• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/errno.h>
27 #include <linux/acpi.h>
28 #include <linux/hash.h>
29 #include <linux/cpufreq.h>
30 #include <linux/log2.h>
31 
32 #include "kfd_priv.h"
33 #include "kfd_crat.h"
34 #include "kfd_topology.h"
35 
36 static struct list_head topology_device_list;
37 static int topology_crat_parsed;
38 static struct kfd_system_properties sys_props;
39 
40 static DECLARE_RWSEM(topology_lock);
41 
kfd_device_by_id(uint32_t gpu_id)42 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
43 {
44 	struct kfd_topology_device *top_dev;
45 	struct kfd_dev *device = NULL;
46 
47 	down_read(&topology_lock);
48 
49 	list_for_each_entry(top_dev, &topology_device_list, list)
50 		if (top_dev->gpu_id == gpu_id) {
51 			device = top_dev->gpu;
52 			break;
53 		}
54 
55 	up_read(&topology_lock);
56 
57 	return device;
58 }
59 
kfd_device_by_pci_dev(const struct pci_dev * pdev)60 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
61 {
62 	struct kfd_topology_device *top_dev;
63 	struct kfd_dev *device = NULL;
64 
65 	down_read(&topology_lock);
66 
67 	list_for_each_entry(top_dev, &topology_device_list, list)
68 		if (top_dev->gpu->pdev == pdev) {
69 			device = top_dev->gpu;
70 			break;
71 		}
72 
73 	up_read(&topology_lock);
74 
75 	return device;
76 }
77 
kfd_topology_get_crat_acpi(void * crat_image,size_t * size)78 static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
79 {
80 	struct acpi_table_header *crat_table;
81 	acpi_status status;
82 
83 	if (!size)
84 		return -EINVAL;
85 
86 	/*
87 	 * Fetch the CRAT table from ACPI
88 	 */
89 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
90 	if (status == AE_NOT_FOUND) {
91 		pr_warn("CRAT table not found\n");
92 		return -ENODATA;
93 	} else if (ACPI_FAILURE(status)) {
94 		const char *err = acpi_format_exception(status);
95 
96 		pr_err("CRAT table error: %s\n", err);
97 		return -EINVAL;
98 	}
99 
100 	if (*size >= crat_table->length && crat_image != NULL)
101 		memcpy(crat_image, crat_table, crat_table->length);
102 
103 	*size = crat_table->length;
104 
105 	return 0;
106 }
107 
kfd_populated_cu_info_cpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)108 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
109 		struct crat_subtype_computeunit *cu)
110 {
111 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
112 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
113 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
114 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
115 
116 	pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
117 			cu->processor_id_low);
118 }
119 
kfd_populated_cu_info_gpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)120 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
121 		struct crat_subtype_computeunit *cu)
122 {
123 	dev->node_props.simd_id_base = cu->processor_id_low;
124 	dev->node_props.simd_count = cu->num_simd_cores;
125 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
126 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
127 	dev->node_props.wave_front_size = cu->wave_front_size;
128 	dev->node_props.mem_banks_count = cu->num_banks;
129 	dev->node_props.array_count = cu->num_arrays;
130 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
131 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
132 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
133 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
134 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
135 	pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
136 				cu->processor_id_low);
137 }
138 
139 /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
kfd_parse_subtype_cu(struct crat_subtype_computeunit * cu)140 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
141 {
142 	struct kfd_topology_device *dev;
143 	int i = 0;
144 
145 	pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
146 			cu->proximity_domain, cu->hsa_capability);
147 	list_for_each_entry(dev, &topology_device_list, list) {
148 		if (cu->proximity_domain == i) {
149 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
150 				kfd_populated_cu_info_cpu(dev, cu);
151 
152 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
153 				kfd_populated_cu_info_gpu(dev, cu);
154 			break;
155 		}
156 		i++;
157 	}
158 
159 	return 0;
160 }
161 
162 /*
163  * kfd_parse_subtype_mem is called when the topology mutex is
164  * already acquired
165  */
kfd_parse_subtype_mem(struct crat_subtype_memory * mem)166 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
167 {
168 	struct kfd_mem_properties *props;
169 	struct kfd_topology_device *dev;
170 	int i = 0;
171 
172 	pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
173 			mem->promixity_domain);
174 	list_for_each_entry(dev, &topology_device_list, list) {
175 		if (mem->promixity_domain == i) {
176 			props = kfd_alloc_struct(props);
177 			if (props == NULL)
178 				return -ENOMEM;
179 
180 			if (dev->node_props.cpu_cores_count == 0)
181 				props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
182 			else
183 				props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
184 
185 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
186 				props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
187 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
188 				props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
189 
190 			props->size_in_bytes =
191 				((uint64_t)mem->length_high << 32) +
192 							mem->length_low;
193 			props->width = mem->width;
194 
195 			dev->mem_bank_count++;
196 			list_add_tail(&props->list, &dev->mem_props);
197 
198 			break;
199 		}
200 		i++;
201 	}
202 
203 	return 0;
204 }
205 
206 /*
207  * kfd_parse_subtype_cache is called when the topology mutex
208  * is already acquired
209  */
kfd_parse_subtype_cache(struct crat_subtype_cache * cache)210 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
211 {
212 	struct kfd_cache_properties *props;
213 	struct kfd_topology_device *dev;
214 	uint32_t id;
215 
216 	id = cache->processor_id_low;
217 
218 	pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
219 	list_for_each_entry(dev, &topology_device_list, list)
220 		if (id == dev->node_props.cpu_core_id_base ||
221 		    id == dev->node_props.simd_id_base) {
222 			props = kfd_alloc_struct(props);
223 			if (props == NULL)
224 				return -ENOMEM;
225 
226 			props->processor_id_low = id;
227 			props->cache_level = cache->cache_level;
228 			props->cache_size = cache->cache_size;
229 			props->cacheline_size = cache->cache_line_size;
230 			props->cachelines_per_tag = cache->lines_per_tag;
231 			props->cache_assoc = cache->associativity;
232 			props->cache_latency = cache->cache_latency;
233 
234 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
235 				props->cache_type |= HSA_CACHE_TYPE_DATA;
236 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
237 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
238 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
239 				props->cache_type |= HSA_CACHE_TYPE_CPU;
240 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
241 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
242 
243 			dev->cache_count++;
244 			dev->node_props.caches_count++;
245 			list_add_tail(&props->list, &dev->cache_props);
246 
247 			break;
248 		}
249 
250 	return 0;
251 }
252 
253 /*
254  * kfd_parse_subtype_iolink is called when the topology mutex
255  * is already acquired
256  */
kfd_parse_subtype_iolink(struct crat_subtype_iolink * iolink)257 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
258 {
259 	struct kfd_iolink_properties *props;
260 	struct kfd_topology_device *dev;
261 	uint32_t i = 0;
262 	uint32_t id_from;
263 	uint32_t id_to;
264 
265 	id_from = iolink->proximity_domain_from;
266 	id_to = iolink->proximity_domain_to;
267 
268 	pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
269 	list_for_each_entry(dev, &topology_device_list, list) {
270 		if (id_from == i) {
271 			props = kfd_alloc_struct(props);
272 			if (props == NULL)
273 				return -ENOMEM;
274 
275 			props->node_from = id_from;
276 			props->node_to = id_to;
277 			props->ver_maj = iolink->version_major;
278 			props->ver_min = iolink->version_minor;
279 
280 			/*
281 			 * weight factor (derived from CDIR), currently always 1
282 			 */
283 			props->weight = 1;
284 
285 			props->min_latency = iolink->minimum_latency;
286 			props->max_latency = iolink->maximum_latency;
287 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
288 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
289 			props->rec_transfer_size =
290 					iolink->recommended_transfer_size;
291 
292 			dev->io_link_count++;
293 			dev->node_props.io_links_count++;
294 			list_add_tail(&props->list, &dev->io_link_props);
295 
296 			break;
297 		}
298 		i++;
299 	}
300 
301 	return 0;
302 }
303 
kfd_parse_subtype(struct crat_subtype_generic * sub_type_hdr)304 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
305 {
306 	struct crat_subtype_computeunit *cu;
307 	struct crat_subtype_memory *mem;
308 	struct crat_subtype_cache *cache;
309 	struct crat_subtype_iolink *iolink;
310 	int ret = 0;
311 
312 	switch (sub_type_hdr->type) {
313 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
314 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
315 		ret = kfd_parse_subtype_cu(cu);
316 		break;
317 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
318 		mem = (struct crat_subtype_memory *)sub_type_hdr;
319 		ret = kfd_parse_subtype_mem(mem);
320 		break;
321 	case CRAT_SUBTYPE_CACHE_AFFINITY:
322 		cache = (struct crat_subtype_cache *)sub_type_hdr;
323 		ret = kfd_parse_subtype_cache(cache);
324 		break;
325 	case CRAT_SUBTYPE_TLB_AFFINITY:
326 		/*
327 		 * For now, nothing to do here
328 		 */
329 		pr_info("Found TLB entry in CRAT table (not processing)\n");
330 		break;
331 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
332 		/*
333 		 * For now, nothing to do here
334 		 */
335 		pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
336 		break;
337 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
338 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
339 		ret = kfd_parse_subtype_iolink(iolink);
340 		break;
341 	default:
342 		pr_warn("Unknown subtype (%d) in CRAT\n",
343 				sub_type_hdr->type);
344 	}
345 
346 	return ret;
347 }
348 
kfd_release_topology_device(struct kfd_topology_device * dev)349 static void kfd_release_topology_device(struct kfd_topology_device *dev)
350 {
351 	struct kfd_mem_properties *mem;
352 	struct kfd_cache_properties *cache;
353 	struct kfd_iolink_properties *iolink;
354 
355 	list_del(&dev->list);
356 
357 	while (dev->mem_props.next != &dev->mem_props) {
358 		mem = container_of(dev->mem_props.next,
359 				struct kfd_mem_properties, list);
360 		list_del(&mem->list);
361 		kfree(mem);
362 	}
363 
364 	while (dev->cache_props.next != &dev->cache_props) {
365 		cache = container_of(dev->cache_props.next,
366 				struct kfd_cache_properties, list);
367 		list_del(&cache->list);
368 		kfree(cache);
369 	}
370 
371 	while (dev->io_link_props.next != &dev->io_link_props) {
372 		iolink = container_of(dev->io_link_props.next,
373 				struct kfd_iolink_properties, list);
374 		list_del(&iolink->list);
375 		kfree(iolink);
376 	}
377 
378 	kfree(dev);
379 
380 	sys_props.num_devices--;
381 }
382 
kfd_release_live_view(void)383 static void kfd_release_live_view(void)
384 {
385 	struct kfd_topology_device *dev;
386 
387 	while (topology_device_list.next != &topology_device_list) {
388 		dev = container_of(topology_device_list.next,
389 				 struct kfd_topology_device, list);
390 		kfd_release_topology_device(dev);
391 }
392 
393 	memset(&sys_props, 0, sizeof(sys_props));
394 }
395 
kfd_create_topology_device(void)396 static struct kfd_topology_device *kfd_create_topology_device(void)
397 {
398 	struct kfd_topology_device *dev;
399 
400 	dev = kfd_alloc_struct(dev);
401 	if (!dev) {
402 		pr_err("No memory to allocate a topology device");
403 		return NULL;
404 	}
405 
406 	INIT_LIST_HEAD(&dev->mem_props);
407 	INIT_LIST_HEAD(&dev->cache_props);
408 	INIT_LIST_HEAD(&dev->io_link_props);
409 
410 	list_add_tail(&dev->list, &topology_device_list);
411 	sys_props.num_devices++;
412 
413 	return dev;
414 }
415 
kfd_parse_crat_table(void * crat_image)416 static int kfd_parse_crat_table(void *crat_image)
417 {
418 	struct kfd_topology_device *top_dev;
419 	struct crat_subtype_generic *sub_type_hdr;
420 	uint16_t node_id;
421 	int ret;
422 	struct crat_header *crat_table = (struct crat_header *)crat_image;
423 	uint16_t num_nodes;
424 	uint32_t image_len;
425 
426 	if (!crat_image)
427 		return -EINVAL;
428 
429 	num_nodes = crat_table->num_domains;
430 	image_len = crat_table->length;
431 
432 	pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
433 
434 	for (node_id = 0; node_id < num_nodes; node_id++) {
435 		top_dev = kfd_create_topology_device();
436 		if (!top_dev) {
437 			kfd_release_live_view();
438 			return -ENOMEM;
439 		}
440 	}
441 
442 	sys_props.platform_id =
443 		(*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
444 	sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
445 	sys_props.platform_rev = crat_table->revision;
446 
447 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
448 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
449 			((char *)crat_image) + image_len) {
450 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
451 			ret = kfd_parse_subtype(sub_type_hdr);
452 			if (ret != 0) {
453 				kfd_release_live_view();
454 				return ret;
455 			}
456 		}
457 
458 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
459 				sub_type_hdr->length);
460 	}
461 
462 	sys_props.generation_count++;
463 	topology_crat_parsed = 1;
464 
465 	return 0;
466 }
467 
468 
469 #define sysfs_show_gen_prop(buffer, fmt, ...) \
470 		snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
471 #define sysfs_show_32bit_prop(buffer, name, value) \
472 		sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
473 #define sysfs_show_64bit_prop(buffer, name, value) \
474 		sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
475 #define sysfs_show_32bit_val(buffer, value) \
476 		sysfs_show_gen_prop(buffer, "%u\n", value)
477 #define sysfs_show_str_val(buffer, value) \
478 		sysfs_show_gen_prop(buffer, "%s\n", value)
479 
sysprops_show(struct kobject * kobj,struct attribute * attr,char * buffer)480 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
481 		char *buffer)
482 {
483 	ssize_t ret;
484 
485 	/* Making sure that the buffer is an empty string */
486 	buffer[0] = 0;
487 
488 	if (attr == &sys_props.attr_genid) {
489 		ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
490 	} else if (attr == &sys_props.attr_props) {
491 		sysfs_show_64bit_prop(buffer, "platform_oem",
492 				sys_props.platform_oem);
493 		sysfs_show_64bit_prop(buffer, "platform_id",
494 				sys_props.platform_id);
495 		ret = sysfs_show_64bit_prop(buffer, "platform_rev",
496 				sys_props.platform_rev);
497 	} else {
498 		ret = -EINVAL;
499 	}
500 
501 	return ret;
502 }
503 
kfd_topology_kobj_release(struct kobject * kobj)504 static void kfd_topology_kobj_release(struct kobject *kobj)
505 {
506 	kfree(kobj);
507 }
508 
509 static const struct sysfs_ops sysprops_ops = {
510 	.show = sysprops_show,
511 };
512 
513 static struct kobj_type sysprops_type = {
514 	.release = kfd_topology_kobj_release,
515 	.sysfs_ops = &sysprops_ops,
516 };
517 
iolink_show(struct kobject * kobj,struct attribute * attr,char * buffer)518 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
519 		char *buffer)
520 {
521 	ssize_t ret;
522 	struct kfd_iolink_properties *iolink;
523 
524 	/* Making sure that the buffer is an empty string */
525 	buffer[0] = 0;
526 
527 	iolink = container_of(attr, struct kfd_iolink_properties, attr);
528 	sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
529 	sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
530 	sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
531 	sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
532 	sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
533 	sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
534 	sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
535 	sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
536 	sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
537 	sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
538 	sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
539 			iolink->rec_transfer_size);
540 	ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
541 
542 	return ret;
543 }
544 
545 static const struct sysfs_ops iolink_ops = {
546 	.show = iolink_show,
547 };
548 
549 static struct kobj_type iolink_type = {
550 	.release = kfd_topology_kobj_release,
551 	.sysfs_ops = &iolink_ops,
552 };
553 
mem_show(struct kobject * kobj,struct attribute * attr,char * buffer)554 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
555 		char *buffer)
556 {
557 	ssize_t ret;
558 	struct kfd_mem_properties *mem;
559 
560 	/* Making sure that the buffer is an empty string */
561 	buffer[0] = 0;
562 
563 	mem = container_of(attr, struct kfd_mem_properties, attr);
564 	sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
565 	sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
566 	sysfs_show_32bit_prop(buffer, "flags", mem->flags);
567 	sysfs_show_32bit_prop(buffer, "width", mem->width);
568 	ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
569 
570 	return ret;
571 }
572 
573 static const struct sysfs_ops mem_ops = {
574 	.show = mem_show,
575 };
576 
577 static struct kobj_type mem_type = {
578 	.release = kfd_topology_kobj_release,
579 	.sysfs_ops = &mem_ops,
580 };
581 
kfd_cache_show(struct kobject * kobj,struct attribute * attr,char * buffer)582 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
583 		char *buffer)
584 {
585 	ssize_t ret;
586 	uint32_t i;
587 	struct kfd_cache_properties *cache;
588 
589 	/* Making sure that the buffer is an empty string */
590 	buffer[0] = 0;
591 
592 	cache = container_of(attr, struct kfd_cache_properties, attr);
593 	sysfs_show_32bit_prop(buffer, "processor_id_low",
594 			cache->processor_id_low);
595 	sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
596 	sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
597 	sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
598 	sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
599 			cache->cachelines_per_tag);
600 	sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
601 	sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
602 	sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
603 	snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
604 	for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
605 		ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
606 				buffer, cache->sibling_map[i],
607 				(i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
608 						"\n" : ",");
609 
610 	return ret;
611 }
612 
613 static const struct sysfs_ops cache_ops = {
614 	.show = kfd_cache_show,
615 };
616 
617 static struct kobj_type cache_type = {
618 	.release = kfd_topology_kobj_release,
619 	.sysfs_ops = &cache_ops,
620 };
621 
node_show(struct kobject * kobj,struct attribute * attr,char * buffer)622 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
623 		char *buffer)
624 {
625 	struct kfd_topology_device *dev;
626 	char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
627 	uint32_t i;
628 	uint32_t log_max_watch_addr;
629 
630 	/* Making sure that the buffer is an empty string */
631 	buffer[0] = 0;
632 
633 	if (strcmp(attr->name, "gpu_id") == 0) {
634 		dev = container_of(attr, struct kfd_topology_device,
635 				attr_gpuid);
636 		return sysfs_show_32bit_val(buffer, dev->gpu_id);
637 	}
638 
639 	if (strcmp(attr->name, "name") == 0) {
640 		dev = container_of(attr, struct kfd_topology_device,
641 				attr_name);
642 		for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
643 			public_name[i] =
644 					(char)dev->node_props.marketing_name[i];
645 			if (dev->node_props.marketing_name[i] == 0)
646 				break;
647 		}
648 		public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
649 		return sysfs_show_str_val(buffer, public_name);
650 	}
651 
652 	dev = container_of(attr, struct kfd_topology_device,
653 			attr_props);
654 	sysfs_show_32bit_prop(buffer, "cpu_cores_count",
655 			dev->node_props.cpu_cores_count);
656 	sysfs_show_32bit_prop(buffer, "simd_count",
657 			dev->node_props.simd_count);
658 
659 	if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
660 		pr_info_once("mem_banks_count truncated from %d to %d\n",
661 				dev->node_props.mem_banks_count,
662 				dev->mem_bank_count);
663 		sysfs_show_32bit_prop(buffer, "mem_banks_count",
664 				dev->mem_bank_count);
665 	} else {
666 		sysfs_show_32bit_prop(buffer, "mem_banks_count",
667 				dev->node_props.mem_banks_count);
668 	}
669 
670 	sysfs_show_32bit_prop(buffer, "caches_count",
671 			dev->node_props.caches_count);
672 	sysfs_show_32bit_prop(buffer, "io_links_count",
673 			dev->node_props.io_links_count);
674 	sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
675 			dev->node_props.cpu_core_id_base);
676 	sysfs_show_32bit_prop(buffer, "simd_id_base",
677 			dev->node_props.simd_id_base);
678 	sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
679 			dev->node_props.max_waves_per_simd);
680 	sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
681 			dev->node_props.lds_size_in_kb);
682 	sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
683 			dev->node_props.gds_size_in_kb);
684 	sysfs_show_32bit_prop(buffer, "wave_front_size",
685 			dev->node_props.wave_front_size);
686 	sysfs_show_32bit_prop(buffer, "array_count",
687 			dev->node_props.array_count);
688 	sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
689 			dev->node_props.simd_arrays_per_engine);
690 	sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
691 			dev->node_props.cu_per_simd_array);
692 	sysfs_show_32bit_prop(buffer, "simd_per_cu",
693 			dev->node_props.simd_per_cu);
694 	sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
695 			dev->node_props.max_slots_scratch_cu);
696 	sysfs_show_32bit_prop(buffer, "vendor_id",
697 			dev->node_props.vendor_id);
698 	sysfs_show_32bit_prop(buffer, "device_id",
699 			dev->node_props.device_id);
700 	sysfs_show_32bit_prop(buffer, "location_id",
701 			dev->node_props.location_id);
702 
703 	if (dev->gpu) {
704 		log_max_watch_addr =
705 			__ilog2_u32(dev->gpu->device_info->num_of_watch_points);
706 
707 		if (log_max_watch_addr) {
708 			dev->node_props.capability |=
709 					HSA_CAP_WATCH_POINTS_SUPPORTED;
710 
711 			dev->node_props.capability |=
712 				((log_max_watch_addr <<
713 					HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
714 				HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
715 		}
716 
717 		sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
718 			dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(
719 					dev->gpu->kgd));
720 
721 		sysfs_show_64bit_prop(buffer, "local_mem_size",
722 				(unsigned long long int) 0);
723 
724 		sysfs_show_32bit_prop(buffer, "fw_version",
725 			dev->gpu->kfd2kgd->get_fw_version(
726 						dev->gpu->kgd,
727 						KGD_ENGINE_MEC1));
728 		sysfs_show_32bit_prop(buffer, "capability",
729 				dev->node_props.capability);
730 	}
731 
732 	return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
733 					cpufreq_quick_get_max(0)/1000);
734 }
735 
736 static const struct sysfs_ops node_ops = {
737 	.show = node_show,
738 };
739 
740 static struct kobj_type node_type = {
741 	.release = kfd_topology_kobj_release,
742 	.sysfs_ops = &node_ops,
743 };
744 
kfd_remove_sysfs_file(struct kobject * kobj,struct attribute * attr)745 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
746 {
747 	sysfs_remove_file(kobj, attr);
748 	kobject_del(kobj);
749 	kobject_put(kobj);
750 }
751 
kfd_remove_sysfs_node_entry(struct kfd_topology_device * dev)752 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
753 {
754 	struct kfd_iolink_properties *iolink;
755 	struct kfd_cache_properties *cache;
756 	struct kfd_mem_properties *mem;
757 
758 	if (dev->kobj_iolink) {
759 		list_for_each_entry(iolink, &dev->io_link_props, list)
760 			if (iolink->kobj) {
761 				kfd_remove_sysfs_file(iolink->kobj,
762 							&iolink->attr);
763 				iolink->kobj = NULL;
764 			}
765 		kobject_del(dev->kobj_iolink);
766 		kobject_put(dev->kobj_iolink);
767 		dev->kobj_iolink = NULL;
768 	}
769 
770 	if (dev->kobj_cache) {
771 		list_for_each_entry(cache, &dev->cache_props, list)
772 			if (cache->kobj) {
773 				kfd_remove_sysfs_file(cache->kobj,
774 							&cache->attr);
775 				cache->kobj = NULL;
776 			}
777 		kobject_del(dev->kobj_cache);
778 		kobject_put(dev->kobj_cache);
779 		dev->kobj_cache = NULL;
780 	}
781 
782 	if (dev->kobj_mem) {
783 		list_for_each_entry(mem, &dev->mem_props, list)
784 			if (mem->kobj) {
785 				kfd_remove_sysfs_file(mem->kobj, &mem->attr);
786 				mem->kobj = NULL;
787 			}
788 		kobject_del(dev->kobj_mem);
789 		kobject_put(dev->kobj_mem);
790 		dev->kobj_mem = NULL;
791 	}
792 
793 	if (dev->kobj_node) {
794 		sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
795 		sysfs_remove_file(dev->kobj_node, &dev->attr_name);
796 		sysfs_remove_file(dev->kobj_node, &dev->attr_props);
797 		kobject_del(dev->kobj_node);
798 		kobject_put(dev->kobj_node);
799 		dev->kobj_node = NULL;
800 	}
801 }
802 
kfd_build_sysfs_node_entry(struct kfd_topology_device * dev,uint32_t id)803 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
804 		uint32_t id)
805 {
806 	struct kfd_iolink_properties *iolink;
807 	struct kfd_cache_properties *cache;
808 	struct kfd_mem_properties *mem;
809 	int ret;
810 	uint32_t i;
811 
812 	if (WARN_ON(dev->kobj_node))
813 		return -EEXIST;
814 
815 	/*
816 	 * Creating the sysfs folders
817 	 */
818 	dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
819 	if (!dev->kobj_node)
820 		return -ENOMEM;
821 
822 	ret = kobject_init_and_add(dev->kobj_node, &node_type,
823 			sys_props.kobj_nodes, "%d", id);
824 	if (ret < 0)
825 		return ret;
826 
827 	dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
828 	if (!dev->kobj_mem)
829 		return -ENOMEM;
830 
831 	dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
832 	if (!dev->kobj_cache)
833 		return -ENOMEM;
834 
835 	dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
836 	if (!dev->kobj_iolink)
837 		return -ENOMEM;
838 
839 	/*
840 	 * Creating sysfs files for node properties
841 	 */
842 	dev->attr_gpuid.name = "gpu_id";
843 	dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
844 	sysfs_attr_init(&dev->attr_gpuid);
845 	dev->attr_name.name = "name";
846 	dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
847 	sysfs_attr_init(&dev->attr_name);
848 	dev->attr_props.name = "properties";
849 	dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
850 	sysfs_attr_init(&dev->attr_props);
851 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
852 	if (ret < 0)
853 		return ret;
854 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
855 	if (ret < 0)
856 		return ret;
857 	ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
858 	if (ret < 0)
859 		return ret;
860 
861 	i = 0;
862 	list_for_each_entry(mem, &dev->mem_props, list) {
863 		mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
864 		if (!mem->kobj)
865 			return -ENOMEM;
866 		ret = kobject_init_and_add(mem->kobj, &mem_type,
867 				dev->kobj_mem, "%d", i);
868 		if (ret < 0)
869 			return ret;
870 
871 		mem->attr.name = "properties";
872 		mem->attr.mode = KFD_SYSFS_FILE_MODE;
873 		sysfs_attr_init(&mem->attr);
874 		ret = sysfs_create_file(mem->kobj, &mem->attr);
875 		if (ret < 0)
876 			return ret;
877 		i++;
878 	}
879 
880 	i = 0;
881 	list_for_each_entry(cache, &dev->cache_props, list) {
882 		cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
883 		if (!cache->kobj)
884 			return -ENOMEM;
885 		ret = kobject_init_and_add(cache->kobj, &cache_type,
886 				dev->kobj_cache, "%d", i);
887 		if (ret < 0)
888 			return ret;
889 
890 		cache->attr.name = "properties";
891 		cache->attr.mode = KFD_SYSFS_FILE_MODE;
892 		sysfs_attr_init(&cache->attr);
893 		ret = sysfs_create_file(cache->kobj, &cache->attr);
894 		if (ret < 0)
895 			return ret;
896 		i++;
897 	}
898 
899 	i = 0;
900 	list_for_each_entry(iolink, &dev->io_link_props, list) {
901 		iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
902 		if (!iolink->kobj)
903 			return -ENOMEM;
904 		ret = kobject_init_and_add(iolink->kobj, &iolink_type,
905 				dev->kobj_iolink, "%d", i);
906 		if (ret < 0)
907 			return ret;
908 
909 		iolink->attr.name = "properties";
910 		iolink->attr.mode = KFD_SYSFS_FILE_MODE;
911 		sysfs_attr_init(&iolink->attr);
912 		ret = sysfs_create_file(iolink->kobj, &iolink->attr);
913 		if (ret < 0)
914 			return ret;
915 		i++;
916 }
917 
918 	return 0;
919 }
920 
kfd_build_sysfs_node_tree(void)921 static int kfd_build_sysfs_node_tree(void)
922 {
923 	struct kfd_topology_device *dev;
924 	int ret;
925 	uint32_t i = 0;
926 
927 	list_for_each_entry(dev, &topology_device_list, list) {
928 		ret = kfd_build_sysfs_node_entry(dev, i);
929 		if (ret < 0)
930 			return ret;
931 		i++;
932 	}
933 
934 	return 0;
935 }
936 
kfd_remove_sysfs_node_tree(void)937 static void kfd_remove_sysfs_node_tree(void)
938 {
939 	struct kfd_topology_device *dev;
940 
941 	list_for_each_entry(dev, &topology_device_list, list)
942 		kfd_remove_sysfs_node_entry(dev);
943 }
944 
kfd_topology_update_sysfs(void)945 static int kfd_topology_update_sysfs(void)
946 {
947 	int ret;
948 
949 	pr_info("Creating topology SYSFS entries\n");
950 	if (!sys_props.kobj_topology) {
951 		sys_props.kobj_topology =
952 				kfd_alloc_struct(sys_props.kobj_topology);
953 		if (!sys_props.kobj_topology)
954 			return -ENOMEM;
955 
956 		ret = kobject_init_and_add(sys_props.kobj_topology,
957 				&sysprops_type,  &kfd_device->kobj,
958 				"topology");
959 		if (ret < 0)
960 			return ret;
961 
962 		sys_props.kobj_nodes = kobject_create_and_add("nodes",
963 				sys_props.kobj_topology);
964 		if (!sys_props.kobj_nodes)
965 			return -ENOMEM;
966 
967 		sys_props.attr_genid.name = "generation_id";
968 		sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
969 		sysfs_attr_init(&sys_props.attr_genid);
970 		ret = sysfs_create_file(sys_props.kobj_topology,
971 				&sys_props.attr_genid);
972 		if (ret < 0)
973 			return ret;
974 
975 		sys_props.attr_props.name = "system_properties";
976 		sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
977 		sysfs_attr_init(&sys_props.attr_props);
978 		ret = sysfs_create_file(sys_props.kobj_topology,
979 				&sys_props.attr_props);
980 		if (ret < 0)
981 			return ret;
982 	}
983 
984 	kfd_remove_sysfs_node_tree();
985 
986 	return kfd_build_sysfs_node_tree();
987 }
988 
kfd_topology_release_sysfs(void)989 static void kfd_topology_release_sysfs(void)
990 {
991 	kfd_remove_sysfs_node_tree();
992 	if (sys_props.kobj_topology) {
993 		sysfs_remove_file(sys_props.kobj_topology,
994 				&sys_props.attr_genid);
995 		sysfs_remove_file(sys_props.kobj_topology,
996 				&sys_props.attr_props);
997 		if (sys_props.kobj_nodes) {
998 			kobject_del(sys_props.kobj_nodes);
999 			kobject_put(sys_props.kobj_nodes);
1000 			sys_props.kobj_nodes = NULL;
1001 		}
1002 		kobject_del(sys_props.kobj_topology);
1003 		kobject_put(sys_props.kobj_topology);
1004 		sys_props.kobj_topology = NULL;
1005 	}
1006 }
1007 
kfd_topology_init(void)1008 int kfd_topology_init(void)
1009 {
1010 	void *crat_image = NULL;
1011 	size_t image_size = 0;
1012 	int ret;
1013 
1014 	/*
1015 	 * Initialize the head for the topology device list
1016 	 */
1017 	INIT_LIST_HEAD(&topology_device_list);
1018 	init_rwsem(&topology_lock);
1019 	topology_crat_parsed = 0;
1020 
1021 	memset(&sys_props, 0, sizeof(sys_props));
1022 
1023 	/*
1024 	 * Get the CRAT image from the ACPI
1025 	 */
1026 	ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1027 	if (ret == 0 && image_size > 0) {
1028 		pr_info("Found CRAT image with size=%zd\n", image_size);
1029 		crat_image = kmalloc(image_size, GFP_KERNEL);
1030 		if (!crat_image) {
1031 			ret = -ENOMEM;
1032 			pr_err("No memory for allocating CRAT image\n");
1033 			goto err;
1034 		}
1035 		ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1036 
1037 		if (ret == 0) {
1038 			down_write(&topology_lock);
1039 			ret = kfd_parse_crat_table(crat_image);
1040 			if (ret == 0)
1041 				ret = kfd_topology_update_sysfs();
1042 			up_write(&topology_lock);
1043 		} else {
1044 			pr_err("Couldn't get CRAT table size from ACPI\n");
1045 		}
1046 		kfree(crat_image);
1047 	} else if (ret == -ENODATA) {
1048 		ret = 0;
1049 	} else {
1050 		pr_err("Couldn't get CRAT table size from ACPI\n");
1051 	}
1052 
1053 err:
1054 	pr_info("Finished initializing topology ret=%d\n", ret);
1055 	return ret;
1056 }
1057 
kfd_topology_shutdown(void)1058 void kfd_topology_shutdown(void)
1059 {
1060 	kfd_topology_release_sysfs();
1061 	kfd_release_live_view();
1062 }
1063 
kfd_debug_print_topology(void)1064 static void kfd_debug_print_topology(void)
1065 {
1066 	struct kfd_topology_device *dev;
1067 	uint32_t i = 0;
1068 
1069 	pr_info("DEBUG PRINT OF TOPOLOGY:");
1070 	list_for_each_entry(dev, &topology_device_list, list) {
1071 		pr_info("Node: %d\n", i);
1072 		pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
1073 		pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
1074 		pr_info("\tSIMD count: %d", dev->node_props.simd_count);
1075 		i++;
1076 	}
1077 }
1078 
kfd_generate_gpu_id(struct kfd_dev * gpu)1079 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1080 {
1081 	uint32_t hashout;
1082 	uint32_t buf[7];
1083 	uint64_t local_mem_size;
1084 	int i;
1085 
1086 	if (!gpu)
1087 		return 0;
1088 
1089 	local_mem_size = gpu->kfd2kgd->get_vmem_size(gpu->kgd);
1090 
1091 	buf[0] = gpu->pdev->devfn;
1092 	buf[1] = gpu->pdev->subsystem_vendor;
1093 	buf[2] = gpu->pdev->subsystem_device;
1094 	buf[3] = gpu->pdev->device;
1095 	buf[4] = gpu->pdev->bus->number;
1096 	buf[5] = lower_32_bits(local_mem_size);
1097 	buf[6] = upper_32_bits(local_mem_size);
1098 
1099 	for (i = 0, hashout = 0; i < 7; i++)
1100 		hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1101 
1102 	return hashout;
1103 }
1104 
kfd_assign_gpu(struct kfd_dev * gpu)1105 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1106 {
1107 	struct kfd_topology_device *dev;
1108 	struct kfd_topology_device *out_dev = NULL;
1109 
1110 	list_for_each_entry(dev, &topology_device_list, list)
1111 		if (!dev->gpu && (dev->node_props.simd_count > 0)) {
1112 			dev->gpu = gpu;
1113 			out_dev = dev;
1114 			break;
1115 		}
1116 
1117 	return out_dev;
1118 }
1119 
kfd_notify_gpu_change(uint32_t gpu_id,int arrival)1120 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1121 {
1122 	/*
1123 	 * TODO: Generate an event for thunk about the arrival/removal
1124 	 * of the GPU
1125 	 */
1126 }
1127 
kfd_topology_add_device(struct kfd_dev * gpu)1128 int kfd_topology_add_device(struct kfd_dev *gpu)
1129 {
1130 	uint32_t gpu_id;
1131 	struct kfd_topology_device *dev;
1132 	int res;
1133 
1134 	gpu_id = kfd_generate_gpu_id(gpu);
1135 
1136 	pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1137 
1138 	down_write(&topology_lock);
1139 	/*
1140 	 * Try to assign the GPU to existing topology device (generated from
1141 	 * CRAT table
1142 	 */
1143 	dev = kfd_assign_gpu(gpu);
1144 	if (!dev) {
1145 		pr_info("GPU was not found in the current topology. Extending.\n");
1146 		kfd_debug_print_topology();
1147 		dev = kfd_create_topology_device();
1148 		if (!dev) {
1149 			res = -ENOMEM;
1150 			goto err;
1151 		}
1152 		dev->gpu = gpu;
1153 
1154 		/*
1155 		 * TODO: Make a call to retrieve topology information from the
1156 		 * GPU vBIOS
1157 		 */
1158 
1159 		/* Update the SYSFS tree, since we added another topology
1160 		 * device
1161 		 */
1162 		if (kfd_topology_update_sysfs() < 0)
1163 			kfd_topology_release_sysfs();
1164 
1165 	}
1166 
1167 	dev->gpu_id = gpu_id;
1168 	gpu->id = gpu_id;
1169 	dev->node_props.vendor_id = gpu->pdev->vendor;
1170 	dev->node_props.device_id = gpu->pdev->device;
1171 	dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
1172 			(gpu->pdev->devfn & 0xffffff);
1173 	/*
1174 	 * TODO: Retrieve max engine clock values from KGD
1175 	 */
1176 
1177 	if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
1178 		dev->node_props.capability |= HSA_CAP_DOORBELL_PACKET_TYPE;
1179 		pr_info("Adding doorbell packet type capability\n");
1180 	}
1181 
1182 	res = 0;
1183 
1184 err:
1185 	up_write(&topology_lock);
1186 
1187 	if (res == 0)
1188 		kfd_notify_gpu_change(gpu_id, 1);
1189 
1190 	return res;
1191 }
1192 
kfd_topology_remove_device(struct kfd_dev * gpu)1193 int kfd_topology_remove_device(struct kfd_dev *gpu)
1194 {
1195 	struct kfd_topology_device *dev;
1196 	uint32_t gpu_id;
1197 	int res = -ENODEV;
1198 
1199 	down_write(&topology_lock);
1200 
1201 	list_for_each_entry(dev, &topology_device_list, list)
1202 		if (dev->gpu == gpu) {
1203 			gpu_id = dev->gpu_id;
1204 			kfd_remove_sysfs_node_entry(dev);
1205 			kfd_release_topology_device(dev);
1206 			res = 0;
1207 			if (kfd_topology_update_sysfs() < 0)
1208 				kfd_topology_release_sysfs();
1209 			break;
1210 		}
1211 
1212 	up_write(&topology_lock);
1213 
1214 	if (res == 0)
1215 		kfd_notify_gpu_change(gpu_id, 0);
1216 
1217 	return res;
1218 }
1219 
1220 /*
1221  * When idx is out of bounds, the function will return NULL
1222  */
kfd_topology_enum_kfd_devices(uint8_t idx)1223 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
1224 {
1225 
1226 	struct kfd_topology_device *top_dev;
1227 	struct kfd_dev *device = NULL;
1228 	uint8_t device_idx = 0;
1229 
1230 	down_read(&topology_lock);
1231 
1232 	list_for_each_entry(top_dev, &topology_device_list, list) {
1233 		if (device_idx == idx) {
1234 			device = top_dev->gpu;
1235 			break;
1236 		}
1237 
1238 		device_idx++;
1239 	}
1240 
1241 	up_read(&topology_lock);
1242 
1243 	return device;
1244 
1245 }
1246