1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/errno.h>
27 #include <linux/acpi.h>
28 #include <linux/hash.h>
29 #include <linux/cpufreq.h>
30 #include <linux/log2.h>
31
32 #include "kfd_priv.h"
33 #include "kfd_crat.h"
34 #include "kfd_topology.h"
35
36 static struct list_head topology_device_list;
37 static int topology_crat_parsed;
38 static struct kfd_system_properties sys_props;
39
40 static DECLARE_RWSEM(topology_lock);
41
kfd_device_by_id(uint32_t gpu_id)42 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
43 {
44 struct kfd_topology_device *top_dev;
45 struct kfd_dev *device = NULL;
46
47 down_read(&topology_lock);
48
49 list_for_each_entry(top_dev, &topology_device_list, list)
50 if (top_dev->gpu_id == gpu_id) {
51 device = top_dev->gpu;
52 break;
53 }
54
55 up_read(&topology_lock);
56
57 return device;
58 }
59
kfd_device_by_pci_dev(const struct pci_dev * pdev)60 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
61 {
62 struct kfd_topology_device *top_dev;
63 struct kfd_dev *device = NULL;
64
65 down_read(&topology_lock);
66
67 list_for_each_entry(top_dev, &topology_device_list, list)
68 if (top_dev->gpu->pdev == pdev) {
69 device = top_dev->gpu;
70 break;
71 }
72
73 up_read(&topology_lock);
74
75 return device;
76 }
77
kfd_topology_get_crat_acpi(void * crat_image,size_t * size)78 static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
79 {
80 struct acpi_table_header *crat_table;
81 acpi_status status;
82
83 if (!size)
84 return -EINVAL;
85
86 /*
87 * Fetch the CRAT table from ACPI
88 */
89 status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
90 if (status == AE_NOT_FOUND) {
91 pr_warn("CRAT table not found\n");
92 return -ENODATA;
93 } else if (ACPI_FAILURE(status)) {
94 const char *err = acpi_format_exception(status);
95
96 pr_err("CRAT table error: %s\n", err);
97 return -EINVAL;
98 }
99
100 if (*size >= crat_table->length && crat_image != NULL)
101 memcpy(crat_image, crat_table, crat_table->length);
102
103 *size = crat_table->length;
104
105 return 0;
106 }
107
kfd_populated_cu_info_cpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)108 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
109 struct crat_subtype_computeunit *cu)
110 {
111 dev->node_props.cpu_cores_count = cu->num_cpu_cores;
112 dev->node_props.cpu_core_id_base = cu->processor_id_low;
113 if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
114 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
115
116 pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
117 cu->processor_id_low);
118 }
119
kfd_populated_cu_info_gpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)120 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
121 struct crat_subtype_computeunit *cu)
122 {
123 dev->node_props.simd_id_base = cu->processor_id_low;
124 dev->node_props.simd_count = cu->num_simd_cores;
125 dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
126 dev->node_props.max_waves_per_simd = cu->max_waves_simd;
127 dev->node_props.wave_front_size = cu->wave_front_size;
128 dev->node_props.mem_banks_count = cu->num_banks;
129 dev->node_props.array_count = cu->num_arrays;
130 dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
131 dev->node_props.simd_per_cu = cu->num_simd_per_cu;
132 dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
133 if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
134 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
135 pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
136 cu->processor_id_low);
137 }
138
139 /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
kfd_parse_subtype_cu(struct crat_subtype_computeunit * cu)140 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
141 {
142 struct kfd_topology_device *dev;
143 int i = 0;
144
145 pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
146 cu->proximity_domain, cu->hsa_capability);
147 list_for_each_entry(dev, &topology_device_list, list) {
148 if (cu->proximity_domain == i) {
149 if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
150 kfd_populated_cu_info_cpu(dev, cu);
151
152 if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
153 kfd_populated_cu_info_gpu(dev, cu);
154 break;
155 }
156 i++;
157 }
158
159 return 0;
160 }
161
162 /*
163 * kfd_parse_subtype_mem is called when the topology mutex is
164 * already acquired
165 */
kfd_parse_subtype_mem(struct crat_subtype_memory * mem)166 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
167 {
168 struct kfd_mem_properties *props;
169 struct kfd_topology_device *dev;
170 int i = 0;
171
172 pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
173 mem->promixity_domain);
174 list_for_each_entry(dev, &topology_device_list, list) {
175 if (mem->promixity_domain == i) {
176 props = kfd_alloc_struct(props);
177 if (props == NULL)
178 return -ENOMEM;
179
180 if (dev->node_props.cpu_cores_count == 0)
181 props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
182 else
183 props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
184
185 if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
186 props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
187 if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
188 props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
189
190 props->size_in_bytes =
191 ((uint64_t)mem->length_high << 32) +
192 mem->length_low;
193 props->width = mem->width;
194
195 dev->mem_bank_count++;
196 list_add_tail(&props->list, &dev->mem_props);
197
198 break;
199 }
200 i++;
201 }
202
203 return 0;
204 }
205
206 /*
207 * kfd_parse_subtype_cache is called when the topology mutex
208 * is already acquired
209 */
kfd_parse_subtype_cache(struct crat_subtype_cache * cache)210 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
211 {
212 struct kfd_cache_properties *props;
213 struct kfd_topology_device *dev;
214 uint32_t id;
215
216 id = cache->processor_id_low;
217
218 pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
219 list_for_each_entry(dev, &topology_device_list, list)
220 if (id == dev->node_props.cpu_core_id_base ||
221 id == dev->node_props.simd_id_base) {
222 props = kfd_alloc_struct(props);
223 if (props == NULL)
224 return -ENOMEM;
225
226 props->processor_id_low = id;
227 props->cache_level = cache->cache_level;
228 props->cache_size = cache->cache_size;
229 props->cacheline_size = cache->cache_line_size;
230 props->cachelines_per_tag = cache->lines_per_tag;
231 props->cache_assoc = cache->associativity;
232 props->cache_latency = cache->cache_latency;
233
234 if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
235 props->cache_type |= HSA_CACHE_TYPE_DATA;
236 if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
237 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
238 if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
239 props->cache_type |= HSA_CACHE_TYPE_CPU;
240 if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
241 props->cache_type |= HSA_CACHE_TYPE_HSACU;
242
243 dev->cache_count++;
244 dev->node_props.caches_count++;
245 list_add_tail(&props->list, &dev->cache_props);
246
247 break;
248 }
249
250 return 0;
251 }
252
253 /*
254 * kfd_parse_subtype_iolink is called when the topology mutex
255 * is already acquired
256 */
kfd_parse_subtype_iolink(struct crat_subtype_iolink * iolink)257 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
258 {
259 struct kfd_iolink_properties *props;
260 struct kfd_topology_device *dev;
261 uint32_t i = 0;
262 uint32_t id_from;
263 uint32_t id_to;
264
265 id_from = iolink->proximity_domain_from;
266 id_to = iolink->proximity_domain_to;
267
268 pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
269 list_for_each_entry(dev, &topology_device_list, list) {
270 if (id_from == i) {
271 props = kfd_alloc_struct(props);
272 if (props == NULL)
273 return -ENOMEM;
274
275 props->node_from = id_from;
276 props->node_to = id_to;
277 props->ver_maj = iolink->version_major;
278 props->ver_min = iolink->version_minor;
279
280 /*
281 * weight factor (derived from CDIR), currently always 1
282 */
283 props->weight = 1;
284
285 props->min_latency = iolink->minimum_latency;
286 props->max_latency = iolink->maximum_latency;
287 props->min_bandwidth = iolink->minimum_bandwidth_mbs;
288 props->max_bandwidth = iolink->maximum_bandwidth_mbs;
289 props->rec_transfer_size =
290 iolink->recommended_transfer_size;
291
292 dev->io_link_count++;
293 dev->node_props.io_links_count++;
294 list_add_tail(&props->list, &dev->io_link_props);
295
296 break;
297 }
298 i++;
299 }
300
301 return 0;
302 }
303
kfd_parse_subtype(struct crat_subtype_generic * sub_type_hdr)304 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
305 {
306 struct crat_subtype_computeunit *cu;
307 struct crat_subtype_memory *mem;
308 struct crat_subtype_cache *cache;
309 struct crat_subtype_iolink *iolink;
310 int ret = 0;
311
312 switch (sub_type_hdr->type) {
313 case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
314 cu = (struct crat_subtype_computeunit *)sub_type_hdr;
315 ret = kfd_parse_subtype_cu(cu);
316 break;
317 case CRAT_SUBTYPE_MEMORY_AFFINITY:
318 mem = (struct crat_subtype_memory *)sub_type_hdr;
319 ret = kfd_parse_subtype_mem(mem);
320 break;
321 case CRAT_SUBTYPE_CACHE_AFFINITY:
322 cache = (struct crat_subtype_cache *)sub_type_hdr;
323 ret = kfd_parse_subtype_cache(cache);
324 break;
325 case CRAT_SUBTYPE_TLB_AFFINITY:
326 /*
327 * For now, nothing to do here
328 */
329 pr_info("Found TLB entry in CRAT table (not processing)\n");
330 break;
331 case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
332 /*
333 * For now, nothing to do here
334 */
335 pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
336 break;
337 case CRAT_SUBTYPE_IOLINK_AFFINITY:
338 iolink = (struct crat_subtype_iolink *)sub_type_hdr;
339 ret = kfd_parse_subtype_iolink(iolink);
340 break;
341 default:
342 pr_warn("Unknown subtype (%d) in CRAT\n",
343 sub_type_hdr->type);
344 }
345
346 return ret;
347 }
348
kfd_release_topology_device(struct kfd_topology_device * dev)349 static void kfd_release_topology_device(struct kfd_topology_device *dev)
350 {
351 struct kfd_mem_properties *mem;
352 struct kfd_cache_properties *cache;
353 struct kfd_iolink_properties *iolink;
354
355 list_del(&dev->list);
356
357 while (dev->mem_props.next != &dev->mem_props) {
358 mem = container_of(dev->mem_props.next,
359 struct kfd_mem_properties, list);
360 list_del(&mem->list);
361 kfree(mem);
362 }
363
364 while (dev->cache_props.next != &dev->cache_props) {
365 cache = container_of(dev->cache_props.next,
366 struct kfd_cache_properties, list);
367 list_del(&cache->list);
368 kfree(cache);
369 }
370
371 while (dev->io_link_props.next != &dev->io_link_props) {
372 iolink = container_of(dev->io_link_props.next,
373 struct kfd_iolink_properties, list);
374 list_del(&iolink->list);
375 kfree(iolink);
376 }
377
378 kfree(dev);
379
380 sys_props.num_devices--;
381 }
382
kfd_release_live_view(void)383 static void kfd_release_live_view(void)
384 {
385 struct kfd_topology_device *dev;
386
387 while (topology_device_list.next != &topology_device_list) {
388 dev = container_of(topology_device_list.next,
389 struct kfd_topology_device, list);
390 kfd_release_topology_device(dev);
391 }
392
393 memset(&sys_props, 0, sizeof(sys_props));
394 }
395
kfd_create_topology_device(void)396 static struct kfd_topology_device *kfd_create_topology_device(void)
397 {
398 struct kfd_topology_device *dev;
399
400 dev = kfd_alloc_struct(dev);
401 if (!dev) {
402 pr_err("No memory to allocate a topology device");
403 return NULL;
404 }
405
406 INIT_LIST_HEAD(&dev->mem_props);
407 INIT_LIST_HEAD(&dev->cache_props);
408 INIT_LIST_HEAD(&dev->io_link_props);
409
410 list_add_tail(&dev->list, &topology_device_list);
411 sys_props.num_devices++;
412
413 return dev;
414 }
415
kfd_parse_crat_table(void * crat_image)416 static int kfd_parse_crat_table(void *crat_image)
417 {
418 struct kfd_topology_device *top_dev;
419 struct crat_subtype_generic *sub_type_hdr;
420 uint16_t node_id;
421 int ret;
422 struct crat_header *crat_table = (struct crat_header *)crat_image;
423 uint16_t num_nodes;
424 uint32_t image_len;
425
426 if (!crat_image)
427 return -EINVAL;
428
429 num_nodes = crat_table->num_domains;
430 image_len = crat_table->length;
431
432 pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
433
434 for (node_id = 0; node_id < num_nodes; node_id++) {
435 top_dev = kfd_create_topology_device();
436 if (!top_dev) {
437 kfd_release_live_view();
438 return -ENOMEM;
439 }
440 }
441
442 sys_props.platform_id =
443 (*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
444 sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
445 sys_props.platform_rev = crat_table->revision;
446
447 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
448 while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
449 ((char *)crat_image) + image_len) {
450 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
451 ret = kfd_parse_subtype(sub_type_hdr);
452 if (ret != 0) {
453 kfd_release_live_view();
454 return ret;
455 }
456 }
457
458 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
459 sub_type_hdr->length);
460 }
461
462 sys_props.generation_count++;
463 topology_crat_parsed = 1;
464
465 return 0;
466 }
467
468
469 #define sysfs_show_gen_prop(buffer, fmt, ...) \
470 snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
471 #define sysfs_show_32bit_prop(buffer, name, value) \
472 sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
473 #define sysfs_show_64bit_prop(buffer, name, value) \
474 sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
475 #define sysfs_show_32bit_val(buffer, value) \
476 sysfs_show_gen_prop(buffer, "%u\n", value)
477 #define sysfs_show_str_val(buffer, value) \
478 sysfs_show_gen_prop(buffer, "%s\n", value)
479
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)480 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
481 char *buffer)
482 {
483 ssize_t ret;
484
485 /* Making sure that the buffer is an empty string */
486 buffer[0] = 0;
487
488 if (attr == &sys_props.attr_genid) {
489 ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
490 } else if (attr == &sys_props.attr_props) {
491 sysfs_show_64bit_prop(buffer, "platform_oem",
492 sys_props.platform_oem);
493 sysfs_show_64bit_prop(buffer, "platform_id",
494 sys_props.platform_id);
495 ret = sysfs_show_64bit_prop(buffer, "platform_rev",
496 sys_props.platform_rev);
497 } else {
498 ret = -EINVAL;
499 }
500
501 return ret;
502 }
503
kfd_topology_kobj_release(struct kobject * kobj)504 static void kfd_topology_kobj_release(struct kobject *kobj)
505 {
506 kfree(kobj);
507 }
508
509 static const struct sysfs_ops sysprops_ops = {
510 .show = sysprops_show,
511 };
512
513 static struct kobj_type sysprops_type = {
514 .release = kfd_topology_kobj_release,
515 .sysfs_ops = &sysprops_ops,
516 };
517
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)518 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
519 char *buffer)
520 {
521 ssize_t ret;
522 struct kfd_iolink_properties *iolink;
523
524 /* Making sure that the buffer is an empty string */
525 buffer[0] = 0;
526
527 iolink = container_of(attr, struct kfd_iolink_properties, attr);
528 sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
529 sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
530 sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
531 sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
532 sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
533 sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
534 sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
535 sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
536 sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
537 sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
538 sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
539 iolink->rec_transfer_size);
540 ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
541
542 return ret;
543 }
544
545 static const struct sysfs_ops iolink_ops = {
546 .show = iolink_show,
547 };
548
549 static struct kobj_type iolink_type = {
550 .release = kfd_topology_kobj_release,
551 .sysfs_ops = &iolink_ops,
552 };
553
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)554 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
555 char *buffer)
556 {
557 ssize_t ret;
558 struct kfd_mem_properties *mem;
559
560 /* Making sure that the buffer is an empty string */
561 buffer[0] = 0;
562
563 mem = container_of(attr, struct kfd_mem_properties, attr);
564 sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
565 sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
566 sysfs_show_32bit_prop(buffer, "flags", mem->flags);
567 sysfs_show_32bit_prop(buffer, "width", mem->width);
568 ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
569
570 return ret;
571 }
572
573 static const struct sysfs_ops mem_ops = {
574 .show = mem_show,
575 };
576
577 static struct kobj_type mem_type = {
578 .release = kfd_topology_kobj_release,
579 .sysfs_ops = &mem_ops,
580 };
581
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)582 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
583 char *buffer)
584 {
585 ssize_t ret;
586 uint32_t i;
587 struct kfd_cache_properties *cache;
588
589 /* Making sure that the buffer is an empty string */
590 buffer[0] = 0;
591
592 cache = container_of(attr, struct kfd_cache_properties, attr);
593 sysfs_show_32bit_prop(buffer, "processor_id_low",
594 cache->processor_id_low);
595 sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
596 sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
597 sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
598 sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
599 cache->cachelines_per_tag);
600 sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
601 sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
602 sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
603 snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
604 for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
605 ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
606 buffer, cache->sibling_map[i],
607 (i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
608 "\n" : ",");
609
610 return ret;
611 }
612
613 static const struct sysfs_ops cache_ops = {
614 .show = kfd_cache_show,
615 };
616
617 static struct kobj_type cache_type = {
618 .release = kfd_topology_kobj_release,
619 .sysfs_ops = &cache_ops,
620 };
621
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)622 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
623 char *buffer)
624 {
625 struct kfd_topology_device *dev;
626 char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
627 uint32_t i;
628 uint32_t log_max_watch_addr;
629
630 /* Making sure that the buffer is an empty string */
631 buffer[0] = 0;
632
633 if (strcmp(attr->name, "gpu_id") == 0) {
634 dev = container_of(attr, struct kfd_topology_device,
635 attr_gpuid);
636 return sysfs_show_32bit_val(buffer, dev->gpu_id);
637 }
638
639 if (strcmp(attr->name, "name") == 0) {
640 dev = container_of(attr, struct kfd_topology_device,
641 attr_name);
642 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
643 public_name[i] =
644 (char)dev->node_props.marketing_name[i];
645 if (dev->node_props.marketing_name[i] == 0)
646 break;
647 }
648 public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
649 return sysfs_show_str_val(buffer, public_name);
650 }
651
652 dev = container_of(attr, struct kfd_topology_device,
653 attr_props);
654 sysfs_show_32bit_prop(buffer, "cpu_cores_count",
655 dev->node_props.cpu_cores_count);
656 sysfs_show_32bit_prop(buffer, "simd_count",
657 dev->node_props.simd_count);
658
659 if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
660 pr_info_once("mem_banks_count truncated from %d to %d\n",
661 dev->node_props.mem_banks_count,
662 dev->mem_bank_count);
663 sysfs_show_32bit_prop(buffer, "mem_banks_count",
664 dev->mem_bank_count);
665 } else {
666 sysfs_show_32bit_prop(buffer, "mem_banks_count",
667 dev->node_props.mem_banks_count);
668 }
669
670 sysfs_show_32bit_prop(buffer, "caches_count",
671 dev->node_props.caches_count);
672 sysfs_show_32bit_prop(buffer, "io_links_count",
673 dev->node_props.io_links_count);
674 sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
675 dev->node_props.cpu_core_id_base);
676 sysfs_show_32bit_prop(buffer, "simd_id_base",
677 dev->node_props.simd_id_base);
678 sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
679 dev->node_props.max_waves_per_simd);
680 sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
681 dev->node_props.lds_size_in_kb);
682 sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
683 dev->node_props.gds_size_in_kb);
684 sysfs_show_32bit_prop(buffer, "wave_front_size",
685 dev->node_props.wave_front_size);
686 sysfs_show_32bit_prop(buffer, "array_count",
687 dev->node_props.array_count);
688 sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
689 dev->node_props.simd_arrays_per_engine);
690 sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
691 dev->node_props.cu_per_simd_array);
692 sysfs_show_32bit_prop(buffer, "simd_per_cu",
693 dev->node_props.simd_per_cu);
694 sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
695 dev->node_props.max_slots_scratch_cu);
696 sysfs_show_32bit_prop(buffer, "vendor_id",
697 dev->node_props.vendor_id);
698 sysfs_show_32bit_prop(buffer, "device_id",
699 dev->node_props.device_id);
700 sysfs_show_32bit_prop(buffer, "location_id",
701 dev->node_props.location_id);
702
703 if (dev->gpu) {
704 log_max_watch_addr =
705 __ilog2_u32(dev->gpu->device_info->num_of_watch_points);
706
707 if (log_max_watch_addr) {
708 dev->node_props.capability |=
709 HSA_CAP_WATCH_POINTS_SUPPORTED;
710
711 dev->node_props.capability |=
712 ((log_max_watch_addr <<
713 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
714 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
715 }
716
717 sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
718 dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(
719 dev->gpu->kgd));
720
721 sysfs_show_64bit_prop(buffer, "local_mem_size",
722 (unsigned long long int) 0);
723
724 sysfs_show_32bit_prop(buffer, "fw_version",
725 dev->gpu->kfd2kgd->get_fw_version(
726 dev->gpu->kgd,
727 KGD_ENGINE_MEC1));
728 sysfs_show_32bit_prop(buffer, "capability",
729 dev->node_props.capability);
730 }
731
732 return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
733 cpufreq_quick_get_max(0)/1000);
734 }
735
736 static const struct sysfs_ops node_ops = {
737 .show = node_show,
738 };
739
740 static struct kobj_type node_type = {
741 .release = kfd_topology_kobj_release,
742 .sysfs_ops = &node_ops,
743 };
744
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)745 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
746 {
747 sysfs_remove_file(kobj, attr);
748 kobject_del(kobj);
749 kobject_put(kobj);
750 }
751
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)752 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
753 {
754 struct kfd_iolink_properties *iolink;
755 struct kfd_cache_properties *cache;
756 struct kfd_mem_properties *mem;
757
758 if (dev->kobj_iolink) {
759 list_for_each_entry(iolink, &dev->io_link_props, list)
760 if (iolink->kobj) {
761 kfd_remove_sysfs_file(iolink->kobj,
762 &iolink->attr);
763 iolink->kobj = NULL;
764 }
765 kobject_del(dev->kobj_iolink);
766 kobject_put(dev->kobj_iolink);
767 dev->kobj_iolink = NULL;
768 }
769
770 if (dev->kobj_cache) {
771 list_for_each_entry(cache, &dev->cache_props, list)
772 if (cache->kobj) {
773 kfd_remove_sysfs_file(cache->kobj,
774 &cache->attr);
775 cache->kobj = NULL;
776 }
777 kobject_del(dev->kobj_cache);
778 kobject_put(dev->kobj_cache);
779 dev->kobj_cache = NULL;
780 }
781
782 if (dev->kobj_mem) {
783 list_for_each_entry(mem, &dev->mem_props, list)
784 if (mem->kobj) {
785 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
786 mem->kobj = NULL;
787 }
788 kobject_del(dev->kobj_mem);
789 kobject_put(dev->kobj_mem);
790 dev->kobj_mem = NULL;
791 }
792
793 if (dev->kobj_node) {
794 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
795 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
796 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
797 kobject_del(dev->kobj_node);
798 kobject_put(dev->kobj_node);
799 dev->kobj_node = NULL;
800 }
801 }
802
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)803 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
804 uint32_t id)
805 {
806 struct kfd_iolink_properties *iolink;
807 struct kfd_cache_properties *cache;
808 struct kfd_mem_properties *mem;
809 int ret;
810 uint32_t i;
811
812 if (WARN_ON(dev->kobj_node))
813 return -EEXIST;
814
815 /*
816 * Creating the sysfs folders
817 */
818 dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
819 if (!dev->kobj_node)
820 return -ENOMEM;
821
822 ret = kobject_init_and_add(dev->kobj_node, &node_type,
823 sys_props.kobj_nodes, "%d", id);
824 if (ret < 0)
825 return ret;
826
827 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
828 if (!dev->kobj_mem)
829 return -ENOMEM;
830
831 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
832 if (!dev->kobj_cache)
833 return -ENOMEM;
834
835 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
836 if (!dev->kobj_iolink)
837 return -ENOMEM;
838
839 /*
840 * Creating sysfs files for node properties
841 */
842 dev->attr_gpuid.name = "gpu_id";
843 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
844 sysfs_attr_init(&dev->attr_gpuid);
845 dev->attr_name.name = "name";
846 dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
847 sysfs_attr_init(&dev->attr_name);
848 dev->attr_props.name = "properties";
849 dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
850 sysfs_attr_init(&dev->attr_props);
851 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
852 if (ret < 0)
853 return ret;
854 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
855 if (ret < 0)
856 return ret;
857 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
858 if (ret < 0)
859 return ret;
860
861 i = 0;
862 list_for_each_entry(mem, &dev->mem_props, list) {
863 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
864 if (!mem->kobj)
865 return -ENOMEM;
866 ret = kobject_init_and_add(mem->kobj, &mem_type,
867 dev->kobj_mem, "%d", i);
868 if (ret < 0)
869 return ret;
870
871 mem->attr.name = "properties";
872 mem->attr.mode = KFD_SYSFS_FILE_MODE;
873 sysfs_attr_init(&mem->attr);
874 ret = sysfs_create_file(mem->kobj, &mem->attr);
875 if (ret < 0)
876 return ret;
877 i++;
878 }
879
880 i = 0;
881 list_for_each_entry(cache, &dev->cache_props, list) {
882 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
883 if (!cache->kobj)
884 return -ENOMEM;
885 ret = kobject_init_and_add(cache->kobj, &cache_type,
886 dev->kobj_cache, "%d", i);
887 if (ret < 0)
888 return ret;
889
890 cache->attr.name = "properties";
891 cache->attr.mode = KFD_SYSFS_FILE_MODE;
892 sysfs_attr_init(&cache->attr);
893 ret = sysfs_create_file(cache->kobj, &cache->attr);
894 if (ret < 0)
895 return ret;
896 i++;
897 }
898
899 i = 0;
900 list_for_each_entry(iolink, &dev->io_link_props, list) {
901 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
902 if (!iolink->kobj)
903 return -ENOMEM;
904 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
905 dev->kobj_iolink, "%d", i);
906 if (ret < 0)
907 return ret;
908
909 iolink->attr.name = "properties";
910 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
911 sysfs_attr_init(&iolink->attr);
912 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
913 if (ret < 0)
914 return ret;
915 i++;
916 }
917
918 return 0;
919 }
920
kfd_build_sysfs_node_tree(void)921 static int kfd_build_sysfs_node_tree(void)
922 {
923 struct kfd_topology_device *dev;
924 int ret;
925 uint32_t i = 0;
926
927 list_for_each_entry(dev, &topology_device_list, list) {
928 ret = kfd_build_sysfs_node_entry(dev, i);
929 if (ret < 0)
930 return ret;
931 i++;
932 }
933
934 return 0;
935 }
936
kfd_remove_sysfs_node_tree(void)937 static void kfd_remove_sysfs_node_tree(void)
938 {
939 struct kfd_topology_device *dev;
940
941 list_for_each_entry(dev, &topology_device_list, list)
942 kfd_remove_sysfs_node_entry(dev);
943 }
944
kfd_topology_update_sysfs(void)945 static int kfd_topology_update_sysfs(void)
946 {
947 int ret;
948
949 pr_info("Creating topology SYSFS entries\n");
950 if (!sys_props.kobj_topology) {
951 sys_props.kobj_topology =
952 kfd_alloc_struct(sys_props.kobj_topology);
953 if (!sys_props.kobj_topology)
954 return -ENOMEM;
955
956 ret = kobject_init_and_add(sys_props.kobj_topology,
957 &sysprops_type, &kfd_device->kobj,
958 "topology");
959 if (ret < 0)
960 return ret;
961
962 sys_props.kobj_nodes = kobject_create_and_add("nodes",
963 sys_props.kobj_topology);
964 if (!sys_props.kobj_nodes)
965 return -ENOMEM;
966
967 sys_props.attr_genid.name = "generation_id";
968 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
969 sysfs_attr_init(&sys_props.attr_genid);
970 ret = sysfs_create_file(sys_props.kobj_topology,
971 &sys_props.attr_genid);
972 if (ret < 0)
973 return ret;
974
975 sys_props.attr_props.name = "system_properties";
976 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
977 sysfs_attr_init(&sys_props.attr_props);
978 ret = sysfs_create_file(sys_props.kobj_topology,
979 &sys_props.attr_props);
980 if (ret < 0)
981 return ret;
982 }
983
984 kfd_remove_sysfs_node_tree();
985
986 return kfd_build_sysfs_node_tree();
987 }
988
kfd_topology_release_sysfs(void)989 static void kfd_topology_release_sysfs(void)
990 {
991 kfd_remove_sysfs_node_tree();
992 if (sys_props.kobj_topology) {
993 sysfs_remove_file(sys_props.kobj_topology,
994 &sys_props.attr_genid);
995 sysfs_remove_file(sys_props.kobj_topology,
996 &sys_props.attr_props);
997 if (sys_props.kobj_nodes) {
998 kobject_del(sys_props.kobj_nodes);
999 kobject_put(sys_props.kobj_nodes);
1000 sys_props.kobj_nodes = NULL;
1001 }
1002 kobject_del(sys_props.kobj_topology);
1003 kobject_put(sys_props.kobj_topology);
1004 sys_props.kobj_topology = NULL;
1005 }
1006 }
1007
kfd_topology_init(void)1008 int kfd_topology_init(void)
1009 {
1010 void *crat_image = NULL;
1011 size_t image_size = 0;
1012 int ret;
1013
1014 /*
1015 * Initialize the head for the topology device list
1016 */
1017 INIT_LIST_HEAD(&topology_device_list);
1018 init_rwsem(&topology_lock);
1019 topology_crat_parsed = 0;
1020
1021 memset(&sys_props, 0, sizeof(sys_props));
1022
1023 /*
1024 * Get the CRAT image from the ACPI
1025 */
1026 ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1027 if (ret == 0 && image_size > 0) {
1028 pr_info("Found CRAT image with size=%zd\n", image_size);
1029 crat_image = kmalloc(image_size, GFP_KERNEL);
1030 if (!crat_image) {
1031 ret = -ENOMEM;
1032 pr_err("No memory for allocating CRAT image\n");
1033 goto err;
1034 }
1035 ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1036
1037 if (ret == 0) {
1038 down_write(&topology_lock);
1039 ret = kfd_parse_crat_table(crat_image);
1040 if (ret == 0)
1041 ret = kfd_topology_update_sysfs();
1042 up_write(&topology_lock);
1043 } else {
1044 pr_err("Couldn't get CRAT table size from ACPI\n");
1045 }
1046 kfree(crat_image);
1047 } else if (ret == -ENODATA) {
1048 ret = 0;
1049 } else {
1050 pr_err("Couldn't get CRAT table size from ACPI\n");
1051 }
1052
1053 err:
1054 pr_info("Finished initializing topology ret=%d\n", ret);
1055 return ret;
1056 }
1057
kfd_topology_shutdown(void)1058 void kfd_topology_shutdown(void)
1059 {
1060 kfd_topology_release_sysfs();
1061 kfd_release_live_view();
1062 }
1063
kfd_debug_print_topology(void)1064 static void kfd_debug_print_topology(void)
1065 {
1066 struct kfd_topology_device *dev;
1067 uint32_t i = 0;
1068
1069 pr_info("DEBUG PRINT OF TOPOLOGY:");
1070 list_for_each_entry(dev, &topology_device_list, list) {
1071 pr_info("Node: %d\n", i);
1072 pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
1073 pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
1074 pr_info("\tSIMD count: %d", dev->node_props.simd_count);
1075 i++;
1076 }
1077 }
1078
kfd_generate_gpu_id(struct kfd_dev * gpu)1079 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1080 {
1081 uint32_t hashout;
1082 uint32_t buf[7];
1083 uint64_t local_mem_size;
1084 int i;
1085
1086 if (!gpu)
1087 return 0;
1088
1089 local_mem_size = gpu->kfd2kgd->get_vmem_size(gpu->kgd);
1090
1091 buf[0] = gpu->pdev->devfn;
1092 buf[1] = gpu->pdev->subsystem_vendor;
1093 buf[2] = gpu->pdev->subsystem_device;
1094 buf[3] = gpu->pdev->device;
1095 buf[4] = gpu->pdev->bus->number;
1096 buf[5] = lower_32_bits(local_mem_size);
1097 buf[6] = upper_32_bits(local_mem_size);
1098
1099 for (i = 0, hashout = 0; i < 7; i++)
1100 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1101
1102 return hashout;
1103 }
1104
kfd_assign_gpu(struct kfd_dev * gpu)1105 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1106 {
1107 struct kfd_topology_device *dev;
1108 struct kfd_topology_device *out_dev = NULL;
1109
1110 list_for_each_entry(dev, &topology_device_list, list)
1111 if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1112 dev->gpu = gpu;
1113 out_dev = dev;
1114 break;
1115 }
1116
1117 return out_dev;
1118 }
1119
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1120 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1121 {
1122 /*
1123 * TODO: Generate an event for thunk about the arrival/removal
1124 * of the GPU
1125 */
1126 }
1127
kfd_topology_add_device(struct kfd_dev * gpu)1128 int kfd_topology_add_device(struct kfd_dev *gpu)
1129 {
1130 uint32_t gpu_id;
1131 struct kfd_topology_device *dev;
1132 int res;
1133
1134 gpu_id = kfd_generate_gpu_id(gpu);
1135
1136 pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1137
1138 down_write(&topology_lock);
1139 /*
1140 * Try to assign the GPU to existing topology device (generated from
1141 * CRAT table
1142 */
1143 dev = kfd_assign_gpu(gpu);
1144 if (!dev) {
1145 pr_info("GPU was not found in the current topology. Extending.\n");
1146 kfd_debug_print_topology();
1147 dev = kfd_create_topology_device();
1148 if (!dev) {
1149 res = -ENOMEM;
1150 goto err;
1151 }
1152 dev->gpu = gpu;
1153
1154 /*
1155 * TODO: Make a call to retrieve topology information from the
1156 * GPU vBIOS
1157 */
1158
1159 /* Update the SYSFS tree, since we added another topology
1160 * device
1161 */
1162 if (kfd_topology_update_sysfs() < 0)
1163 kfd_topology_release_sysfs();
1164
1165 }
1166
1167 dev->gpu_id = gpu_id;
1168 gpu->id = gpu_id;
1169 dev->node_props.vendor_id = gpu->pdev->vendor;
1170 dev->node_props.device_id = gpu->pdev->device;
1171 dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
1172 (gpu->pdev->devfn & 0xffffff);
1173 /*
1174 * TODO: Retrieve max engine clock values from KGD
1175 */
1176
1177 if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
1178 dev->node_props.capability |= HSA_CAP_DOORBELL_PACKET_TYPE;
1179 pr_info("Adding doorbell packet type capability\n");
1180 }
1181
1182 res = 0;
1183
1184 err:
1185 up_write(&topology_lock);
1186
1187 if (res == 0)
1188 kfd_notify_gpu_change(gpu_id, 1);
1189
1190 return res;
1191 }
1192
kfd_topology_remove_device(struct kfd_dev * gpu)1193 int kfd_topology_remove_device(struct kfd_dev *gpu)
1194 {
1195 struct kfd_topology_device *dev;
1196 uint32_t gpu_id;
1197 int res = -ENODEV;
1198
1199 down_write(&topology_lock);
1200
1201 list_for_each_entry(dev, &topology_device_list, list)
1202 if (dev->gpu == gpu) {
1203 gpu_id = dev->gpu_id;
1204 kfd_remove_sysfs_node_entry(dev);
1205 kfd_release_topology_device(dev);
1206 res = 0;
1207 if (kfd_topology_update_sysfs() < 0)
1208 kfd_topology_release_sysfs();
1209 break;
1210 }
1211
1212 up_write(&topology_lock);
1213
1214 if (res == 0)
1215 kfd_notify_gpu_change(gpu_id, 0);
1216
1217 return res;
1218 }
1219
1220 /*
1221 * When idx is out of bounds, the function will return NULL
1222 */
kfd_topology_enum_kfd_devices(uint8_t idx)1223 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
1224 {
1225
1226 struct kfd_topology_device *top_dev;
1227 struct kfd_dev *device = NULL;
1228 uint8_t device_idx = 0;
1229
1230 down_read(&topology_lock);
1231
1232 list_for_each_entry(top_dev, &topology_device_list, list) {
1233 if (device_idx == idx) {
1234 device = top_dev->gpu;
1235 break;
1236 }
1237
1238 device_idx++;
1239 }
1240
1241 up_read(&topology_lock);
1242
1243 return device;
1244
1245 }
1246