 			    dmi_get_system_info(DMI_BIOS_VERSION));
506 	c += scnprintf(buf + c, len - c, " ");
507 	c += print_filtered(buf + c, len - c,
508 			    dmi_get_system_info(DMI_BIOS_DATE));
509 }
510 
511 /*
512  * Check for DMI/SMBIOS headers in the system firmware image.  Any
513  * SMBIOS header must start 16 bytes before the DMI header, so take a
514  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
515  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
516  * takes precedence) and return 0.  Otherwise return 1.
517  */
dmi_present(const u8 * buf)518 static int __init dmi_present(const u8 *buf)
519 {
520 	u32 smbios_ver;
521 
522 	if (memcmp(buf, "_SM_", 4) == 0 &&
523 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
524 		smbios_ver = get_unaligned_be16(buf + 6);
525 		smbios_entry_point_size = buf[5];
526 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
527 
528 		/* Some BIOS report weird SMBIOS version, fix that up */
529 		switch (smbios_ver) {
530 		case 0x021F:
531 		case 0x0221:
532 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
533 				 smbios_ver & 0xFF, 3);
534 			smbios_ver = 0x0203;
535 			break;
536 		case 0x0233:
537 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
538 			smbios_ver = 0x0206;
539 			break;
540 		}
541 	} else {
542 		smbios_ver = 0;
543 	}
544 
545 	buf += 16;
546 
547 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
548 		if (smbios_ver)
549 			dmi_ver = smbios_ver;
550 		else
551 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
552 		dmi_ver <<= 8;
553 		dmi_num = get_unaligned_le16(buf + 12);
554 		dmi_len = get_unaligned_le16(buf + 6);
555 		dmi_base = get_unaligned_le32(buf + 8);
556 
557 		if (dmi_walk_early(dmi_decode) == 0) {
558 			if (smbios_ver) {
559 				pr_info("SMBIOS %d.%d present.\n",
560 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
561 			} else {
562 				smbios_entry_point_size = 15;
563 				memcpy(smbios_entry_point, buf,
564 				       smbios_entry_point_size);
565 				pr_info("Legacy DMI %d.%d present.\n",
566 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
567 			}
568 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
569 			pr_info("DMI: %s\n", dmi_ids_string);
570 			return 0;
571 		}
572 	}
573 
574 	return 1;
575 }
576 
577 /*
578  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
579  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
580  */
dmi_smbios3_present(const u8 * buf)581 static int __init dmi_smbios3_present(const u8 *buf)
582 {
583 	if (memcmp(buf, "_SM3_", 5) == 0 &&
584 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
585 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
586 		dmi_num = 0;			/* No longer specified */
587 		dmi_len = get_unaligned_le32(buf + 12);
588 		dmi_base = get_unaligned_le64(buf + 16);
589 		smbios_entry_point_size = buf[6];
590 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
591 
592 		if (dmi_walk_early(dmi_decode) == 0) {
593 			pr_info("SMBIOS %d.%d.%d present.\n",
594 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
595 				dmi_ver & 0xFF);
596 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
597 			pr_info("DMI: %s\n", dmi_ids_string);
598 			return 0;
599 		}
600 	}
601 	return 1;
602 }
603 
dmi_scan_machine(void)604 void __init dmi_scan_machine(void)
605 {
606 	char __iomem *p, *q;
607 	char buf[32];
608 
609 	if (efi_enabled(EFI_CONFIG_TABLES)) {
610 		/*
611 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
612 		 * allowed to define both the 64-bit entry point (smbios3) and
613 		 * the 32-bit entry point (smbios), in which case they should
614 		 * either both point to the same SMBIOS structure table, or the
615 		 * table pointed to by the 64-bit entry point should contain a
616 		 * superset of the table contents pointed to by the 32-bit entry
617 		 * point (section 5.2)
618 		 * This implies that the 64-bit entry point should have
619 		 * precedence if it is defined and supported by the OS. If we
620 		 * have the 64-bit entry point, but fail to decode it, fall
621 		 * back to the legacy one (if available)
622 		 */
623 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
624 			p = dmi_early_remap(efi.smbios3, 32);
625 			if (p == NULL)
626 				goto error;
627 			memcpy_fromio(buf, p, 32);
628 			dmi_early_unmap(p, 32);
629 
630 			if (!dmi_smbios3_present(buf)) {
631 				dmi_available = 1;
632 				goto out;
633 			}
634 		}
635 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
636 			goto error;
637 
638 		/* This is called as a core_initcall() because it isn't
639 		 * needed during early boot.  This also means we can
640 		 * iounmap the space when we're done with it.
641 		 */
642 		p = dmi_early_remap(efi.smbios, 32);
643 		if (p == NULL)
644 			goto error;
645 		memcpy_fromio(buf, p, 32);
646 		dmi_early_unmap(p, 32);
647 
648 		if (!dmi_present(buf)) {
649 			dmi_available = 1;
650 			goto out;
651 		}
652 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
653 		p = dmi_early_remap(0xF0000, 0x10000);
654 		if (p == NULL)
655 			goto error;
656 
657 		/*
658 		 * Same logic as above, look for a 64-bit entry point
659 		 * first, and if not found, fall back to 32-bit entry point.
660 		 */
661 		memcpy_fromio(buf, p, 16);
662 		for (q = p + 16; q < p + 0x10000; q += 16) {
663 			memcpy_fromio(buf + 16, q, 16);
664 			if (!dmi_smbios3_present(buf)) {
665 				dmi_available = 1;
666 				dmi_early_unmap(p, 0x10000);
667 				goto out;
668 			}
669 			memcpy(buf, buf + 16, 16);
670 		}
671 
672 		/*
673 		 * Iterate over all possible DMI header addresses q.
674 		 * Maintain the 32 bytes around q in buf.  On the
675 		 * first iteration, substitute zero for the
676 		 * out-of-range bytes so there is no chance of falsely
677 		 * detecting an SMBIOS header.
678 		 */
679 		memset(buf, 0, 16);
680 		for (q = p; q < p + 0x10000; q += 16) {
681 			memcpy_fromio(buf + 16, q, 16);
682 			if (!dmi_present(buf)) {
683 				dmi_available = 1;
684 				dmi_early_unmap(p, 0x10000);
685 				goto out;
686 			}
687 			memcpy(buf, buf + 16, 16);
688 		}
689 		dmi_early_unmap(p, 0x10000);
690 	}
691  error:
692 	pr_info("DMI not present or invalid.\n");
693  out:
694 	dmi_initialized = 1;
695 }
696 
raw_table_read(struct file * file,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)697 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
698 			      struct bin_attribute *attr, char *buf,
699 			      loff_t pos, size_t count)
700 {
701 	memcpy(buf, attr->private + pos, count);
702 	return count;
703 }
704 
705 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
706 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
707 
dmi_init(void)708 static int __init dmi_init(void)
709 {
710 	struct kobject *tables_kobj;
711 	u8 *dmi_table;
712 	int ret = -ENOMEM;
713 
714 	if (!dmi_available) {
715 		ret = -ENODATA;
716 		goto err;
717 	}
718 
719 	/*
720 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
721 	 * even after farther error, as it can be used by other modules like
722 	 * dmi-sysfs.
723 	 */
724 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
725 	if (!dmi_kobj)
726 		goto err;
727 
728 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
729 	if (!tables_kobj)
730 		goto err;
731 
732 	dmi_table = dmi_remap(dmi_base, dmi_len);
733 	if (!dmi_table)
734 		goto err_tables;
735 
736 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
737 	bin_attr_smbios_entry_point.private = smbios_entry_point;
738 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
739 	if (ret)
740 		goto err_unmap;
741 
742 	bin_attr_DMI.size = dmi_len;
743 	bin_attr_DMI.private = dmi_table;
744 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
745 	if (!ret)
746 		return 0;
747 
748 	sysfs_remove_bin_file(tables_kobj,
749 			      &bin_attr_smbios_entry_point);
750  err_unmap:
751 	dmi_unmap(dmi_table);
752  err_tables:
753 	kobject_del(tables_kobj);
754 	kobject_put(tables_kobj);
755  err:
756 	pr_err("dmi: Firmware registration failed.\n");
757 
758 	return ret;
759 }
760 subsys_initcall(dmi_init);
761 
762 /**
763  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
764  *
765  * Invoke dump_stack_set_arch_desc() with DMI system information so that
766  * DMI identifiers are printed out on task dumps.  Arch boot code should
767  * call this function after dmi_scan_machine() if it wants to print out DMI
768  * identifiers on task dumps.
769  */
dmi_set_dump_stack_arch_desc(void)770 void __init dmi_set_dump_stack_arch_desc(void)
771 {
772 	dump_stack_set_arch_desc("%s", dmi_ids_string);
773 }
774 
775 /**
776  *	dmi_matches - check if dmi_system_id structure matches system DMI data
777  *	@dmi: pointer to the dmi_system_id structure to check
778  */
dmi_matches(const struct dmi_system_id * dmi)779 static bool dmi_matches(const struct dmi_system_id *dmi)
780 {
781 	int i;
782 
783 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
784 
785 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
786 		int s = dmi->matches[i].slot;
787 		if (s == DMI_NONE)
788 			break;
789 		if (dmi_ident[s]) {
790 			if (!dmi->matches[i].exact_match &&
791 			    strstr(dmi_ident[s], dmi->matches[i].substr))
792 				continue;
793 			else if (dmi->matches[i].exact_match &&
794 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
795 				continue;
796 		}
797 
798 		/* No match */
799 		return false;
800 	}
801 	return true;
802 }
803 
804 /**
805  *	dmi_is_end_of_table - check for end-of-table marker
806  *	@dmi: pointer to the dmi_system_id structure to check
807  */
dmi_is_end_of_table(const struct dmi_system_id * dmi)808 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
809 {
810 	return dmi->matches[0].slot == DMI_NONE;
811 }
812 
813 /**
814  *	dmi_check_system - check system DMI data
815  *	@list: array of dmi_system_id structures to match against
816  *		All non-null elements of the list must match
817  *		their slot's (field index's) data (i.e., each
818  *		list string must be a substring of the specified
819  *		DMI slot's string data) to be considered a
820  *		successful match.
821  *
822  *	Walk the blacklist table running matching functions until someone
823  *	returns non zero or we hit the end. Callback function is called for
824  *	each successful match. Returns the number of matches.
825  */
dmi_check_system(const struct dmi_system_id * list)826 int dmi_check_system(const struct dmi_system_id *list)
827 {
828 	int count = 0;
829 	const struct dmi_system_id *d;
830 
831 	for (d = list; !dmi_is_end_of_table(d); d++)
832 		if (dmi_matches(d)) {
833 			count++;
834 			if (d->callback && d->callback(d))
835 				break;
836 		}
837 
838 	return count;
839 }
840 EXPORT_SYMBOL(dmi_check_system);
841 
842 /**
843  *	dmi_first_match - find dmi_system_id structure matching system DMI data
844  *	@list: array of dmi_system_id structures to match against
845  *		All non-null elements of the list must match
846  *		their slot's (field index's) data (i.e., each
847  *		list string must be a substring of the specified
848  *		DMI slot's string data) to be considered a
849  *		successful match.
850  *
851  *	Walk the blacklist table until the first match is found.  Return the
852  *	pointer to the matching entry or NULL if there's no match.
853  */
dmi_first_match(const struct dmi_system_id * list)854 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
855 {
856 	const struct dmi_system_id *d;
857 
858 	for (d = list; !dmi_is_end_of_table(d); d++)
859 		if (dmi_matches(d))
860 			return d;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dmi_first_match);
865 
866 /**
867  *	dmi_get_system_info - return DMI data value
868  *	@field: data index (see enum dmi_field)
869  *
870  *	Returns one DMI data value, can be used to perform
871  *	complex DMI data checks.
872  */
dmi_get_system_info(int field)873 const char *dmi_get_system_info(int field)
874 {
875 	return dmi_ident[field];
876 }
877 EXPORT_SYMBOL(dmi_get_system_info);
878 
879 /**
880  * dmi_name_in_serial - Check if string is in the DMI product serial information
881  * @str: string to check for
882  */
dmi_name_in_serial(const char * str)883 int dmi_name_in_serial(const char *str)
884 {
885 	int f = DMI_PRODUCT_SERIAL;
886 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
887 		return 1;
888 	return 0;
889 }
890 
891 /**
892  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
893  *	@str: Case sensitive Name
894  */
dmi_name_in_vendors(const char * str)895 int dmi_name_in_vendors(const char *str)
896 {
897 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
898 	int i;
899 	for (i = 0; fields[i] != DMI_NONE; i++) {
900 		int f = fields[i];
901 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
902 			return 1;
903 	}
904 	return 0;
905 }
906 EXPORT_SYMBOL(dmi_name_in_vendors);
907 
908 /**
909  *	dmi_find_device - find onboard device by type/name
910  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
911  *	@name: device name string or %NULL to match all
912  *	@from: previous device found in search, or %NULL for new search.
913  *
914  *	Iterates through the list of known onboard devices. If a device is
915  *	found with a matching @type and @name, a pointer to its device
916  *	structure is returned.  Otherwise, %NULL is returned.
917  *	A new search is initiated by passing %NULL as the @from argument.
918  *	If @from is not %NULL, searches continue from next device.
919  */
dmi_find_device(int type,const char * name,const struct dmi_device * from)920 const struct dmi_device *dmi_find_device(int type, const char *name,
921 				    const struct dmi_device *from)
922 {
923 	const struct list_head *head = from ? &from->list : &dmi_devices;
924 	struct list_head *d;
925 
926 	for (d = head->next; d != &dmi_devices; d = d->next) {
927 		const struct dmi_device *dev =
928 			list_entry(d, struct dmi_device, list);
929 
930 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
931 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
932 			return dev;
933 	}
934 
935 	return NULL;
936 }
937 EXPORT_SYMBOL(dmi_find_device);
938 
939 /**
940  *	dmi_get_date - parse a DMI date
941  *	@field:	data index (see enum dmi_field)
942  *	@yearp: optional out parameter for the year
943  *	@monthp: optional out parameter for the month
944  *	@dayp: optional out parameter for the day
945  *
946  *	The date field is assumed to be in the form resembling
947  *	[mm[/dd]]/yy[yy] and the result is stored in the out
948  *	parameters any or all of which can be omitted.
949  *
950  *	If the field doesn't exist, all out parameters are set to zero
951  *	and false is returned.  Otherwise, true is returned with any
952  *	invalid part of date set to zero.
953  *
954  *	On return, year, month and day are guaranteed to be in the
955  *	range of [0,9999], [0,12] and [0,31] respectively.
956  */
dmi_get_date(int field,int * yearp,int * monthp,int * dayp)957 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
958 {
959 	int year = 0, month = 0, day = 0;
960 	bool exists;
961 	const char *s, *y;
962 	char *e;
963 
964 	s = dmi_get_system_info(field);
965 	exists = s;
966 	if (!exists)
967 		goto out;
968 
969 	/*
970 	 * Determine year first.  We assume the date string resembles
971 	 * mm/dd/yy[yy] but the original code extracted only the year
972 	 * from the end.  Keep the behavior in the spirit of no
973 	 * surprises.
974 	 */
975 	y = strrchr(s, '/');
976 	if (!y)
977 		goto out;
978 
979 	y++;
980 	year = simple_strtoul(y, &e, 10);
981 	if (y != e && year < 100) {	/* 2-digit year */
982 		year += 1900;
983 		if (year < 1996)	/* no dates < spec 1.0 */
984 			year += 100;
985 	}
986 	if (year > 9999)		/* year should fit in %04d */
987 		year = 0;
988 
989 	/* parse the mm and dd */
990 	month = simple_strtoul(s, &e, 10);
991 	if (s == e || *e != '/' || !month || month > 12) {
992 		month = 0;
993 		goto out;
994 	}
995 
996 	s = e + 1;
997 	day = simple_strtoul(s, &e, 10);
998 	if (s == y || s == e || *e != '/' || day > 31)
999 		day = 0;
1000 out:
1001 	if (yearp)
1002 		*yearp = year;
1003 	if (monthp)
1004 		*monthp = month;
1005 	if (dayp)
1006 		*dayp = day;
1007 	return exists;
1008 }
1009 EXPORT_SYMBOL(dmi_get_date);
1010 
1011 /**
1012  *	dmi_walk - Walk the DMI table and get called back for every record
1013  *	@decode: Callback function
1014  *	@private_data: Private data to be passed to the callback function
1015  *
1016  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1017  *	or a different negative error code if DMI walking fails.
1018  */
dmi_walk(void (* decode)(const struct dmi_header *,void *),void * private_data)1019 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1020 	     void *private_data)
1021 {
1022 	u8 *buf;
1023 
1024 	if (!dmi_available)
1025 		return -ENXIO;
1026 
1027 	buf = dmi_remap(dmi_base, dmi_len);
1028 	if (buf == NULL)
1029 		return -ENOMEM;
1030 
1031 	dmi_decode_table(buf, decode, private_data);
1032 
1033 	dmi_unmap(buf);
1034 	return 0;
1035 }
1036 EXPORT_SYMBOL_GPL(dmi_walk);
1037 
1038 /**
1039  * dmi_match - compare a string to the dmi field (if exists)
1040  * @f: DMI field identifier
1041  * @str: string to compare the DMI field to
1042  *
1043  * Returns true if the requested field equals to the str (including NULL).
1044  */
dmi_match(enum dmi_field f,const char * str)1045 bool dmi_match(enum dmi_field f, const char *str)
1046 {
1047 	const char *info = dmi_get_system_info(f);
1048 
1049 	if (info == NULL || str == NULL)
1050 		return info == str;
1051 
1052 	return !strcmp(info, str);
1053 }
1054 EXPORT_SYMBOL_GPL(dmi_match);
1055 
dmi_memdev_name(u16 handle,const char ** bank,const char ** device)1056 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1057 {
1058 	int n;
1059 
1060 	if (dmi_memdev == NULL)
1061 		return;
1062 
1063 	for (n = 0; n < dmi_memdev_nr; n++) {
1064 		if (handle == dmi_memdev[n].handle) {
1065 			*bank = dmi_memdev[n].bank;
1066 			*device = dmi_memdev[n].device;
1067 			break;
1068 		}
1069 	}
1070 }
1071 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1072